1
|
Watt AP, Lefevre C, Wong CS, Nicholas KR, Sharp JA. Insulin regulates human mammosphere development and function. Cell Tissue Res 2021; 384:333-352. [PMID: 33439347 DOI: 10.1007/s00441-020-03360-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 11/19/2020] [Indexed: 11/29/2022]
Abstract
Assessing the role of lactogenic hormones in human mammary gland development is limited due to issues accessing tissue samples and so development of a human in vitro three-dimensional mammosphere model with functions similar to secretory alveoli in the mammary gland can aid to overcome this shortfall. In this study, a mammosphere model has been characterised using human mammary epithelial cells grown on either mouse extracellular matrix or agarose and showed insulin is essential for formation of mammospheres. Insulin was shown to up-regulate extracellular matrix genes. Microarray analysis of these mammospheres revealed an up-regulation of differentiation, cell-cell junctions, and cytoskeleton organisation functions, suggesting mammosphere formation may be regulated through ILK signalling. Comparison of insulin and IGF-1 effects on mammosphere signalling showed that although IGF-1 could induce spherical structures, the cells did not polarise correctly as shown by the absence of up-regulation of polarisation genes and did not induce the expression of milk protein genes. This study demonstrated a major role for insulin in mammary acinar development for secretory differentiation and function indicating the potential for reduced lactational efficiency in women with obesity and gestational diabetes.
Collapse
Affiliation(s)
- Ashalyn P Watt
- Institute for Frontier Materials, Deakin University, Geelong, 3216, Australia.
| | - Christophe Lefevre
- Division of Bioinformatics, Walter and Eliza Hall Medical Research Institute, 3000, Melbourne, Australia.,Peter MacCallum Cancer Research Institute, East Melbourne, 3002, Australia
| | - Cynthia S Wong
- Institute for Frontier Materials, Deakin University, Geelong, 3216, Australia
| | - Kevin R Nicholas
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Julie A Sharp
- Institute for Frontier Materials, Deakin University, Geelong, 3216, Australia
| |
Collapse
|
2
|
Gomez AL, Altamirano GA, Tschopp MV, Bosquiazzo VL, Muñoz-de-Toro M, Kass L. Exposure to a Glyphosate-based Herbicide Alters the Expression of Key Regulators of Mammary Gland Development on Pre-pubertal Male Rats. Toxicology 2020; 439:152477. [PMID: 32360609 DOI: 10.1016/j.tox.2020.152477] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/03/2020] [Accepted: 04/24/2020] [Indexed: 12/17/2022]
Abstract
We previously reported that exposure during gestation and lactation to a low dose of glyphosate-based herbicide (GBH) reduced the area and perimeter of male offspring mammary gland at postnatal day 60 (PND60), whereas a higher dose increased the longitudinal growth of the gland. Here, our aim was to assess whether perinatal exposure to GBH exhibits endocrine disruptive action in male mammary gland at an early time point (pre-puberty), which could be related to the changes observed after puberty. We also wanted to explore whether an early evaluation of the male rat mammary gland is appropriate to assess exposure to potential endocrine disrupting chemicals (EDCs). Pregnant rats were orally exposed, through the diet, to vehicle (saline solution), 3.5 or 350 mg/kg/day of GBH from gestational day 9 until weaning. At PND21, the male offspring were euthanized, and mammary gland samples were collected. The histology and proliferation index of the mammary glands were evaluated, and the mRNA expression of estrogen (ESR1) and androgen (AR) receptors, cyclin D1 (Ccnd1), amphiregulin (Areg), insulin-like growth factor 1 (IGF1), epidermal growth factor receptor (EGFR) and IGF1 receptor (IGF1R) were assessed. Moreover, the phosphorylated-Erk1/2 (p-ERK1/2) protein expression was determined. No differences were observed in mammary epithelial structures and AR expression between experimental groups; however, the proliferation index was reduced in GBH3.5-exposed males. This result was associated with decreased ESR1, Ccnd1, Areg, IGF1, EGFR and IGF1R mRNA expressions, as well as reduced p-Erk1/2 protein expression in these animals. ESR1, Ccnd1, IGF1R and EGFR expressions were also reduced in GBH350-exposed males. In conclusion, the mammary gland development of pre-pubertal male rats is affected by perinatal exposure to GBH. Although further studies are still needed to understand the molecular mechanisms involved in GBH350 exposure, the present results may explain the alterations observed in mammary gland growth of post-pubertal males exposed to low doses of GBH. Our results also suggest that early evaluation of the male rat mammary gland is useful in assessing exposure to potential EDCs. However, analysis of EDCs effects at later time points should not be excluded.
Collapse
Affiliation(s)
- Ayelen L Gomez
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Gabriela A Altamirano
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - María V Tschopp
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Verónica L Bosquiazzo
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Mónica Muñoz-de-Toro
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Laura Kass
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
3
|
Mercer KE, Bhattacharyya S, Sharma N, Chaudhury M, Lin H, Yeruva L, Ronis MJ. Infant Formula Feeding Changes the Proliferative Status in Piglet Neonatal Mammary Glands Independently of Estrogen Signaling. J Nutr 2020; 150:730-738. [PMID: 31687754 PMCID: PMC7138673 DOI: 10.1093/jn/nxz273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Soy infant formula contains isoflavones, which are able to bind to and activate estrogen receptor (ER) pathways. The mammary gland is sensitive to estrogens, raising concern that the use of soy formulas may promote premature development. OBJECTIVE We aimed to determine if soy formula feeding increases mammary gland proliferation and differentiation in comparison to other infant postnatal diets. METHODS White-Dutch Landrace piglets aged 2 d received either sow milk (Sow), or were provided milk formula (Milk), soy formula (Soy), milk formula supplemented with 17-beta-estradiol (2 mg/(kg·d); M + E2), or milk formula supplemented with genistein (84 mg/L of diet; M + G) until day 21. Mammary gland proliferation and differentiation was assessed by histology, and real-time RT-PCR confirmation of differentially expressed genes identified by microarray analysis. RESULTS Mammary terminal end bud numbers were 19-31% greater in the Milk, Soy, and M + G groups relative to the Sow and M + E2, P <0.05. Microarray analysis identified differentially expressed genes between each formula-fed group relative to the Sow (±1.7-fold, P <0.05). Real-time RT-PCR confirmed 2- to 4-fold increases in mRNA transcripts of genes involved in cell proliferation, insulin-like growth factor 1 (IGF1), fibroblast growth factor 10 (FGF10), and fibroblast growth factor 18 (FGF18), in all groups relative to the Sow, P <0.05. In contrast, genes involved in cell differentiation and ductal morphogenesis, angiotensin II receptor type 2 (AGTR2), microtubule associated protein 1b (MAP1B), and kinesin family member 26b (KIF26B), were significantly upregulated by 2-, 4-, and 13-fold, respectively, in the M + E2 group. Additionally, mRNA expression of ER-specific gene targets, progesterone receptor (PGR), was increased by 12-fold, and amphiregulin (AREG) and Ras-like estrogen regulated growth inhibitor (RERG) expression by 1.5-fold in the M + E2 group, P <0.05. In the soy and M + G groups, mRNA expressions of fatty acid synthesis genes were increased 2- to 4-fold. CONCLUSIONS Our data indicate soy formula feeding does not promote ER-signaling in the piglet mammary gland. Infant formula feeding (milk- or soy-based) may initiate proliferative pathways independently of estrogenic signaling.
Collapse
Affiliation(s)
- Kelly E Mercer
- Arkansas Children's Nutrition Center, Little Rock, AR, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Sudeepa Bhattacharyya
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Neha Sharma
- Arkansas Children's Nutrition Center, Little Rock, AR, USA
| | | | - Haixia Lin
- Arkansas Children's Nutrition Center, Little Rock, AR, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Laxmi Yeruva
- Arkansas Children's Nutrition Center, Little Rock, AR, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Martin J Ronis
- Department of Pharmacology & Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| |
Collapse
|
4
|
Gomez AL, Altamirano GA, Leturia J, Bosquiazzo VL, Muñoz-de-Toro M, Kass L. Male mammary gland development and methylation status of estrogen receptor alpha in Wistar rats are modified by the developmental exposure to a glyphosate-based herbicide. Mol Cell Endocrinol 2019; 481:14-25. [PMID: 30447247 DOI: 10.1016/j.mce.2018.11.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/05/2018] [Accepted: 11/13/2018] [Indexed: 01/21/2023]
Abstract
Postnatal treatment with glyphosate-based herbicides (GBHs) induces endocrine-disrupting effects on the male rat mammary gland. In this study, the effects of developmental exposure to GBH on mammary gland growth and development, and the possible molecular mechanisms involved, were evaluated in pre- and post-pubertal male rats. To this end, pregnant rats were orally exposed through the food to 0, 3.5 or 350 mg GBH/kg bw/day from gestational day 9 until weaning. Mammary gland development and estradiol (E2) and testosterone (T) serum levels of male offspring were evaluated on postnatal day (PND)21 and PND60. Besides, prolactin (PRL) serum levels, proliferation index, androgen (AR) and estrogen receptor alpha (ESR1) expression, ESR1 alternative transcript mRNA levels, and DNA methylation status of ESR1 promoters were assessed on PND60. No differences between groups were observed in mammary gland development at PND21 or in E2 and T levels on both PNDs studied. On PND60, GBH3.5-exposed animals presented similar mammary gland histology but higher AR protein expression than controls, whereas GBH350-exposed males presented a less developed mammary gland, accompanied by a lower proliferation index, similar AR levels, and slightly increased PRL serum levels than controls. In both exposed groups, ESR1 expression was lower than in control rats, being lower in GBH350-exposed rats. GBH also altered the abundance of ESR1 transcript variants by hypermethylation of ESR1 promoters. GHB3.5 decreased only ESR1-OS expression, whereas GBH350 affected ESR1-O, OT and E1 expression. Our results show that developmental exposure to GBH induces epigenetic changes in ESR1, which could be responsible for the altered male mammary gland development observed in GBH350-exposed animals.
Collapse
Affiliation(s)
- Ayelen L Gomez
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, 3000, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Gabriela A Altamirano
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, 3000, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Jorgelina Leturia
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, 3000, Argentina
| | - Verónica L Bosquiazzo
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, 3000, Argentina; Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Mónica Muñoz-de-Toro
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, 3000, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Laura Kass
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, 3000, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
5
|
Ronis MJ, Gomez-Acevedo H, Shankar K, Sharma N, Blackburn M, Singhal R, Mercer KE, Badger TM. EB 2017 Article: Soy protein isolate feeding does not result in reproductive toxicity in the pre-pubertal rat testis. Exp Biol Med (Maywood) 2019; 243:695-707. [PMID: 29763383 DOI: 10.1177/1535370218771333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The isoflavone phytoestrogens found in the soy protein isolate used in soy infant formulas have been shown to have estrogenic actions in the developing male reproductive tract resulting in reproductive toxicity. However, few studies have examined potential estrogenicity of soy protein isolate as opposed to that of pure isoflavones. In this study, we fed weanling male Sprague-Dawley rats a semi-purified diet with casein or soy protein isolate as the sole protein source from postnatal day 21 to 33. Additional groups were fed casein or soy protein isolate and treated s.c. with 10 µg/kg/d estradiol via osmotic minipump. Estradiol treatment reduced testis, prostate weights, and serum androgen concentrations ( P < 0.05). Soy protein isolate had no effect. Estradiol up-regulated 489 and down-regulated 1237 testicular genes >1.5-fold ( P < 0.05). In contrast, soy protein isolate only significantly up-regulated expression of 162 genes and down-regulated 16 genes. The top 30 soy protein isolate-up-regulated genes shared 93% concordance with estradiol up-regulated genes. There was little overlap between soy protein isolate down-regulated genes and those down-regulated by estradiol treatment. Functional annotation analysis revealed significant differences in testicular biological processes affected by estradiol or soy protein isolate. Estradiol had major actions on genes involved in reproductive processes including down-regulation of testicular steroid synthesis and expression of steroid receptor activated receptor (Star) and cytochrome P450 17α-hydroxylase/(Cyp17a1). In contrast, soy protein isolate primarily affected pathways associated with macromolecule modifications including ubiquitination and histone methylation. Our results indicate that rather than acting as a weak estrogen in the developing testis, soy protein isolate appears to act as a selective estrogen receptor modulator with little effect on reproductive processes. Impact statement Soy protein isolate (SPI) is the sole protein used to make soy-based infant formulas. SPI contains phytoestrogens, which are structurally similar to estradiol. These phytoestrogens, daidzein, genistein, and equol, fit the definition of endocrine-disrupting compounds, and at high concentrations, have estrogenic actions resulting in reproductive toxicity in the developing male, when provided as isolated chemicals. However, few animal studies have examined the potential estrogenicity of SPI as opposed to pure isoflavones. In this study, SPI feeding did not elicit an estrogenic response in the testis nor any adverse outcomes including reduced testicular growth, or androgen production during early development in rats when compared to those receiving estradiol. These findings are consistent with emerging data showing no differences in reproductive development in males and female children that received breast milk, cow's milk formula, or soy infant formula during the postnatal feeding period.
Collapse
Affiliation(s)
- Martin Jj Ronis
- 1 Department of Pharmacology & Experimental Therapeutics, Louisiana State University Health Sciences Center - New Orleans, LA 70112, USA
| | - Horacio Gomez-Acevedo
- 2 Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Kartik Shankar
- 3 Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.,4 Arkansas Children's Nutrition Center, Little Rock, AR, 72202, USA
| | - Neha Sharma
- 4 Arkansas Children's Nutrition Center, Little Rock, AR, 72202, USA
| | | | - Rohit Singhal
- 4 Arkansas Children's Nutrition Center, Little Rock, AR, 72202, USA
| | - Kelly E Mercer
- 3 Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.,4 Arkansas Children's Nutrition Center, Little Rock, AR, 72202, USA
| | - Thomas M Badger
- 3 Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.,4 Arkansas Children's Nutrition Center, Little Rock, AR, 72202, USA
| |
Collapse
|
6
|
Altamirano GA, Delconte MB, Gomez AL, Ingaramo PI, Bosquiazzo VL, Luque EH, Muñoz-de-Toro M, Kass L. Postnatal exposure to a glyphosate-based herbicide modifies mammary gland growth and development in Wistar male rats. Food Chem Toxicol 2018; 118:111-118. [PMID: 29746933 DOI: 10.1016/j.fct.2018.05.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/04/2018] [Accepted: 05/06/2018] [Indexed: 02/08/2023]
Abstract
Our aim was to evaluate whether postnatal exposure to a glyphosate-based herbicide (GBH) modifies mammary gland development in pre- and post-pubertal male rats. From postnatal day 1 (PND1) to PND7, male rats were injected subcutaneously every 48 h with either saline solution (vehicle) or 2 mg GBH/kg·bw. On PND21 and PND60, mammary gland and blood samples were collected. Estradiol (E2) and testosterone (T) serum levels, mammary gland histology, collagen fiber organization, mast cell infiltration, proliferation index, and estrogen (ESR1) and androgen receptor (AR) expression levels were evaluated. At PND21, GBH-exposed male rats exhibited greater development of the mammary gland with increased stromal collagen organization and terminal end buds (TEBs) compared to control rats. At PND60, the number of TEBs remained high and was accompanied by an increase in mast cell infiltration, proliferation and ESR1 expression in GBH-exposed male rats. In contrast, no effects were observed in E2 and T serum levels and AR expression in both days studied. Our results showed that a postnatal subacute treatment with GBH induces endocrine-disrupting effects in the male mammary gland in vivo, altering its normal development.
Collapse
Affiliation(s)
- Gabriela A Altamirano
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Melisa B Delconte
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Ayelen L Gomez
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Paola I Ingaramo
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Verónica L Bosquiazzo
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Enrique H Luque
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Mónica Muñoz-de-Toro
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Laura Kass
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
7
|
Altamirano GA, Delconte MB, Gomez AL, Alarcón R, Bosquiazzo VL, Luque EH, Muñoz-de-Toro M, Kass L. Early postnatal exposure to endosulfan interferes with the normal development of the male rat mammary gland. Toxicol Lett 2017; 281:102-109. [PMID: 28935589 DOI: 10.1016/j.toxlet.2017.09.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/12/2017] [Accepted: 09/17/2017] [Indexed: 12/12/2022]
Abstract
Our aim was to evaluate whether postnatal exposure to endosulfan (ENDO) modifies mammary gland (MG) development in pre- and post-pubertal male rats. From postnatal day 1 (PND1) to PND7, male rats were injected subcutaneously every 48h with either corn oil (vehicle) or 600μg ENDO/kg.bw. On PND21 and PND60, MG and blood samples were collected. Estradiol (E2) and testosterone (T) serum levels, MG histology, collagen fiber organization, proliferation index, and estrogen (ESR1) and androgen receptor (AR) expressions were evaluated. On PND21, E2 and T levels were similar between groups, whereas MG area, perimeter, number of terminal end buds and ESR1 expression were increased in ENDO-exposed rats. These changes were associated with alveolar development and increased organized collagen in the stroma. On PND60, a higher proliferation index in ENDO-exposed rats was correlated with a more developed lobuloalveolar structure. Hyperplastic alveoli and, hyperplastic ducts surrounded by a dense stroma were also observed in this group. T levels and ESR1 expression were similar between groups, whereas E2 levels and AR expression were decreased in ENDO-exposed rats. The exposure to ENDO in the first week of life interferes with the normal development of the MG and induces pre-malignant lesions in post-pubertal male rats.
Collapse
Affiliation(s)
- Gabriela A Altamirano
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Melisa B Delconte
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Ayelen L Gomez
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Ramiro Alarcón
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Verónica L Bosquiazzo
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Enrique H Luque
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Mónica Muñoz-de-Toro
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Laura Kass
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
8
|
Stanko JP, Easterling MR, Fenton SE. Application of Sholl analysis to quantify changes in growth and development in rat mammary gland whole mounts. Reprod Toxicol 2014; 54:129-35. [PMID: 25463529 DOI: 10.1016/j.reprotox.2014.11.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 10/07/2014] [Accepted: 11/07/2014] [Indexed: 10/24/2022]
Abstract
Studies that utilize the rodent mammary gland (MG) as an endpoint for assessing the developmental toxicity of chemical exposures typically employ either basic dimensional measurements or developmental scoring of morphological characteristics as a means to quantify MG development. There are numerous means by which to report these developmental changes, leading to inconsistent translation across laboratories. The Sholl analysis is a method historically used for quantifying neuronal dendritic patterns. The present study describes the use of the Sholl analysis to quantify MG branching characteristics. Using this method, we were able to detect significant differences in branching density in MG of peripubertal female Sprague Dawley rats that had been exposed to vehicle or a potent estrogen. These data suggest the Sholl analysis can be an effective tool for quantitatively measuring an important characteristic of MG development and for examining associations between MG growth and density and adverse effects in the breast.
Collapse
Affiliation(s)
- Jason P Stanko
- National Toxicology Program Laboratory, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, United States
| | | | - Suzanne E Fenton
- National Toxicology Program Laboratory, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, United States.
| |
Collapse
|
9
|
Miousse IR, Sharma N, Blackburn M, Vantrease J, Gomez-Acevedo H, Hennings L, Shankar K, Cleves MA, Badger TM, Ronis MJJ. Feeding soy protein isolate and treatment with estradiol have different effects on mammary gland morphology and gene expression in weanling male and female rats. Physiol Genomics 2013; 45:1072-83. [DOI: 10.1152/physiolgenomics.00096.2013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Isoflavones are phytochemical components of soy diets that bind weakly to estrogen receptors (ERs). To study potential estrogen-like actions of soy in the mammary gland during early development, we fed weanling male and female Sprague-Dawley rats a semipurified diet with casein as the sole protein source from postnatal day 21 to 33, the same diet substituting soy protein isolate (SPI) for casein, or the casein diet supplemented with estradiol (E2) at 10 μg/kg/day. In contrast to E2, the SPI diet induced no significant change in mammary morphology. In males, there were 34 genes for which expression was changed ≥2-fold in the SPI group vs. 509 changed significantly by E2, and 8 vs. 174 genes in females. Nearly half of SPI-responsive genes in males were also E2 responsive, including adipogenic genes. Serum insulin was found to be decreased by the SPI diet in males. SPI and E2 both downregulated the expression of ERα ( Esr1) in males and females, and ERβ ( Esr2) only in males. Chromatin immunoprecipitation revealed an increased binding of ERα to the promoter of the progesterone receptor ( Pgr) and Esr1 in both SPI- and E2-treated males compared with the casein group but differential recruitment of ERβ. ER promoter binding did not correlate with differences in Pgr mRNA expression. This suggests that SPI fails to recruit appropriate co-activators at E2-inducible genes. Our results indicate that SPI behaves like a selective estrogen receptor modulator rather than a weak estrogen in the developing mammary gland.
Collapse
Affiliation(s)
- Isabelle R. Miousse
- Arkansas Children's Nutrition Center, Little Rock Arkansas
- Department of Pharmacology & Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Neha Sharma
- Arkansas Children's Nutrition Center, Little Rock Arkansas
| | - Michael Blackburn
- Arkansas Children's Nutrition Center, Little Rock Arkansas
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | | | - Horacio Gomez-Acevedo
- Arkansas Children's Nutrition Center, Little Rock Arkansas
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Leah Hennings
- Arkansas Children's Nutrition Center, Little Rock Arkansas
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas; and
| | - Kartik Shankar
- Arkansas Children's Nutrition Center, Little Rock Arkansas
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Mario A. Cleves
- Arkansas Children's Nutrition Center, Little Rock Arkansas
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Thomas M. Badger
- Arkansas Children's Nutrition Center, Little Rock Arkansas
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Martin J. J. Ronis
- Arkansas Children's Nutrition Center, Little Rock Arkansas
- Department of Pharmacology & Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|