1
|
Li X, Deng J, Long Y, Ma Y, Wu Y, Hu Y, He X, Yu S, Li D, Li N, He F. Focus on brain-lung crosstalk: Preventing or treating the pathological vicious circle between the brain and the lung. Neurochem Int 2024; 178:105768. [PMID: 38768685 DOI: 10.1016/j.neuint.2024.105768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/05/2024] [Accepted: 05/13/2024] [Indexed: 05/22/2024]
Abstract
Recently, there has been increasing attention to bidirectional information exchange between the brain and lungs. Typical physiological data is communicated by channels like the circulation and sympathetic nervous system. However, communication between the brain and lungs can also occur in pathological conditions. Studies have shown that severe traumatic brain injury (TBI), cerebral hemorrhage, subarachnoid hemorrhage (SAH), and other brain diseases can lead to lung damage. Conversely, severe lung diseases such as acute respiratory distress syndrome (ARDS), pneumonia, and respiratory failure can exacerbate neuroinflammatory responses, aggravate brain damage, deteriorate neurological function, and result in poor prognosis. A brain or lung injury can have adverse effects on another organ through various pathways, including inflammation, immunity, oxidative stress, neurosecretory factors, microbiome and oxygen. Researchers have increasingly concentrated on possible links between the brain and lungs. However, there has been little attention given to how the interaction between the brain and lungs affects the development of brain or lung disorders, which can lead to clinical states that are susceptible to alterations and can directly affect treatment results. This review described the relationships between the brain and lung in both physiological and pathological conditions, detailing the various pathways of communication such as neurological, inflammatory, immunological, endocrine, and microbiological pathways. Meanwhile, this review provides a comprehensive summary of both pharmacological and non-pharmacological interventions for diseases related to the brain and lungs. It aims to support clinical endeavors in preventing and treating such ailments and serve as a reference for the development of relevant medications.
Collapse
Affiliation(s)
- Xiaoqiu Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Jie Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yu Long
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yin Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yuanyuan Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yue Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Xiaofang He
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Shuang Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Nan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Fei He
- Department of Geratology, Yongchuan Hospital of Chongqing Medical University(the Fifth Clinical College of Chongqing Medical University), Chongqing, 402160, China.
| |
Collapse
|
2
|
Palakshappa JA, Batt JAE, Bodine SC, Connolly BA, Doles J, Falvey JR, Ferrante LE, Files DC, Harhay MO, Harrell K, Hippensteel JA, Iwashyna TJ, Jackson JC, Lane-Fall MB, Monje M, Moss M, Needham DM, Semler MW, Lahiri S, Larsson L, Sevin CM, Sharshar T, Singer B, Stevens T, Taylor SP, Gomez CR, Zhou G, Girard TD, Hough CL. Tackling Brain and Muscle Dysfunction in Acute Respiratory Distress Syndrome Survivors: NHLBI Workshop Report. Am J Respir Crit Care Med 2024; 209:1304-1313. [PMID: 38477657 PMCID: PMC11146564 DOI: 10.1164/rccm.202311-2130ws] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/12/2024] [Indexed: 03/14/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is associated with long-term impairments in brain and muscle function that significantly impact the quality of life of those who survive the acute illness. The mechanisms underlying these impairments are not yet well understood, and evidence-based interventions to minimize the burden on patients remain unproved. The NHLBI of the NIH assembled a workshop in April 2023 to review the state of the science regarding ARDS-associated brain and muscle dysfunction, to identify gaps in current knowledge, and to determine priorities for future investigation. The workshop included presentations by scientific leaders across the translational science spectrum and was open to the public as well as the scientific community. This report describes the themes discussed at the workshop as well as recommendations to advance the field toward the goal of improving the health and well-being of ARDS survivors.
Collapse
Affiliation(s)
| | - Jane A. E. Batt
- University of Toronto Temerty Faculty of Medicine, Toronto, Ontario, Canada
| | - Sue C. Bodine
- Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, Oklahoma
| | - Bronwen A. Connolly
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University, Belfast, United Kingdom
| | - Jason Doles
- Indiana University School of Medicine, Indianapolis, Indiana
| | - Jason R. Falvey
- University of Maryland School of Medicine, Baltimore, Maryland
| | | | - D. Clark Files
- Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Michael O. Harhay
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | | | | | | | | | - Meghan B. Lane-Fall
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Michelle Monje
- Howard Hughes Medical Institute, Stanford University, Stanford, California
| | - Marc Moss
- University of Colorado School of Medicine, Aurora, Colorado
| | - Dale M. Needham
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Shouri Lahiri
- Cedars Sinai Medical Center, Los Angeles, California
| | - Lars Larsson
- Center for Molecular Medicine, Karolinska Institute, Solna, Sweden
- Department of Physiology & Pharmacology, Karolinska Institute and Viron Molecular Medicine Institute, Boston, Massachusetts
| | - Carla M. Sevin
- Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Tarek Sharshar
- Anesthesia and Intensive Care Department, GHU Paris Psychiatry and Neurosciences, Institute of Psychiatry and Neurosciences of Paris, INSERM U1266, University Paris Cité, Paris, France
| | | | | | | | - Christian R. Gomez
- Division of Lung Diseases, National Heart, Lung, and Blood Institute, Bethesda, Maryland
| | - Guofei Zhou
- Division of Lung Diseases, National Heart, Lung, and Blood Institute, Bethesda, Maryland
| | - Timothy D. Girard
- Center for Research, Investigation, and Systems Modeling of Acute Illness, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | |
Collapse
|
3
|
Huang M, Gedansky A, Hassett CE, Shoskes A, Duggal A, Uchino K, Cho SM, Buletko AB. Structural Brain Injury on Brain Magnetic Resonance Imaging in Acute Respiratory Distress Syndrome. Neurocrit Care 2024; 40:187-195. [PMID: 37667080 DOI: 10.1007/s12028-023-01823-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/30/2023] [Indexed: 09/06/2023]
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) is an acute inflammatory respiratory failure condition that may be associated with brain injury. We aimed to describe the types of structural brain injuries detected by brain magnetic resonance imaging (MRI) among patients with ARDS. METHODS We retrospectively reviewed and collected data on brain injuries as detected by brain MRI during index hospitalization of all patients with ARDS at a single tertiary center in the United States from January 2010 to October 2018 (pre-COVID era). Structural brain injuries were classified as cerebral ischemia (ischemic infarct and hypoxic-ischemic brain injury) or cerebral hemorrhage (intraparenchymal hemorrhage, cerebral microbleeds, subarachnoid hemorrhage, and subdural hematoma). Descriptive statistics were conducted. RESULTS Of the 678 patients with ARDS, 66 (9.7%) underwent brain MRI during their ARDS illness. The most common indication for brain MRI was encephalopathy (45.4%), and the median time from hospital admission to MRI was 10 days (interquartile range 4-17). Of 66 patients, 29 (44%) had MRI evidence of brain injury, including cerebral ischemia in 33% (22 of 66) and cerebral hemorrhage in 21% (14 of 66). Among those with cerebral ischemia, common findings were bilateral globus pallidus infarcts (n = 7, 32%), multifocal infarcts (n = 5, 23%), and diffuse hypoxic-ischemic brain injury (n = 3, 14%). Of those with cerebral hemorrhage, common findings were cerebral microbleeds (n = 12, 86%) and intraparenchymal hemorrhage (n = 2, 14%). Patients with ARDS with cerebral hemorrhage had significantly greater use of rescue therapies, including prone positioning (28.6% vs. 5.8%, p = 0.03), inhaled vasodilator (35.7% vs. 11.5%, p = 0.046), and recruitment maneuver (14.3% vs. 0%, p = 0.04). CONCLUSIONS Structural brain injury was not uncommon among selected patients with ARDS who underwent brain MRI. The majority of brain injuries seen were bilateral globus pallidus infarcts and cerebral microbleeds.
Collapse
Affiliation(s)
- Merry Huang
- Department of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Aron Gedansky
- Department of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Catherine E Hassett
- Cerebrovascular Center, Neurological Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Aaron Shoskes
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Abhijit Duggal
- Department of Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ken Uchino
- Cerebrovascular Center, Neurological Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Sung-Min Cho
- Departments of Neurology, Neurosurgery, and Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew B Buletko
- Cerebrovascular Center, Neurological Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.
| |
Collapse
|
4
|
Cohen H, Wani NA, Ben Hur D, Migliolo L, Cardoso MH, Porat Z, Shimoni E, Franco OL, Shai Y. Interaction of Pexiganan (MSI-78)-Derived Analogues Reduces Inflammation and TLR4-Mediated Cytokine Secretion: A Comparative Study. ACS OMEGA 2023; 8:17856-17868. [PMID: 37251186 PMCID: PMC10210221 DOI: 10.1021/acsomega.3c00850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/28/2023] [Indexed: 05/31/2023]
Abstract
Antibiotic-resistant bacterial infections have increased the prevalence of sepsis and septic shock mortality worldwide and have become a global concern. Antimicrobial peptides (AMPs) show remarkable properties for developing new antimicrobial agents and host response modulatory therapies. A new series of AMPs derived from pexiganan (MSI-78) were synthesized. The positively charged amino acids were segregated at their N- and C-termini, and the rest of the amino acids created a hydrophobic core surrounded by positive charges and were modified to simulate the lipopolysaccharide (LPS). The peptides were investigated for their antimicrobial activity and LPS-induced cytokine release inhibition profile. Various biochemical and biophysical methods were used, including attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, microscale thermophoresis (MST), and electron microscopy. Two new AMPs, MSI-Seg-F2F and MSI-N7K, preserved their neutralizing endotoxin activity while reducing toxicity and hemolytic activity. Combining all of these properties makes the designed peptides potential candidates to eradicate bacterial infection and detoxify LPS, which might be useful for sepsis treatment.
Collapse
Affiliation(s)
- Hadar Cohen
- Department
of Biomolecular Sciences, The Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Naiem Ahmad Wani
- Department
of Biomolecular Sciences, The Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Daniel Ben Hur
- Department
of Biomolecular Sciences, The Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Ludovico Migliolo
- Departamento
de Engenharia Sanitária e Ambiental, Universidade Católica Dom Bosco, Campo Grande 79117-900, Brazil
| | - Marlon H. Cardoso
- S-Inova,
Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, MS, Brazil
- Centro
de
Análises Proteômicas e Bioquímicas, Pós-Graduação
em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 70790160, DF, Brazil
- Instituto
de Biociências (INBIO), Universidade
Federal de Mato Grosso do Sul, Cidade Universitária, Campo Grande 79070900, Mato Grosso do Sul, Brazil
| | - Ziv Porat
- The
Department of Life Sciences Core Facilities, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Eyal Shimoni
- Department
of Chemical Research Support, The Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Octavio Luiz Franco
- Departamento
de Engenharia Sanitária e Ambiental, Universidade Católica Dom Bosco, Campo Grande 79117-900, Brazil
- S-Inova,
Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, MS, Brazil
- Centro
de
Análises Proteômicas e Bioquímicas, Pós-Graduação
em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 70790160, DF, Brazil
| | - Yechiel Shai
- Department
of Biomolecular Sciences, The Weizmann Institute
of Science, Rehovot 76100, Israel
| |
Collapse
|
5
|
Muhammad Firdaus FI, Nashihah AK, Mohd Fauzi MB, Manira M, Aminuddin S, Lokanathan Y. Application of Conditioned Medium for In Vitro Modeling and Repair of Respiratory Tissue. APPLIED SCIENCES 2023; 13:5862. [DOI: 10.3390/app13105862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Background: The idea of exploring respiratory therapy in vitro predominantly guided by cell-secreted substances has gained ground in recent years. A conditioned medium (CM) consists of protein milieu that contains a diverse spectrum of cytokines, chemokines, angiogenic agents, and growth factors. This review evaluated the efficacy of using CM collected in an in vitro respiratory epithelial model. Methods: Twenty-six papers were included in this review: twenty-one cellular response studies on respiratory secretome application and five studies involving animal research. Results: The CM produced by differentiated cells from respiratory and non-respiratory systems, such as mesenchymal stem cells (MSC), exhibited the similar overall effect of improving proliferation and regeneration. Not only could differentiated cells from respiratory tissues increase proliferation, migration, and attachment, but the CM was also able to protect the respiratory epithelium against cytotoxicity. Most non-respiratory tissue CM was used as a treatment model to determine the effects of the therapy, while only one study used particle-based CM and reported decreased epithelial cell tight junctions, which harmed the epithelial barrier. Conclusion: As it resolves the challenges related to cell development and wound healing while simultaneously generally reducing the danger of immunological compatibility and tumorigenicity, CM might be a potential regenerative therapy in numerous respiratory illnesses. However, additional research is required to justify using CM in respiratory epithelium clinical practice.
Collapse
Affiliation(s)
- Fairuz Izan Muhammad Firdaus
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Ab. Karim Nashihah
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Mh. Busra Mohd Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Maarof Manira
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Saim Aminuddin
- Graduate School of Medicine, KPJ Healthcare University College, Kota Seriemas, Nilai 71800, Malaysia
- KPJ Ampang Puteri Specialist Hospital, Ampang 68000, Malaysia
| | - Yogeswaran Lokanathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
6
|
Zhang LQ, Zaikos TD, Kannapadi N, Laws L, Shah P, Troncoso JC, Stephens RS, Nyquist P, Cho SM. Neuropathology Associated with Acute Respiratory Distress Syndrome: An Autopsy Study. Ann Am Thorac Soc 2023; 20:155-159. [PMID: 36190782 PMCID: PMC9819270 DOI: 10.1513/annalsats.202205-453rl] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Lucy Q. Zhang
- Johns Hopkins University School of MedicineBaltimore, Maryland
| | | | | | - Lindsay Laws
- Johns Hopkins University School of MedicineBaltimore, Maryland
| | - Pavan Shah
- Johns Hopkins University School of MedicineBaltimore, Maryland
| | | | | | - Paul Nyquist
- Johns Hopkins University School of MedicineBaltimore, Maryland
| | - Sung-Min Cho
- Johns Hopkins University School of MedicineBaltimore, Maryland
| |
Collapse
|
7
|
Huang M, Gedansky A, Hassett CE, Price C, Fan TH, Stephens RS, Nyquist P, Uchino K, Cho SM. Pathophysiology of Brain Injury and Neurological Outcome in Acute Respiratory Distress Syndrome: A Scoping Review of Preclinical to Clinical Studies. Neurocrit Care 2021; 35:518-527. [PMID: 34297332 PMCID: PMC8299740 DOI: 10.1007/s12028-021-01309-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/21/2021] [Indexed: 02/05/2023]
Abstract
Acute respiratory distress syndrome (ARDS) has been associated with secondary acute brain injury (ABI). However, there is sparse literature on the mechanism of lung-mediated brain injury and prevalence of ARDS-associated secondary ABI. We aimed to review and elucidate potential mechanisms of ARDS-mediated ABI from preclinical models and assess the prevalence of ABI and neurological outcome in ARDS with clinical studies. We conducted a systematic search of PubMed and five other databases reporting ABI and ARDS through July 6, 2020 and included studies with ABI and neurological outcome occurring after ARDS. We found 38 studies (10 preclinical studies with 143 animals; 28 clinical studies with 1175 patients) encompassing 9 animal studies (n = 143), 1 in vitro study, 12 studies on neurocognitive outcomes (n = 797), 2 clinical observational studies (n = 126), 1 neuroimaging study (n = 15), and 13 clinical case series/reports (n = 15). Six ARDS animal studies demonstrated evidence of neuroinflammation and neuronal damage within the hippocampus. Five animal studies demonstrated altered cerebral blood flow and increased intracranial pressure with the use of lung-protective mechanical ventilation. High frequency of ARDS-associated secondary ABI or poor neurological outcome was observed ranging 82-86% in clinical observational studies. Of the clinically reported ABIs (median age 49 years, 46% men), the most common injury was hemorrhagic stroke (25%), followed by hypoxic ischemic brain injury (22%), diffuse cerebral edema (11%), and ischemic stroke (8%). Cognitive impairment in patients with ARDS (n = 797) was observed in 87% (range 73-100%) at discharge, 36% (range 32-37%) at 6 months, and 30% (range 25-45%) at 1 year. Mechanisms of ARDS-associated secondary ABI include primary hypoxic ischemic injury from hypoxic respiratory failure, secondary injury, such as lung injury induced neuroinflammation, and increased intracranial pressure from ARDS lung-protective mechanical ventilation strategy. In summary, paucity of clinical data exists on the prevalence of ABI in patients with ARDS. Hemorrhagic stroke and hypoxic ischemic brain injury were commonly observed. Persistent cognitive impairment was highly prevalent in patients with ARDS.
Collapse
Affiliation(s)
- Merry Huang
- Department of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Aron Gedansky
- Department of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Catherine E Hassett
- Cerebrovascular Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Carrie Price
- Albert S. Cook Library, Towson University, Towson, MD, USA
| | - Tracey H Fan
- Department of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - R Scott Stephens
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Paul Nyquist
- Division of Neuroscience Critical Care, Departments of Neurology, Neurosurgery, Anesthesiology and Critical Care Medicine, Johns Hopkins University, 600 N. Wolfe Street, Phipps 455, Baltimore, MD, USA
| | - Ken Uchino
- Cerebrovascular Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Sung-Min Cho
- Division of Neuroscience Critical Care, Departments of Neurology, Neurosurgery, Anesthesiology and Critical Care Medicine, Johns Hopkins University, 600 N. Wolfe Street, Phipps 455, Baltimore, MD, USA.
| |
Collapse
|
8
|
Albaiceta GM, Brochard L, Dos Santos CC, Fernández R, Georgopoulos D, Girard T, Jubran A, López-Aguilar J, Mancebo J, Pelosi P, Skrobik Y, Thille AW, Wilcox ME, Blanch L. The central nervous system during lung injury and mechanical ventilation: a narrative review. Br J Anaesth 2021; 127:648-659. [PMID: 34340836 DOI: 10.1016/j.bja.2021.05.038] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/03/2021] [Accepted: 05/24/2021] [Indexed: 11/26/2022] Open
Abstract
Mechanical ventilation induces a number of systemic responses for which the brain plays an essential role. During the last decade, substantial evidence has emerged showing that the brain modifies pulmonary responses to physical and biological stimuli by various mechanisms, including the modulation of neuroinflammatory reflexes and the onset of abnormal breathing patterns. Afferent signals and circulating factors from injured peripheral tissues, including the lung, can induce neuronal reprogramming, potentially contributing to neurocognitive dysfunction and psychological alterations seen in critically ill patients. These impairments are ubiquitous in the presence of positive pressure ventilation. This narrative review summarises current evidence of lung-brain crosstalk in patients receiving mechanical ventilation and describes the clinical implications of this crosstalk. Further, it proposes directions for future research ranging from identifying mechanisms of multiorgan failure to mitigating long-term sequelae after critical illness.
Collapse
Affiliation(s)
- Guillermo M Albaiceta
- Unidad de Cuidados Intensivos Cardiológicos, Hospital Universitario Central de Asturias, Oviedo, Spain; Departamento de Biología Funcional, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain; Centro de Investigación Biomédica en Red-Enfermedades Respiratorias (CIBER)-Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.
| | - Laurent Brochard
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada; Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Claudia C Dos Santos
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada; Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Rafael Fernández
- Centro de Investigación Biomédica en Red-Enfermedades Respiratorias (CIBER)-Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain; Critical Care Department, Althaia Xarxa Assistencial Universitaria de Manresa, Universitat Internacional de Catalunya, Manresa, Spain
| | - Dimitris Georgopoulos
- Intensive Care Medicine Department, University Hospital of Heraklion, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Timothy Girard
- Clinical Research, Investigation, and Systems Modeling of Acute Illness (CRISMA) Center, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amal Jubran
- Division of Pulmonary and Critical Care Medicine, Hines VA Hospital, Hines, IL, USA; Loyola University of Chicago, Stritch School of Medicine, Maywood, IL, USA
| | - Josefina López-Aguilar
- Centro de Investigación Biomédica en Red-Enfermedades Respiratorias (CIBER)-Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain; Critical Care Center, Hospital Universitari Parc Taulí, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Jordi Mancebo
- Servei Medicina Intensiva, University Hospital Sant Pau, Barcelona, Spain
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Yoanna Skrobik
- Department of Medicine, McGill University, Regroupement de Soins Critiques Respiratoires, Réseau de Soins Respiratoires FRQS, Montreal, QC, Canada
| | - Arnaud W Thille
- CHU de Poitiers, Médecine Intensive Réanimation, Poitiers, France; INSERM CIC 1402 ALIVE, Université de Poitiers, Poitiers, France
| | - Mary E Wilcox
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada; Department of Medicine, Division of Respirology (Critical Care Medicine), University Health Network, Toronto, ON, Canada
| | - Lluis Blanch
- Centro de Investigación Biomédica en Red-Enfermedades Respiratorias (CIBER)-Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain; Critical Care Center, Hospital Universitari Parc Taulí, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
| |
Collapse
|
9
|
Fung TKH, Lau BWM, Ngai SPC, Tsang HWH. Therapeutic Effect and Mechanisms of Essential Oils in Mood Disorders: Interaction between the Nervous and Respiratory Systems. Int J Mol Sci 2021; 22:4844. [PMID: 34063646 PMCID: PMC8125361 DOI: 10.3390/ijms22094844] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 02/05/2023] Open
Abstract
Essential oils (EOs) are extracted from plants and contain active components with therapeutic effects. Evidence shows that various types of EOs have a wide range of health benefits. In our previous studies, the potential of lavender EO for prevention and even treatment of depression and anxiety symptoms was demonstrated. The favourable outcomes may be due to multiple mechanisms, including the regulation of monoamine level, the induction of neurotrophic factor expression, the regulation of the endocrine system and the promotion of neurogenesis. The molecules of EOs may reach the brain and exert an effect through two distinctive pathways, namely, the olfactory system and the respiratory system. After inhalation, the molecules of the EOs would either act directly on the olfactory mucosa or pass into the respiratory tract. These two delivery pathways suggest different underlying mechanisms of action. Different sets of responses would be triggered, such as increased neurogenesis, regulation of hormonal levels, activation of different brain regions, and alteration in blood biochemistry, which would ultimately affect both mood and emotion. In this review, we will discuss the clinical effects of EOs on mood regulation and emotional disturbances as well as the cellular and molecular mechanisms of action. Emphasis will be put on the interaction between the respiratory and central nervous system and the involved potential mechanisms. Further evidence is needed to support the use of EOs in the clinical treatment of mood disturbances. Exploration of the underlying mechanisms may provide insight into the future therapeutic use of EO components treatment of psychiatric and physical symptoms.
Collapse
Affiliation(s)
| | | | | | - Hector W. H. Tsang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China; (T.K.H.F.); (B.W.M.L.); (S.P.C.N.)
| |
Collapse
|
10
|
Heidari Z, Mohammadi M, Sahebkar A. Possible Mechanisms and Special Clinical Considerations of Curcumin Supplementation in Patients with COVID-19. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1308:127-136. [PMID: 33861442 DOI: 10.1007/978-3-030-64872-5_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The novel coronavirus outbreak caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was recognized in late 2019 in Wuhan, China. Subsequently, the World Health Organization declared coronavirus disease 2019 (COVID-19) as a pandemic on 11 March 2020. The proportion of potentially fatal coronavirus infections may vary by location, age, and underlying risk factors. However, acute respiratory distress syndrome (ARDS) is the most frequent complication and leading cause of death in critically ill patients. Immunomodulatory and anti-inflammatory agents have received great attention as therapeutic strategies against COVID-19. Here, we review potential mechanisms and special clinical considerations of supplementation with curcumin as an anti-inflammatory and antioxidant compound in the setting of COVID-19 clinical research.
Collapse
Affiliation(s)
- Zinat Heidari
- Department of Clinical Pharmacy, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Mohammadi
- Department of Pharmaceutics, Faculty of pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland.
| |
Collapse
|
11
|
Zhu HP, Huang HY, Wu DM, Dong N, Dong L, Chen CS, Chen CL, Chen YG. Regulatory mechanism of NOV/CCN3 in the inflammation and apoptosis of lung epithelial alveolar cells upon lipopolysaccharide stimulation. Mol Med Rep 2019; 21:1872-1880. [PMID: 31545412 PMCID: PMC7057825 DOI: 10.3892/mmr.2019.10655] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 08/20/2019] [Indexed: 01/11/2023] Open
Abstract
Lipopolysaccharide (LPS) induces inflammatory stress and apoptosis. Pulmonary epithelial cell apoptosis has been shown to accelerate the progression of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS), and is the leading cause of mortality in patients with ALI/ARDS. Nephroblastoma overexpressed (NOV; also known as CCN3), an inflammatory modulator, is reported to be a biomarker in ALI. Using an LPS-induced ALI model, we investigated the expression of CCN3 and its possible molecular mechanism involved in lung alveolar epithelial cell inflammation and apoptosis. Our data revealed that LPS treatment greatly increased the level of CCN3 in human lung alveolar type II epithelial cells (A549 cell line). The A549 cells were also transfected with a specific CCN3 small interfering RNA (siRNA). CCN3 knockdown not only largely attenuated the expression of inflammatory cytokines, interleukin (IL)-1β and transforming growth factor (TGF)-β1, but also reduced the apoptotic rate of the A549 cells and altered the expression of apoptosis-associated proteins (Bcl-2 and caspase-3). Furthermore, CCN3 knockdown greatly inhibited the activation of nuclear factor (NF)-κB p65 in the A549 cells, and TGF-β/p-Smad and NF-κB inhibitors significantly decreased the expression level of CCN3 in A549 cells. In conclusion, our data indicate that CCN3 knockdown affects the expression of downstream genes through the TGF-β/p-Smad or NF-κB pathways, leading to the inhibition of cell inflammation and apoptosis in human alveolar epithelial cells.
Collapse
Affiliation(s)
- Hai-Ping Zhu
- Department of Emergency Medicine and Chest Pain Center, Clinical Research Center for Emergency and Critical Care Medicine of Shandong, Key Laboratory of Emergency and Critical Care Medicine, Key Laboratory of Cardiopulmonary‑Cerebral Resuscitation Research, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Hui-Ya Huang
- Department of Intensive Care Unit, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Deng-Min Wu
- Department of Rehabilitation Medicine, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Nian Dong
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Li Dong
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Cheng-Shui Chen
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Chao-Lei Chen
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yu-Guo Chen
- Department of Emergency Medicine and Chest Pain Center, Clinical Research Center for Emergency and Critical Care Medicine of Shandong, Key Laboratory of Emergency and Critical Care Medicine, Key Laboratory of Cardiopulmonary‑Cerebral Resuscitation Research, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
12
|
Kiefmann M, Tank S, Tritt MO, Keller P, Heckel K, Schulte-Uentrop L, Olotu C, Schrepfer S, Goetz AE, Kiefmann R. Dead space ventilation promotes alveolar hypocapnia reducing surfactant secretion by altering mitochondrial function. Thorax 2019; 74:219-228. [PMID: 30636196 DOI: 10.1136/thoraxjnl-2018-211864] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/29/2018] [Accepted: 09/10/2018] [Indexed: 11/03/2022]
Abstract
BACKGROUND In acute respiratory distress syndrome (ARDS), pulmonary perfusion failure increases physiologic dead space ventilation (VD/VT), leading to a decline of the alveolar CO2 concentration [CO2]iA. Although it has been shown that alveolar hypocapnia contributes to formation of atelectasis and surfactant depletion, a typical complication in ARDS, the underlying mechanism has not been elucidated so far. METHODS In isolated perfused rat lungs, cytosolic or mitochondrial Ca2+ concentrations ([Ca2+]cyt or [Ca2+]mito, respectively) of alveolar epithelial cells (AECs), surfactant secretion and the projected area of alveoli were quantified by real-time fluorescence or bright-field imaging (n=3-7 per group). In ventilated White New Zealand rabbits, the left pulmonary artery was ligated and the size of subpleural alveoli was measured by intravital microscopy (n=4 per group). Surfactant secretion was determined in the bronchoalveolar lavage (BAL) by western blot. RESULTS Low [CO2]iA decreased [Ca2+]cyt and increased [Ca2+]mito in AECs, leading to reduction of Ca2+-dependent surfactant secretion, and alveolar ventilation in situ. Mitochondrial inhibition by ruthenium red or rotenone blocked these responses indicating that mitochondria are key players in CO2 sensing. Furthermore, ligature of the pulmonary artery of rabbits decreased alveolar ventilation, surfactant secretion and lung compliance in vivo. Addition of 5% CO2 to the inspiratory gas inhibited these responses. CONCLUSIONS Accordingly, we provide evidence that alveolar hypocapnia leads to a Ca2+ shift from the cytosol into mitochondria. The subsequent decline of [Ca2+]cyt reduces surfactant secretion and thus regional ventilation in lung regions with high VD/VT. Additionally, the regional hypoventilation provoked by perfusion failure can be inhibited by inspiratory CO2 application.
Collapse
Affiliation(s)
- Martina Kiefmann
- Department of Anesthesiology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Sascha Tank
- Department of Anesthesiology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Marc-Oliver Tritt
- Department of Anesthesiology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Paula Keller
- Department of Anesthesiology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Kai Heckel
- Department of Anesthesiology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | | | - Cynthia Olotu
- Department of Anesthesiology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Sonja Schrepfer
- Division of Adult Cardiothoracic Surgery, University of California San Francisco, San Francisco, California, USA.,Department of Cardiac Surgery, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Alwin E Goetz
- Department of Anesthesiology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Rainer Kiefmann
- Department of Anesthesiology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
13
|
Onal EM, Sag AA, Sal O, Yerlikaya A, Afsar B, Kanbay M. Erythropoietin mediates brain-vascular-kidney crosstalk and may be a treatment target for pulmonary and resistant essential hypertension. Clin Exp Hypertens 2017; 39:197-209. [PMID: 28448184 DOI: 10.1080/10641963.2016.1246565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Organ crosstalk pathways represent the next frontier for target-mining in molecular medicine for existing syndromes. Pulmonary hypertension and resistant essential hypertension are syndromes that have been proven elusive in etiology, and frequently refractory to first-line management. Underlying crosstalk mechanisms, not yet considered in these treatments, may hinder outcomes or unlock novel treatments. This review focuses systematically on erythropoietin, a synthesizable molecule, as a mediator of brain-kidney crosstalk. Insights gained from this review will be applied to cardiovascular diseases in a clinician-directed fashion.
Collapse
Affiliation(s)
| | - Alan Alper Sag
- b Division of Interventional Radiology, Department of Radiology , Koç University School of Medicine , Istanbul , Turkey
| | - Oguzhan Sal
- a School of Medicine , Koç University , Istanbul , Turkey
| | | | - Baris Afsar
- c Suleyman Demirel University, Faculty of Medicine, Department of Internal Medicine , Section of Nephrology , Isparta , Turkey
| | - Mehmet Kanbay
- d Division of Nephrology, Department of Internal Medicine , Koç University School of Medicine , Istanbul , Turkey
| |
Collapse
|
14
|
Jan JS, Chou YC, Cheng YW, Chen CK, Huang WJ, Hsiao G. The Novel HDAC8 Inhibitor WK2-16 Attenuates Lipopolysaccharide-Activated Matrix Metalloproteinase-9 Expression in Human Monocytic Cells and Improves Hypercytokinemia In Vivo. Int J Mol Sci 2017; 18:ijms18071394. [PMID: 28661460 PMCID: PMC5535887 DOI: 10.3390/ijms18071394] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 06/19/2017] [Accepted: 06/26/2017] [Indexed: 12/29/2022] Open
Abstract
Dysregulated human monocytes/macrophages can synthesize and secrete matrix metalloproteinases (MMPs), which play important roles in the progression of sepsis. In this study, we investigated the effects and mechanism of a novel histone deacetylase (HDAC8) inhibitor, (E)-N-hydroxy-4-methoxy-2-(biphenyl-4-yl)cinnamide (WK2-16), on MMP-9 production and activation in stimulated human monocytic THP-1 cells. Our results demonstrated that the acetylation level of structural maintenance of chromosomes 3 (SMC3) was up-regulated by WK2-16 in THP-1 cells. Consistently, an in vitro enzyme study demonstrated that WK2-16 selectively inhibited HDAC8 activity. Moreover, the WK2-16 concentration dependently suppressed MMP-9-mediated gelatinolysis induced by tumor necrosis factor-α (TNF-α) or lipopolysaccharide (LPS). Additionally, WK2-16 significantly inhibited both MMP-9 protein and mRNA expression without cellular toxicity. Nevertheless, WK2-16 suppressed the extracellular levels of interleukin (IL)-6 from LPS-stimulated THP-1 cells. For the signaling studies, WK2-16 had no effect on LPS/TLR4 downstream signaling pathways, such as the NF-κB and ERK/JNK/P38 MAPK pathways. On the other hand, WK2-16 enhanced the recruitment of acetylated Yin Yang 1 (YY1) with HDAC1. Finally, in vivo studies indicated that WK2-16 could reduce the serum levels of TNF-α and IL-6 in endotoxemic mice. These results suggested that HDAC8 inhibition might provide a novel therapeutic strategy of hypercytokinemia in sepsis.
Collapse
Affiliation(s)
- Jing-Shiun Jan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Department of Pharmacology, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Yung-Chen Chou
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Department of Pharmacology, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Yu-Wen Cheng
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan.
| | - Chih-Kuang Chen
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan.
- School of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Wei-Jan Huang
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 110, Taiwan.
| | - George Hsiao
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Department of Pharmacology, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan.
| |
Collapse
|
15
|
Moderate Peep After Tracheal Lipopolysaccharide Instillation Prevents Inflammation and Modifies the Pattern of Brain Neuronal Activation. Shock 2016; 44:601-8. [PMID: 26398809 PMCID: PMC4851224 DOI: 10.1097/shk.0000000000000469] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background: Ventilatory strategy and specifically positive end-expiratory pressure (PEEP) can modulate the inflammatory response and pulmonary-to-systemic translocation of lipopolysaccharide (LPS). Both inflammation and ventilatory pattern may modify brain activation, possibly worsening the patient's outcome and resulting in cognitive sequelae. Methods: We prospectively studied Sprague–Dawley rats randomly assigned to undergo 3 h mechanical ventilation with 7 mL/kg tidal ventilation and either 2 cmH2O or 7 cmH2O PEEP after intratracheal instillation of LPS or saline. Healthy nonventilated rats served as baseline. We analyzed lung mechanics, gas exchange, lung and plasma cytokine levels, lung apoptotic cells, and lung neutrophil infiltration. To evaluate brain neuronal activation, we counted c-Fos immunopositive cells in the retrosplenial cortex (RS), thalamus, supraoptic nucleus (SON), nucleus of the solitary tract (NTS), paraventricular nucleus (PVN), and central amygdala (CeA). Results: LPS increased lung neutrophilic infiltration, lung and systemic MCP-1 levels, and neuronal activation in the CeA and NTS. LPS-instilled rats receiving 7 cmH2O PEEP had less lung and systemic inflammation and more c-Fos-immunopositive cells in the RS, SON, and thalamus than those receiving 2 cmH2O PEEP. Applying 7 cmH2O PEEP increased neuronal activation in the CeA and NTS in saline-instilled rats, but not in LPS-instilled rats. Conclusions: Moderate PEEP prevented lung and systemic inflammation secondary to intratracheal LPS instillation. PEEP also modified the neuronal activation pattern in the RS, SON, and thalamus. The relevance of these differential brain c-Fos expression patterns in neurocognitive outcomes should be explored.
Collapse
|
16
|
Meliopoulos VA, Van de Velde LA, Van de Velde NC, Karlsson EA, Neale G, Vogel P, Guy C, Sharma S, Duan S, Surman SL, Jones BG, Johnson MDL, Bosio C, Jolly L, Jenkins RG, Hurwitz JL, Rosch JW, Sheppard D, Thomas PG, Murray PJ, Schultz-Cherry S. An Epithelial Integrin Regulates the Amplitude of Protective Lung Interferon Responses against Multiple Respiratory Pathogens. PLoS Pathog 2016; 12:e1005804. [PMID: 27505057 PMCID: PMC4978498 DOI: 10.1371/journal.ppat.1005804] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/11/2016] [Indexed: 01/11/2023] Open
Abstract
The healthy lung maintains a steady state of immune readiness to rapidly respond to injury from invaders. Integrins are important for setting the parameters of this resting state, particularly the epithelial-restricted αVβ6 integrin, which is upregulated during injury. Once expressed, αVβ6 moderates acute lung injury (ALI) through as yet undefined molecular mechanisms. We show that the upregulation of β6 during influenza infection is involved in disease pathogenesis. β6-deficient mice (β6 KO) have increased survival during influenza infection likely due to the limited viral spread into the alveolar spaces leading to reduced ALI. Although the β6 KO have morphologically normal lungs, they harbor constitutively activated lung CD11b+ alveolar macrophages (AM) and elevated type I IFN signaling activity, which we traced to the loss of β6-activated transforming growth factor-β (TGF-β). Administration of exogenous TGF-β to β6 KO mice leads to reduced numbers of CD11b+ AMs, decreased type I IFN signaling activity and loss of the protective phenotype during influenza infection. Protection extended to other respiratory pathogens such as Sendai virus and bacterial pneumonia. Our studies demonstrate that the loss of one epithelial protein, αVβ6 integrin, can alter the lung microenvironment during both homeostasis and respiratory infection leading to reduced lung injury and improved survival.
Collapse
Affiliation(s)
- Victoria A. Meliopoulos
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Lee-Ann Van de Velde
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- Department of Immunology, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Nicholas C. Van de Velde
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- Department of Immunology, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Erik A. Karlsson
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Geoff Neale
- The Hartwell Center, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Peter Vogel
- Department of Veterinary Pathology Core, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Cliff Guy
- Department of Immunology, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Shalini Sharma
- Department of Immunology, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Susu Duan
- Department of Immunology, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Sherri L. Surman
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Bart G. Jones
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Michael D. L. Johnson
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Catharine Bosio
- Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, United States of America
| | - Lisa Jolly
- Division of Respiratory Medicine, University of Nottingham, Nottingham, United Kingdom
| | - R. Gisli Jenkins
- Division of Respiratory Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Julia L. Hurwitz
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Jason W. Rosch
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Dean Sheppard
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, UCSF Medical Center, San Francisco, California, United States of America
| | - Paul G. Thomas
- Department of Immunology, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Peter J. Murray
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- Department of Immunology, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| |
Collapse
|
17
|
Nakstad B, Sonerud T, Solevåg AL. Early detection of neonatal group B streptococcus sepsis and the possible diagnostic utility of IL-6, IL-8, and CD11b in a human umbilical cord blood in vitro model. Infect Drug Resist 2016; 9:171-9. [PMID: 27468243 PMCID: PMC4944914 DOI: 10.2147/idr.s106181] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Group B streptococcus (GBS) infection remains a major cause of neonatal morbidity and mortality, and GBS III is the predominant strain in early-onset GBS neonatal sepsis. To avoid both over- and undertreatment of infants with nonspecific signs of infection, early diagnostic tools are warranted. The aim of this study was to identify biomarkers with high sensitivity and specificity in an early stage of GBS infection. A secondary aim was to assess the utility of a human umbilical cord blood (HUCB) model system of early-onset neonatal sepsis. Methods Umbilical cord blood samples from 20 healthy term pregnancies were stimulated for 2 hours with a GBS III isolate from a patient and a commercially available GBS Ia strain. Nonstimulated samples served as controls. Leukocyte surface markers (CD11b, CD64, toll-like receptor [TLR] 2, TLR4, and TLR6) were analyzed by flow cytometry and soluble biomarkers by enzyme-linked immunosorbent assay (interleukin [IL]-6 and -8; interferon-γ-inducing protein [IP]-10; and S100b). The area under the receiver operating characteristic curve (AUC) was calculated for the markers. Results GBS III gave the highest responses and AUC values for all biomarkers. Only IL-6 and IL-8 displayed an AUC approaching 0.8 for both GBS serotypes (P<0.001). IL-8 >5,292 pg/mL had both a sensitivity and a specificity of 1.00. IL-6 >197 pg/mL had both a sensitivity and a specificity of 0.95 for GBS III stimulation. CD11b on granulocytes and monocytes was the leukocyte surface marker with the highest AUC values for both GBS serotypes. Conclusion In agreement with previous studies, IL-6, IL-8, and potentially CD11b could be useful in diagnosing neonatal GBS infection in an early stage. Our HUCB early-onset neonatal sepsis model may be useful for evaluating biomarkers of neonatal sepsis. The HUCB of neonates with risk factors for sepsis might even be used for diagnostic purposes, but requires further study.
Collapse
Affiliation(s)
- Britt Nakstad
- Department of Pediatric and Adolescent Medicine, Akershus University Hospital, Lørenskog; Institute of Clinical Medicine, University of Oslo, Lørenskog
| | - Tonje Sonerud
- Department of Pediatric and Adolescent Medicine, Akershus University Hospital, Lørenskog; Section of Clinical Molecular Biology (EpiGen), Division of Medicine, Akershus University Hospital, Lørenskog, Norway
| | - Anne Lee Solevåg
- Department of Pediatric and Adolescent Medicine, Akershus University Hospital, Lørenskog
| |
Collapse
|
18
|
Inhibition of endotoxin-induced airway epithelial cell injury by a novel family of pyrrol derivates. J Transl Med 2016; 96:632-40. [PMID: 26999659 DOI: 10.1038/labinvest.2016.46] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/18/2016] [Accepted: 02/02/2016] [Indexed: 01/14/2023] Open
Abstract
Inflammation and apoptosis are crucial mechanisms for the development of the acute respiratory distress syndrome (ARDS). Currently, there is no specific pharmacological therapy for ARDS. We have evaluated the ability of a new family of 1,2,3,5-tetrasubstituted pyrrol compounds for attenuating lipopolysaccharide (LPS)-induced inflammation and apoptosis in an in vitro LPS-induced airway epithelial cell injury model based on the first steps of the development of sepsis-induced ARDS. Human alveolar A549 and human bronchial BEAS-2B cells were exposed to LPS, either alone or in combination with the pyrrol derivatives. Rhein and emodin, two representative compounds with proven activity against the effects of LPS, were used as reference compounds. The pyrrol compound that was termed DTA0118 had the strongest inhibitory activity and was selected as the lead compound to further explore its properties. Exposure to LPS caused an intense inflammatory response and apoptosis in both A549 and BEAS-2B cells. DTA0118 treatment downregulated Toll-like receptor-4 expression and upregulated nuclear factor-κB inhibitor-α expression in cells exposed to LPS. These anti-inflammatory effects were accompanied by a significantly lower secretion of interleukin-6 (IL-6), IL-8, and IL-1β. The observed antiapoptotic effect of DTA0118 was associated with the upregulation of antiapoptotic Bcl-2 and downregulation of proapoptotic Bax and active caspase-3 protein levels. Our findings demonstrate the potent anti-inflammatory and antiapoptotic properties of the pyrrol DTA0118 compound and suggest that it could be considered as a potential drug therapy for the acute phase of sepsis and septic ARDS. Further investigations are needed to examine and validate these mechanisms and effects in a clinically relevant animal model of sepsis and sepsis-induced ARDS.
Collapse
|
19
|
He QQ, He X, Wang YP, Zou Y, Xia QJ, Xiong LL, Luo CZ, Hu XS, Liu J, Wang TH. Transplantation of bone marrow-derived mesenchymal stem cells (BMSCs) improves brain ischemia-induced pulmonary injury in rats associated to TNF-α expression. Behav Brain Funct 2016; 12:9. [PMID: 26931747 PMCID: PMC4774175 DOI: 10.1186/s12993-016-0093-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 02/16/2016] [Indexed: 02/05/2023] Open
Abstract
Background Bone marrow mesenchymal stem cell (BMSCs)-based therapy seems to be a promising treatment for acute lung injury, but the therapeutic effects of BMSCs transplantation on acute lung injury induced by brain ischemia and the mechanisms have not been totally elucidated. This study explores the effects of transplantation of BMSCs on acute lung injury induced by focal cerebral ischemia and investigates the underlying mechanism. Methods Acute lung injury model was induced by middle cerebral artery occlusion (MCAO). BMSCs (with concentration of 1 × 106/ml) were transplanted into host through tail vein 1 day after MCAO. Then, the survival, proliferation and migration of BMSCs in lung were observed at 4 days after transplantation, and histology observation and lung function were assessed for 7 days. Meanwhile, in situ hybridization (ISH), qRT-PCR and western blotting were employed to detect the expression of TNF-α in lung. Results Neurobehavioral deficits and acute lung injury could be seen in brain ischemia rats. Implanted BMSCs could survive in the lung, and relieve pulmonary edema, improve lung function, as well as down regulate TNF-α expression. Conclusions The grafted BMSCs can survive and migrate widespread in lung and ameliorate lung injury induced by focal cerebral ischemia in the MCAO rat models. The underlying molecular mechanism, at least partially, is related to the suppression of TNF-α.
Collapse
Affiliation(s)
- Qin-qin He
- Department of Anesthesia and Critical Care Medicine Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Xiang He
- Department of Anesthesia and Critical Care Medicine Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Yan-ping Wang
- Institute of Neuroscience and Experiment Animal Center, Kunming Medical University, Kunming, 650031, China.
| | - Yu Zou
- Department of Anesthesia and Critical Care Medicine Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Qing-jie Xia
- Department of Anesthesia and Critical Care Medicine Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Liu-Lin Xiong
- Department of Anesthesia and Critical Care Medicine Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Chao-zhi Luo
- Department of Anesthesia and Critical Care Medicine Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Xiao-song Hu
- Center for Experimental Technology for Preclinical Medicine, Chengdu Medical College, Chengdu, 610083, Sichuan, China.
| | - Jia Liu
- Institute of Neuroscience and Experiment Animal Center, Kunming Medical University, Kunming, 650031, China.
| | - Ting-hua Wang
- Department of Anesthesia and Critical Care Medicine Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China. .,Institute of Neuroscience and Experiment Animal Center, Kunming Medical University, Kunming, 650031, China.
| |
Collapse
|
20
|
Gonzales JN, Lucas R, Verin AD. The Acute Respiratory Distress Syndrome: Mechanisms and Perspective Therapeutic Approaches. AUSTIN JOURNAL OF VASCULAR MEDICINE 2015; 2:1009. [PMID: 26973981 PMCID: PMC4786180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Acute Respiratory Distress Syndrome (ARDS) is a severe lung inflammatory disorder with a 30-50% mortality. Sepsis and pneumonia are the leading causes of ARDS. On the cellular level there is pulmonary capillary endothelial cell permeability and fluid leakage into the pulmonary parenchyma, followed by neutrophils, cytokines and an acute inflammatory response. When fluid increases in the interstitium then the outward movement continues and protein rich fluid floods the alveolar spaces through the tight junctions of the epithelial cells. Neutrophils play an important role in the development of pulmonary edema associated with acute lung injury or ARDS. Animal studies have shown that endothelial injury appears within minutes to hours after Acute Lung Injury (ALI) initiation with resulting intercellular gaps of the endothelial cells. The Endothelial Cell (EC) gaps allow for permeability of fluid, neutrophils and cytokines into the pulmonary parenchymal space. The neutrophils that infiltrate the lungs and migrate into the airways express pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and contribute to both the endothelial and epithelial integrity disruption of the barriers. Pharmacological treatments have been ineffective. The ARDS Network trial identified low tidal volume mechanical ventilation, positive end expiratory pressure and fluid management guidelines that have improved outcomes for patients with ARDS. Extracorporeal membrane oxygenation is used in specialized centers for severe cases. Prone positioning has recently proven to have significantly decreased ventilator days and days in the intensive care unit. Current investigation includes administration of mesenchymal stem cell therapy, partial fluid ventilation, TIP peptide nebulized administration and the continued examination of pharmacologic drugs.
Collapse
Affiliation(s)
- JN Gonzales
- Department of Internal Medicine, Georgia Regents University, USA
- Vascular Biology Center, Georgia Regents University, USA
| | - R Lucas
- Department of Internal Medicine, Georgia Regents University, USA
- Department of Pharmacology and Toxicology, Georgia Regents University, USA
| | - AD Verin
- Department of Internal Medicine, Georgia Regents University, USA
- Vascular Biology Center, Georgia Regents University, USA
| |
Collapse
|