1
|
Zhu Y, Chen J, Chen C, Tang R, Xu J, Shi S, Yu X. Deciphering mechanical cues in the microenvironment: from non-malignant settings to tumor progression. Biomark Res 2025; 13:11. [PMID: 39849659 PMCID: PMC11755887 DOI: 10.1186/s40364-025-00727-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/05/2025] [Indexed: 01/25/2025] Open
Abstract
The tumor microenvironment functions as a dynamic and intricate ecosystem, comprising a diverse array of cellular and non-cellular components that precisely orchestrate pivotal tumor behaviors, including invasion, metastasis, and drug resistance. While unraveling the intricate interplay between the tumor microenvironment and tumor behaviors represents a tremendous challenge, recent research illuminates a crucial biological phenomenon known as cellular mechanotransduction. Within the microenvironment, mechanical cues like tensile stress, shear stress, and stiffness play a pivotal role by activating mechanosensitive effectors such as PIEZO proteins, integrins, and Yes-associated protein. This activation initiates cascades of intrinsic signaling pathways, effectively linking the physical properties of tissues to their physiological and pathophysiological processes like morphogenesis, regeneration, and immunity. This mechanistic insight offers a novel perspective on how the mechanical cues within the tumor microenvironment impact tumor behaviors. While the intricacies of the mechanical tumor microenvironment are yet to be fully elucidated, it exhibits distinct physical attributes from non-malignant tissues, including elevated solid stresses, interstitial hypertension, augmented matrix stiffness, and enhanced viscoelasticity. These traits exert notable influences on tumor progression and treatment responses, enriching our comprehension of the multifaceted nature of the microenvironment. Through this innovative review, we aim to provide a new lens to decipher the mechanical attributes within the tumor microenvironment from non-malignant contexts, broadening our knowledge on how these factors promote or inhibit tumor behaviors, and thus offering valuable insights to identify potential targets for anti-tumor strategies.
Collapse
Affiliation(s)
- Yicheng Zhu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jiaoshun Chen
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Chen Chen
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Rong Tang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
2
|
Damasceno de Lima R, Fudoli Lins Vieira R, Rosetto Muñoz V, Chaix A, Azevedo Macedo AP, Calheiros Antunes G, Felonato M, Rosseto Braga R, Castelo Branco Ramos Nakandakari S, Calais Gaspar R, Ramos da Silva AS, Esper Cintra D, Pereira de Moura L, Mekary RA, Rochete Ropelle E, Pauli JR. Time-restricted feeding combined with resistance exercise prevents obesity and improves lipid metabolism in the liver of mice fed a high-fat diet. Am J Physiol Endocrinol Metab 2023; 325:E513-E528. [PMID: 37755454 PMCID: PMC10864020 DOI: 10.1152/ajpendo.00129.2023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/13/2023] [Accepted: 09/13/2023] [Indexed: 09/28/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD), a condition characterized by the accumulation of fat in the liver, is estimated to be the most common liver disease worldwide. Obesity is a major risk factor and contributor, and, accordingly, weight loss can improve NAFLD. Previous studies in preclinical models of diet-induced obesity and fatty liver disease have shown the independent benefits of resistance exercise training (RT) and time-restricted feeding (TRF) in preventing weight gain and hepatic build-up of fat. Here, we tested the combined effect of TRF and RT on obesity and NAFLD in mice fed a high-fat diet. Our results showed that both TRF-8-h food access in the active phase-and RT-consisting of three weekly sessions of ladder climbing-attenuated body weight gain, improved glycemic homeostasis, and decreased the accumulation of lipids in the liver. TRF combined with RT improved the respiratory exchange rate, energy expenditure, and mitochondrial respiration in the liver. Furthermore, gene expression analysis in the liver revealed lower mRNA expression of lipogenesis and inflammation genes along with increased mRNA of fatty acid oxidation genes in the TRF + RT group. Importantly, combined TRF + RT was shown to be more efficient in preventing obesity and metabolic disorders. In conclusion, TRF and RT exert complementary actions compared with isolated interventions, with significant effects on metabolic disorders and NAFLD in mice.NEW & NOTEWORTHY Whether time-restricted feeding (TRF) combined with resistance exercise training (RT) may be more efficient compared with these interventions alone is still unclear. We show that when combined with RT, TRF provided additional benefits, being more effective in increasing energy expenditure, preventing weight gain, and regulating glycemic homeostasis than each intervention alone. Thus, our results demonstrate that TRF and RT have complementary actions on some synergistic pathways that prevented obesity and hepatic liver accumulation.
Collapse
Affiliation(s)
- Robson Damasceno de Lima
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, Brazil
| | - Renan Fudoli Lins Vieira
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, Brazil
| | - Vitor Rosetto Muñoz
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, Brazil
| | - Amandine Chaix
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Ana Paula Azevedo Macedo
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, Brazil
| | - Gabriel Calheiros Antunes
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, Brazil
| | - Maíra Felonato
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, Brazil
| | - Renata Rosseto Braga
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, Brazil
| | | | - Rafael Calais Gaspar
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, Brazil
| | - Adelino Sanchez Ramos da Silva
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, and Postgraduate Program in Physical Education and Sport, School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Dennys Esper Cintra
- Laboratory of Nutritional Genomics (LabGeN), University of Campinas (UNICAMP), Limeira, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, Brazil
| | - Leandro Pereira de Moura
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, Brazil
| | - Rania A Mekary
- Massachusetts College of Pharmacy and Health Sciences (MCPHS) University, Boston, Massachusetts, United States
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Eduardo Rochete Ropelle
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, Brazil
| | - José Rodrigo Pauli
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, Brazil
| |
Collapse
|
3
|
Mo S, Wang Y, Yuan X, Wu W, Zhao H, Wei H, Qin H, Jiang H, Qin S. Identification of common signature genes and pathways underlying the pathogenesis association between nonalcoholic fatty liver disease and atherosclerosis. Front Cardiovasc Med 2023; 10:1142296. [PMID: 37063958 PMCID: PMC10098172 DOI: 10.3389/fcvm.2023.1142296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/07/2023] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND Atherosclerosis (AS) is one of the leading causes of the cardio-cerebral vascular incident. The constantly emerging evidence indicates a close association between nonalcoholic fatty liver disease (NAFLD) and AS. However, the exact molecular mechanisms underlying the correlation between these two diseases remain unclear. This study proposed exploring the common signature genes, pathways, and immune cells among AS and NAFLD. METHODS The common differentially expressed genes (co-DEGs) with a consistent trend were identified via bioinformatic analyses of the Gene Expression Omnibus (GEO) datasets GSE28829 and GSE49541, respectively. Further, the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed. We utilized machine learning algorithms of lasso and random forest (RF) to identify the common signature genes. Then the diagnostic nomogram models and receiver operator characteristic curve (ROC) analyses were constructed and validated with external verification datasets. The gene interaction network was established via the GeneMANIA database. Additionally, gene set enrichment analysis (GSEA), gene set variation analysis (GSVA), and immune infiltration analysis were performed to explore the co-regulated pathways and immune cells. RESULTS A total of 11 co-DEGs were identified. GO and KEGG analyses revealed that co-DEGs were mainly enriched in lipid catabolic process, calcium ion transport, and regulation of cytokine. Moreover, three common signature genes (PLCXD3, CCL19, and PKD2) were defined. Based on these genes, we constructed the efficiently predictable diagnostic models for advanced AS and NAFLD with the nomograms, evaluated with the ROC curves (AUC = 0.995 for advanced AS, 95% CI 0.971-1.0; AUC = 0.973 for advanced NAFLD, 95% CI 0.938-0.998). In addition, the AUC of the verification datasets had a similar trend. The NOD-like receptors (NLRs) signaling pathway might be the most crucial co-regulated pathway, and activated CD4 T cells and central memory CD4 T cells were significantly excessive infiltration in advanced NAFLD and AS. CONCLUSION We identified three common signature genes (PLCXD3, CCL19, and PKD2), co-regulated pathways, and shared immune features of NAFLD and AS, which might provide novel insights into the molecular mechanism of NAFLD complicated with AS.
Collapse
Affiliation(s)
- Shuangyang Mo
- Gastroenterology Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Gastroenterology Department, Liuzhou Peoples’ Hospital Affiliated to Guangxi Medical University, Liuzhou, China
| | - Yingwei Wang
- Gastroenterology Department, Liuzhou Peoples’ Hospital Affiliated to Guangxi Medical University, Liuzhou, China
| | - Xin Yuan
- Cardiovascular Department, Liuzhou Peoples’ Hospital Affiliated to Guangxi Medical University, Liuzhou, China
| | - Wenhong Wu
- Gastroenterology Department, Liuzhou Peoples’ Hospital Affiliated to Guangxi Medical University, Liuzhou, China
| | - Huaying Zhao
- Gastroenterology Department, Liuzhou Peoples’ Hospital Affiliated to Guangxi Medical University, Liuzhou, China
| | - Haixiao Wei
- Gastroenterology Department, Liuzhou Peoples’ Hospital Affiliated to Guangxi Medical University, Liuzhou, China
| | - Haiyan Qin
- Gastroenterology Department, Liuzhou Peoples’ Hospital Affiliated to Guangxi Medical University, Liuzhou, China
| | - Haixing Jiang
- Gastroenterology Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shanyu Qin
- Gastroenterology Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
4
|
Power Guerra N, Leyens K, Müller L, Brauer D, Janowitz D, Schlick S, Pilz K, Grabe HJ, Vollmar B, Kuhla A. The effect of different weight loss strategies to treat non-alcoholic fatty liver disease focusing on fibroblast growth factor 21. Front Nutr 2022; 9:935805. [PMID: 36034917 PMCID: PMC9399780 DOI: 10.3389/fnut.2022.935805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Obesity, often associated with non-alcoholic fatty liver disease (NAFLD), is characterized by an imbalance between energy expenditure and food intake, which is also reflected by desensitization of fibroblast growth factor 21 (FGF21). FGF21 is strongly influenced, among others, by TNFα, which is known to be upregulated in obesity-induced inflammation. Successful long-term treatments of NAFLD might be dietary modification, exercise, or fasting. Materials and methods Whether succeeded NAFLD recovery is linked with improved FGF21 sensitivity and finally reverted FGF21 resistance was the focus of the present study. For this purpose, mice received a high-fat diet (HFD) for 6 months to establish obesity. Afterward, the mice were subjected to three different weight loss interventions, namely, dietary change to low-fat diet (LFD), treadmill training, and/or time-restricted feeding for additional 6 months, whereas one group remained on HFD. Results In addition to the expected decrease in NAFLD activity with dietary change, this was also observed in the HFD group with additional time-restricted feeding. There was also an associated decrease in hepatic TNFα and FGF21 expression and an increase in ß-klotho expression, demonstrated mainly by using principal component analysis. Pearson correlation analysis shows that independent of any intervention, TNFα expression decreased with improved NAFLD recovery. This was accompanied with higher FGF21 sensitivity, as expressed by an increase in β-klotho and FGFR1c expression and concomitantly decreased FGF21 levels. Conclusion In summary, we conclude that successful NAFLD therapy is associated with a reversion of the TNFα-triggered FGF21-resistant state or desensitization.
Collapse
Affiliation(s)
- Nicole Power Guerra
- Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany.,Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| | - Katharina Leyens
- Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | - Luisa Müller
- Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany.,Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - David Brauer
- Department of Systems Biology and Bioinformatics, University of Rostock, Rostock, Germany
| | - Deborah Janowitz
- Department of Psychiatry, University Medicine Greifswald, Greifswald, Germany.,Clinic for Psychiatry and Psychotherapy, HELIOS Hanseklinikum Stralsund, Stralsund, Germany
| | - Samin Schlick
- Department of Psychiatry, University Medicine Greifswald, Greifswald, Germany.,Clinic for Psychiatry and Psychotherapy, HELIOS Hanseklinikum Stralsund, Stralsund, Germany
| | - Kristin Pilz
- Department of Psychiatry, University Medicine Greifswald, Greifswald, Germany
| | - Hans J Grabe
- Department of Psychiatry, University Medicine Greifswald, Greifswald, Germany
| | - Brigitte Vollmar
- Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | - Angela Kuhla
- Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
5
|
Li N, Zhang X, Zhou J, Li W, Shu X, Wu Y, Long M. Multiscale biomechanics and mechanotransduction from liver fibrosis to cancer. Adv Drug Deliv Rev 2022; 188:114448. [PMID: 35820602 DOI: 10.1016/j.addr.2022.114448] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/08/2022] [Accepted: 07/06/2022] [Indexed: 02/06/2023]
Abstract
A growing body of multiscale biomechanical studies has been proposed to highlight the mechanical cues in the development of hepatic fibrosis and cancer. At the cellular level, changes in mechanical microenvironment induce phenotypic and functional alterations of hepatic cells, initiating a positive feedback loop that promotes liver fibrogenesis and hepatocarcinogenesis. Tumor mechanical microenvironment of hepatocellular carcinoma facilitates tumor cell growth and metastasis, and hinders the drug delivery and immunotherapy. At the molecular level, mechanical forces are sensed and transmitted into hepatic cells via allosteric activation of mechanoreceptors on the cell membrane, leading to the activation of various mechanotransduction pathways including integrin and YAP signaling and then regulating cell function. Thus, the application of mechanomedicine concept in the treatment of liver diseases is promising for rational design and cell-specific delivery of therapeutic drugs. This review mainly discusses the correlation between biomechanical cues and liver diseases from the viewpoint of mechanobiology.
Collapse
Affiliation(s)
- Ning Li
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China; School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyu Zhang
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China; School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Zhou
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Wang Li
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China; School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyu Shu
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China; School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Wu
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China; School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mian Long
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China; School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
6
|
Power Guerra N, Müller L, Pilz K, Glatzel A, Jenderny D, Janowitz D, Vollmar B, Kuhla A. Dietary-Induced Low-Grade Inflammation in the Liver. Biomedicines 2020; 8:biomedicines8120587. [PMID: 33317065 PMCID: PMC7763065 DOI: 10.3390/biomedicines8120587] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/26/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023] Open
Abstract
The literature describes a close correlation between metabolic disorders and abnormal immune responses, like low-grade inflammation (LGI), which may be one mechanistic link between obesity and various comorbidities, including non-alcoholic fatty liver disease (NAFLD). In our study, we investigated the influence of dietary composition on obesity-derived LGI in the liver. We used a dietary induced obesity mouse model of C57BL/6J mice fed with high fat diet (HFD, 60% fat, 20% protein, 20% carbohydrates) and two different controls. One was rich in carbohydrates (10% fat, 20% protein, 70% carbohydrates), further referred to as the control diet (CD), and the other one is referred to as the standard diet (SD), with a more balanced macronutrient content (9% fat, 33% protein, 58% carbohydrates). Our results showed a significant increased NAFLD activity score in HFD compared to both controls, but livers of the CD group also differed in their macroscopic appearance from healthy livers. Hepatic fat content showed significantly elevated cholesterol concentrations in the CD group. Histologic analysis of the cellular immune response in the liver showed no difference between HFD and CD and expression analysis of immunologic mediators like interleukin (IL)-1β, IL-6, IL-10 and tumor necrosis factor alpha also point towards a pro-inflammatory response to CD, comparable to LGI in HFD. Therefore, when studying diet-induced obesity with a focus on inflammatory processes, we encourage researchers to carefully select controls and not use a control diet disproportionally rich in carbohydrates.
Collapse
Affiliation(s)
- Nicole Power Guerra
- Rudolf-Zenker-Institute for Experimental Surgery, Medical University Rostock, 18057 Rostock, Germany; (N.P.G.); (L.M.); (A.G.); (D.J.); (B.V.)
| | - Luisa Müller
- Rudolf-Zenker-Institute for Experimental Surgery, Medical University Rostock, 18057 Rostock, Germany; (N.P.G.); (L.M.); (A.G.); (D.J.); (B.V.)
- Department of Psychosomatic Medicine and Psychotherapy, University of Rostock, 18147 Rostock, Germany
| | - Kristin Pilz
- Department of Psychiatry, University of Greifswald, 17489 Greifswald, Germany; (K.P.); (D.J.)
| | - Annika Glatzel
- Rudolf-Zenker-Institute for Experimental Surgery, Medical University Rostock, 18057 Rostock, Germany; (N.P.G.); (L.M.); (A.G.); (D.J.); (B.V.)
| | - Daniel Jenderny
- Rudolf-Zenker-Institute for Experimental Surgery, Medical University Rostock, 18057 Rostock, Germany; (N.P.G.); (L.M.); (A.G.); (D.J.); (B.V.)
| | - Deborah Janowitz
- Department of Psychiatry, University of Greifswald, 17489 Greifswald, Germany; (K.P.); (D.J.)
| | - Brigitte Vollmar
- Rudolf-Zenker-Institute for Experimental Surgery, Medical University Rostock, 18057 Rostock, Germany; (N.P.G.); (L.M.); (A.G.); (D.J.); (B.V.)
| | - Angela Kuhla
- Rudolf-Zenker-Institute for Experimental Surgery, Medical University Rostock, 18057 Rostock, Germany; (N.P.G.); (L.M.); (A.G.); (D.J.); (B.V.)
- Correspondence: ; Tel.: +49-381-494-2503
| |
Collapse
|
7
|
Abshagen K, Hartmann A, Grüner L, Liebig M, Vollmar B. Limited potential of resolvin D1 in treatment of cholestatic liver fibrosis. Hepatobiliary Surg Nutr 2020; 9:587-596. [PMID: 33163509 DOI: 10.21037/hbsn.2019.08.07] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background Several studies suggest a role for EPA- and DHA-derived pro-resolving mediators like resolvins in reversing metabolic and inflammatory disturbances seen in various chronic diseases. Here, we investigated the effects of resolvin D1 (RvD1) on bile duct ligation (BDL)-induced cholestatic liver injury. Methods Mice were treated daily with RvD1 or 0.1% ethanol (control) from the day of BDL until the final observation time points. Blood and liver tissue were collected 2, 5 and 14 days after BDL for different analyses. Results RvD1 treatment of mice had no impact on the extent of cholestatic liver injury upon BDL, neither in the acute phase nor in the progressive state of liver fibrosis. Although RvD1 treatment resulted in a significantly reduced activity of hepatic stellate cells as well as reduced deposition of extracellular matrix 2 days after BDL, mice were not protected from inflammation and further fibrosis progression. Conclusions These data indicate that RvD1 has a limited therapeutic potential to treat cholestatic liver diseases, as it has no significant impact on regression of hepatic necroinflammation and fibrotic changes in bile duct-ligated mice.
Collapse
Affiliation(s)
- Kerstin Abshagen
- Institute for Experimental Surgery, University Medicine Rostock, Rostock, Germany
| | - Alexander Hartmann
- Institute for Experimental Surgery, University Medicine Rostock, Rostock, Germany
| | - Laura Grüner
- Institute for Experimental Surgery, University Medicine Rostock, Rostock, Germany
| | - Marie Liebig
- Institute for Experimental Surgery, University Medicine Rostock, Rostock, Germany
| | - Brigitte Vollmar
- Institute for Experimental Surgery, University Medicine Rostock, Rostock, Germany
| |
Collapse
|
8
|
Liebig M, Dannenberger D, Vollmar B, Abshagen K. Endogenously increased n-3 PUFA levels in fat-1 transgenic mice do not protect from non-alcoholic steatohepatitis. Hepatobiliary Surg Nutr 2019; 8:447-458. [PMID: 31673534 DOI: 10.21037/hbsn.2019.04.03] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide, ranging from simple steatosis to non-alcoholic steatohepatitis (NASH) and fibrosis. Possible reasons for the NAFLD epidemic in industrialized countries are the high intake of pro-inflammatory n-6 polyunsaturated fatty acids (n-6 PUFAs) and low consumption of healthy n-3 PUFAs. Due to their anti-inflammatory properties, n-3 PUFAs may have the potential to alleviate chronic liver disease. Herein, we examined the therapeutic effect of increased n-3 PUFA tissue levels in fat-1 transgenic mice on progressive NASH. Methods Disease was induced in mice by streptozotocin and high fat diet (STZ/HFD) resulting in NASH. NAFLD in 6 and 8 weeks old wild type and fat-1 transgenic STZ/HFD treated mice was analyzed. Unlike all other mammals, fat-1 transgenic mice ubiquitously express an n-3 fatty acid desaturase, which converts n-6 to n-3 PUFAs, leading to increased n-3 and decreased n-6 PUFA tissue contents. Results Liver damage, NAFLD activity score (NAS), hepatic lipid accumulation and inflammation were significantly reduced in fat-1 transgenic STZ/HFD treated mice in the early (6 weeks) but not late (8 weeks) phase of NASH. Simultaneously, mRNA expression of genes involved in fatty acid uptake and storage (Cd36 and Plin3, respectively) was significantly down-regulated in 6 week old but not 8 week old fat-1 transgenic STZ/HFD treated mice. Conclusions Endogenously elevated n-3 PUFA levels in fat-1 transgenic mice transiently delay the onset of STZ/HFD induced NASH but failed to efficiently protect from NASH development.
Collapse
Affiliation(s)
- Marie Liebig
- Rudolf-Zenker-Institute for Experimental Surgery, University Medicine Rostock, 18057 Rostock, Germany
| | - Dirk Dannenberger
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Brigitte Vollmar
- Rudolf-Zenker-Institute for Experimental Surgery, University Medicine Rostock, 18057 Rostock, Germany
| | - Kerstin Abshagen
- Rudolf-Zenker-Institute for Experimental Surgery, University Medicine Rostock, 18057 Rostock, Germany
| |
Collapse
|
9
|
Liebig M, Dannenberger D, Vollmar B, Abshagen K. n-3 PUFAs reduce tumor load and improve survival in a NASH-tumor mouse model. Ther Adv Chronic Dis 2019; 10:2040622319872118. [PMID: 31523414 PMCID: PMC6728677 DOI: 10.1177/2040622319872118] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 07/16/2019] [Indexed: 12/22/2022] Open
Abstract
Background With 9.1% of all cancer deaths, hepatocellular carcinoma is the second leading cause of cancer deaths worldwide. Due to the increasing prevalence of metabolic syndrome, nonalcoholic fatty liver disease (NAFLD) has evolved into a major risk factor for hepatocellular carcinoma development. Herein, we investigated whether a dietary n-3 polyunsaturated fatty acid (PUFA) supplementation improves the outcome of progressive NAFLD. Methods Feeding three high-fat diets, differing in n-3 and n-6 PUFA contents and ratios (n-3/n-6: 1:8, 1:1, 5:1), the impact of n-3 PUFAs and n-3/n-6 PUFA ratios on NAFLD-related liver fibrosis and tumorigenesis was analyzed in 12- and 20-week-old streptozotocin/high-fat diet (STZ/HFD)-treated mice. Results Feeding of n-3 PUFA-rich diets (1:1 and 5:1) resulted in increased hepatic n-3 PUFA content and n-3/n-6 PUFA ratio with decreased hepatic lipid accumulation. In 20-week-old mice, n-3 PUFA-rich diets alleviated tumor load significantly, with reduced liver/body weight index, tumor size, and tumor number. Finally, these effects were accompanied by a significant improvement of survival of these mice. Conclusions Herein, we showed that increased n-3 PUFA content and n-3/n-6 PUFA ratios lead to improved survival and attenuated tumor progression in STZ/HFD-treated mice. Thus, n-3 PUFAs could be the basis for new therapeutic options against NAFLD-related tumorigenesis.
Collapse
Affiliation(s)
- Marie Liebig
- Institute for Experimental Surgery, University Medicine Rostock, Germany
| | - Dirk Dannenberger
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Brigitte Vollmar
- Institute for Experimental Surgery, University Medicine Rostock, Germany
| | - Kerstin Abshagen
- Institute for Experimental Surgery, University Medicine Rostock, Germany
| |
Collapse
|
10
|
Abshagen K, Mense L, Fischer F, Liebig M, Schaeper U, Navarro G, Glass Ä, Frank M, Klöting N, Vollmar B. Repin1 deficiency in liver tissue alleviates NAFLD progression in mice. J Adv Res 2019; 16:99-111. [PMID: 30899593 PMCID: PMC6413308 DOI: 10.1016/j.jare.2018.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 02/06/2023] Open
Abstract
There is an increasing prevalence of obesity and metabolic syndrome, which promote the development of non-alcoholic fatty liver disease (NAFLD), a disease that can evolve into cirrhosis and hepatocellular carcinoma. Repin1 loss was previously shown to have beneficial effects on lipid and glucose metabolism and obesity regulation. Herein, we characterized NAFLD in mice with hepatic deletion of Repin1 (LRep1-/-). For this purpose, liver disease was analysed in male LRep1-/- and wild-type mice treated with streptozotocin/high fat diet or a control diet over a period of 20 wks. Streptozotocin/high fat diet treated LRep1-/- mice showed a significant decrease in systemic and hepatic lipid accumulation, accompanied by diminished chronic inflammation and a subsequent reduction in liver injury. Remarkably, Repin1-deficient mice exhibited a lower tumour prevalence and tumour frequency, as well as a reduced liver weight/body weight index. A therapeutic approach using Repin1 siRNA in the early phase of NAFLD verified the observed beneficial effects of Repin1 deficiency. This study provides evidence that loss of Repin1 in the liver attenuates NAFLD progression, most likely by reducing fat accumulation and alleviating chronic tissue inflammation. Thus, modulating Repin1 expression may become a novel strategy and potential tool to inhibit NAFLD progression.
Collapse
Affiliation(s)
- Kerstin Abshagen
- Rudolf-Zenker-Institute for Experimental Surgery, University Medicine Rostock, Schillingallee 69a, 18057 Rostock, Germany
| | - Lars Mense
- Rudolf-Zenker-Institute for Experimental Surgery, University Medicine Rostock, Schillingallee 69a, 18057 Rostock, Germany
| | - Felix Fischer
- Rudolf-Zenker-Institute for Experimental Surgery, University Medicine Rostock, Schillingallee 69a, 18057 Rostock, Germany
| | - Marie Liebig
- Rudolf-Zenker-Institute for Experimental Surgery, University Medicine Rostock, Schillingallee 69a, 18057 Rostock, Germany
| | - Ute Schaeper
- Silence Therapeutics GmbH, Robert Rössle Straße 10, 13125 Berlin, Germany
| | - Gemma Navarro
- Silence Therapeutics GmbH, Robert Rössle Straße 10, 13125 Berlin, Germany
| | - Änne Glass
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, University Medicine Rostock, Ernst-Heydemann-Straße 8, 18057 Rostock, Germany
| | - Marcus Frank
- Medical Biology and Electron Microscopy Centre, University Medicine Rostock, Strempelstraße 14, 18057 Rostock, Germany
| | - Nora Klöting
- Integrated Research and Treatment Center (IFB) AdiposityDiseases, University of Leipzig, Liebigstraße 19-21, 04103 Leipzig, Germany
| | - Brigitte Vollmar
- Rudolf-Zenker-Institute for Experimental Surgery, University Medicine Rostock, Schillingallee 69a, 18057 Rostock, Germany
| |
Collapse
|