1
|
Wang J, Sun Z, Yu C, Zhao H, Yan M, Sun S, Han X, Wang T, Zhang Y, Li J, Yu T. Single-cell RNA sequencing generates an atlas of normal tibia cartilage under mechanical loading conditions. Mol Cell Biochem 2025:10.1007/s11010-025-05234-x. [PMID: 40072674 DOI: 10.1007/s11010-025-05234-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 02/14/2025] [Indexed: 03/14/2025]
Abstract
Chondrocytes in articular cartilage can secrete extracellular matrix to maintain cartilage homeostasis. It is well known that articular cartilage chondrocytes are sensitive to mechanical loading and that mechanical stimuli can be translated to biological processes. This study provides deep insight into the impact of mechanical loading on chondrocytes via single-cell RNA sequencing (scRNA-seq). Five cartilage tissue samples from the high-loading region of medial cartilage from the upper tibia (the TL group) and six cartilage tissue samples from the low-loading region of lateral cartilage from the upper tibia (the TN group) were obtained from six donors and subjected to scRNA-seq. TL and TN cartilage tissues from another donor were subjected to immunohistochemical staining. In total, 132,685 cells were analyzed and assigned to 11 cell types. The functions, developmental relationships and interactions of these cell types were determined, and gene transcription data were also evaluated. In addition, differentially expressed genes between the TL and TN groups and their functions were identified. The hub genes for the TL group were identified as GAPDH, FN1, VEGFA, LDHA, SOD1, CTGF, DCN, SERPINE1, ENO1 and CAV1, whereas the hub genes for the TN group included ACTB, CD44, MMP2, COL1A1, COL1A2, SPP1, CTGF, MYC, CCL2, and IGF1. The different enrichment terms indicated that physiological mechanical loading may induce reactive oxygen species accumulation and thus cause ferroptosis in chondrocytes.
Collapse
Affiliation(s)
- Junjie Wang
- Department of Orthopaedic Surgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, 110000, Liaoning Province, China
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Zewen Sun
- Qingdao Medical College, Qingdao University, Qingdao, China
- Department of Orthopaedic Surgery, Qingdao Municipal Hospital, Qingdao, China
| | - Chenghao Yu
- Qingdao Medical College, Qingdao University, Qingdao, China
- Department of Orthopaedic Surgery, Qingdao Municipal Hospital, Qingdao, China
| | - Haibo Zhao
- Qingdao Medical College, Qingdao University, Qingdao, China
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, 266000, Shandong Province, China
| | - Mingyue Yan
- Qingdao Medical College, Qingdao University, Qingdao, China
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, 266000, Shandong Province, China
| | - Shenjie Sun
- Department of Emergency, Qingdao Municipal Hospital, Qingdao, China
| | - Xu Han
- Qingdao Medical College, Qingdao University, Qingdao, China
- Department of Orthopaedic Surgery, Plastic Surgery Hospital, Chinese Academy of Medial Sciences, Beijing, China
| | - Tianrui Wang
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, 266000, Shandong Province, China
| | - Yingze Zhang
- Department of Orthopaedic Surgery, Qingdao Municipal Hospital, Qingdao, China.
| | - Jianjun Li
- Department of Orthopaedic Surgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, 110000, Liaoning Province, China.
| | - Tengbo Yu
- Department of Orthopaedic Surgery, Qingdao Municipal Hospital, Qingdao, China
| |
Collapse
|
2
|
Alraddadi EA, Aljuhani FF, Alsamiri GY, Hafez SY, Alselami G, Almarghalani DA, Alamri FF. The Effects of Cannabinoids on Ischemic Stroke-Associated Neuroinflammation: A Systematic Review. J Neuroimmune Pharmacol 2025; 20:12. [PMID: 39899062 PMCID: PMC11790784 DOI: 10.1007/s11481-025-10171-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 01/20/2025] [Indexed: 02/04/2025]
Abstract
Stroke represents a significant burden on global health and the economy, with high mortality rates, disability, and recurrence. Ischemic stroke is a serious condition that occurs when a blood vessel in the brain is interrupted, reducing the blood supply to the affected area. Inflammation is a significant component in stroke pathophysiology. Neuroinflammation is triggered following the acute ischemic ictus, where the blood-brain barrier (BBB) breaks down, causing damage to the endothelial cells. The damage will eventually generate oxidative stress, activate the pathological phenotypes of astrocytes and microglia, and lead to neuronal death in the neurovascular unit. As a result, the brain unleashes a robust neuroinflammatory response, which can further worsen the neurological outcomes. Neuroinflammation is a complex pathological process involved in ischemic damage and repair. Finding new neuroinflammation molecular targets is essential to develop effective and safe novel treatment approaches against ischemic stroke. Accumulating studies have investigated the pharmacological properties of cannabinoids (CBs) for many years, and recent research has shown their potential therapeutic use in treating ischemic stroke in rodent models. These findings revealed promising impacts of CBs in reducing neuroinflammation and cellular death and ameliorating neurological deficits. In this review, we explore the possibility of the therapeutic administration of CBs in mitigating neuroinflammation caused by a stroke. We summarize the results from several preclinical studies evaluating the efficacy of CBs anti-inflammatory interventions in ischemic stroke. Although convincing preclinical evidence implies that CBs targeting neuroinflammation are promising for ischemic stroke, translating these findings into the clinical setting has proven to be challenging. The translation hurdle is due to the essence of the CBs ability to cause anxiety, cognitive deficit, and psychosis. Future studies are warranted to address the dose-beneficial effect of CBs in clinical trials of ischemic stroke-related neuroinflammation treatment.
Collapse
Affiliation(s)
- Eman A Alraddadi
- Department of Basic Sciences, College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Faisal F Aljuhani
- Department of Basic Sciences, College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Ghadah Y Alsamiri
- Department of Basic Sciences, College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Salwa Y Hafez
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
- College of Nursing, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Ghaida Alselami
- Department of Basic Sciences, College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Daniyah A Almarghalani
- Stroke Research Unit, Taif University, Taif, Saudi Arabia
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Faisal F Alamri
- Department of Basic Sciences, College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia.
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia.
| |
Collapse
|
3
|
Zapi-Colín LA, Dotor-Hernández JE, Contreras I, Estrada JA. Arachidonoylethanolamide promotes cellular senescence in a human glioblastoma cell line. Biochem Biophys Res Commun 2025; 745:151235. [PMID: 39724688 DOI: 10.1016/j.bbrc.2024.151235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Glioblastomas are the most common and deadly primary brain tumors, with high mortality rates despite aggressive therapies. Cellular senescence is important for cancer development, as it limits tumor progression; however, it may also stimulate inflammation at the tumor microenvironment, promoting tumor development. Hence, modulation of senescence is an important target for cancer therapy. Endocannabinoids modulate energy metabolism and the functions of the immune and nervous systems and have shown significant anti-tumor effects in experimental conditions, inhibiting cell growth and proliferation, while promoting apoptosis. Altered endocannabinoid concentrations are related to development of different types of cancer, and recent studies have shown that endocannabinoids and their synthetic analogs are capable of modulating senescence in multiple tissues, affecting cell proliferation and survival. Nonetheless, their effects on cellular senescence in cancer have not been defined. This study explored the effect of the endocannabinoid arachidonoylethanolamide on the induction of cellular senescence in human glioblastoma cell line U-87MG. Our results show that direct supplementation of AEA decreases cell cycle progression, while increasing beta-galactosidase activity and expression of p21, in U-87MG cells, in a dose- and time-dependent manner. Our data suggest that arachidonoylethanolamide may be useful for the modulation of glioblastoma senescence and should be explored further as an adjuvant for cancer therapy.
Collapse
Affiliation(s)
- Luis A Zapi-Colín
- Laboratorio de Neuroquímica, Facultad de Medicina, Universidad Autónoma Del Estado de México, Paseo Tollocan esq, Jesús Carranza s/n, Col. Moderna de la Cruz, Toluca, Mexico, CP 50180.
| | - Jorge E Dotor-Hernández
- Laboratorio de Neuroquímica, Facultad de Medicina, Universidad Autónoma Del Estado de México, Paseo Tollocan esq, Jesús Carranza s/n, Col. Moderna de la Cruz, Toluca, Mexico, CP 50180.
| | - Irazú Contreras
- Laboratorio de Neuroquímica, Facultad de Medicina, Universidad Autónoma Del Estado de México, Paseo Tollocan esq, Jesús Carranza s/n, Col. Moderna de la Cruz, Toluca, Mexico, CP 50180.
| | - José A Estrada
- Laboratorio de Neuroquímica, Facultad de Medicina, Universidad Autónoma Del Estado de México, Paseo Tollocan esq, Jesús Carranza s/n, Col. Moderna de la Cruz, Toluca, Mexico, CP 50180.
| |
Collapse
|
4
|
Dotou M, L'honoré A, Moumné R, El Amri C. Amide Alkaloids as Privileged Sources of Senomodulators for Therapeutic Purposes in Age-Related Diseases. JOURNAL OF NATURAL PRODUCTS 2024; 87:617-628. [PMID: 38436272 DOI: 10.1021/acs.jnatprod.3c01195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Nature is an important source of bioactive compounds and has continuously made a large contribution to the discovery of new drug leads. Particularly, plant-derived compounds have long been identified as highly interesting in the field of aging research and senescence. Many plants contain bioactive compounds that have the potential to influence cellular processes and provide health benefits. Among them, Piper alkaloids have emerged as interesting candidates in the context of age-related diseases and particularly senescence. These compounds have been shown to display a variety of features, including antioxidant, anti-inflammatory, neuroprotective, and other bioactive properties that may help counteracting the effects of cellular aging processes. In the review, we will put the emphasis on piperlongumine and other related derivatives, which belong to the Piper alkaloids, and whose senomodulating potential has emerged during the last several years. We will also provide a survey on their potential in therapeutic perspectives of age-related diseases.
Collapse
Affiliation(s)
- Mazzarine Dotou
- Sorbonne Université, Faculty of Sciences and Engineering, IBPS, UMR 8256 CNRS-SU, ERL INSERM U1164, Biological Adaptation and Ageing, F-75252 Paris, France
- Sorbonne Université, École normale supérieure, PSL University, CNRS, Laboratoire des biomolécules, LBM, 75005 Paris, France
| | - Aurore L'honoré
- Sorbonne Université, Faculty of Sciences and Engineering, IBPS, UMR 8256 CNRS-SU, ERL INSERM U1164, Biological Adaptation and Ageing, F-75252 Paris, France
| | - Roba Moumné
- Sorbonne Université, École normale supérieure, PSL University, CNRS, Laboratoire des biomolécules, LBM, 75005 Paris, France
| | - Chahrazade El Amri
- Sorbonne Université, Faculty of Sciences and Engineering, IBPS, UMR 8256 CNRS-SU, ERL INSERM U1164, Biological Adaptation and Ageing, F-75252 Paris, France
| |
Collapse
|
5
|
Du J, Xu M, Kong F, Zhu P, Mao Y, Liu Y, Zhou H, Dong Z, Yu Z, Du T, Gu Y, Wu X, Geng D, Mao H. CB2R Attenuates Intervertebral Disc Degeneration by Delaying Nucleus Pulposus Cell Senescence through AMPK/GSK3β Pathway. Aging Dis 2022; 13:552-567. [PMID: 35371598 PMCID: PMC8947828 DOI: 10.14336/ad.2021.1025] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/25/2021] [Indexed: 01/10/2023] Open
Abstract
Nucleus pulposus (NP) cell (NPC) senescence is one of the main causes of intervertebral disc degeneration (IVDD). However, the underlying mechanism of NPC senescence is still unclear. The cannabinoid type 2 receptor (CB2R) is a member of the cannabinoid system and plays an important role in antioxidative stress, anti-inflammatory and antisenescence activities. In this study, we used a hydrogen peroxide (H2O2)-induced NPC senescence model and a rat acupuncture IVDD model to explore the role of CB2R in IVDD in vitro and in vivo. First, we confirmed that the expression of p16INK4a in the NP tissues of IVDD patients and rat acupuncture IVDD models obviously increased accompanied by a decrease in CB2R expression. Subsequently, we found that activation of CB2R significantly reduced the number of SA-β-gal positive cells and suppressed the expression of p16INK4a and senescence-related secretory phenotypes [SASP, including matrix metalloproteinase 9 and 13 (MMP9, MMP13) and high mobility group protein b1 (HMGB1)]. In addition, activation of CB2R promoted the expression of collagen type II (Col-2) and SRY-Box transcription factor 9 (SOX9), inhibit the expression of collagen type X (Col-X), and restore the balance of extracellular matrix (ECM) metabolism. In addition, the AMPK/GSK3β pathway was shown to play an important role in CB2R regulation of NPC senescence. Inhibition of AMPK expression reversed the effect of JWH015 (a CB2R agonist). Finally, we further demonstrated that in the rat IVDD model, the AMPK/GSK3β pathway was involved in the regulation of CB2R on NPC senescence. In conclusion, our experimental results prove that CB2R plays an important role in NPC senescence. Activation of CB2R can delay NPC senescence, restore the balance of ECM metabolism, and attenuate IVDD.
Collapse
Affiliation(s)
- Jiacheng Du
- 1Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Menglei Xu
- 2Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, Tongji University, China
| | - Fanchen Kong
- 1Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Pengfei Zhu
- 1Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yubo Mao
- 1Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yijie Liu
- 1Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hong Zhou
- 1Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhongchen Dong
- 1Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zilin Yu
- 1Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Tong Du
- 3Medical college of Soochow University, Suzhou, China
| | - Ye Gu
- 4Department of Orthopaedics, Changshu Hospital Affiliated to Soochow University, First People's Hospital of Changshu City, Changshu, China
| | - Xiexing Wu
- 1Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Dechun Geng
- 1Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Haiqing Mao
- 1Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
6
|
Wang F, Liu M, Wang N, Luo J. G Protein-Coupled Receptors in Osteoarthritis. Front Endocrinol (Lausanne) 2022; 12:808835. [PMID: 35154008 PMCID: PMC8831737 DOI: 10.3389/fendo.2021.808835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/15/2021] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis (OA) is the most common chronic joint disease characterized, for which there are no available therapies being able to modify the progression of OA and prevent long-term disability. Critical roles of G-protein coupled receptors (GPCRs) have been established in OA cartilage degeneration, subchondral bone sclerosis and chronic pain. In this review, we describe the pathophysiological processes targeted by GPCRs in OA, along with related preclinical model and/or clinical trial data. We review examples of GPCRs which may offer attractive therapeutic strategies for OA, including receptors for cannabinoids, hormones, prostaglandins, fatty acids, adenosines, chemokines, and discuss the main challenges for developing these therapies.
Collapse
Affiliation(s)
- Fanhua Wang
- Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Ning Wang
- Department of Oncology and Metabolism, The University of Sheffield, Sheffield, United Kingdom
| | - Jian Luo
- Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
7
|
Yang K, Xie D, Lin W, Xiang P, Peng C. Adipose mesenchymal stem cells and gingival mesenchymal stem cells have a comparable effect in endothelium repair. Exp Ther Med 2021; 22:1415. [PMID: 34676008 PMCID: PMC8524764 DOI: 10.3892/etm.2021.10851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 07/14/2021] [Indexed: 12/14/2022] Open
Abstract
Restenosis is the major factor influencing the long-term success rate of angioplasty and stent implantation and effective strategies to prevent restenosis remain limited. Mesenchymal stem cells (MSCs) are pluripotent stem cells capable of self-renewal and multidirectional differentiation, which may be able to promote endothelium repair, thereby reducing restenosis. The present study aimed to evaluate the effects of adipose MSCs (AMSCs) and gingival MSCs (GMSCs) on endothelium repair. MSCs were isolated from two human tissue types, namely adipose tissue and gingival tissue, and the effects of AMSCs and GMSCs in ex vivo endothelium repair and on vascular smooth muscle cell (SMC) growth were examined. To compare the feasibility of using AMSCs and GMSCs for the repair of endothelium damage in endothelial cell (EC) damage and vasoproliferative disorders, an ex vivo model of endothelium repair in a co-culture system was developed. It was indicated that AMSCs and GMSCs expressed characteristic MSC markers (CD105 and CD166). 3H-thymidine incorporation in the co-culture group of AMSCs and SMCs in the presence of ECs was lower compared with that in the GMSC and SMC co-culture group. The protein expression level of proliferating cell nuclear antigen in the co-culture group of AMSCs and SMCs in the presence of ECs were lower compared with that in the GMSC and SMC co-culture group. After co-culture with ECs for 5 days, 25.71±3.08% of AMSCs began to express CD31 protein and 20.06±2.09% of GMSCs began to express CD31 protein. Furthermore, anti-VEGF antibody was able to inhibit MSC differentiation. Collectively, the present results suggested that seeding of AMSCs had a stronger effect to inhibit the proliferation and migration of SMCs compared with GMSCs.
Collapse
Affiliation(s)
- Ke Yang
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Dongmei Xie
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Wanwen Lin
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Peng Xiang
- Key Laboratory for Stem Cells and Tissue Engineering, Center for Stem Cell Biology and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510600, P.R. China
| | - Chaoquan Peng
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
8
|
He Y, Wu Z, Xu L, Xu K, Chen Z, Ran J, Wu L. The role of SIRT3-mediated mitochondrial homeostasis in osteoarthritis. Cell Mol Life Sci 2020; 77:3729-3743. [PMID: 32468094 PMCID: PMC11105031 DOI: 10.1007/s00018-020-03497-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 02/07/2020] [Accepted: 03/02/2020] [Indexed: 12/13/2022]
Abstract
Osteoarthritis is the most common degenerative joint disease and causes major pain and disability in adults. It has been reported that mitochondrial dysfunction in chondrocytes is associated with osteoarthritis. Sirtuins are a family of nicotinamide adenine dinucleotide-dependent histone deacetylases that have the ability to deacetylate protein targets and play an important role in the regulation of cell physiological and pathological processes. Among sirtuin family members, sirtuin 3, which is mainly located in mitochondria, can exert its deacetylation activity to regulate mitochondrial function, regeneration, and dynamics; these processes are presently recognized to maintain redox homeostasis to prevent oxidative stress in cell metabolism. In this review, we provide present opinions on the effect of mitochondrial dysfunction in osteoarthritis. Furthermore, the potential protective mechanism of SIRT3-mediated mitochondrial homeostasis in the progression of osteoarthritis is discussed.
Collapse
Affiliation(s)
- Yuzhe He
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhipeng Wu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Langhai Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kai Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhonggai Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jisheng Ran
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Lidong Wu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
9
|
Azar S, Udi S, Drori A, Hadar R, Nemirovski A, Vemuri KV, Miller M, Sherill-Rofe D, Arad Y, Gur-Wahnon D, Li X, Makriyannis A, Ben-Zvi D, Tabach Y, Ben-Dov IZ, Tam J. Reversal of diet-induced hepatic steatosis by peripheral CB1 receptor blockade in mice is p53/miRNA-22/SIRT1/PPARα dependent. Mol Metab 2020; 42:101087. [PMID: 32987186 PMCID: PMC7563015 DOI: 10.1016/j.molmet.2020.101087] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/03/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE The endocannabinoid (eCB) system is increasingly recognized as being crucially important in obesity-related hepatic steatosis. By activating the hepatic cannabinoid-1 receptor (CB1R), eCBs modulate lipogenesis and fatty acid oxidation. However, the underlying molecular mechanisms are largely unknown. METHODS We combined unbiased bioinformatics techniques, mouse genetic manipulations, multiple pharmacological, molecular, and cellular biology approaches, and genomic sequencing to systematically decipher the role of the hepatic CB1R in modulating fat utilization in the liver and explored the downstream molecular mechanisms. RESULTS Using an unbiased normalized phylogenetic profiling analysis, we found that the CB1R evolutionarily coevolves with peroxisome proliferator-activated receptor-alpha (PPARα), a key regulator of hepatic lipid metabolism. In diet-induced obese (DIO) mice, peripheral CB1R blockade (using AM6545) induced the reversal of hepatic steatosis and improved liver injury in WT, but not in PPARα-/- mice. The antisteatotic effect mediated by AM6545 in WT DIO mice was accompanied by increased hepatic expression and activity of PPARα as well as elevated hepatic levels of the PPARα-activating eCB-like molecules oleoylethanolamide and palmitoylethanolamide. Moreover, AM6545 was unable to rescue hepatic steatosis in DIO mice lacking liver sirtuin 1 (SIRT1), an upstream regulator of PPARα. Both of these signaling molecules were modulated by the CB1R as measured in hepatocytes exposed to lipotoxic conditions or treated with CB1R agonists in the absence/presence of AM6545. Furthermore, using microRNA transcriptomic profiling, we found that the CB1R regulated the hepatic expression, acetylation, and transcriptional activity of p53, resulting in the enhanced expression of miR-22, which was found to specifically target SIRT1 and PPARα. CONCLUSIONS We provide strong evidence for a functional role of the p53/miR-22/SIRT1/PPARα signaling pathway in potentially mediating the antisteatotic effect of peripherally restricted CB1R blockade.
Collapse
Affiliation(s)
- Shahar Azar
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shiran Udi
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Adi Drori
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rivka Hadar
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alina Nemirovski
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Kiran V Vemuri
- Center for Drug Discovery, Northeastern University, Boston, MA, USA
| | - Maya Miller
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hadassah Medical School, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dana Sherill-Rofe
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hadassah Medical School, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yhara Arad
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hadassah Medical School, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Devorah Gur-Wahnon
- Laboratory of Medical Transcriptomics, Department of Nephrology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Xiaoling Li
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | | | - Danny Ben-Zvi
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hadassah Medical School, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yuval Tabach
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hadassah Medical School, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Iddo Z Ben-Dov
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Joseph Tam
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
10
|
Chai B, Zheng ZH, Liao X, Li KY, Liang JS, Huang YX, Tong CJ, Ou DJ, Lu J. The protective role of omentin-1 in IL-1β-induced chondrocyte senescence. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 48:8-14. [PMID: 31852248 DOI: 10.1080/21691401.2019.1699803] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Osteoarthritis is a common type of degenerative joint disease. Inflammation-related chondrocyte senescence plays a major role in the pathogenesis of osteoarthritis. Omentin-1 is a newly identified anti-inflammatory adipokine involved in lipid metabolism. In this study, we examined the biological function of omentin-1 in cultured chondrocytes. The presence of omentin-1 potently suppresses IL-1β-induced cellular senescence as revealed by staining with senescence-associated beta-galactosidase (SA-β-Gal). At the cellular level, omentin-1 attenuates IL-1β-induced G1 phase cell-cycle arrest. Mechanistically, we demonstrate that omentin-1 reduced IL-1β-induced expression of senescent factors including caveolin-1, p21, and PAI-1 as well as p53 acetylation through ameliorating SIRT1 reduction. Notably, silencing of SIRT1 abolishes IL-1β-induced senescence along with the induction of p21 and PAI-1, suggesting that the action of omentin-1 in chondrocytes is dependent on SIRT1. Collectively, our results revealed the molecular mechanism through which the adipokine omentin-1 exerts a beneficial effect, thereby protecting chondrocytes from senescence. Thus, omentin-1 could have clinical implication in the treatment of osteoarthritis.
Collapse
Affiliation(s)
- Bin Chai
- Department of Orthopaedics, Shenzhen Nanshan People's Hospital, Shenzhen, P. R. China.,Department of Orthopaedics, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, P. R. China
| | - Zi-Hui Zheng
- State Key Laboratory Cultivation Base For TCM Quality and Efficacy, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Xiang Liao
- Department of Orthopaedics, Shenzhen Nanshan People's Hospital, Shenzhen, P. R. China
| | - Kang-Yang Li
- Department of Orthopaedics, Shenzhen Nanshan People's Hospital, Shenzhen, P. R. China
| | - Jiang-Shan Liang
- Department of Orthopaedics, Shenzhen Nanshan People's Hospital, Shenzhen, P. R. China
| | - Yong-Xiang Huang
- Department of Orthopaedics, Shenzhen Nanshan People's Hospital, Shenzhen, P. R. China
| | - Chang-Jun Tong
- Department of Orthopaedics, Shenzhen Nanshan People's Hospital, Shenzhen, P. R. China
| | - Di-Jun Ou
- Department of Orthopaedics, Shenzhen Nanshan People's Hospital, Shenzhen, P. R. China
| | - Jun Lu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, P. R. China.,College of Health Sciences, Jiangsu Normal University, Xuzhou, P. R. China
| |
Collapse
|
11
|
miR-140 Attenuates the Progression of Early-Stage Osteoarthritis by Retarding Chondrocyte Senescence. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 19:15-30. [PMID: 31790972 PMCID: PMC6909049 DOI: 10.1016/j.omtn.2019.10.032] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 09/01/2019] [Accepted: 10/25/2019] [Indexed: 02/05/2023]
Abstract
Osteoarthritis (OA) is a major cause of joint pain and disability, and chondrocyte senescence is a key pathological process in OA and may be a target of new therapeutics. MicroRNA-140 (miR-140) plays a protective role in OA, but little is known about its epigenetic effect on chondrocyte senescence. In this study, we first validated the features of chondrocyte senescence characterized by increased cell cycle arrest in the G0/G1 phase and the expression of senescence-associated β-galactosidase (SA-βGal), p16INK4a, p21, p53, and γH2AX in human knee OA. Then, we revealed in interleukin 1β (IL-1β)-induced OA chondrocytes in vitro that pretransfection with miR-140 effectively inhibited the expression of SA-βGal, p16INK4a, p21, p53, and γH2AX. Furthermore, in vivo results from trauma-induced early-stage OA rats showed that intra-articularly injected miR-140 could rapidly reach the chondrocyte cytoplasm and induce molecular changes similar to the in vitro results, resulting in a noticeable alleviation of OA progression. Finally, bioinformatics analysis predicted the potential targets of miR-140 and a mechanistic network by which miR-140 regulates chondrocyte senescence. Collectively, miR-140 can effectively attenuate the progression of early-stage OA by retarding chondrocyte senescence, contributing new evidence of the involvement of miR-mediated epigenetic regulation of chondrocyte senescence in OA pathogenesis.
Collapse
|