1
|
Dorscheid D, Gauvreau GM, Georas SN, Hiemstra PS, Varricchi G, Lambrecht BN, Marone G. Airway epithelial cells as drivers of severe asthma pathogenesis. Mucosal Immunol 2025:S1933-0219(25)00029-7. [PMID: 40154790 DOI: 10.1016/j.mucimm.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 01/31/2025] [Accepted: 03/19/2025] [Indexed: 04/01/2025]
Abstract
Our understanding of the airway epithelium's role in driving asthma pathogenesis has evolved over time. From being regarded primarily as a physical barrier that could be damaged via inflammation, the epithelium is now known to actively contribute to asthma development through interactions with the immune system. The airway epithelium contains multiple cell types with specialized functions spanning barrier action, mucociliary clearance, immune cell recruitment, and maintenance of tissue homeostasis. Environmental insults may cause direct or indirect injury to the epithelium leading to impaired barrier function, epithelial remodelling, and increased release of inflammatory mediators. In severe asthma, the epithelial barrier repair process is inhibited and the response to insults is exaggerated, driving downstream inflammation. Genetic and epigenetic mechanisms also maintain dysregulation of the epithelial barrier, adding to disease chronicity. Here, we review the role of the airway epithelium in severe asthma and how targeting the epithelium can contribute to asthma treatment.
Collapse
Affiliation(s)
- Del Dorscheid
- Centre for Heart Lung Innovation, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Gail M Gauvreau
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Steve N Georas
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands
| | - Gilda Varricchi
- Department of Translational Medical Sciences (DiSMeT) and Center for Basic and Clinical Immunology Research (CISI), School of Medicine, University of Naples Federico II, Naples, Italy; Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy
| | - Bart N Lambrecht
- Center for Inflammation Research, Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium.
| | - Gianni Marone
- Department of Translational Medical Sciences (DiSMeT) and Center for Basic and Clinical Immunology Research (CISI), School of Medicine, University of Naples Federico II, Naples, Italy; Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy.
| |
Collapse
|
2
|
Varricchi G, Poto R, Lommatzsch M, Brusselle G, Braido F, Virchow JC, Canonica GW. Biologics and airway remodeling in asthma: early, late, and potential preventive effects. Allergy 2025; 80:408-422. [PMID: 39520155 PMCID: PMC11804314 DOI: 10.1111/all.16382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/02/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Although airway remodeling in severe and/or fatal asthma is still considered irreversible, its individual components as a cause of clinical symptoms and/or lung function changes remain largely unknown. While inhaled glucocorticoids have not consistently been shown to affect airway remodeling, biologics targeting specific pathways of airway inflammation have been shown to improve lung function, mucus plugging, and airway structural changes that can exceed those seen with glucocorticoids. This superiority of biologic treatment, which cannot be solely explained by insufficient doses or limited durations of glucocorticoid therapies, needs to be further explored. For this field of research, we propose a novel classification of the potential effects of biologics on airway remodeling into three temporal effects: early effects (days to weeks, primarily modulating inflammatory processes), late effects (months to years, predominantly affecting structural changes), and potential preventive effects (outcomes of early treatment with biologics). For the identification of potential preventive effects of biologics, we call for studies exploring the impact of early biological treatment on airway remodeling in patients with moderate-to-severe asthma, which should be accompanied by a long-term evaluation of clinical parameters, biomarkers, treatment burden, and socioeconomic implications.
Collapse
Affiliation(s)
- G. Varricchi
- Department of Translational Medical SciencesUniversity of Naples Federico IINaplesItaly
- Center for Basic and Clinical Immunology Research (CISI)University of Naples Federico IINaplesItaly
- World Allergy Organization (WAO) Center of ExcellenceNaplesItaly
- Institute of Experimental Endocrinology and Oncology (IEOS)National Research CouncilNaplesItaly
| | - R. Poto
- Department of Translational Medical SciencesUniversity of Naples Federico IINaplesItaly
- Center for Basic and Clinical Immunology Research (CISI)University of Naples Federico IINaplesItaly
- World Allergy Organization (WAO) Center of ExcellenceNaplesItaly
| | - M. Lommatzsch
- Department of Pneumology and Critical Care MedicineUniversity of RostockRostockGermany
| | - G. Brusselle
- Department of Respiratory MedicineGhent University HospitalGhentBelgium
| | - F. Braido
- Respiratory Diseases and Allergy DepartmentIRCCS Polyclinic Hospital San MartinoGenoaItaly
| | - J. C. Virchow
- Department of Pneumology and Critical Care MedicineUniversity of RostockRostockGermany
| | - G. W. Canonica
- Respiratory Diseases and Allergy DepartmentIRCCS Polyclinic Hospital San MartinoGenoaItaly
- Department of Biomedical SciencesHumanitas UniversityMilanItaly
- Asthma & Allergy Unit‐IRCCS Humanitas Research HospitalMilanItaly
| |
Collapse
|
3
|
He Y, Shen X, Zhai K, Nian S. Advances in understanding the role of interleukins in pulmonary fibrosis (Review). Exp Ther Med 2025; 29:25. [PMID: 39650776 PMCID: PMC11619568 DOI: 10.3892/etm.2024.12775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/03/2024] [Indexed: 12/11/2024] Open
Abstract
Pulmonary fibrosis (PF) is a progressive, irreversible disease characterized by heterogeneous interstitial lung tissue damage. It originates from persistent or repeated lung epithelial injury and leads to the activation and differentiation of fibroblasts into myofibroblasts. Interleukins (ILs) are a group of lymphokines crucial for immunomodulation that are implicated in the pathogenesis of PF. However, different types of ILs exert disparate effects on PF. In the present review, based on the effect on PF, ILs are classified into three categories: i) Promotors of PF; ii) inhibitors of PF; and iii) those that exert dual effects on PF. Several types of ILs can promote PF by provoking inflammation, initiating proliferation and transdifferentiation of epithelial cells, exacerbating lung injury, while other ILs can inhibit PF through suppressing expression of inflammatory factors, modulating the Th1/Th2 balance and autophagy. The present review summarizes the association of ILs and PF, focusing on the roles and mechanisms of ILs underlying PF.
Collapse
Affiliation(s)
- Yuqing He
- School of Pharmacy, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Xuebin Shen
- School of Pharmacy, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Kefeng Zhai
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, P.R. China
| | - Sihui Nian
- School of Pharmacy, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine, Institute of Health and Medicine, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| |
Collapse
|
4
|
Yang H, Wu X, Xiao X, Chen J, Yu X, Zhao W, Wang F. Elucidating the causal associations and mechanisms between circulating immune cells and idiopathic pulmonary fibrosis: new insights from Mendelian randomization and transcriptomics. Front Immunol 2025; 15:1437984. [PMID: 39896814 PMCID: PMC11782250 DOI: 10.3389/fimmu.2024.1437984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 12/31/2024] [Indexed: 02/04/2025] Open
Abstract
Background Growing evidence indicates an association between circulating immune cell phenotypes and idiopathic pulmonary fibrosis (IPF). Although studies have attempted to elucidate the causal relationship between the two, further clarification of the specific mechanisms and causal linkages is warranted. Objective We aimed to conduct a two-sample Mendelian randomization (MR) analysis with transcriptomics data analysis to elucidate the causal relationship between circulating immune cells and IPF and to explore potential biomarkers. Methods We first explored the bidirectional causal association between IPF and immune cell phenotypes using two-sample MR analysis. Genome-wide association studies data for immune cell phenotype and IPF were obtained from publicly available databases. A standardized instrumental variable screening process was used to select single nucleotide polymorphisms (SNPs) for inclusion in the MR. Five methods represented by IVW were used to assess causal effects. Subsequently, SNP-nearest genes combined with the transcriptomics data of IPF were subjected to multiple bioinformatics analyses such as TIMER, WGCNA, functional enrichment analysis, protein-protein interaction analysis, and ROC to identify IPF biomarkers. Finally, the single-cell RNA sequencing (scRNA-seq) data was used to validate our findings by single-cell analysis. Results The MR study identified 27 immune cell phenotypes causally associated with IPF, of which 20 were associated with a decreased risk of developing IPF and 7 were associated with an increased risk. CTSB (AUC=0.98), IL10 (AUC=0.83), and AGER (AUC=0.87) were identified as promising biomarkers of IPF. Single cell analysis showed differences in CD14+ CD16+ monocytes, CD16+ monocytes and Granulocyte-monocyte progenito between the IPF group and the healthy control group. The three hub genes were highly expressed in three immune cell subsets of IPF patients. It underscores the potential feasibility of three genes as biomarkers. Conclusions Our study demonstrates the causal associations of specific immune cell phenotypes with IPF through genetic methods and identifies CTSB, IL10, and AGER as biomarkers of IPF through bioinformatics analysis. These findings provide guidance for future clinical and basic research.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fei Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
5
|
Sen Chaudhuri A, Sun J. Lung-resident lymphocytes and their roles in respiratory infections and chronic respiratory diseases. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2024; 2:214-223. [PMID: 39834580 PMCID: PMC11742555 DOI: 10.1016/j.pccm.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Indexed: 01/22/2025]
Abstract
Recent scientific breakthroughs have blurred traditional boundaries between innate and adaptive immunity, revealing a sophisticated network of tissue-resident cells that deliver immediate, localized immune responses. These lymphocytes not only provide rapid frontline defense but also present a paradoxical role in the pathogenesis of respiratory diseases such as asthma, chronic obstructive pulmonary disease, pulmonary fibrosis, and the long-term tissue consequences of viral infections including severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). This review traverses the intricate landscape of lung-resident lymphocytes, delving into their origins, diverse functions, and their dualistic impact on pulmonary health. We dissect their interactions with the microenvironment and the regulatory mechanisms guiding their activity, with an emphasis on their contribution to both immune protection and immunopathology. This review aims to elucidate the complex narrative of these cells, enhancing our understanding of the development of precise therapeutic strategies to combat acute and chronic pulmonary diseases. Through this exploration, the review aspires to shed light on the potential of harnessing lung-resident lymphocytes for the treatment of respiratory conditions.
Collapse
Affiliation(s)
- Arka Sen Chaudhuri
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Jie Sun
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
6
|
Huang L. The role of IL-17 family cytokines in cardiac fibrosis. Front Cardiovasc Med 2024; 11:1470362. [PMID: 39502194 PMCID: PMC11534612 DOI: 10.3389/fcvm.2024.1470362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/29/2024] [Indexed: 11/08/2024] Open
Abstract
Myocardial fibrosis is a common pathological feature in various cardiovascular diseases including myocardial infarction, heart failure, and myocarditis. Generally, persistent myocardial fibrosis correlates with poor prognosis and ranks among the leading causes of death globally. Currently, there is no effective treatment for myocardial fibrosis, partly due to its unclear pathogenic mechanism. Increasing studies have shown IL-17 family cytokines are strongly associated with the initiation and propagation of myocardial fibrosis. This review summarizes the expression, action, and signal transduction mechanisms of IL-17, focusing on its role in fibrosis associated with cardiovascular diseases such as myocardial infarction, heart failure, hypertension, diabetes, and myocarditis. It also discusses its potential as a therapeutic target, offering new insights for the clinical treatment of myocardial fibrosis.
Collapse
Affiliation(s)
- Liqing Huang
- Three Gorges University Hospital of Traditional Chinese Medicine & Yichang Hospital of Traditional Chinese Medicine, Yichang, China
| |
Collapse
|
7
|
Brightling CE, Marone G, Aegerter H, Chanez P, Heffler E, Pavord ID, Rabe KF, Uller L, Dorscheid D. The epithelial era of asthma research: knowledge gaps and future direction for patient care. Eur Respir Rev 2024; 33:240221. [PMID: 39694589 PMCID: PMC11653196 DOI: 10.1183/16000617.0221-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 10/11/2024] [Indexed: 12/20/2024] Open
Abstract
The Epithelial Science Expert Group convened on 18-19 October 2023, in Naples, Italy, to discuss the current understanding of the fundamental role of the airway epithelium in asthma and other respiratory diseases and to explore the future direction of patient care. This review summarises the key concepts and research questions that were raised. As an introduction to the epithelial era of research, the evolution of asthma management throughout the ages was discussed and the role of the epithelium as an immune-functioning organ was elucidated. The role of the bronchial epithelial cells in lower airway diseases beyond severe asthma was considered, as well as the role of the epithelium in upper airway diseases such as chronic rhinosinusitis. The biology and application of biomarkers in patient care was also discussed. The Epithelial Science Expert Group also explored future research needs by identifying the current knowledge and research gaps in asthma management and ranking them by priority. It was identified that there is a need to define and support early assessment of asthma to characterise patients at high risk of severe asthma. Furthermore, a better understanding of asthma progression is required. The development of new treatments and diagnostic tests as well as the identification of new biomarkers will also be required to address the current unmet needs. Finally, an increased understanding of epithelial dysfunction will determine if we can alter disease progression and achieve clinical remission.
Collapse
Affiliation(s)
- Christopher E Brightling
- Institute for Lung Health, National Institute for Health and Care Research Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
- Joint first authors
| | - Gianni Marone
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research, School of Medicine, University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology, National Research Council of Italy, Naples, Italy
- Joint first authors
| | - Helena Aegerter
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Pascal Chanez
- Department of Respiratory Diseases, Aix-Marseille University, Marseille, France
| | - Enrico Heffler
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, Rozzano (MI), Italy
| | - Ian D Pavord
- Respiratory Medicine, National Institute for Health and Care Research Oxford Biomedical Research Centre, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Klaus F Rabe
- LungenClinic Grosshansdorf, Member of the German Center for Lung Research (DZL), Grosshansdorf, Germany
- Chirstian-Alrechts University Kiel, Member of the German Center for Lung Research (DZL), Kiel, Germany
| | - Lena Uller
- Unit of Respiratory Immunopharmacology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Del Dorscheid
- Center for Heart Lung Innovation, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
8
|
Varricchi G, Brightling CE, Grainge C, Lambrecht BN, Chanez P. Airway remodelling in asthma and the epithelium: on the edge of a new era. Eur Respir J 2024; 63:2301619. [PMID: 38609094 PMCID: PMC11024394 DOI: 10.1183/13993003.01619-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/15/2024] [Indexed: 04/14/2024]
Abstract
Asthma is a chronic, heterogeneous disease of the airways, often characterised by structural changes known collectively as airway remodelling. In response to environmental insults, including pathogens, allergens and pollutants, the epithelium can initiate remodelling via an inflammatory cascade involving a variety of mediators that have downstream effects on both structural and immune cells. These mediators include the epithelial cytokines thymic stromal lymphopoietin, interleukin (IL)-33 and IL-25, which facilitate airway remodelling through cross-talk between epithelial cells and fibroblasts, and between mast cells and airway smooth muscle cells, as well as through signalling with immune cells such as macrophages. The epithelium can also initiate airway remodelling independently of inflammation in response to the mechanical stress present during bronchoconstriction. Furthermore, genetic and epigenetic alterations to epithelial components are believed to influence remodelling. Here, we review recent advances in our understanding of the roles of the epithelium and epithelial cytokines in driving airway remodelling, facilitated by developments in genetic sequencing and imaging techniques. We also explore how new and existing therapeutics that target the epithelium and epithelial cytokines could modify airway remodelling.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), School of Medicine, University of Naples Federico II, WAO Center of Excellence, Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy
- G. Varricchi and C.E. Brightling contributed equally
| | - Christopher E. Brightling
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
- G. Varricchi and C.E. Brightling contributed equally
| | - Christopher Grainge
- School of Medicine and Public Health, University of Newcastle, Callaghan, Australia
| | - Bart N. Lambrecht
- Center for Inflammation Research, Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
| | - Pascal Chanez
- Department of Respiratory Diseases, Aix-Marseille University, Marseille, France
| |
Collapse
|
9
|
Xu X, Yin J, Yang Y, Liu H, Yu J, Luo X, Zhang Y, Song X. Advances in co-pathogenesis of the united airway diseases. Respir Med 2024; 225:107580. [PMID: 38484897 DOI: 10.1016/j.rmed.2024.107580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/02/2024] [Accepted: 02/22/2024] [Indexed: 03/19/2024]
Abstract
According to the concept of "united airway diseases", the airway is a single organ in which upper and lower airway diseases are commonly comorbid. A range of inflammatory factors have been found to play an important role in the chain reaction of upper and lower airway diseases. However, the amount of research on this concept remains limited. The underlying mechanism of the relationship between typical diseases of the united airway, such as asthma, allergic rhinitis, and chronic sinusitis, also needs to be further explored. This review highlights the interaction between upper and lower respiratory diseases gathered from epidemiological, histoembryology, neural mechanistic, microbiological, and clinical studies, revealing the relationship between the upper and lower respiratory tracts.
Collapse
Affiliation(s)
- Xinjun Xu
- Department of Otolaryngology, Head and Neck Surgery. Yantai Yuhuangding Hospital, Qingdao University, Yantai, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| | - Jiali Yin
- Department of Otolaryngology, Head and Neck Surgery. Yantai Yuhuangding Hospital, Qingdao University, Yantai, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| | - Yujuan Yang
- Department of Otolaryngology, Head and Neck Surgery. Yantai Yuhuangding Hospital, Qingdao University, Yantai, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| | - Huifang Liu
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China; The 2nd School of Clinical Medicine of Binzhou Medical University, Yantai, Shandong, China
| | - Jingyi Yu
- Department of Otolaryngology, Head and Neck Surgery. Yantai Yuhuangding Hospital, Qingdao University, Yantai, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| | - Xianghuang Luo
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China; School of Clinical Medicine, Weifang Medical University, Weifang, 261042, China
| | - Yu Zhang
- Department of Otolaryngology, Head and Neck Surgery. Yantai Yuhuangding Hospital, Qingdao University, Yantai, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China.
| | - Xicheng Song
- Department of Otolaryngology, Head and Neck Surgery. Yantai Yuhuangding Hospital, Qingdao University, Yantai, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China.
| |
Collapse
|
10
|
Rybakova MG, Myurzep AE. [Pathogenesis of pulmonary fibrosis]. Arkh Patol 2024; 86:58-63. [PMID: 39073544 DOI: 10.17116/patol20248604158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
A literature review reflects data on the mechanisms of pulmonary fibrosis after a novel coronavirus infection associated with the SARS-COV2 virus. Factors contributing to post-COVID lung remodeling are considered. According to the literature, in the mechanism of pulmonary fibrosis, during the course of the disease and during the recovery period, both direct viral damage and death of alveolocytes and endothelium, the development of a systemic inflammatory reaction due to inadequate secretion of cytokines, especially type 2, which are activators of the proliferation of fibroblasts and myofibroblasts, are important. The influence of angiogenesis disorders and vascular dysfunction on pneumofibrosis was noted. Attention is also paid to the relationship between the development of pulmonary fibrosis and abnormal activation of the renin-angiotensin-aldosterone system. In combination with the action of many factors, especially germinal ones, an imbalance between profibrogenic and antifibrogenic action develops and fibrosis occurs.
Collapse
Affiliation(s)
- M G Rybakova
- Academician I.P. Pavlov First St. Petersburg State Medical University, St. Petersburg, Russia
| | - A E Myurzep
- Academician I.P. Pavlov First St. Petersburg State Medical University, St. Petersburg, Russia
| |
Collapse
|
11
|
Sisto M, Lisi S. Targeting Interleukin-17 as a Novel Treatment Option for Fibrotic Diseases. J Clin Med 2023; 13:164. [PMID: 38202170 PMCID: PMC10780256 DOI: 10.3390/jcm13010164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Fibrosis is the end result of persistent inflammatory responses induced by a variety of stimuli, including chronic infections, autoimmune reactions, and tissue injury. Fibrotic diseases affect all vital organs and are characterized by a high rate of morbidity and mortality in the developed world. Until recently, there were no approved antifibrotic therapies. In recent years, high levels of interleukin-17 (IL-17) have been associated with chronic inflammatory diseases with fibrotic complications that culminate in organ failure. In this review, we provide an update on the role of IL-17 in fibrotic diseases, with particular attention to the most recent lines of research in the therapeutic field represented by the epigenetic mechanisms that control IL-17 levels in fibrosis. A better knowledge of the IL-17 signaling pathway implications in fibrosis could design new strategies for therapeutic benefits.
Collapse
Affiliation(s)
- Margherita Sisto
- Department of Translational Biomedicine and Neuroscience (DiBraiN), Section of Human Anatomy and Histology, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | | |
Collapse
|
12
|
Vianello A, Guarnieri G, Achille A, Lionello F, Lococo S, Zaninotto M, Caminati M, Senna G. Serum biomarkers of remodeling in severe asthma with fixed airway obstruction and the potential role of KL-6. Clin Chem Lab Med 2023; 61:1679-1687. [PMID: 36989607 DOI: 10.1515/cclm-2022-1323] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/10/2023] [Indexed: 03/31/2023]
Abstract
Over 3% of asthmatic patients are affected by a particularly severe form of the disease ("severe asthma", SA) which is often refractory to standard treatment. Airway remodeling (AR), which can be considered a critical characteristic of approximately half of all patients with SA and currently thought to be the main mechanism triggering fixed airway obstruction (FAO), seems to be a key factor affecting a patient's outcome. Despite the collective efforts of internationally renowned experts, to date only a few biomarkers indicative of AR and no recognizable biomarkers of lung parenchymal remodeling have been identified. This work examines the pathogenesis of airway and lung parenchymal remodeling and the serum biomarkers that may be able to identify the severe asthmatic patients who may develop FAO. The study also aims to examine if Krebs von den Lungen-6 (KL-6) could be considered a diagnostic biomarker of lung structural damage in SA.
Collapse
Affiliation(s)
- Andrea Vianello
- Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Gabriella Guarnieri
- Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Alessia Achille
- Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Federico Lionello
- Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Sara Lococo
- Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Martina Zaninotto
- Department of Laboratory Medicine, University-Hospital of Padova, Padova, Italy
| | - Marco Caminati
- Asthma Center and Allergy Unit, University of Verona, Verona, Italy
| | - Gianenrico Senna
- Asthma Center and Allergy Unit, University of Verona, Verona, Italy
| |
Collapse
|
13
|
Ofori M, Danquah CA, Asante J, Ativui S, Doe P, Abdul-Nasir Taribabu A, Nugbemado IN, Mensah AN. Betulin and Crinum asiaticum L. bulbs extract attenuate pulmonary fibrosis by down regulating pro-fibrotic and pro-inflammatory cytokines in bleomycin-induced fibrosis mice model. Heliyon 2023; 9:e16914. [PMID: 37346329 PMCID: PMC10279834 DOI: 10.1016/j.heliyon.2023.e16914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/23/2023] Open
Abstract
Background Pulmonary fibrosis (PF) is a lung disease characterized by scaring of lung tissue that impairs lung functions. The estimated survival time of patients with pulmonary fibrosis is 3-5 years. Bleomycin (BLM) is used clinically in the treatment of Hodgkin lymphoma and testicular germ-cell tumors. Bleomycin's mechanism of action is the inhibition of DNA and protein synthesis. This happens when leukocytes induce the release of cytokines and chemokines which increase the pro-fibrotic and pro-inflammatory cytokines such as IL-6, TNF-alpha, IL-13, IL-1β and transforming growth factor-beta 1 (TGF-β). Crinum asiaticum L. bulbs (CAE) are widely found in parts of Africa, Asia and Indian Ocean Island. It is also prevalent in southern part of Ghana and traditionally used by the indigenes to treat upper respiratory tract infections, and for wound healing. Betulin (BET) is found in the bulbs of Crinum asiaticum L. but widely isolated from the external bark of birches and sycamore trees. Betulin as a lupine type triterpenes has been researched for their pharmacological and biological activities including anticancer, anti-inflammatory, antimicrobial activities and anti-liver fibrosis effects.Aim of the study: The aim was to study the anti-pulmonary fibrosis effect of Crinum asiaticum L. bulbs extract and betulin in bleomycin-induced pulmonary fibrosis in mice. Materials and method There was a single oropharyngeal administration of bleomycin (80 mg/kg) in mice followed by the treatment of CAE and BET after 48 h of exposure to BLM. Results There was increased survival rate in CAE and BET treatment groups compared to the BLM induced group. There was a marked decreased in the levels of hydroxyproline, collagen I and III in the CAE and BET treatment groups compared to BLM-treated group. The treatment groups of CAE and BET significantly down regulated the levels of pro-fibrotic and pro-inflammatory cytokines concentrations such as TGF-β1, MMP9, IL-6, IL-1β and TNF-alpha compared to an increased in the BLM treated groups. The histological findings of the lungs suggested the curative effects of CAE and BET following BLM induced pulmonary fibrosis in mice, the study showed improved lung functions with wide focal area of viable alveolar spaces and few collagen fibers deposition on lungs of treatment groups. Conclusion CAE and BET attenuated pulmonary fibrosis by down regulating pro-fibrotic and pro-inflammatory cytokines as well as improving lung function. This could be a lead in drug discovery where compounds with anti-fibrotic effects could be developed for the treatment of lung injury.
Collapse
Affiliation(s)
- Michael Ofori
- Department of Pharmaceutical Science, Dr Hilla Limann Technical University, Wa, Ghana
- Department of Pharmacology, Kwame Nkrumah University of Science and Technology, Ghana
| | | | - Joshua Asante
- Department of Pharmacology, Kwame Nkrumah University of Science and Technology, Ghana
- Department of Medical Laboratory, Diamed Diagnostic Center, Kumasi, Ghana
| | - Selase Ativui
- Department of Pharmacology, Kwame Nkrumah University of Science and Technology, Ghana
| | - Peace Doe
- Department of Pharmaceutical Science, School of Pharmacy, Central University, Accra, Ghana
| | | | | | - Adwoa Nkrumah Mensah
- Department of Pharmacology, Kwame Nkrumah University of Science and Technology, Ghana
| |
Collapse
|
14
|
Yuan Q, Peng N, Xiao F, Shi X, Zhu B, Rui K, Tian J, Lu L. New insights into the function of Interleukin-25 in disease pathogenesis. Biomark Res 2023; 11:36. [PMID: 37005677 PMCID: PMC10068183 DOI: 10.1186/s40364-023-00474-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/13/2023] [Indexed: 04/04/2023] Open
Abstract
Interleukin-25 (IL-25), also known as IL-17E, is a cytokine belonging to the IL-17 family. IL-25 is abundantly expressed by Th2 cells and various kinds of epithelial cells. IL-25 is an alarm signal generated upon cell injury or tissue damage to activate immune cells through the interaction with IL-17RA and IL-17RB receptors. The binding of IL-25 to IL-17RA/IL-17RB complex not only initiates and maintains type 2 immunity but also regulates other immune cells (e.g., macrophages and mast cells) via various signaling pathways. It has been well-documented that IL-25 is critically involved in the development of allergic disorders (e.g., asthma). However, the roles of IL-25 in the pathogenesis of other diseases and the underlying mechanisms are still unclear. This review presents current evidence on the roles of IL-25 in cancers, allergic disorders, and autoimmune diseases. Moreover, we discuss the unanswered key questions underlying IL-25-mediated disease pathology, which will provide new insights into the targeted therapy of this cytokine in clinical treatment.
Collapse
Affiliation(s)
- Qingfang Yuan
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Na Peng
- Department of Rheumatology, the Second People's Hospital, Three Gorges University, Yichang, China
| | - Fan Xiao
- Department of Pathology, Shenzhen Institute of Research and Innovation, The University of Hong Kong, Chongqing International Institute for Immunology, Chongqing, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong, China
| | - Xiaofei Shi
- Department of Rheumatology and Immunology, The First Affiliated Hospital, School of Medicine, Henan University of Science and Technology, Luoyang, China
| | - Bo Zhu
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Ke Rui
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| | - Jie Tian
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China.
| | - Liwei Lu
- Department of Rheumatology, the Second People's Hospital, Three Gorges University, Yichang, China.
- Department of Pathology, Shenzhen Institute of Research and Innovation, The University of Hong Kong, Chongqing International Institute for Immunology, Chongqing, China.
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong, China.
| |
Collapse
|
15
|
Varricchi G, Ferri S, Pepys J, Poto R, Spadaro G, Nappi E, Paoletti G, Virchow JC, Heffler E, Canonica WG. Biologics and airway remodeling in severe asthma. Allergy 2022; 77:3538-3552. [PMID: 35950646 PMCID: PMC10087445 DOI: 10.1111/all.15473] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 01/28/2023]
Abstract
Asthma is a chronic inflammatory airway disease resulting in airflow obstruction, which in part can become irreversible to conventional therapies, defining the concept of airway remodeling. The introduction of biologics in severe asthma has led in some patients to the complete normalization of previously considered irreversible airflow obstruction. This highlights the need to distinguish a "fixed" airflow obstruction due to structural changes unresponsive to current therapies, from a "reversible" one as demonstrated by lung function normalization during biological therapies not previously obtained even with high-dose systemic glucocorticoids. The mechanisms by which exposure to environmental factors initiates the inflammatory responses that trigger airway remodeling are still incompletely understood. Alarmins represent epithelial-derived cytokines that initiate immunologic events leading to inflammatory airway remodeling. Biological therapies can improve airflow obstruction by addressing these airway inflammatory changes. In addition, biologics might prevent and possibly even revert "fixed" remodeling due to structural changes. Hence, it appears clinically important to separate the therapeutic effects (early and late) of biologics as a new paradigm to evaluate the effects of these drugs and future treatments on airway remodeling in severe asthma.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, Naples, Italy.,Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy
| | - Sebastian Ferri
- Personalized Medicine Asthma and Allergy Unit - IRCCS Humanitas Research Hospital, Milan, Italy
| | - Jack Pepys
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Emanuele Nappi
- Personalized Medicine Asthma and Allergy Unit - IRCCS Humanitas Research Hospital, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Giovanni Paoletti
- Personalized Medicine Asthma and Allergy Unit - IRCCS Humanitas Research Hospital, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | | | - Enrico Heffler
- Personalized Medicine Asthma and Allergy Unit - IRCCS Humanitas Research Hospital, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Walter G Canonica
- Personalized Medicine Asthma and Allergy Unit - IRCCS Humanitas Research Hospital, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
16
|
Czerwaty K, Piszczatowska K, Brzost J, Ludwig N, Szczepański MJ, Dżaman K. Immunological Aspects of Chronic Rhinosinusitis. Diagnostics (Basel) 2022; 12:diagnostics12102361. [PMID: 36292050 PMCID: PMC9600442 DOI: 10.3390/diagnostics12102361] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Chronic rhinosinusitis (CRS) is related to persistent inflammation with a dysfunctional relationship between environmental agents and the host immune system. Disturbances in the functioning of the sinus mucosa lead to common clinical symptoms. The major processes involved in the pathogenesis of CRS include airway epithelial dysfunctions that are influenced by external and host-derived factors which activate multiple immunological mechanisms. The molecular bases for CRS remain unclear, although some factors commonly correspond to the disease: bacterial, fungal and viral infections, comorbidity diseases, genetic dysfunctions, and immunodeficiency. Additionally, air pollution leads increased severity of symptoms. CRS is a heterogeneous group of sinus diseases with different clinical courses and response to treatment. Immunological pathways vary depending on the endotype or genotype of the patient. The recent knowledge expansion into mechanisms underlying the pathogenesis of CRS is leading to a steadily increasing significance of precision medicine in the treatment of CRS. The purpose of this review is to summarize the current state of knowledge regarding the immunological aspects of CRS, which are essential for ensuring more effective treatment strategies.
Collapse
Affiliation(s)
- Katarzyna Czerwaty
- Department of Otolaryngology, The Medical Centre of Postgraduate Education, 01-813 Warsaw, Poland
| | | | - Jacek Brzost
- The Children’s Memorial Health Institute, 04-730 Warsaw, Poland
| | - Nils Ludwig
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Mirosław J. Szczepański
- Department of Otolaryngology, The Medical Centre of Postgraduate Education, 01-813 Warsaw, Poland
- Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Poland
- Correspondence:
| | - Karolina Dżaman
- Department of Otolaryngology, The Medical Centre of Postgraduate Education, 01-813 Warsaw, Poland
| |
Collapse
|
17
|
Nie YJ, Wu SH, Xuan YH, Yan G. Role of IL-17 family cytokines in the progression of IPF from inflammation to fibrosis. Mil Med Res 2022; 9:21. [PMID: 35550651 PMCID: PMC9102601 DOI: 10.1186/s40779-022-00382-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 04/12/2022] [Indexed: 01/01/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal chronic interstitial lung disease with no established treatment and is characterized by progressive scarring of the lung tissue and an irreversible decline in lung function. Chronic inflammation has been demonstrated to be the pathological basis of fibrosis. Emerging studies have revealed that most interleukin-17 (IL-17) isoforms are essential for the mediation of acute and chronic inflammation via innate and adaptive immunity. Overexpression or aberrant expression of IL-17 cytokines contributes to various pathological outcomes, including the initiation and exacerbation of IPF. Here, we aim to provide an overview of IL-17 family members in the pathogenesis of IPF.
Collapse
Affiliation(s)
- Yun-Juan Nie
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, Jiangsu, China
| | - Shuo-Hua Wu
- Department of Radiology, The Second Affiliated Hospital, Medical College of Shantou University, Shantou, 515000, Shandong, China
| | - Ying-Hua Xuan
- Department of Basic Medicine, Xiamen Medical College, Xiamen, 361000, Fujian, China
| | - Gen Yan
- Department of Radiology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, 361000, Fujian, China.
| |
Collapse
|
18
|
Early-life infection of the airways with Streptococcus pneumoniae exacerbates HDM-induced asthma in a murine model. Cell Immunol 2022; 376:104536. [DOI: 10.1016/j.cellimm.2022.104536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/15/2022] [Accepted: 05/04/2022] [Indexed: 01/17/2023]
|
19
|
Russo B, Borowczyk J, Cacialli P, Moguelet P, Truchetet ME, Modarressi A, Brembilla NC, Bertrand J, Boehncke WH, Chizzolini C. IL-25 participates in keratinocyte-driven dermal matrix turnover and is reduced in Systemic Sclerosis epidermis. Rheumatology (Oxford) 2022; 61:4558-4569. [PMID: 35171244 DOI: 10.1093/rheumatology/keac044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 01/03/2022] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES Evidence shows that dysfunctional SSc keratinocytes contribute to fibrosis by altering dermal homeostasis. Whether interleukin-25 (IL-25), an IL-17 family member regulating many epidermal functions, takes part in skin fibrosis is unknown. Here we address the role of IL-25 in skin fibrosis. METHODS The expression of IL-25 was evaluated by immunofluorescence and in situ hybridization in 10 SSc and 7 healthy donors (HD) skin biopsies. Epidermal equivalents (EE) reconstituted by primary HD keratinocytes were used as a model to study transcriptomic changes induced by IL-25 in the epidermis. RNA expression profile in EE was characterized by RNAseq. The conditioned medium (CM) from primary SSc and HD keratinocytes primed with IL-25 was used to stimulate fibroblasts. IL-6, IL-8, MMP-1, type-I collagen (col-I), and fibronectin production by fibroblasts was assessed by ELISA. RESULTS SSc epidermis expressed lower levels of IL-25 compared with HD. In EE, IL-25 regulated several molecular pathways related to wound healing and ECM remodeling. Compared with control CM, the CM from IL-25-primed keratinocytes enhanced the fibroblast production of MMP-1, IL-6, IL-8, but not of Col-I nor fibronectin. However, IL-25 significantly reduced the production of Col-I when applied directly to fibroblasts. The activation of keratinocytes by IL-25 was receptor-dependent and evident after a very short incubation time (10 min), largely mediated by IL-1, suggesting enhanced and specific release of preformed mediators. CONCLUSIONS These results show that IL-25 participates to skin homeostasis and its decreased expression in SSc may contribute to skin fibrosis by favoring ECM deposition over degradation.
Collapse
Affiliation(s)
- Barbara Russo
- Pathology & Immunology, School of Medicine, University of Geneva, Switzerland.,Department of Dermatology, University Hospital and School of Medicine, University of Geneva, Switzerland
| | - Julia Borowczyk
- Pathology & Immunology, School of Medicine, University of Geneva, Switzerland
| | - Pietro Cacialli
- Pathology & Immunology, School of Medicine, University of Geneva, Switzerland
| | | | | | - Ali Modarressi
- Plastic, reconstructive & aesthetic unit, University Hospital and School of Medicine, Geneva, Switzerland
| | - Nicolò C Brembilla
- Pathology & Immunology, School of Medicine, University of Geneva, Switzerland.,Department of Dermatology, University Hospital and School of Medicine, University of Geneva, Switzerland
| | - Julien Bertrand
- Pathology & Immunology, School of Medicine, University of Geneva, Switzerland
| | - Wolf-Henning Boehncke
- Pathology & Immunology, School of Medicine, University of Geneva, Switzerland.,Department of Dermatology, University Hospital and School of Medicine, University of Geneva, Switzerland
| | - Carlo Chizzolini
- Pathology & Immunology, School of Medicine, University of Geneva, Switzerland.,Immunology & Allergy, Department of internal medicine, University Hospital and School of Medicine, Geneva, Switzerland
| |
Collapse
|
20
|
Li S, Ding X, Zhang H, Ding Y, Tan Q. IL-25 improves diabetic wound healing through stimulating M2 macrophage polarization and fibroblast activation. Int Immunopharmacol 2022; 106:108605. [PMID: 35149293 DOI: 10.1016/j.intimp.2022.108605] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/22/2022] [Accepted: 01/31/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND Persistent chronic inflammation is one of the main pathogenic characteristics of diabetic wounds. The resolution of inflammation is important for wound healing and extracellular matrix (ECM) formation. Interleukin (IL)-25 can modulate the function of macrophage and fibroblast, but its role and mechanism of action in the treatment of diabetic wounds remain largely unclear. METHODS The mice were categorized into diabetic, diabetic + IL-25 and control groups. Human monocytic THP-1 cell line and human dermal fibroblast (HDF) were stimulated under different IL-25 conditions. Then, flow cytometry, real-time quantitative PCR (RT-qPCR), Western blot (WB), and immunofluorescence (IF) assays were carried out. RESULTS The mice in diabetes group (DG) had a slower wound healing rate, more severe inflammation, less blood vessels and more disordered collagen than those in control group (CG). Intradermal injection of IL-25 could improve these conditions. IL-25 promoted M2 macrophage polarization and fibroblast activation in DG and high-glucose environment. The phenomenon, which was dependent on PI3K/AKT/mTOR and TGF-β/SMAD signaling, could be blocked by LY294002 and LY2109761. CONCLUSION IL-25 may serve as a therapeutic target to improve wound healing in diabetic mice.
Collapse
Affiliation(s)
- Shiyan Li
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, NO. 321, Zhongshan Road, Nanjing, Jiangsu, China.
| | - Xiaofeng Ding
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, NO. 321, Zhongshan Road, Nanjing, Jiangsu, China.
| | - Hao Zhang
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, NO. 321, Zhongshan Road, Nanjing, Jiangsu, China.
| | - Youjun Ding
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, NO. 321, Zhongshan Road, Nanjing, Jiangsu, China.
| | - Qian Tan
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, NO. 321, Zhongshan Road, Nanjing, Jiangsu, China; Department of Burns and Plastic Surgery, Anqing Shihua Hospital, Nanjing Drum Tower Hospital Group, Anqing 246002, China.
| |
Collapse
|
21
|
Zhang F, Liu Y, Wang S, Yan X, Lin Y, Chen D, Tan Q, Wu Z. Interleukin-25-Mediated-IL-17RB Upregulation Promotes Cutaneous Wound Healing in Diabetic Mice by Improving Endothelial Cell Functions. Front Immunol 2022; 13:809755. [PMID: 35126394 PMCID: PMC8810642 DOI: 10.3389/fimmu.2022.809755] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/03/2022] [Indexed: 12/27/2022] Open
Abstract
Diabetic foot ulcer (DFU) frequently leads to non-traumatic amputation and finally even death. However, the mechanism of DFU is not fully understood. Interleukin 25 (IL-25), an alarmin cytokine that responds to tissue injury, has been reported to participate in tissue regeneration and maintaining glucose homeostasis. However, the role of IL-25 in diabetic wound healing remains unknown. Here, we showed that interleukin 17 receptor B (IL-17RB), the functional receptor of IL-25, was significantly inhibited in the wound skin of both diabetic patients with DFU and streptozotocin (STZ)-induced diabetic mice. Topical administration of recombinant IL-25 protein improved angiogenesis and collagen deposition in the wound bed and thus ameliorated delayed diabetic wound healing. IL-25 increased endothelial-specific CD31 expression in diabetic wounds and exogenous IL-25 protected endothelial cells from high glucose-impaired cell migration and tube formation in vitro. We further revealed that IL-25-mediated-IL-17RB signaling rescued the downregulation of Wnt/β-catenin pathway both in vivo in diabetic mice and in vitro in HUVECs and induced the phosphorylation of AKT and ERK 1/2 in HUVECs under high glucose conditions. This study defines a positive regulatory role of IL-25-mediated-IL-17RB signaling in diabetic wound healing and suggests that induction of IL-25-mediated-IL-17RB signaling may be a novel therapeutic strategy for treating poor healing diabetic wounds.
Collapse
Affiliation(s)
- Fang Zhang
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Ye Liu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Shiqi Wang
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xin Yan
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yue Lin
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Deyan Chen
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
- *Correspondence: Zhiwei Wu, ; Qian Tan, ; Deyan Chen,
| | - Qian Tan
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- *Correspondence: Zhiwei Wu, ; Qian Tan, ; Deyan Chen,
| | - Zhiwei Wu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
- *Correspondence: Zhiwei Wu, ; Qian Tan, ; Deyan Chen,
| |
Collapse
|
22
|
John AE, Joseph C, Jenkins G, Tatler AL. COVID-19 and pulmonary fibrosis: A potential role for lung epithelial cells and fibroblasts. Immunol Rev 2021; 302:228-240. [PMID: 34028807 PMCID: PMC8237078 DOI: 10.1111/imr.12977] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 01/08/2023]
Abstract
The COVID-19 pandemic rapidly spread around the world following the first reports in Wuhan City, China in late 2019. The disease, caused by the novel SARS-CoV-2 virus, is primarily a respiratory condition that can affect numerous other bodily systems including the cardiovascular and gastrointestinal systems. The disease ranges in severity from asymptomatic through to severe acute respiratory distress requiring intensive care treatment and mechanical ventilation, which can lead to respiratory failure and death. It has rapidly become evident that COVID-19 patients can develop features of interstitial pulmonary fibrosis, which in many cases persist for as long as we have thus far been able to follow the patients. Many questions remain about how such fibrotic changes occur within the lung of COVID-19 patients, whether the changes will persist long term or are capable of resolving, and whether post-COVID-19 pulmonary fibrosis has the potential to become progressive, as in other fibrotic lung diseases. This review brings together our existing knowledge on both COVID-19 and pulmonary fibrosis, with a particular focus on lung epithelial cells and fibroblasts, in order to discuss common pathways and processes that may be implicated as we try to answer these important questions in the months and years to come.
Collapse
Affiliation(s)
- Alison E. John
- Nottingham NIHR Respiratory Biomedical Research CentreUniversity of NottinghamNottinghamUK
- National Heart and Lung InstituteImperial CollegeLondonUK
| | - Chitra Joseph
- Nottingham NIHR Respiratory Biomedical Research CentreUniversity of NottinghamNottinghamUK
| | - Gisli Jenkins
- Nottingham NIHR Respiratory Biomedical Research CentreUniversity of NottinghamNottinghamUK
- National Heart and Lung InstituteImperial CollegeLondonUK
| | - Amanda L. Tatler
- Nottingham NIHR Respiratory Biomedical Research CentreUniversity of NottinghamNottinghamUK
| |
Collapse
|
23
|
She YX, Yu QY, Tang XX. Role of interleukins in the pathogenesis of pulmonary fibrosis. Cell Death Discov 2021; 7:52. [PMID: 33723241 PMCID: PMC7960958 DOI: 10.1038/s41420-021-00437-9] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/22/2021] [Accepted: 02/13/2021] [Indexed: 12/11/2022] Open
Abstract
Interleukins, a group of cytokines participating in inflammation and immune response, are proved to be involved in the formation and development of pulmonary fibrosis. In this article, we reviewed the relationship between interleukins and pulmonary fibrosis from the clinical, animal, as well as cellular levels, and discussed the underlying mechanisms in vivo and in vitro. Despite the effects of interleukin-targeted treatment on experimental pulmonary fibrosis, clinical applications are lacking and unsatisfactory. We conclude that intervening in one type of interleukins with similar functions in IPF may not be enough to stop the development of fibrosis as it involves a complex network of regulation mechanisms. Intervening interleukins combined with other existing therapy or targeting interleukins affecting multiple cells/with different functions at the same time may be one of the future directions. Furthermore, the intervention time is critical as some interleukins play different roles at different stages. Further elucidation on these aspects would provide new perspectives on both the pathogenesis mechanism, as well as the therapeutic strategy and drug development.
Collapse
Affiliation(s)
- Yi Xin She
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qing Yang Yu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiao Xiao Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
24
|
Froidure A, Crestani B. Regulation of immune cells in lung fibrosis: the reign of regnase-1? Eur Respir J 2021; 57:57/3/2004029. [PMID: 33707169 DOI: 10.1183/13993003.04029-2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 11/01/2020] [Indexed: 11/05/2022]
Affiliation(s)
- Antoine Froidure
- Service de pneumologie, Cliniques universitaires Saint-Luc et Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Bruno Crestani
- Université de Paris, Inserm U1152, Labex Inflamex, Paris, France.,APHP, Service de Pneumologie A, Reference center for rare pulmonary diseases, DHU APOLLO, Hôpital Bichat, Paris, France
| |
Collapse
|
25
|
Borowczyk J, Shutova M, Brembilla NC, Boehncke WH. IL-25 (IL-17E) in epithelial immunology and pathophysiology. J Allergy Clin Immunol 2021; 148:40-52. [PMID: 33485651 DOI: 10.1016/j.jaci.2020.12.628] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/08/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023]
Abstract
IL-25, also known as IL-17E, is a unique cytokine of the IL-17 family. Indeed, IL-25 exclusively was shown to strongly induce expression of the cytokines associated with type 2 immunity. Although produced by several types of immune cells, such as T cells, dendritic cells, or group 2 innate lymphoid cells, a vast amount of IL-25 derives from epithelial cells. The functions of IL-25 have been actively studied in the context of physiology and pathology of various organs including skin, airways and lungs, gastrointestinal tract, and thymus. Accumulating evidence suggests that IL-25 is a "barrier surface" cytokine whose expression depends on extrinsic environmental factors and when upregulated may lead to inflammatory disorders such as atopic dermatitis, psoriasis, or asthma. This review summarizes the progress of the recent years regarding the effects of IL-25 on the regulation of immune response and the balance between its homeostatic and pathogenic role in various epithelia. We revisit IL-25's general and tissue-specific mechanisms of action, mediated signaling pathways, and transcription factors activated in immune and resident cells. Finally, we discuss perspectives of the IL-25-based therapies for inflammatory disorders and compare them with the mainstream ones that target IL-17A.
Collapse
Affiliation(s)
- Julia Borowczyk
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Maria Shutova
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | | | - Wolf-Henning Boehncke
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland; Division of Dermatology and Venereology, University Hospitals of Geneva, Geneva, Switzerland.
| |
Collapse
|
26
|
Role of various imbalances centered on alveolar epithelial cell/fibroblast apoptosis imbalance in the pathogenesis of idiopathic pulmonary fibrosis. Chin Med J (Engl) 2021; 134:261-274. [PMID: 33522725 PMCID: PMC7846426 DOI: 10.1097/cm9.0000000000001288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
There have been recent extensive studies and rapid advancement on the pathogenesis underlying idiopathic pulmonary fibrosis (IPF), and intricate pathogenesis of IPF has been suggested. The purpose of this study was to clarify the logical relationship between these mechanisms. An extensive search was undertaken of the PubMed using the following keywords: “etiology,” “pathogenesis,” “alveolar epithelial cell (AEC),” “fibroblast,” “lymphocyte,” “macrophage,” “epigenomics,” “histone,” acetylation,” “methylation,” “endoplasmic reticulum stress,” “mitochondrial dysfunction,” “telomerase,” “proteases,” “plasminogen,” “epithelial-mesenchymal transition,” “oxidative stress,” “inflammation,” “apoptosis,” and “idiopathic pulmonary fibrosis.” This search covered relevant research articles published up to April 30, 2020. Original articles, reviews, and other articles were searched and reviewed for content; 240 highly relevant studies were obtained after screening. IPF is likely the result of complex interactions between environmental, genetic, and epigenetic factors: environmental exposures affect epigenetic marks; epigenetic processes translate environmental exposures into the regulation of chromatin; epigenetic processes shape gene expression profiles; in turn, an individual's genetic background determines epigenetic marks; finally, these genetic and epigenetic factors act in concert to dysregulate gene expression in IPF lung tissue. The pathogenesis of IPF involves various imbalances including endoplasmic reticulum, telomere length homeostasis, mitochondrial dysfunction, oxidant/antioxidant imbalance, Th1/Th2 imbalance, M1–M2 polarization of macrophages, protease/antiprotease imbalance, and plasminogen activation/inhibition imbalance. These affect each other, promote each other, and ultimately promote AEC/fibroblast apoptosis imbalance directly or indirectly. Excessive AEC apoptosis and impaired apoptosis of fibroblasts contribute to fibrosis. IPF is likely the result of complex interactions between environmental, genetic, and epigenetic factors. The pathogenesis of IPF involves various imbalances centered on AEC/fibroblast apoptosis imbalance.
Collapse
|
27
|
Zhang H, Cui Y, Zhou Z, Ding Y, Nie H. Alveolar Type 2 Epithelial Cells as Potential Therapeutics for Acute Lung Injury/Acute Respiratory Distress Syndrome. Curr Pharm Des 2020; 25:4877-4882. [PMID: 31801451 DOI: 10.2174/1381612825666191204092456] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 11/28/2019] [Indexed: 12/15/2022]
Abstract
Acute lung injury/acute respiratory distress syndrome is a common clinical illness with high morbidity and mortality, which is still one of the medical problems urgently needed to be solved. Alveolar type 2 epithelial cells are an important component of lung epithelial cells and as a kind of stem cells, they can proliferate and differentiate into alveolar type 1 epithelial cells, thus contributing to lung epithelial repairment. In addition, they synthesize and secrete all components of the surfactant that regulates alveolar surface tension in the lungs. Moreover, alveolar type 2 epithelial cells play an active role in enhancing alveolar fluid clearance and reducing lung inflammation. In recent years, as more advanced approaches appear in the field of stem and progenitor cells in the lung, many preclinical studies have shown that the cell therapy of alveolar type 2 epithelial cells has great potential effects for acute lung injury/acute respiratory distress syndrome. We reviewed the recent progress on the mechanisms of alveolar type 2 epithelial cells involved in the damaged lung repairment, aiming to explore the possible therapeutic targets in acute lung injury/acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Honglei Zhang
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yong Cui
- Department of Anesthesiology, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhiyu Zhou
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yan Ding
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Hongguang Nie
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| |
Collapse
|
28
|
Xu X, Zhang J, Dai H. IL-25/IL-33/TSLP contributes to idiopathic pulmonary fibrosis: Do alveolar epithelial cells and (myo)fibroblasts matter? Exp Biol Med (Maywood) 2020; 245:897-901. [PMID: 32249602 DOI: 10.1177/1535370220915428] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
IMPACT STATEMENT We suggest a novel modality in terms of IL-25/IL-33/TSLP's pro-fibrotic role in IPF. First, IL-25/IL-33/TSLP fully activates (myo)fibroblasts in fibroblastic foci (FF) in a paracrine-dependent manner. (IL-25/IL-33/TSLP)+alveolar epithelial cells-(IL-25R/IL-33R/TSLPR)+ (myo)fibroblasts axis may contribute greatly to the abnormal epithelial-mesenchymal crosstalk and lung fibrosis. Second, IL-25/IL-33/TSLP causes significant injury and phenotypic changes of alveolar epithelial cells in an autocrine-dependent manner. By acting directly on the two most important cells in the fibrotic process, i.e. alveolar epithelial cells and (myo)fibroblasts, we support the notion that biological therapies targeting IL-25/IL-33/TSLP will shed new light on the cure of IPF patients.
Collapse
Affiliation(s)
- Xuefeng Xu
- Department of Surgical Intensive Care Unit, Beijing An Zhen Hospital, Capital Medical University, Beijing 100029, China
| | - Jinglan Zhang
- Department of Surgical Intensive Care Unit, Beijing An Zhen Hospital, Capital Medical University, Beijing 100029, China
| | - Huaping Dai
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China.,National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China
| |
Collapse
|
29
|
Epithelial Alarmins in Serum and Exhaled Breath in Patients with Idiopathic Pulmonary Fibrosis: A Prospective One-Year Follow-Up Cohort Study. J Clin Med 2019; 8:jcm8101590. [PMID: 31581688 PMCID: PMC6832270 DOI: 10.3390/jcm8101590] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 12/13/2022] Open
Abstract
Background: Recently, epithelial alarmins have been shown to play important roles in non-allergen driven respiratory diseases like idiopathic pulmonary fibrosis (IPF). Little is known about the expression of the epithelial alarmins in IPF. Methods: This study aimed to prospectively examine interleukin (IL)-25, IL-33, and thymic stromal lymphopoietin (TSLP) levels in the serum and exhaled breath condensate (EBC) in patients with IPF before and after one-year of antifibrotic treatment. A total of 82 volunteers, including 52 patients diagnosed with IPF that qualified for antifibrotic therapy as well as 30 controls, were examined. All study participants underwent baseline peripheral blood and EBC sampling. In 35 out of 52 IPF subjects, a follow-up sampling was performed after 12 months of antifibrotic treatment. Concentrations of alarmins in the serum and EBC were evaluated by means of ELISA. Results: Baseline TSLP concentrations were significantly elevated in patients with IPF compared to controls both in the serum (p < 0.05) and EBC (p < 0.0001). Baseline IL-25 and IL-33 serum and EBC levels did not differ significantly between IPF subjects and controls. Prospective analysis of changes in the epithelial alarmin levels showed significantly decreased IL-25 and TSLP EBC concentrations after 12 months of antifibrotic treatment (p < 0.05), which was observed in the subgroup of IPF patients treated with pirfenidone, but not in those treated with nintedanib. In stable patients with IPF over a study period (absolute forced vital capacity (FVC) % of predicted decline/year ≤ 5%, n = 25), a significant decrease in the EBC levels of both IL-25 and TSLP after 12 months of antifibrotic treatment was noted (p < 0.05), whereas, in progressor IPF patients (absolute FVC % of predicted decline/year > 5%, n = 10), a significant decrease was noted in the IL-25 EBC levels only (p < 0.05). Conclusions: Elevated TSLP levels in patients with IPF and their significant decrease in the lung compartment during antifibrotic therapy in stable patients with IPF, but not in progressors, support its significant contribution to pro-fibrotic type 2 immune responses in IPF. Noted changes in the epithelial alarmins concentration in the lung compartment during pirfenidone therapy may suggest its possible interaction with epithelial alarmins pathways in IPF.
Collapse
|