1
|
Xiao M, Zhou N, Tian Z, Sun C. Endogenous metabolites in metabolic diseases: pathophysiological roles and therapeutic implications. J Nutr 2025:S0022-3166(25)00227-5. [PMID: 40250565 DOI: 10.1016/j.tjnut.2025.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2025] [Accepted: 04/14/2025] [Indexed: 04/20/2025] Open
Abstract
Breakthroughs in metabolomics technology have revealed the direct regulatory role of metabolites in physiology and disease. Recent data have highlighted the bioactive metabolites involved in the etiology and prevention, and treatment of metabolic diseases such as obesity, nonalcoholic fatty liver disease (NAFLD), type 2 diabetes mellitus (T2DM), and atherosclerosis. Numerous studies reveal that endogenous metabolites biosynthesized by host organisms or gut microflora regulate metabolic responses and disorders. Lipids, amino acids, and bile acids (BAs), as endogenous metabolic modulators, regulate energy metabolism, insulin sensitivity, and immune response through multiple pathways, such as insulin signaling cascade, chemical modifications, and metabolite-macromolecule interactions. Furthermore, the gut microbial metabolites short-chain fatty acids (SCFAs), as signaling regulators have a variety of beneficial impacts in regulating energy metabolic homeostasis. In this review, we will summarize information about the roles of bioactive metabolites in the pathogenesis of many metabolic diseases. Furthermore, we discuss the potential value of metabolites in the promising preventive and therapeutic perspectives of human metabolic diseases.
Collapse
Affiliation(s)
- Mengjie Xiao
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, P. R. China 150081; Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, 157 Baojian Road, Harbin, P. R. China 150081
| | - Ning Zhou
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, P. R. China 150081; Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, 157 Baojian Road, Harbin, P. R. China 150081
| | - Zhen Tian
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, P. R. China 150081; Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, 157 Baojian Road, Harbin, P. R. China 150081.
| | - Changhao Sun
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, P. R. China 150081; Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, 157 Baojian Road, Harbin, P. R. China 150081.
| |
Collapse
|
2
|
李 雨, 王 瑗, 袁 泉. [Latest Findings on the Role of α-Ketoglutarate in Metabolic Syndrome]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:783-792. [PMID: 38948289 PMCID: PMC11211801 DOI: 10.12182/20240560302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Indexed: 07/02/2024]
Abstract
Alpha-ketoglutarate (α-KG), an endogenous intermediate of the tricarboxylic acid cycle, is involved in a variety of cellular metabolic pathways. It serves as an energy donor, a precursor of amino acid biosynthesis, and an epigenetic regulator. α-KG plays physiological functions in immune regulation, oxidative stress, and anti-aging as well. In recent years, it has been reported that the level of α-KG in the body is closely associated with metabolic syndrome, including obesity, hyperglycemia, and other pathological factors. Exogenous supplementation of α-KG improves obesity, blood glucose levels, and cardiovascular disease risks associated with metabolic syndrome. Furthermore, α-KG regulates the common pathological mechanisms of metabolic syndrome, suggesting the potential application prospect of α-KG in metabolic syndrome. In order to provide a theoretical basis for further exploration of the application of α-KG in metabolic syndrome, we focused on α-KG and metabolic syndrome in this article and summarized the latest research progress in the role of α-KG in improving the pathological condition and disease progression of metabolic syndrome. For the next step, researchers may focus on the co-pathogenesis of metabolic syndrome and investigate whether α-KG can be used to achieve the therapeutic goal of "homotherapy for heteropathy" in the treatment of metabolic syndrome.
Collapse
Affiliation(s)
- 雨含 李
- 口腔疾病防治全国重点实验室 国家口腔医学中心 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 种植科 (成都 610041)State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Dental Implant, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 瑗 王
- 口腔疾病防治全国重点实验室 国家口腔医学中心 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 种植科 (成都 610041)State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Dental Implant, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 泉 袁
- 口腔疾病防治全国重点实验室 国家口腔医学中心 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 种植科 (成都 610041)State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Dental Implant, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Liu K, Wu Y, Yang W, Li T, Wang Z, Xiao S, Peng Z, Li M, Xiong W, Li M, Chen X, Zhang S, Lei X. α-Ketoglutarate Improves Ovarian Reserve Function in Primary Ovarian Insufficiency by Inhibiting NLRP3-Mediated Pyroptosis of Granulosa Cells. Mol Nutr Food Res 2024; 68:e2300784. [PMID: 38314939 DOI: 10.1002/mnfr.202300784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/14/2023] [Indexed: 02/07/2024]
Abstract
SCOPE Premature ovarian insufficiency (POI) is a common female infertility problem, with its pathogenesis remains unknown. The NOD-like receptor family pyrin domain-containing 3 (NLRP3)-mediated pyroptosis has been proposed as a possible mechanism in POI. This study investigates the therapeutic effect of α-ketoglutarate (AKG) on ovarian reserve function in POI rats and further explores the potential molecular mechanisms. METHODS AND RESULTS POI rats are caused by administration of cyclophosphamide (CTX) to determine whether AKG has a protective effect. AKG treatment increases the ovarian index, maintains both serum hormone levels and follicle number, and improves the ovarian reserve function in POI rats, as evidence by increased the level of lactate and the expression of rate-limiting enzymes of glycolysis in the ovaries, additionally reduced the expression of NLRP3, Gasdermin D (GSDMD), Caspase-1, Interleukin-18 (IL-18), and Interleukin-1 beta (IL-1β). In vitro, KGN cells are treated with LPS and nigericin to mimic pyroptosis, then treated with AKG and MCC950. AKG inhibits inflammatory and pyroptosis factors such as NLRP3, restores the glycolysis process in vitro, meanwhile inhibition of NLRP3 has the same effect. CONCLUSION AKG ameliorates CTX-induced POI by inhibiting NLRP3-mediated pyroptosis, which provides a new therapeutic strategy and drug target for clinical POI patients.
Collapse
Affiliation(s)
- Ke Liu
- Institute of Clinical Anatomy & Reproductive Medicine, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yafei Wu
- Institute of Clinical Anatomy & Reproductive Medicine, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Wenqin Yang
- Institute of Clinical Anatomy & Reproductive Medicine, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Tianlong Li
- Institute of Clinical Anatomy & Reproductive Medicine, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhongxu Wang
- Institute of Clinical Anatomy & Reproductive Medicine, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Shu Xiao
- Institute of Clinical Anatomy & Reproductive Medicine, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhenghua Peng
- Institute of Clinical Anatomy & Reproductive Medicine, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Meng Li
- Institute of Clinical Anatomy & Reproductive Medicine, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Wenhao Xiong
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, Hunan, 421001, China
| | - Meixiang Li
- Institute of Clinical Anatomy & Reproductive Medicine, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xi Chen
- Institute of Clinical Anatomy & Reproductive Medicine, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Shun Zhang
- Department of Reproductive Medical Center, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541001, China
| | - Xiaocan Lei
- Institute of Clinical Anatomy & Reproductive Medicine, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|
4
|
Fu Y, Li S, Xiao Y, Liu G, Fang J. A Metabolite Perspective on the Involvement of the Gut Microbiota in Type 2 Diabetes. Int J Mol Sci 2023; 24:14991. [PMID: 37834439 PMCID: PMC10573635 DOI: 10.3390/ijms241914991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/30/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Type 2 diabetes (T2D) is a commonly diagnosed condition that has been extensively studied. The composition and activity of gut microbes, as well as the metabolites they produce (such as short-chain fatty acids, lipopolysaccharides, trimethylamine N-oxide, and bile acids) can significantly impact diabetes development. Treatment options, including medication, can enhance the gut microbiome and its metabolites, and even reverse intestinal epithelial dysfunction. Both animal and human studies have demonstrated the role of microbiota metabolites in influencing diabetes, as well as their complex chemical interactions with signaling molecules. This article focuses on the importance of microbiota metabolites in type 2 diabetes and provides an overview of various pharmacological and dietary components that can serve as therapeutic tools for reducing the risk of developing diabetes. A deeper understanding of the link between gut microbial metabolites and T2D will enhance our knowledge of the disease and may offer new treatment approaches. Although many animal studies have investigated the palliative and attenuating effects of gut microbial metabolites on T2D, few have established a complete cure. Therefore, conducting more systematic studies in the future is necessary.
Collapse
Affiliation(s)
| | | | | | - Gang Liu
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (Y.F.); (S.L.); (Y.X.)
| | - Jun Fang
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (Y.F.); (S.L.); (Y.X.)
| |
Collapse
|
5
|
Tekwe CD, Luan Y, Meininger CJ, Bazer FW, Wu G. Dietary supplementation with L-leucine reduces nitric oxide synthesis by endothelial cells of rats. Exp Biol Med (Maywood) 2023; 248:1537-1549. [PMID: 37837386 PMCID: PMC10676130 DOI: 10.1177/15353702231199078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/21/2023] [Indexed: 10/16/2023] Open
Abstract
This study tested the hypothesis that elevated L-leucine concentrations in plasma reduce nitric oxide (NO) synthesis by endothelial cells (ECs) and affect adiposity in obese rats. Beginning at four weeks of age, male Sprague-Dawley rats were fed a casein-based low-fat (LF) or high-fat (HF) diet for 15 weeks. Thereafter, rats in the LF and HF groups were assigned randomly into one of two subgroups (n = 8/subgroup) and received drinking water containing either 1.02% L-alanine (isonitrogenous control) or 1.5% L-leucine for 12 weeks. The energy expenditure of the rats was determined at weeks 0, 6, and 11 of the supplementation period. At the end of the study, an oral glucose tolerance test was performed on all the rats immediately before being euthanized for the collection of tissues. HF feeding reduced (P < 0.001) NO synthesis in ECs by 21% and whole-body insulin sensitivity by 19% but increased (P < 0.001) glutamine:fructose-6-phosphate transaminase (GFAT) activity in ECs by 42%. Oral administration of L-leucine decreased (P < 0.05) NO synthesis in ECs by 14%, increased (P < 0.05) GFAT activity in ECs by 35%, and reduced (P < 0.05) whole-body insulin sensitivity by 14% in rats fed the LF diet but had no effect (P > 0.05) on these variables in rats fed the HF diet. L-Leucine supplementation did not affect (P > 0.05) weight gain, tissue masses (including white adipose tissue, brown adipose tissue, and skeletal muscle), or antioxidative capacity (indicated by ratios of glutathione/glutathione disulfide) in LF- or HF-fed rats and did not worsen (P > 0.05) adiposity, whole-body insulin sensitivity, or metabolic profiles in the plasma of obese rats. These results indicate that high concentrations of L-leucine promote glucosamine synthesis and impair NO production by ECs, possibly contributing to an increased risk of cardiovascular disease in diet-induced obese rats.
Collapse
Affiliation(s)
- Carmen D Tekwe
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
- Department of Epidemiology and Biostatistics, Texas A&M University, College Station, TX 77843, USA
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University, Bloomington, IN 47403, USA
| | - Yuanyuan Luan
- Department of Epidemiology and Biostatistics, Texas A&M University, College Station, TX 77843, USA
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University, Bloomington, IN 47403, USA
| | - Cynthia J Meininger
- Department of Medical Physiology, Texas A&M University, College Station, TX 77843, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
- Department of Medical Physiology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
6
|
Durante W. Glutamine Deficiency Promotes Immune and Endothelial Cell Dysfunction in COVID-19. Int J Mol Sci 2023; 24:7593. [PMID: 37108759 PMCID: PMC10144995 DOI: 10.3390/ijms24087593] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has caused the death of almost 7 million people worldwide. While vaccinations and new antiviral drugs have greatly reduced the number of COVID-19 cases, there remains a need for additional therapeutic strategies to combat this deadly disease. Accumulating clinical data have discovered a deficiency of circulating glutamine in patients with COVID-19 that associates with disease severity. Glutamine is a semi-essential amino acid that is metabolized to a plethora of metabolites that serve as central modulators of immune and endothelial cell function. A majority of glutamine is metabolized to glutamate and ammonia by the mitochondrial enzyme glutaminase (GLS). Notably, GLS activity is upregulated in COVID-19, favoring the catabolism of glutamine. This disturbance in glutamine metabolism may provoke immune and endothelial cell dysfunction that contributes to the development of severe infection, inflammation, oxidative stress, vasospasm, and coagulopathy, which leads to vascular occlusion, multi-organ failure, and death. Strategies that restore the plasma concentration of glutamine, its metabolites, and/or its downstream effectors, in conjunction with antiviral drugs, represent a promising therapeutic approach that may restore immune and endothelial cell function and prevent the development of occlusive vascular disease in patients stricken with COVID-19.
Collapse
Affiliation(s)
- William Durante
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
7
|
Li T, Liu J, Liu K, Wang Q, Cao J, Xiao P, Yang W, Li X, Li J, Li M, Tang X, Li M, Zhang S, Lei X. Alpha-ketoglutarate ameliorates induced premature ovarian insufficiency in rats by inhibiting apoptosis and upregulating glycolysis. Reprod Biomed Online 2023; 46:673-685. [PMID: 36894359 DOI: 10.1016/j.rbmo.2023.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/22/2022] [Accepted: 01/04/2023] [Indexed: 01/27/2023]
Abstract
RESEARCH QUESTION What are the effects of alpha-ketoglutarate (α-KG) treatment on the ovarian morphology and ovarian reserve function of rats with cyclophosphamide (CTX)-induced premature ovarian insufficiency (POI)? DESIGN Thirty female Sprague Dawley rats were randomly allocated to a control group (n = 10) and a POI group (n = 20). Cyclophosphamide was administered for 2 weeks to induce POI. The POI group was then divided into two groups: a CTX-POI group (n = 10), administered normal saline, and a CTX-POI + α-KG group (n = 10), administered α-KG 250 mg/kg per day for 21 days. Body mass and fertility was assessed at the end of the study. Serum samples were collected for hormone concentration measurement, and biochemical, histopathological, TUNEL, immunohistochemical and glycolytic pathway analyses were conducted for each group. RESULTS The α-KG treatment increased body mass and ovarian index of rats, partially normalized their disrupted estrous cycles, prevented follicular loss, restored ovarian reserve, and increased pregnancy rate and litter sizes of rats with POI. It significantly reduced serum concentration of FSH (P < 0.001), increased that of oestradiol (P<0.001) and reduced apoptosis of granulosa cells (P = 0.0003). Moreover, α-KG increased concentrations of lactate (P = 0.015) and ATP (P = 0.025), reduced that of pyruvate (P<0.001) and increased expression of rate-limiting enzymes of glycolysis in the ovary. CONCLUSIONS α-KG treatment ameliorates the deleterious effects of CTX on the fertility of female rats, possibly by reducing the apoptosis of ovarian granulosa cells and restoring glycolysis.
Collapse
Affiliation(s)
- Tianlong Li
- Institute of Clinical Anatomy and Reproductive Medicine, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Jie Liu
- The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Ke Liu
- Institute of Clinical Anatomy and Reproductive Medicine, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Qian Wang
- The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Junna Cao
- Department of Reproductive Medical Center, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 54.1001, China
| | - Ping Xiao
- Institute of Clinical Anatomy and Reproductive Medicine, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Wenqin Yang
- Institute of Clinical Anatomy and Reproductive Medicine, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiang Li
- Institute of Clinical Anatomy and Reproductive Medicine, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Jiangming Li
- Institute of Clinical Anatomy and Reproductive Medicine, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Meng Li
- Institute of Clinical Anatomy and Reproductive Medicine, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xuehan Tang
- Institute of Clinical Anatomy and Reproductive Medicine, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Meixiang Li
- Institute of Clinical Anatomy and Reproductive Medicine, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Shun Zhang
- Department of Reproductive Medical Center, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 54.1001, China.
| | - Xiaocan Lei
- Institute of Clinical Anatomy and Reproductive Medicine, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
8
|
Alpha-Ketoglutarate Alleviates Neuronal Apoptosis Induced by Central Insulin Resistance through Inhibiting S6K1 Phosphorylation after Subarachnoid Hemorrhage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9148257. [PMID: 36062190 PMCID: PMC9436633 DOI: 10.1155/2022/9148257] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/18/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022]
Abstract
Neuronal apoptosis after subarachnoid hemorrhage (SAH) is believed to play an important role in early brain injury after SAH. The energy metabolism of neuron is closely related to its survival. The transient hyperglycemia caused by insulin resistance (IR) after SAH seriously affects the prognosis of patients. However, the specific mechanisms of IR after SAH are still not clear. Studies have shown that α-KG takes part in the regulation of IR and cell apoptosis. In this study, we aim to investigate whether α-KG can reduce IR after SAH, improve the disorder of neuronal glucose metabolism, alleviate neuronal apoptosis, and ultimately play a neuroprotective role in SAH-induced EBI. We first measured α-KG levels in the cerebrospinal fluid (CSF) of patients with SAH. Then, we established a SAH model through hemoglobin (Hb) stimulation with HT22 cells for further mechanism research. Furthermore, an in vivo SAH model in mice was established by endovascular perforation. Our results showed that α-KG levels in CSF significantly increased in SAH patients and could be used as a potential prognostic biomarker. In in vitro model of SAH, we found that α-KG not only inhibited IR-induced reduction of glucose uptake in neurons after SAH but also alleviated SAH-induced neuronal apoptosis. Mechanistically, we found that α-KG inhibits neuronal IR by inhibiting S6K1 activation after SAH. Moreover, neuronal apoptosis significantly increased when glucose uptake was reduced. Furthermore, our results demonstrated that α-KG could also alleviate neuronal apoptosis in vivo SAH model. In conclusion, our study suggests that α-KG alleviates apoptosis by inhibiting IR induced by S6K1 activation after SAH.
Collapse
|
9
|
Yuan Y, Zhu C, Wang Y, Sun J, Feng J, Ma Z, Li P, Peng W, Yin C, Xu G, Xu P, Jiang Y, Jiang Q, Shu G. α-Ketoglutaric acid ameliorates hyperglycemia in diabetes by inhibiting hepatic gluconeogenesis via serpina1e signaling. SCIENCE ADVANCES 2022; 8:eabn2879. [PMID: 35507647 PMCID: PMC9067931 DOI: 10.1126/sciadv.abn2879] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/17/2022] [Indexed: 05/13/2023]
Abstract
Previously, we found that α-ketoglutaric acid (AKG) stimulates muscle hypertrophy and fat loss through 2-oxoglutarate receptor 1 (OXGR1). Here, we demonstrated the beneficial effects of AKG on glucose homeostasis in a diet-induced obesity (DIO) mouse model, which are independent of OXGR1. We also showed that AKG effectively decreased blood glucose and hepatic gluconeogenesis in DIO mice. By using transcriptomic and liver-specific serpina1e deletion mouse model, we further demonstrated that liver serpina1e is required for the inhibitory effects of AKG on hepatic gluconeogenesis. Mechanistically, we supported that extracellular AKG binds with a purinergic receptor, P2RX4, to initiate the solute carrier family 25 member 11 (SLC25A11)-dependent nucleus translocation of intracellular AKG and subsequently induces demethylation of lysine 27 on histone 3 (H3K27) in the seprina1e promoter region to decrease hepatic gluconeogenesis. Collectively, these findings reveal an unexpected mechanism for control of hepatic gluconeogenesis using circulating AKG as a signal molecule.
Collapse
Affiliation(s)
- Yexian Yuan
- Guangdong Laboratory of Lingnan Modern Agriculture and Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China
| | - Canjun Zhu
- Guangdong Laboratory of Lingnan Modern Agriculture and Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China
| | - Yongliang Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jia Sun
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jinlong Feng
- Guangdong Laboratory of Lingnan Modern Agriculture and Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China
| | - Zewei Ma
- Guangdong Laboratory of Lingnan Modern Agriculture and Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China
| | - Penglin Li
- Guangdong Laboratory of Lingnan Modern Agriculture and Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China
| | - Wentong Peng
- Guangdong Laboratory of Lingnan Modern Agriculture and Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China
| | - Cong Yin
- Guangdong Laboratory of Lingnan Modern Agriculture and Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China
| | - Guli Xu
- Guangdong Laboratory of Lingnan Modern Agriculture and Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China
| | - Pingwen Xu
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Yuwei Jiang
- Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Qingyan Jiang
- Guangdong Laboratory of Lingnan Modern Agriculture and Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China
| | - Gang Shu
- Guangdong Laboratory of Lingnan Modern Agriculture and Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China
| |
Collapse
|
10
|
Remme CA. Sudden cardiac death in diabetes and obesity: mechanisms and therapeutic strategies. Can J Cardiol 2022; 38:418-426. [PMID: 35017043 DOI: 10.1016/j.cjca.2022.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 02/07/2023] Open
Abstract
Ventricular arrhythmias and sudden cardiac death (SCD) occur most frequently in the setting of coronary artery disease, cardiomyopathy and heart failure, but are also increasingly observed in individuals suffering from diabetes mellitus and obesity. The incidence of these metabolic disorders is rising in Western countries, but adequate prevention and treatment of arrhythmias and SCD in affected patients is limited due to our incomplete knowledge of the underlying disease mechanisms. Here, an overview is presented of the prevalence of electrophysiological disturbances, ventricular arrhythmias and SCD in the clinical setting of diabetes and obesity. Experimental studies are reviewed, which have identified disease pathways and associated modulatory factors, in addition to pro-arrhythmic mechanisms. Key processes are discussed, including mitochondrial dysfunction, oxidative stress, cardiac structural derangements, abnormal cardiac conduction, ion channel dysfunction, prolonged repolarization and dysregulation of intracellular sodium and calcium homeostasis. In addition, the recently identified pro-arrhythmic effects of dysregulated branched chain amino acid metabolism, a common feature in patients with metabolic disorders, are addressed. Finally, current management options are discussed, in addition to the potential development of novel preventive and therapeutic strategies based on recent insight gained from translational studies.
Collapse
Affiliation(s)
- Carol Ann Remme
- Department of Experimental Cardiology, Amsterdam UMC, location AMC, Amsterdam, The Netherlands.
| |
Collapse
|
11
|
Zheng J, Xiao H, Duan Y, Song B, Zheng C, Guo Q, Li F, Li T. Roles of amino acid derivatives in the regulation of obesity. Food Funct 2021; 12:6214-6225. [PMID: 34105579 DOI: 10.1039/d1fo00780g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Obesity is an issue of great concern to people all over the world. It is accompanied by serious complications, leading to reduced quality of life and higher morbidity and mortality. Over the past few years, there has been an explosion in knowledge about the roles of potential therapeutic agents in obesity management. Among them, amino acid (AA) derivatives, such as taurine, glutathione (GSH), betaine, α-ketoglutarate (AKG), β-aminoisobutyric acid (BAIBA), and β-hydroxy-β-methylbutyrate (HMB), have recently gained popularity due to their beneficial effects on the promotion of weight loss and improvement in the lipid profile. The mechanisms of action of these derivatives mainly include inhibiting adipogenesis, increasing lipolysis, promoting brown/beige adipose tissue (BAT) development, and improving glucose metabolism. Therefore, this review summarizes these AA derivatives and the possible mechanisms responsible for their anti-obesity effects. Based on the current findings, these AA derivatives could be potential therapeutic agents for obesity and its related metabolic diseases.
Collapse
Affiliation(s)
- Jie Zheng
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Tomaszewska E, Muszyński S, Arczewska-Włosek A, Domaradzki P, Pyz-Łukasik R, Donaldson J, Świątkiewicz S. Cholesterol Content, Fatty Acid Profile and Health Lipid Indices in the Egg Yolk of Eggs from Hens at the End of the Laying Cycle, Following Alpha-Ketoglutarate Supplementation. Foods 2021; 10:596. [PMID: 33799887 PMCID: PMC8001726 DOI: 10.3390/foods10030596] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 01/02/2023] Open
Abstract
The current study aimed to assess the effects of dietary alpha-ketoglutarate (AKG) supplementation to laying hens on the fatty acid (FA) profile and cholesterol levels of the egg yolk at the end of production cycle. The experiment was performed on forty-eight Bovans Brown laying hens randomly assigned to either a control group (CONT) or a group supplemented with AKG. The CONT group was fed the basal diet, and the AKG group was fed the basal diet plus 1.0% AKG from the 31st until the 60th week of age, when FA profile, fat and cholesterol content of the egg yolks were determined. No significant changes in the cholesterol and total fat content of the egg yolks were observed. However, there were positive (the decrease in n-6 FA and the increase in MUFA), and negative (decrease in PUFA and n-3 FA, increase in TI and n-6/n-3 ratio) changes in FA profile following AKG supplementation. In conclusion, it was shown that dietary AKG after a 30-week long supplementation influence FA profile in egg yolk and its nutritional value.
Collapse
Affiliation(s)
- Ewa Tomaszewska
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka St. 13, 20-950 Lublin, Poland
| | - Siemowit Muszyński
- Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, Akademicka St. 13, 20-950 Lublin, Poland
| | - Anna Arczewska-Włosek
- Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, Krakowska St. 1, 32-083 Balice, Poland; (A.A.-W.); (S.Ś.)
| | - Piotr Domaradzki
- Department of Commodity Science and Processing of Raw Animal Materials, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka St. 13, 20-950 Lublin, Poland;
| | - Renata Pyz-Łukasik
- Department of Food Hygiene of Animal Origin, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka St. 12, 20-950 Lublin, Poland;
| | - Janine Donaldson
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa;
| | - Sylwester Świątkiewicz
- Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, Krakowska St. 1, 32-083 Balice, Poland; (A.A.-W.); (S.Ś.)
| |
Collapse
|
13
|
Deng Y, Huang C, Su J, Pan CW, Ke C. Identification of biomarkers for essential hypertension based on metabolomics. Nutr Metab Cardiovasc Dis 2021; 31:382-395. [PMID: 33495028 DOI: 10.1016/j.numecd.2020.11.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/10/2020] [Accepted: 11/20/2020] [Indexed: 01/09/2023]
Abstract
AIM Essential hypertension (EH) is one of the most important public health problems worldwide. However, the pathogenesis of EH is unclear and early diagnostic methods are lacking. Metabolomics demonstrates great potential for biomarker discovery and the mechanistic exploration of metabolic diseases. DATA SYNTHESIS This review included human and animal metabolomics studies related to EH in the PubMed and Web of Science databases between February 1996 and May 2020. The study designs, EH standards, and reported metabolic biomarkers were systematically examined and compared. The pathway analysis was conducted through the online software MetaboAnalyst 4.0. Twenty-two human studies and fifteen animal studies were included in this systematic review. There were many frequently reported biomarkers with consistent trends (e.g., pyruvate, lactic acid, valine, and tryptophan) in human and animal studies, and thus had potential as biomarkers of EH. In addition, several shared metabolic pathways, including alanine, aspartate, and glutamate metabolism, aminoacyl-tRNA biosynthesis, and arginine biosynthesis, were identified in human and animal metabolomics studies. These biomarkers and pathways, closely related to insulin resistance, the inflammatory state, and impaired nitric oxide production, were demonstrated to contribute to EH development. CONCLUSIONS This study summarized valuable metabolic biomarkers and pathways that could offer opportunities for the early diagnosis or prediction of EH and the discovery of the metabolic mechanisms of EH.
Collapse
Affiliation(s)
- Yueting Deng
- Medical College of Soochow University, Suzhou, 215123, PR China
| | - Chen Huang
- Medical College of Soochow University, Suzhou, 215123, PR China
| | - Jingyue Su
- Medical College of Soochow University, Suzhou, 215123, PR China
| | - Chen-Wei Pan
- School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, PR China.
| | - Chaofu Ke
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, PR China.
| |
Collapse
|
14
|
Amino Acids in Cell Signaling: Regulation and Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1332:17-33. [PMID: 34251636 DOI: 10.1007/978-3-030-74180-8_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Amino acids are the main building blocks for life. Aside from their roles in composing proteins, functional amino acids and their metabolites play regulatory roles in key metabolic cascades, gene expressions, and cell-to-cell communication via a variety of cell signaling pathways. These metabolic networks are necessary for maintenance, growth, reproduction, and immunity in humans and animals. These amino acids include, but are not limited to, arginine, glutamine, glutamate, glycine, leucine, proline, and tryptophan. We will discuss these functional amino acids in cell signaling pathways in mammals with a particular emphasis on mTORC1, AMPK, and MAPK pathways for protein synthesis, nutrient sensing, and anti-inflammatory responses, as well as cell survival, growth, and development.
Collapse
|