1
|
Adefisan-Adeoye AO, Ayanbanjo OO, Adeoye TD, Jayesimi TE, Unuofin JO, Lebelo SL, Adaramoye OA. Bisdemethoxycurcumin chemoprevents 7,12-dimethylbenz(a)anthracene-induced mammary toxicity via modulation of oxidative processes. Sci Rep 2025; 15:9170. [PMID: 40097731 PMCID: PMC11914581 DOI: 10.1038/s41598-025-94168-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 03/12/2025] [Indexed: 03/19/2025] Open
Abstract
Bisdemethoxycurcumin (BDMC) is a naturally occurring compound having anti-cancer properties. We investigated the effect of BDMC on DMBA-induced mammary toxicity in female Wistar rats. Forty-eight virgin female rats were divided into six groups at random. Group 1 received corn oil, group 2 received DMBA (50 mg/kg), groups 3 and 4 received DMBA and BDMC (25 mg/kg and 50 mg/kg), group 5 received BDMC (50 mg/kg), and group 6 received DMBA and vincristine. A single dosage of DMBA was administered (i.p.) at six weeks, followed by BDMC (orally) and vincristine (i.p.) three times a week for thirteen weeks. The DMBA significantly increased lactate dehydrogenase activity by 1.3 folds. Similarly, DMBA increased nitric oxide, malondialdehyde, and myeloperoxidase activities by 12, 204, and 6.3%, respectively. DMBA-rats decreases glutathione-S-transferase, superoxide dismutase, and glutathione peroxidase activities. Immunohistochemistry analysis revealed that B-cell lymphoma-2, estrogen receptor, and human epidermal receptor-2 were strongly expressed in DMBA-rats, but progesterone receptor and Bcl-2 associated protein were weakly expressed. In DMBA rats, histology revealed mammary glands with moderate proliferating ducts and fibrosis. Co-treatment with BDMC reduces hormone receptors activities, improved antioxidant and apoptotic status. BDMC protected the mammary gland from DMBA toxicity by targeting cellular pathways involved in oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Adedoyin O Adefisan-Adeoye
- Chemical Sciences Department, Faculty of Computing and Applied Sciences, Dominion University Ibadan, Ibadan, Nigeria.
| | - Oluwaferanmi O Ayanbanjo
- Chemical Sciences Department, Faculty of Computing and Applied Sciences, Dominion University Ibadan, Ibadan, Nigeria
| | | | - Taiwo E Jayesimi
- Chemical Sciences Department, Faculty of Computing and Applied Sciences, Dominion University Ibadan, Ibadan, Nigeria
| | - Jeremiah O Unuofin
- Department of Life and Consumer Sciences, Florida Campus, University of South Africa, Johannesburg, South Africa
| | - Sogolo L Lebelo
- Department of Life and Consumer Sciences, Florida Campus, University of South Africa, Johannesburg, South Africa
| | - Oluwatosin A Adaramoye
- Molecular Drug Metabolism and Toxicology Unit, Department of Biochemistry, College of Medicine, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
2
|
Vicidomini C, Palumbo R, Moccia M, Roviello GN. Oxidative Processes and Xenobiotic Metabolism in Plants: Mechanisms of Defense and Potential Therapeutic Implications. J Xenobiot 2024; 14:1541-1569. [PMID: 39449425 PMCID: PMC11503355 DOI: 10.3390/jox14040084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
Plants are continuously exposed to environmental challenges, including pollutants, pesticides, and heavy metals, collectively termed xenobiotics. These substances induce oxidative stress by generating reactive oxygen species (ROS), which can damage cellular components such as lipids, proteins, and nucleic acids. To counteract this, plants have evolved complex metabolic pathways to detoxify and process these harmful compounds. Oxidative stress in plants primarily arises from the overproduction of hydrogen peroxide (H2O2), superoxide anions (O2•-), singlet oxygen (1O2), and hydroxyl radicals (•OH), by-products of metabolic activities such as photosynthesis and respiration. The presence of xenobiotics leads to a notable increase in ROS, which can result in cellular damage and metabolic disruption. To combat this, plants have developed a strong antioxidant defense mechanism that includes enzymatic antioxidants that work together to eliminate ROS, thereby reducing their harmful effects. In addition to enzymatic defenses, plants also synthesize various non-enzymatic antioxidants, including flavonoids, phenolic acids, and vitamins. These compounds effectively neutralize ROS and help regenerate other antioxidants, offering extensive protection against oxidative stress. The metabolism of xenobiotic substances in plants occurs in three stages: the first involves modification, which refers to the chemical alteration of xenobiotics to make them less harmful. The second involves conjugation, where the modified xenobiotics are combined with other substances to increase their solubility, facilitating their elimination from the plant. The third stage involves compartmentalization, which is the storage or isolation of conjugated xenobiotics in specific parts of the plant, helping to prevent damage to vital cellular functions. Secondary metabolites found in plants, such as alkaloids, terpenoids, and flavonoids, play a vital role in detoxification and the defense against oxidative stress. Gaining a deeper understanding of the oxidative mechanisms and the pathways of xenobiotic metabolism in plants is essential, as this knowledge can lead to the formulation of plant-derived strategies aimed at alleviating the effects of environmental pollution and enhancing human health by improving detoxification and antioxidant capabilities, as discussed in this review.
Collapse
Affiliation(s)
- Caterina Vicidomini
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Rosanna Palumbo
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Maria Moccia
- Institute of Crystallography, Italian National Council for Research (IC-CNR), Strada Provinciale 35d, 9, Montelibretti, 00010 Rome, Italy
| | - Giovanni N. Roviello
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| |
Collapse
|
3
|
Owumi SE, Adebisi G. Epirubicin Treatment Induces Neurobehavioral, Oxido-Inflammatory and Neurohistology Alterations in Rats: Protective Effect of the Endogenous Metabolite of Tryptophan - 3-Indolepropionic Acid. Neurochem Res 2023:10.1007/s11064-023-03941-9. [PMID: 37097396 DOI: 10.1007/s11064-023-03941-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/31/2023] [Accepted: 04/16/2023] [Indexed: 04/26/2023]
Abstract
Epirubicin's (EPI) efficacy as a chemotherapeutic agent against breast cancer is limited by EPI's neurotoxicity associated with increased oxidative and inflammatory stressors. 3-Indolepropionic acid (3-IPA) derived from in vivo metabolism of tryptophan is reported to possess antioxidative properties devoid of pro-oxidant activity. In this regard, we investigated the effect of 3-IPA on EPI-mediated neurotoxicity in forty female rats (180-200 g; five cohorts (n = 6) treated as follows: Untreated control; EPI alone (2.5 mg/Kg); 3-IPA alone (40 mg/Kg body weight); EPI (2.5 mg/Kg) + 3-IPA (20 mg/Kg) and EPI (2.5 mg/Kg) + 3-IPA (40 mg/Kg) for 28 days. Experimental rats were treated with EPI via intraperitoneal injection thrice weekly or co-treated with 3-IPA daily by gavage. Subsequently, the rat's locomotor activities were measured as endpoints of neurobehavioural status. After sacrifice, inflammation, oxidative stress and DNA damage biomarkers were assessed in rats' cerebrum and cerebellum alongside histopathology. Our results demonstrated that locomotor and exploratory deficits were pronounced in EPI-alone treated rats and improved in the presence of 3-IPA co-treatment. EPI-mediated decreases in tissue antioxidant status, increases in reactive oxygen and nitrogen species (RONS), as well as in lipid peroxidation (LPO) and xanthine oxidase (XO) were lessened in the cerebrum and cerebellum of 3-IPA co-treated rats. Increases in nitric oxide (NO) and 8-hydroxydeguanosin (8-OHdG) levels and myeloperoxidase MPO activity were also abated by 3-IPA. Light microscopic examination of the cerebrum and cerebellum revealed EPI-precipitated histopathological lesions were subsequently alleviated in rats co-treated with 3-IPA. Our findings demonstrate that supplementing endogenously derived 3-IPA from tryptophan metabolism enhances tissue antioxidant status, protects against EPI-mediated neuronal toxicity, and improves neurobehavioural and cognitive levels in experimental rats. These findings may benefit breast cancer patients undergoing Epirubicin chemotherapy.
Collapse
Affiliation(s)
- Solomon E Owumi
- Cancer Research and Molecular Biology Laboratory, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, 200005, Oyo, Nigeria.
| | - Grace Adebisi
- Cancer Research and Molecular Biology Laboratory, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, 200005, Oyo, Nigeria
| |
Collapse
|
4
|
Owumi SE, Arunsi UO, Oyelere AK. The protective effect of 3-indolepropanoic acid on aflatoxin B1-induced systemic perturbation of the liver and kidney function in rats. Fundam Clin Pharmacol 2023; 37:369-384. [PMID: 36214208 DOI: 10.1111/fcp.12842] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/07/2022] [Accepted: 10/07/2022] [Indexed: 02/25/2023]
Abstract
Aflatoxin B1 (AFB1) is known to derange the hepatorenal system by redox, DNA adduct formation and apoptotic networks. Endogenous 3-indole propionic acid (3-IPA) is a metabolite of tryptophan metabolism by gut microbiota that can protect against redox imbalance, inflammation and cellular lipid damage. We investigated the beneficial effect of 3-IPA against AFB1-mediated organ toxicity in male rats post 28 days of consecutive treatment. The 3-IPA (25 and 50 mg/kg) was orally administered alongside AFB1 (50 μg/kg) treatment. Biochemical and enzyme-linked immunosorbent assays were utilised to examine biomarkers of hepatorenal function, oxidative status and inflammation. DNA damage and apoptosis were also assessed, and histological staining techniques were used to investigate hepatorenal tissues for pathological indicators. The 3-IPA supplementation abated AFB1-mediated increases in biomarkers of hepatic and renal dysfunction in rat serum. Co-administration of 3-IPA further reduced AFB1-induced redox imbalance (by upregulating antioxidant mediators and enzymes [GSH, TSH, Trx, Trx-R, SOD, CAT, GPx and GST]; reducing reactive oxygen species, lipid peroxidation and DNA adduct [RONS, LPO and 8-OH-dG] formation; suppressing pro-inflammatory and apoptotic mediators [XO, MPO, NO, IL-1β and Casp -9 and -3]; and upregulating the level of interleukin 10 (IL-10). Moreover, treatment with 3-IPA lessened hepatorenal tissue injuries. These findings suggest that augmenting 3-IPA endogenously from tryptophan metabolism may provide a novel strategy to forestall xenobiotics-mediated hepatorenal toxicity, including AFB1.
Collapse
Affiliation(s)
- Solomon E Owumi
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Uche O Arunsi
- Department of Cancer Immunology and Biotechnology, School of Medicine, University of Nottingham, Nottingham, UK
| | - Adegboyega K Oyelere
- School of Chemistry and Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
5
|
Owumi SE, Ajakaiye B, Akinwunmi AO, Nwozo SO, Oyelere AK. The Hydrophobic Extract of Sorghum bicolor (L. Moench) Enriched in Apigenin-Protected Rats against Aflatoxin B1-Associated Hepatorenal Derangement. Molecules 2023; 28:molecules28073013. [PMID: 37049776 PMCID: PMC10095839 DOI: 10.3390/molecules28073013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Aflatoxin B1 (AFB1) is a recalcitrant metabolite produced by fungi species, and due to its intoxications in animals and humans, it has been classified as a Group 1 carcinogen in humans. Preserving food products with Sorghum bicolor sheath can minimise the contamination of agricultural products and avert ill health occasioned by exposure to AFB1. The current study investigated the ameliorating effect of Sorghum bicolor sheath hydrophobic extract (SBE-HP) enriched in Apigenin (API) on the hepatorenal tissues of rats exposed to AFB1. The SBE-HP was characterised using TLC and LC-MS and was found to be enriched in Apigenin and its methylated analogues. The study used adult male rats divided into four experimental cohorts co-treated with AFB1 (50 µg/kg) and SBE-HP (5 and 10 mg/kg) for 28 days. Biochemical, enzyme-linked immunosorbent assays (ELISA) and histological staining were used to examine biomarkers of hepatorenal function, oxidative status, inflammation and apoptosis, and hepatorenal tissue histo-architectural alterations. Data were analysed using GraphPad Prism 8.3.0, an independent t-test, and a one-way analysis of variance. Co-treatment with SBE-HP ameliorated an upsurge in the biomarkers of hepatorenal functionality in the sera of rats, reduced the alterations in redox balance, resolved inflammation, inhibited apoptosis, and preserved the histological features of the liver and kidney of rats exposed to AFB1. SBE-HP-containing API is an excellent antioxidant regiment. It can amply prevent the induction of oxidative stress, inflammation, and apoptosis in the hepatorenal system of rats. Therefore, supplementing animal feeds and human foods with SBE-HP enriched in Apigenin may reduce the burden of AFB1 intoxication in developing countries with a shortage of effective antifungal agents.
Collapse
Affiliation(s)
- Solomon E. Owumi
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan 200005, Nigeria
- Correspondence: (S.E.O.); (A.K.O.)
| | - Blessing Ajakaiye
- Nutrition and Industrial Biochemistry Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan 200005, Nigeria
| | - Adenike O. Akinwunmi
- Department of Chemistry, Ekiti State University, Ado-Ekiti, Ekiti 360001, Nigeria
| | - Sarah O. Nwozo
- Nutrition and Industrial Biochemistry Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan 200005, Nigeria
| | - Adegboyega K. Oyelere
- School of Chemistry & Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Correspondence: (S.E.O.); (A.K.O.)
| |
Collapse
|
6
|
Apigeninidin-rich Sorghum bicolor (L. Moench) extracts suppress A549 cells proliferation and ameliorate toxicity of aflatoxin B1-mediated liver and kidney derangement in rats. Sci Rep 2022; 12:7438. [PMID: 35523904 PMCID: PMC9076626 DOI: 10.1038/s41598-022-10926-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 04/08/2022] [Indexed: 02/07/2023] Open
Abstract
Sorghum bicolor plant has a high abundance of 3-deoxyanthocyanins, flavonoids and other polyphenol compounds that have been shown to offer numerous health benefits. Epidemiological studies have linked increased intake of S. bicolor to reduced risk of certain cancer types, including lung adenocarcinoma. S. bicolor extracts have shown beneficial effects in managing hepatorenal injuries. This study investigated the cytotoxic potential of three apigeninidin-rich extracts of S. bicolor (SBE-05, SBE-06 and SBE-07) against selected cancer cell lines and their ameliorative effect on aflatoxin B1 (AFB1)-mediated hepatorenal derangements in rats. We observed that, among the three potent extracts, SBE-06 more potently and selectively suppressed the growth of lung adenocarcinoma cell line (A549) (IC50 = 6.5 μg/mL). SBE-06 suppressed the expression of STAT3 but increased the expression of caspase 3. In addition, SBE-05, SBE-06 and SBE-07 inhibited oxidative and nitrosative stress, inflammation, and apoptosis and preserved the histoarchitectural networks of the liver and kidney of rats treated with AFB1. These in vitro and in vivo studies indicate the potential of these cheap and readily accessible extracts for cancer therapy and as chemo-preventive agents in preventing aflatoxin-related health issues.
Collapse
|
7
|
Owumi SE, Irozuru CE, Arunsi UO, Faleke HO, Oyelere AK. Caffeic acid mitigates aflatoxin B1-mediated toxicity in the male rat reproductive system by modulating inflammatory and apoptotic responses, testicular function, and the redox-regulatory systems. J Food Biochem 2022; 46:e14090. [PMID: 35112365 DOI: 10.1111/jfbc.14090] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/26/2021] [Accepted: 01/06/2022] [Indexed: 12/13/2022]
Abstract
Aflatoxin B1 (AFB1 ) is a toxic metabolite of public health concern. The present study investigates the protective effects of caffeic acid (CA) against AFB1 -induced oxidative stress, inflammation, and apoptosis in the hypothalamus, epididymis, and testis of male rats. Five experimental rat cohorts (n = 6) were treated per os for 28 consecutive days as follows: Control (Corn oil 2 ml/kg body weight), AFB1 alone (50μg/kg), CA alone (40 mg/kg) and the co-treated rat cohorts (AFB1 : 50μg/kg + CA1: 20 or 40 mg/kg). Following sacrifice, the biomarkers of hypothalamic, epididymal, and testicular toxicities, antioxidant enzyme activities, myeloperoxidase (MPO) activity, as well as levels of nitric oxide (NO), reactive oxygen and nitrogen (RONS) species and lipid peroxidation (LPO) were analysed spectrophotometrically. Besides, the concentration of tumour necrosis factor-alpha (TNF-α), Bcl-2 and Bax proteins were assessed using ELISA. Results showed that the AFB1 -induced decrease in biomarkers of testicular, epididymal and hypothalamic toxicity was significantly (p < .05) alleviated in rats coexposed to CA. Moreover, the reduction of antioxidant status and the increase in RONS and LPO were lessened (p < .05) in rats co-treated with CA. AFB1 mediated increase in TNF-α, Bax, NO and MPO activity were reduced (p< .05) in the hypothalamus, epididymis, and testis of rats coexposed to CA. In addition, Bcl-2 levels were reduced in rats treated with CA dose-dependently. Light microscopic examination showed that histopathological lesions severity induced by AFB1 were alleviated in rats coexposed to CA. Taken together, the amelioration of AFB1 -induced neuronal and reproductive toxicities by CA involves anti-inflammatory, antioxidant, antiapoptotic mechanisms in rats. PRACTICAL APPLICATIONS: The beneficial antioxidant effects of caffeic acid (CA) are attributed to CA delocalized aromatic rings and free electrons, easily donated to stabilize reactive oxygen species. We report in vivo findings on CA and AfB1 mediated oxidative stress and reproductive dysfunction in rats. CA conjugated esters including chlorogenic acids are widely distributed in plants, and they act as a dietary source of natural defense against infections. CA can chelate heavy metals and reduce production of damaging free radicals to cellular macromolecules. Along these lines, CA can stabilize aflatoxin B1-epoxide as well and avert deleterious conjugates from forming with deoxyribonucleic acids. Hence CA, as a dietary phytochemical can protect against the damaging effects of toxins including aflatoxin B1 that contaminate food. CA dose-dependently abated oxidative, inflammatory, and apoptotic stimuli, improved functional characteristics of spermatozoa and reproductive hormone levels, and prevented histological alterations in experimental rats' hypothalamus and reproductive organs brought about by AFB1 toxicity.
Collapse
Affiliation(s)
- Solomon E Owumi
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Chioma E Irozuru
- Molecular Drug Metabolism Research Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Uche O Arunsi
- Department of Cancer Immunology and Biotechnology, School of Medicine, University of Nottingham, Nottingham, UK
| | - Hammed O Faleke
- Membrane Biochemistry and Biotechnology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Adegboyega K Oyelere
- School of Chemistry & Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
8
|
Kosemani SO, Bakare AA, Adaramoye OA. Fraction from Calliandra portoricensis reduces 7, 12 dimethylbenz(a)anthracene-induced mammary tumors in Wistar rats. AVICENNA JOURNAL OF PHYTOMEDICINE 2022; 12:131-144. [PMID: 35614889 PMCID: PMC9090318 DOI: 10.22038/ajp.2021.18641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 12/02/2022]
Abstract
OBJECTIVE Calliandra portoricensis (CP) is used in Nigeria for the treatment of breast diseases. We investigated the effects of fraction from CP on 7, 12-dimethylbenz(a)anthracene (DMBA)-induced mammary gland tumors. MATERIALS AND METHODS Female Wistar rats (40) were allotted into five equal groups. Group 1 served as control, group 2 received DMBA (50 mg/kg), groups 3 and 4 received DMBA and were treated with CP at doses of 50 and 100 mg/kg respectively, and the group 5 received DMBA and vincristine (0.5 mg/kg). DMBA was injected intraperitoneally once while vincristine and CP were given twice and thrice per week, respectively. RESULTS Administration ofDMBA caused a significant decrease in body weight gain by 52%. In addition, DMBA significantly increased organo-somatic weight of mammary gland by 4.0 folds. Also, DMBA significantly increased inflammatory and oxidative stress markers serum interleukin-1β (IL-1β), lipid peroxidation (LPO) and myeloperoxidase (MPO) by 27, 18 and 435%, respectively. Similarly, mammary NO (nitric oxide) and LPO were increased by 468 and 21%, respectively. In contrast, DMBA decreased the levels of apoptotic markers BAX, caspases 3 and 9 by 20, 15 and 18%, and mammary superoxide dismutase (SOD), catalase (CAT) and glutathione-s-peroxidase (GPx) by 45, 51 and 68%, respectively. Histology revealed gland with malignant epithelial cells and high nucleo-cytoplasm in DMBA-administered rats. Treatment with CP 100 mg/kg decreased LPO, MPO, IL-1β and NO by 28, 35, 78 and 85%, respectively, and ameliorated DMBA-induced cyto-architectural anomalies. CONCLUSION Fraction of CP protects mammary gland from DMBA insults via antioxidative and anti-inflammatory mechanisms.
Collapse
Affiliation(s)
- Samson O. Kosemani
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Aminat A. Bakare
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oluwatosin A. Adaramoye
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria,Department of Biochemistry, BOWEN University, Iwo, Nigeria,Corresponding Author: Tel: +234-8163047157, Fax: +234-28103043,
| |
Collapse
|
9
|
Owumi SE, Otunla MT, Arunsi UO, Najophe ES. 3-Indolepropionic acid upturned male reproductive function by reducing oxido-inflammatory responses and apoptosis along the hypothalamic-pituitary-gonadal axis of adult rats exposed to chlorpyrifos. Toxicology 2021; 463:152996. [PMID: 34678318 DOI: 10.1016/j.tox.2021.152996] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 09/29/2021] [Accepted: 10/16/2021] [Indexed: 01/03/2023]
Abstract
We examined the effect of 3-Indolepropionic acid (3-IPA), an antioxidant on the organophosphorus pesticide chlorpyrifos (CPF)-induced reproductive toxicity in rats. The five experimental rat cohorts were treated per os for 14 consecutive days as follows: Control (Corn oil 2 mL/kg body weight), CPF alone (5 mg/kg), 3-IPA alone (40 mg/kg) and the co-treated rat cohorts (CPF:5 mg/kg + 3-IPA: 20 or 40 mg/kg). Biomarkers of testicular and epididymal function, oxidative stress, myeloperoxidase (MPO) activity and the levels of nitric oxide (NO), reactive oxygen and nitrogen (RONS) species and lipid peroxidation (LPO) were assessed. Also, tumour necrosis factor-alpha (TNF-α), Bcl-2-associated X (Bax) and B cell lymphoma 2 (Bcl-2) proteins were estimated, and tissue histology was microscopically examined. CPF alone significantly (p < 0.05) increased biomarkers of reproductive toxicities were averted in rats co-treated 3-IPA. Decreases in antioxidants and increases in lipid peroxidation and reactive oxygen and nitrogen species were lessened (p < 0.05) in CPF and 3-IPA co-treated rats. CPF mediated increases in TNF-α, NO, Bax, and MPO activity was reduced (p < 0.05) in the epididymis, testes, and hypothalamus of rats co-treated with 3-IPA. In addition, Bcl-2 expression was increased in rats co-treated with 3-IPA dose-dependently. Histopathological examination revealed severe lesions induced by CPF were prevented in rats co-treated with 3-IPA. Our findings demonstrate that exogenous 3-IPA reduced CPF-induced oxidative stress, inflammation, and apoptosis in the epididymis and testes of male rats.
Collapse
Affiliation(s)
- Solomon E Owumi
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, 200004, Nigeria.
| | - Moses T Otunla
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, 200004, Nigeria
| | - Uche O Arunsi
- Department of Cancer Immunology and Biotechnology, School of Medicine, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Eseroghene S Najophe
- Nutritional and Industrial Biochemistry Research Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, 200004, Nigeria
| |
Collapse
|
10
|
Owumi S, Bello T, Oyelere AK. N-acetyl cysteine abates hepatorenal toxicities induced by perfluorooctanoic acid exposure in male rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 86:103667. [PMID: 33933708 DOI: 10.1016/j.etap.2021.103667] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/10/2021] [Accepted: 04/27/2021] [Indexed: 05/28/2023]
Abstract
Ingestion of perfluorooctanoic acid (PFOA) elicits toxicities in the hepatorenal system. We investigated the effect of PFOA and N-acetylcysteine (NAC) on the hepatorenal function of rats treated thus: control, PFOA (5 mg/kg), NAC (50 mg/kg), PFOA + NAC (5 and 25 mg/kg), and PFOA + NAC (5 and 50 mg/kg). We observed that NAC significantly (p < 0.05) reduced PFOA-induced increase in hepatic and renal function biomarkers of toxicities relative to PFOA alone and alleviated (p < 0.05) decreases in antioxidant status. Increases in oxidative stress and lipid peroxidation in PFOA-treated rats were reverted to normal by NAC and abated increased pro-inflammatory mediators, and decreased anti-inflammatory cytokine both in the hepatorenal system PFOA treated rats. Histology of the kidney and liver indicated that NAC, abated the severity of PFOA-induced damage significantly. Our findings affirm further that oxido-inflammatory mediators involved in PFOA-mediated toxicity can be effectively blocked by NAC through its antioxidant activity.
Collapse
Affiliation(s)
- Solomon Owumi
- CRMB Laboratory, Biochemistry Department, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, 200004, Nigeria.
| | - Taofeek Bello
- CRMB Laboratory, Biochemistry Department, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, 200004, Nigeria
| | - Adegboyega K Oyelere
- School of Biochemistry and Chemistry, and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332-0400, USA
| |
Collapse
|
11
|
Owumi SE, Oladimeji BN, Elebiyo TC, Arunsi UO. Combine effect of exposure to petrol, kerosene and diesel fumes: On hepatic oxidative stress and haematological function in rats. Toxicol Ind Health 2021; 37:336-352. [PMID: 33949275 DOI: 10.1177/07482337211012498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Petroleum product fumes (PPFs) containing toxic organic components are pervasive in the environment, emanating from anthropogenic activities, including petroleum exploration and utilization by end-user activities from petrol-gasoline stations. Petrol station attendants are exposed to PPF through inhalation and dermal contact with consequent toxicological implications. We investigated the effects of chronic exposure (60 and 90 days) to petrol (P), kerosene (K) and diesel (D) alone and combined exposure to petrol, kerosene and diesel (PKD) fumes on hepatotoxicity, haematological function and oxidative stress in rats. Following sacrifice, we evaluated hepatic damage biomarkers, blood glucose, oxidative stress and haematological function. Chronic exposure to PPF significantly increased organo-somatic indices, blood glucose, biomarkers of hepatic toxicity and oxidative stress in an exposure duration-dependent manner. There was a simultaneous decrease in the protective capacity of antioxidants. Furthermore, exposure to PPF increased pro-inflammatory biomarkers in rats (90 > 60 days). Regardless of exposure duration, plateletcrit, mean platelet volume, platelet distribution width and red cell distribution width in the coefficient of variation increased, whereas red blood cell count, haemoglobin, packed cell volume, mean corpuscular volume, mean corpuscular haemoglobin, mean corpuscular haemoglobin concentration, white blood cell, lymphocyte, monocyte-basophil-eosinophil mixed counts and platelet count decreased after 60 and 90 days exposure. Microscopic examination of the liver demonstrated hepatic pathological changes paralleling the duration of exposure to PKD fumes. However, the injury observed was lesser to that of rats treated with the diethylnitrosamine - positive control. Our results expanded previous findings and further demonstrated the probable adverse effect on populations' health occasioned by persistent exposure to PPF. Individuals chronically exposed by occupation to PPF may be at greater risk of developing disorders promoted by continuous oxido-inflammatory perturbation and suboptimal haematological-immunologic function - thereby enabling a permissive environment for pathogenesis notwithstanding the limitation of quantifying PPF absolute values in our model system.
Collapse
Affiliation(s)
- Solomon E Owumi
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Bidemi N Oladimeji
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Tobiloba C Elebiyo
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Uche O Arunsi
- Cancer Immunology and Biotechnology Center, The University of Nottingham, Nottingham, UK
| |
Collapse
|
12
|
Owumi SE, Adeniyi G, Oyelere AK. The modulatory effect of taurine on benzo (a) pyrene-induced hepatorenal toxicity. Toxicol Res (Camb) 2021; 10:389-398. [PMID: 34141152 DOI: 10.1093/toxres/tfab016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 01/03/2023] Open
Abstract
Toxicities linked with Benzo (a) pyrene B[a]P exposure, particularly in liver and kidney have been reported in both animals and humans. Taurine (2-aminoethane sulfonic acid) is an intracellular β-amino acid reported to elicit hepatorenal protective functions. However, the modulatory effect of taurine on hepatorenal toxicity associated with exposure to B[a]P has not been reported. This study evaluated the effects of taurine on the hepatorenal toxicities induced in cohorts of rats exposed to B[a]P. Experimental rats were treated as follows: B[a]P (10 mg/kg); co-treated cohorts -B[a]P (10 mg/kg) plus taurine (100 or 200 mg/kg) for 4 successive weeks. Results show that co-dosing with taurine significantly (P < 0.05) improved B[a]P-induced distortion of oxidative stress markers (catalase, superoxide dismutase, glutathione S-transferase, glutathione peroxidase, total sulphydryl, reduced glutathione, lipid peroxidation and xanthine oxidase), renal function (urea and creatinine) and liver function marker enzymes (alkaline phosphatase, aspartate aminotransferase, alanine aminotransferase and gamma glutamyl transferase). Moreover, taurine effectively mitigated increase in myeloperoxidase activity, levels of reactive oxygen and nitrogen species, nitric oxide and interleukin-1β in kidney and liver of rats treated with B[a]P. In conclusion, taurine modulates hepatorenal toxicity in B[a]P-exposed rats by suppressing hepatic and renal damage indices, oxidative injury and inflammatory stress.
Collapse
Affiliation(s)
- Solomon E Owumi
- CRMB Laboratory, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Oyo State, 200004, Nigeria
| | - Gideon Adeniyi
- CRMB Laboratory, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Oyo State, 200004, Nigeria
| | - Adegboyega K Oyelere
- School of Chemistry and Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332-0400, USA
| |
Collapse
|
13
|
Dwivedi S, Kushalan S, Paithankar JG, D'Souza LC, Hegde S, Sharma A. Environmental toxicants, oxidative stress and health adversities: interventions of phytochemicals. J Pharm Pharmacol 2021; 74:516-536. [PMID: 33822130 DOI: 10.1093/jpp/rgab044] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/17/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Oxidative stress is the most common factor mediating environmental chemical-induced health adversities. Recently, an exponential rise in the use of phytochemicals as an alternative therapeutics against oxidative stress-mediated diseases has been documented. Due to their free radical quenching property, plant-derived natural products have gained substantial attention as a therapeutic agent in environmental toxicology. The present review aimed to describe the therapeutic role of phytochemicals in mitigating environmental toxicant-mediated sub-cellular and organ toxicities via controlling cellular antioxidant response. METHODS The present review has covered the recently related studies, mainly focussing on the free radical scavenging role of phytochemicals in environmental toxicology. KEY FINDINGS In vitro and in vivo studies have reported that supplementation of antioxidant-rich compounds can ameliorate the toxicant-induced oxidative stress, thereby improving the health conditions. Improving the cellular antioxidant pool has been considered as a mode of action of phytochemicals. However, the other cellular targets of phytochemicals remain uncertain. CONCLUSIONS Knowing the therapeutic value of phytochemicals to mitigate the chemical-induced toxicity is an initial stage; mechanistic understanding needs to decipher for development as therapeutics. Moreover, examining the efficacy of phytochemicals against mixer toxicity and identifying the bioactive molecule are major challenges in the field.
Collapse
Affiliation(s)
- Shiwangi Dwivedi
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Deralakatte, Mangaluru, India
| | - Sharanya Kushalan
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Bioresource and Biotechnology, Deralakatte, Mangaluru, India
| | - Jagdish Gopal Paithankar
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Deralakatte, Mangaluru, India
| | - Leonard Clinton D'Souza
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Deralakatte, Mangaluru, India
| | - Smitha Hegde
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Bioresource and Biotechnology, Deralakatte, Mangaluru, India
| | - Anurag Sharma
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Deralakatte, Mangaluru, India
| |
Collapse
|
14
|
Owumi SE, Akomolafe AP, Imosemi IO, Odunola OA, Oyelere AK. N-acetyl cysteine co-treatment abates perfluorooctanoic acid-induced reproductive toxicity in male rats. Andrologia 2021; 53:e14037. [PMID: 33724529 DOI: 10.1111/and.14037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/03/2021] [Accepted: 02/19/2021] [Indexed: 12/14/2022] Open
Abstract
Perfluorooctanoic acid is a synthetic perfluoroalkyl-persistent in the environment and toxic to humans. N-acetylcysteine is a pro-drug of both amino acid l-cysteine and glutathione-a non-enzymatic antioxidant. N-acetylcysteine serves as an antidote for paracetamol poisoning and alleviates cellular oxidative and inflammatory stressors. We investigated N-acetylcysteine role against reproductive toxicity in male Wistar rats (weight: 140-220 g; 10 weeks old) posed by perfluorooctanoic acid exposure. Randomised rat cohorts were dosed both with perfluorooctanoic acid (5 mg/kg; p.o) or co-dosed with N-acetylcysteine (25 and 50 mg/kg p.o) for 28 days. Sperm physiognomies, biomarkers of testicular function and reproductive hormones, oxidative stress and inflammation were evaluated. Co-treatment with N-acetylcysteine significantly (p < .05) reversed perfluorooctanoic acid-mediated decreases in reproductive enzyme activities, and adverse effect on testosterone, luteinising and follicle-stimulating hormone concentrations. N-acetylcysteine treatment alone, improved sperm motility, count and viability, and reduced total sperm abnormalities. Co-treatment with N-acetylcysteine mitigated perfluorooctanoic acid-induced alterations in sperm function parameters. N-acetylcysteine abated (p < .05) perfluorooctanoic acid-induced oxidative stress in experimental rats testes and epididymis, and generally improved antioxidant enzyme activities and cellular thiol levels. Furthermore, N-acetylcysteine suppressed inflammatory responses and remedied perfluorooctanoic acid-mediated histological injuries in rat. Cooperatively, N-acetylcysteine enhanced reproductive function in perfluorooctanoic acid dosed rats, by lessening oxidative and nitrative stressors and mitigated inflammatory responses in the examined organ.
Collapse
Affiliation(s)
- Solomon E Owumi
- Change-Lab, CRMB Laboratory, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Ayomide P Akomolafe
- Change-Lab, CRMB Laboratory, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Innocent O Imosemi
- Neuroanatomy Research Laboratories, Department of Anatomy, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Oyeronke A Odunola
- Change-Lab, CRMB Laboratory, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Adegboyega K Oyelere
- School of Biochemistry and Chemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
15
|
Owumi SE, Anaikor RA, Arunsi UO, Adaramoye OA, Oyelere AK. Chlorogenic acid co-administration abates tamoxifen-mediated reproductive toxicities in male rats: An experimental approach. J Food Biochem 2021; 45:e13615. [PMID: 33491243 DOI: 10.1111/jfbc.13615] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/18/2020] [Accepted: 01/04/2021] [Indexed: 12/16/2022]
Abstract
Reports over the years have demonstrated toxic side effect-including reproductive toxicity- of tamoxifen (TAM), a drug of choice in the management of primary breast cancer. Chlorogenic acid (CGA), a dietary polyphenol, reportedly elicits beneficial pharmacological effects. However, the impact of CGA on TAM-associated reproductive toxicity is absent in the literature. We, therefore, experimented on CGA's effect and TAM-mediated reproductive toxicity in rats. Cohorts of rats were treated with TAM (50 mg/kg) or co-treated with CGA (25 or 50 mg/kg) for 14 consecutive days. The result showed that treatment of CGA significantly increases testosterone, LH, and FSH levels compared to the TAM group. However, prolactin level was markedly decreased after pretreatment of CGA in TAM-treated rats. CGA abated TAM-induced decreases acid phosphatase, alkaline phosphatase, and antioxidant enzymes in the testis. CGA alleviated TAM-facilitated surges of reactive oxygen and nitrogen species, myeloperoxidase, nitric oxide, interleukin-1β, and tumor necrosis factor-alpha in rats epididymis and testes. Additionally, CGA increased anti-inflammatory cytokine -interleukin-10-, suppressed caspase-3 activity, and reduced pathological lesions in the examined organs of rats co-treated with CGA and TAM. CGA phytoprotective effect improved reproductive function occasioned by TAM-mediated toxicities in rats, by abating oxido-inflammatory damages and downregulating apoptotic responses. PRACTICAL APPLICATIONS: CGA protects against the damaging oxido-inflammatory responses incumbent on TAM metabolism. As an antioxidant abundant in plant-derived foods, CGA reportedly protects against inflammatory damage, hypertension, and neurodegenerative diseases. We present evidence that CGA ameliorates TAM-induced reproductive dysfunction by suppressing oxidative and inflammation stress downregulate apoptosis and improve reproductive function biomarker in rats.
Collapse
Affiliation(s)
- Solomon E Owumi
- Cancer Research and Molecular Biology Laboratories, Biochemistry Department, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Ruth A Anaikor
- Cancer Research and Molecular Biology Laboratories, Biochemistry Department, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Uche O Arunsi
- Cancer Immunology and Biotechnology Center, The University of Nottingham, Nottingham, UK
| | - Oluwatosin A Adaramoye
- Molecular Drug Metabolism and Toxicology Research Laboratories, Biochemistry Department, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Adegboyega K Oyelere
- School of Chemistry & Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
16
|
Owumi SE, Nwozo SO, Arunsi UO, Oyelere AK, Odunola OA. Co-administration of Luteolin mitigated toxicity in rats' lungs associated with doxorubicin treatment. Toxicol Appl Pharmacol 2021; 411:115380. [PMID: 33358696 DOI: 10.1016/j.taap.2020.115380] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023]
Abstract
Doxorubicin (DOX), is a drug against lung malignancies with undesirable side effect including oxidative, inflammatory and apoptotic effects. Luteolin (LUT), present in fruits and vegetables is pharmacologically active against oxido-inflammatory and apoptotic responses. The present study examined the effect of LUT on DOX-induced lungs and blood dysfunction in Wistars rat (sex: male; 10 weeks old, 160 ± 5 g). Randomly grouped (n = 10) rats were treated as follows: control, LUT alone (100 mg/kg; per os), DOX (2 mg/kg; i. p), and co-treated rats with LUT (50 or 100 mg/kg) and DOX for two consecutive weeks. DOX alone adversely altered the final body and relative organ weights, red and white blood cell and platelet counts. DOX significantly (p > 0.05) reduced lungs antioxidant capacity, and anti-inflammatory cytokines; increased biomarkers of oxidative stress, caspase-3 activity, and pro-inflammatory cytokine. Morphological damages accompanied these biochemical alterations in the lung of experimental rats. Co-treatment with LUT, dose-dependently reversed DOX-mediated changes in rats' survival, toxic responses, and diminished oxidative stress in rat's lungs. Furthermore, co-treatment with LUT resulted in the reduction of pro-inflammatory cytokines and apoptotic biomarkers, increased red and white blood cell, platelet counts and abated pathological injuries in rat lungs treated with DOX alone. In essence, our findings indicate that LUT dose-dependently mitigated DOX-induced toxicities in the lungs and haematopoietic systems. Supplementation of patients on DOX-chemotherapy with phytochemicals exhibiting antioxidant activities, specifically LUT, could circumvent the onset of unintended toxic responses in the lungs and haematopoietic system exposed to DOX.
Collapse
Affiliation(s)
- Solomon E Owumi
- Cancer Research and Molecular Biology Laboratories, University of Ibadan, Ibadan, Nigeria.
| | - Sarah O Nwozo
- Nutrition and Industrial Biochemistry Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Uche O Arunsi
- Cancer Immunology and Biotechnology Center, The University of Nottingham, Nottingham NG8 1AF, UK
| | - Adegboyega K Oyelere
- School of Chemistry & Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| | - Oyeronke A Odunola
- Cancer Research and Molecular Biology Laboratories, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|