1
|
Zhao R, Zhang X, Geng Y, Lu D, Wang Y, Xie H, Zhang X, Xu S, Cao Y. SPRY1 regulates macrophage M1 polarization in skin aging and melanoma prognosis. Transl Oncol 2025; 54:102331. [PMID: 40023001 PMCID: PMC11915026 DOI: 10.1016/j.tranon.2025.102331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/28/2025] [Accepted: 02/10/2025] [Indexed: 03/04/2025] Open
Abstract
INTRODUCTION Skin aging is a complex, multifactorial process involving cellular damage, inflammation, and increased susceptibility to diseases. Despite its importance, the role of SPRY1 in skin aging remains poorly understood. This study aims to investigate the function of SPRY1 in skin aging, particularly its impact on macrophage M1 polarization, and explore its potential as a therapeutic target for mitigating skin aging and melanoma. METHODS Bioinformatics analyses were performed using datasets from the GTEx and GEO databases, alongside in vitro cellular experiments. These included Weighted Gene Co-expression Network Analysis (WGCNA), single-cell sequencing, and various cellular assays in RAW264.7 murine monocyte/macrophage leukemia cells and NIH/3T3 mouse skin fibroblasts. The assays comprised gene transfection, Cell Counting Kit-8 (CCK-8) assays, quantitative real-time PCR (qRT-PCR), and measurements of reactive oxygen species (ROS) and superoxide dismutase (SOD) activity. RESULTS SPRY1 was identified as a key gene within modules linked to skin aging. Single-cell sequencing revealed its enrichment in macrophages and keratinocytes. Knockdown of SPRY1 in RAW264.7 cells resulted in a shift from M1 to M2 macrophage polarization, reduced oxidative stress, and decreased expression of inflammatory markers. In NIH/3T3 cells, SPRY1 knockdown reduced cell viability and lowered the expression of inflammatory genes. Additionally, SPRY1 expression was downregulated in melanoma, and its reduced levels were associated with poorer survival outcomes. CONCLUSIONS SPRY1 accelerates skin aging by promoting macrophage M1 polarization and may serve as a promising therapeutic target. Future research should focus on in vivo validation and further exploration of its regulatory networks to develop novel treatments.
Collapse
Affiliation(s)
- Rongxin Zhao
- Department of Dermatology, Pudong New Area People's Hospital, 490 Chuanhuang South Road, Pudong New Area, Shanghai, China
| | - Xun Zhang
- Digestive Endoscopy Center, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai 200336, China
| | - Yingnan Geng
- Department of Burns and Plastic Surgery, Second Affiliated Hospital of Naval Medical University, 415 Fengyang Road, Huangpu District, Shanghai 200003, China
| | - Dan Lu
- Department of Dermatology, Pudong New Area People's Hospital, 490 Chuanhuang South Road, Pudong New Area, Shanghai, China
| | - Yuqing Wang
- Department of Dermatology, Xuzhou Huamei Cosmetology Hospital, Jiangsu, West Huaihai Road, Quanshan District, Xuzhou, Jiangsu, China
| | - Han Xie
- The Fifth People's Hospital of Shanghai, Fudan University, No. 128, Ruili Road, Minhang District, Shanghai, China
| | - Xiaofei Zhang
- Shanghai Xinmei Medical Beauty Outpatient Department, 202A, No.285, Jianguo West Road, Xuhui District, Shanghai, China.
| | - Shunming Xu
- Department of Dermatology, Pudong New Area People's Hospital, 490 Chuanhuang South Road, Pudong New Area, Shanghai, China.
| | - Yanyun Cao
- Department of Dermatology, Pudong New Area People's Hospital, 490 Chuanhuang South Road, Pudong New Area, Shanghai, China.
| |
Collapse
|
2
|
Liu YK, Dong YH, Liang XM, Qiang S, Li ME, Sun Z, Zhao X, Yan ZH, Zheng J. Application of integrated omics in aseptic loosening of prostheses after hip replacement. Mol Med Rep 2025; 31:65. [PMID: 39749710 PMCID: PMC11726296 DOI: 10.3892/mmr.2025.13430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/06/2024] [Indexed: 01/04/2025] Open
Abstract
Aseptic loosening (AL) of artificial hip joints is the most common complication following hip replacement surgery. A total of eight patients diagnosed with AL following total hip arthroplasty (THA) undergoing total hip replacement and eight control patients diagnosed with avascular necrosis of femoral head (ANFH) or femoral neck fracture undergoing THA were enrolled. The samples of the AL group were from synovial tissue surrounding the lining/head/neck of the prosthesis, and the samples of the control group were from the synovium in the joint cavity. The present study utilized second‑generation high‑throughput sequencing and mass spectrometry to detect differentially expressed genes, proteins and metabolites in the samples, as well as Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis. Key genes cytokine receptor‑like factor‑1 (CRLF1) and glutathione‑S transferase µ1 (GSTM1) expression levels were verified by reverse transcription‑quantitative PCR and western blotting. The integrated transcriptomics, proteomics and untargeted metabolomics analyses revealed characteristic metabolite changes (biosynthesis of guanine, L‑glycine and adenosine) and decreased CRLF1 and GSTM1 in AL, which were primarily associated with amino acid metabolism and lipid metabolism. In summary, the present study may uncover the underlying mechanisms of AL pathology and provide stable and accurate biomarkers for early warning and diagnosis.
Collapse
Affiliation(s)
- Yun-Ke Liu
- Department of Orthopedics, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
- Department of Orthopedics, Henan University People's Hospital, Zhengzhou, Henan 450003, P.R. China
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Yong-Hui Dong
- Department of Orthopedics, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
- Department of Orthopedics, Henan University People's Hospital, Zhengzhou, Henan 450003, P.R. China
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Xia-Ming Liang
- Department of Orthopedics, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
- Department of Orthopedics, Henan University People's Hospital, Zhengzhou, Henan 450003, P.R. China
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Shuo Qiang
- Department of Orthopedics, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
- Department of Orthopedics, Henan University People's Hospital, Zhengzhou, Henan 450003, P.R. China
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Meng-En Li
- Department of Orthopedics, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
- Department of Orthopedics, Henan University People's Hospital, Zhengzhou, Henan 450003, P.R. China
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Zhuang Sun
- Department of Orthopedics, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
- Department of Orthopedics, Henan University People's Hospital, Zhengzhou, Henan 450003, P.R. China
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Xin Zhao
- Department of Orthopedics, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
- Department of Orthopedics, Henan University People's Hospital, Zhengzhou, Henan 450003, P.R. China
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Zhi-Hua Yan
- Department of Orthopedics, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
- Department of Orthopedics, Henan University People's Hospital, Zhengzhou, Henan 450003, P.R. China
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Jia Zheng
- Department of Orthopedics, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
- Department of Orthopedics, Henan University People's Hospital, Zhengzhou, Henan 450003, P.R. China
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| |
Collapse
|
3
|
Kõks S, Rallmann K, Muldmaa M, Price J, Pfaff AL, Taba P. Whole blood transcriptome profile identifies motor neurone disease RNA biomarker signatures. Exp Biol Med (Maywood) 2025; 249:10401. [PMID: 39844875 PMCID: PMC11750576 DOI: 10.3389/ebm.2024.10401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025] Open
Abstract
Blood-based biomarkers for motor neuron disease are needed for better diagnosis, progression prediction, and clinical trial monitoring. We used whole blood-derived total RNA and performed whole transcriptome analysis to compare the gene expression profiles in (motor neurone disease) MND patients to the control subjects. We compared 42 MND patients to 42 aged and sex-matched healthy controls and described the whole transcriptome profile characteristic for MND. In addition to the formal differential analysis, we performed functional annotation of the genomics data and identified the molecular pathways that are differentially regulated in MND patients. We identified 12,972 genes differentially expressed in the blood of MND patients compared to age and sex-matched controls. Functional genomic annotation identified activation of the pathways related to neurodegeneration, RNA transcription, RNA splicing and extracellular matrix reorganisation. Blood-based whole transcriptomic analysis can reliably differentiate MND patients from controls and can provide useful information for the clinical management of the disease and clinical trials.
Collapse
Affiliation(s)
- Sulev Kõks
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
- Perron Institute for Neurological and Translational Science, Perth, WA, Australia
| | - Karin Rallmann
- Department of Neurology, Tartu University Hospital, Tartu, Estonia
| | - Mari Muldmaa
- Department of Neurology, North Estonia Medical Center, Tallinn, Estonia
- Institute of Clinical Medicine, University Tartu, Tartu, Estonia
| | - Jack Price
- Perron Institute for Neurological and Translational Science, Perth, WA, Australia
| | - Abigail L. Pfaff
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
- Perron Institute for Neurological and Translational Science, Perth, WA, Australia
| | - Pille Taba
- Institute of Clinical Medicine, University Tartu, Tartu, Estonia
| |
Collapse
|
4
|
Vito O, Psarras S, Syggelou A, Wright VJ, Amanatidou V, Newton SM, Shailes H, Trochoutsou K, Tsagaraki M, Levin M, Kaforou M, Tsolia M. Novel RNA biomarkers improve discrimination of children with tuberculosis disease from those with non-TB pneumonia after in vitro stimulation. Front Immunol 2024; 15:1401647. [PMID: 39391304 PMCID: PMC11464340 DOI: 10.3389/fimmu.2024.1401647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/04/2024] [Indexed: 10/12/2024] Open
Abstract
The diagnosis of pediatric tuberculosis (TB) poses a challenge for clinical teams worldwide. TB-mediated changes in the expression of host genes in the peripheral blood can serve as diagnostic biomarkers and can provide better insights into the host immune mechanisms of childhood TB. Peripheral blood mononuclear cells (PBMCs) from children (n=102) with microbiologically confirmed TB disease, TB infection (TBI), pneumonia, and healthy controls (HC) were stimulated with either the Purified Protein Derivative (PPD) or the Early Secretory Antigen 6kDa-Culture Filtrate Protein 10 (ESAT6-CFP10) complex of Mycobacterium tuberculosis (Mtb). RNA was extracted and quantified using gene expression microarrays. Differential expression analysis was performed comparing microbiologically confirmed TB to the other diagnostic groups for the stimulated and unstimulated samples. Using variable selection, we identified sparse diagnostic gene signatures; one gene (PID1) was able to distinguish TB from pneumonia after ESAT6-CFP10 stimulation with an AUC of 100% in the test set, while a combination of two genes (STAT1 and IFI44) achieved an AUC of 91.7% (CI95% 75.0%-100%) in the test set after PPD stimulation. The number of significantly differentially expressed (SDE) genes was higher when contrasting TB to pneumonia or HC in stimulated samples, compared to unstimulated ones, leading to a larger pool of candidate diagnostic biomarkers. Our approach provides enlightened aspects of peripheral TB-specific responses and can form the basis for a point of care test meeting the World Health Organization (WHO) Target Product Profile (TPP) for pediatric TB.
Collapse
Affiliation(s)
- Ortensia Vito
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
- Centre for Pediatrics and Child Health, Imperial College London, London, United Kingdom
| | - Stelios Psarras
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens , Athens, Greece
| | - Angeliki Syggelou
- Second Department of Pediatrics, National and Kapodistrian University of Athens (NKUA), School of Medicine, P. and A. Kyriakou Children’s Hospital, Athens, Greece
| | - Victoria J. Wright
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
- Centre for Pediatrics and Child Health, Imperial College London, London, United Kingdom
| | - Virginia Amanatidou
- Second Department of Pediatrics, National and Kapodistrian University of Athens (NKUA), School of Medicine, P. and A. Kyriakou Children’s Hospital, Athens, Greece
| | - Sandra M. Newton
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
- Centre for Pediatrics and Child Health, Imperial College London, London, United Kingdom
| | - Hannah Shailes
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
- Centre for Pediatrics and Child Health, Imperial College London, London, United Kingdom
| | - Katerina Trochoutsou
- Second Department of Pediatrics, National and Kapodistrian University of Athens (NKUA), School of Medicine, P. and A. Kyriakou Children’s Hospital, Athens, Greece
| | - Maria Tsagaraki
- Second Department of Pediatrics, National and Kapodistrian University of Athens (NKUA), School of Medicine, P. and A. Kyriakou Children’s Hospital, Athens, Greece
| | - Michael Levin
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
- Centre for Pediatrics and Child Health, Imperial College London, London, United Kingdom
| | - Myrsini Kaforou
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
- Centre for Pediatrics and Child Health, Imperial College London, London, United Kingdom
| | - Maria Tsolia
- Second Department of Pediatrics, National and Kapodistrian University of Athens (NKUA), School of Medicine, P. and A. Kyriakou Children’s Hospital, Athens, Greece
| |
Collapse
|
5
|
Casado-Arroyo R, Bernardi M, Sabouret P, Franculli G, Tamargo J, Spadafora L, Lellouche N, Biondi-Zoccai G, Toth PP, Banach M. Investigative agents for atrial fibrillation: agonists and stimulants, progress and expectations. Expert Opin Investig Drugs 2024; 33:967-978. [PMID: 39096248 DOI: 10.1080/13543784.2024.2388583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/10/2024] [Accepted: 08/01/2024] [Indexed: 08/05/2024]
Abstract
INTRODUCTION Atrial fibrillation (AF) is the most common type of cardiac arrhythmia. Its prevalence has increased due to worldwide populations that are aging in combination with the growing incidence of risk factors associated. Recent advances in our understanding of AF pathophysiology and the identification of nodal players involved in AF-promoting atrial remodeling highlights potential opportunities for new therapeutic approaches. AREAS COVERED This detailed review summarizes recent developments in the field antiarrhythmic drugs in the field AF. EXPERT OPINION The current situation is far than optimal. Despite clear unmet needs in drug development in the field of AF treatment, the current development of new drugs is absent. The need for a molecule with absence of cardiac and non-cardiac toxicity in the short and long term is a limitation in the field. Improvement in the understanding of AF genetics, pathophysiology, molecular alterations, big data and artificial intelligence with the objective to provide a personalized AF treatment will be the cornerstone of AF treatment in the coming years.
Collapse
Affiliation(s)
- Ruben Casado-Arroyo
- Department of Cardiology, H.U.B.-Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Marco Bernardi
- Department of Clinical, Internal Medicine, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Pierre Sabouret
- Heart Institute, ACTION Study Group-CHU Pitié-Salpétrière Paris, Paris, France
- Collège National des Cardiologues Français (CNCF), Paris, France
| | - Giuseppe Franculli
- Department of Clinical, Internal Medicine, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Juan Tamargo
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense, Instituto De Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Luigi Spadafora
- Department of Clinical, Internal Medicine, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Nicolas Lellouche
- Service de Cardiologie, AP-HP, University Hospital Henri Mondor, Créteil, France
| | - Giuseppe Biondi-Zoccai
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy
| | - Peter P Toth
- CGH Medical Center, Sterling, IL, USA
- Cicarrone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz Lodz Poland, Lodz, Poland
- Department of Cardiology and Congenital Diseases of Adults, Polish Mother's Memorial Hospital Research Institute Lodz Poland, Lodz, Poland
| |
Collapse
|
6
|
Zhu A, Luo N, Sun L, Zhou X, Chen S, Huang Z, Mao X, Li K. Mulberry and Hippophae-based solid beverage attenuate hyperlipidemia and hepatic steatosis via adipose tissue-liver axis. Food Sci Nutr 2024; 12:5052-5064. [PMID: 39055214 PMCID: PMC11266884 DOI: 10.1002/fsn3.4155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/17/2024] [Accepted: 03/23/2024] [Indexed: 07/27/2024] Open
Abstract
Dyslipidemia and hepatic steatosis are the characteristics of the initial stage of nonalcohol fatty liver disease (NAFLD), which can be reversed by lifestyle intervention, including dietary supplementation. However, such commercial dietary supplements with solid scientific evidence and in particular clear mechanistic elucidation are scarce. Here, the health benefits of MHP, a commercial mulberry and Hippophae-based solid beverage, were evaluated in NAFLD rat model and the underlying molecular mechanisms were investigated. Histopathologic examination of liver and white adipose tissue found that MHP supplementation reduced hepatic lipid accumulation and adipocyte hypertrophy. Serum biochemical results confirmed that MHP effectively ameliorated dyslipidemia and decreased circulation-free fatty acid level. RNA-Seq-based transcriptomic analysis showed that MHP-regulated genes are involved in the inhibition of lipolysis of adipose tissue and thus may contribute to the reduction of hepatic ectopic lipid deposition. Furthermore, MHP upregulated ACSL1-CPT1a-CPT2 pathway, a canonical pathway that regulated mitochondrial fatty acid metabolism, and promoted liver and adipose tissue fatty acid β-oxidation. These results suggest that adipose tissue-liver crosstalk may play a key role in maintaining glucose and lipid metabolic hemostasis. In addition, MHP can also ameliorate chronic inflammation through regulating the secretion of adipokines. Our study demonstrates that MHP is able to improve dyslipidemia and hepatic steatosis through crosstalk between adipose tissue and liver and also presents transcriptomic evidence to support the underlying mechanisms of action, providing solid evidence for its health claims.
Collapse
Affiliation(s)
- An‐Qi Zhu
- Institute of Chinese Medicinal SciencesGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Nin Luo
- Institute of Chinese Medicinal SciencesGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Ling‐Yue Sun
- Institute of Chinese Medicinal SciencesGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Xiao‐Ting Zhou
- Institute of Chinese Medicinal SciencesGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Shi‐Sheng Chen
- Perfect Life & Health InstituteZhongshanGuangdongChina
- Perfect (Guangdong) Co., Ltd.ZhongshanChina
| | - Zebo Huang
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhouChina
| | - Xin‐Liang Mao
- Perfect Life & Health InstituteZhongshanGuangdongChina
- Perfect (Guangdong) Co., Ltd.ZhongshanChina
| | - Kun‐Ping Li
- Institute of Chinese Medicinal SciencesGuangdong Pharmaceutical UniversityGuangzhouChina
| |
Collapse
|
7
|
Aoki YI, Taguchi K, Anzawa H, Kawashima J, Ishida N, Otsuki A, Hasegawa A, Baird L, Suzuki T, Motoike IN, Ohneda K, Kumada K, Katsuoka F, Kinoshita K, Yamamoto M. Whole blood transcriptome analysis for age- and gender-specific gene expression profiling in Japanese individuals. J Biochem 2024; 175:611-627. [PMID: 38268329 PMCID: PMC11756699 DOI: 10.1093/jb/mvae008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/29/2023] [Accepted: 01/12/2024] [Indexed: 01/26/2024] Open
Abstract
Whole blood transcriptome analysis is a valuable approachin medical research, primarily due to the ease of sample collection and the richness of the information obtained. Since the expression profile of individual genes in the analysis is influenced by medical traits and demographic attributes such as age and gender, there has been a growing demand for a comprehensive database for blood transcriptome analysis. Here, we performed whole blood RNA sequencing (RNA-seq) analysis on 576 participants stratified by age (20-30s and 60-70s) and gender from cohorts of the Tohoku Medical Megabank (TMM). A part of female segment included pregnant women. We did not exclude the globin gene family in our RNA-seq study, which enabled us to identify instances of hereditary persistence of fetal hemoglobin based on the HBG1 and HBG2 expression information. Comparing stratified populations allowed us to identify groups of genes associated with age-related changes and gender differences. We also found that the immune response status, particularly measured by neutrophil-to-lymphocyte ratio (NLR), strongly influences the diversity of individual gene expression profiles in whole blood transcriptome analysis. This stratification has resulted in a data set that will be highly beneficial for future whole blood transcriptome analysis in the Japanese population.
Collapse
Affiliation(s)
- Yu-ichi Aoki
- Tohoku Medical Megabank Organization, Tohoku University,
Sendai, Miyagi, Japan
- Systems Bioinformatics, Graduate School of Information Sciences, Tohoku
University, Aramaki aza Aoba 6-3-09, Aoba-ku, Sendai, Miyagi, 980-8579,
Japan
| | - Keiko Taguchi
- Tohoku Medical Megabank Organization, Tohoku University,
Sendai, Miyagi, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine,
Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai,
Miyagi, 980-8573, Japan
| | - Hayato Anzawa
- Tohoku Medical Megabank Organization, Tohoku University,
Sendai, Miyagi, Japan
- Systems Bioinformatics, Graduate School of Information Sciences, Tohoku
University, Aramaki aza Aoba 6-3-09, Aoba-ku, Sendai, Miyagi, 980-8579,
Japan
| | - Junko Kawashima
- Tohoku Medical Megabank Organization, Tohoku University,
Sendai, Miyagi, Japan
| | - Noriko Ishida
- Tohoku Medical Megabank Organization, Tohoku University,
Sendai, Miyagi, Japan
| | - Akihito Otsuki
- Tohoku Medical Megabank Organization, Tohoku University,
Sendai, Miyagi, Japan
| | - Atsushi Hasegawa
- Tohoku Medical Megabank Organization, Tohoku University,
Sendai, Miyagi, Japan
| | - Liam Baird
- Tohoku Medical Megabank Organization, Tohoku University,
Sendai, Miyagi, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine,
Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai,
Miyagi, 980-8573, Japan
| | - Takafumi Suzuki
- Tohoku Medical Megabank Organization, Tohoku University,
Sendai, Miyagi, Japan
| | - Ikuko N Motoike
- Tohoku Medical Megabank Organization, Tohoku University,
Sendai, Miyagi, Japan
- Systems Bioinformatics, Graduate School of Information Sciences, Tohoku
University, Aramaki aza Aoba 6-3-09, Aoba-ku, Sendai, Miyagi, 980-8579,
Japan
| | - Kinuko Ohneda
- Tohoku Medical Megabank Organization, Tohoku University,
Sendai, Miyagi, Japan
| | - Kazuki Kumada
- Tohoku Medical Megabank Organization, Tohoku University,
Sendai, Miyagi, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine,
Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai,
Miyagi, 980-8573, Japan
| | - Fumiki Katsuoka
- Tohoku Medical Megabank Organization, Tohoku University,
Sendai, Miyagi, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine,
Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai,
Miyagi, 980-8573, Japan
| | - Kengo Kinoshita
- Tohoku Medical Megabank Organization, Tohoku University,
Sendai, Miyagi, Japan
- Systems Bioinformatics, Graduate School of Information Sciences, Tohoku
University, Aramaki aza Aoba 6-3-09, Aoba-ku, Sendai, Miyagi, 980-8579,
Japan
- Advanced Research Center for Innovations in Next-Generation Medicine,
Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai,
Miyagi, 980-8573, Japan
| | - Masayuki Yamamoto
- Tohoku Medical Megabank Organization, Tohoku University,
Sendai, Miyagi, Japan
| |
Collapse
|
8
|
Pereira CA, Reis-de-Oliveira G, Pierone BC, Martins-de-Souza D, Kaster MP. Depicting the molecular features of suicidal behavior: a review from an "omics" perspective. Psychiatry Res 2024; 332:115682. [PMID: 38198856 DOI: 10.1016/j.psychres.2023.115682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 12/05/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024]
Abstract
Background Suicide is one of the leading global causes of death. Behavior patterns from suicide ideation to completion are complex, involving multiple risk factors. Advances in technologies and large-scale bioinformatic tools are changing how we approach biomedical problems. The "omics" field may provide new knowledge about suicidal behavior to improve identification of relevant biological pathways associated with suicidal behavior. Methods We reviewed transcriptomic, proteomic, and metabolomic studies conducted in blood and post-mortem brains from individuals who experienced suicide or suicidal behavior. Omics data were combined using systems biology in silico, aiming at identifying major biological mechanisms and key molecules associated with suicide. Results Post-mortem samples of suicide completers indicate major dysregulations in pathways associated with glial cells (astrocytes and microglia), neurotransmission (GABAergic and glutamatergic systems), neuroplasticity and cell survivor, immune responses and energy homeostasis. In the periphery, studies found alterations in molecules involved in immune responses, polyamines, lipid transport, energy homeostasis, and amino and nucleic acid metabolism. Limitations We included only exploratory, non-hypothesis-driven studies; most studies only included one brain region and whole tissue analysis, and focused on suicide completers who were white males with almost none confounding factors. Conclusions We can highlight the importance of synaptic function, especially the balance between the inhibitory and excitatory synapses, and mechanisms associated with neuroplasticity, common pathways associated with psychiatric disorders. However, some of the pathways highlighted in this review, such as transcriptional factors associated with RNA splicing, formation of cortical connections, and gliogenesis, point to mechanisms that still need to be explored.
Collapse
Affiliation(s)
- Caibe Alves Pereira
- Laboratory of Translational Neurosciences, Department of Biochemistry, Federal University of Santa Catarina (UFSC), Florianopolis, Santa Catarina, Brazil
| | - Guilherme Reis-de-Oliveira
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Bruna Caroline Pierone
- Laboratory of Translational Neurosciences, Department of Biochemistry, Federal University of Santa Catarina (UFSC), Florianopolis, Santa Catarina, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil; Instituto Nacional de Biomarcadores Em Neuropsiquiatria (INBION) Conselho Nacional de Desenvolvimento Científico E Tecnológico, São Paulo, Brazil; Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, SP, Brazil; D'Or Institute for Research and Education (IDOR), São Paulo, Brazil; INCT in Modelling Human Complex Diseases with 3D Platforms (Model3D), São Paulo, Brazil.
| | - Manuella Pinto Kaster
- Laboratory of Translational Neurosciences, Department of Biochemistry, Federal University of Santa Catarina (UFSC), Florianopolis, Santa Catarina, Brazil.
| |
Collapse
|
9
|
Shayota BJ. Downstream Assays for Variant Resolution: Epigenetics, RNA Sequnncing, and Metabolomics. Pediatr Clin North Am 2023; 70:929-936. [PMID: 37704351 DOI: 10.1016/j.pcl.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
As the availability of advanced molecular testing like whole exome and genome sequencing expands, it comes with the added complication of interpreting inconclusive results, including determining the relevance of variants of uncertain significance or failing to find a variant in an otherwise suspected specific genetic disorder. This complication necessitates the use of alternative testing methods to gather more information in support of, or against, a particular genetic diagnosis. Therefore, new genome-wide approaches, including DNA epigenetic testing, RNA sequencing, and metabolomics, are increasingly being used to increase the diagnostic yield when used in conjunction with more conventional genetic tests.
Collapse
Affiliation(s)
- Brian J Shayota
- University of Utah, 295 Chipeta Way, Salt Lake City, UT 84108, USA; Primary Children's Hospital, Salt Lake City, UT, USA.
| |
Collapse
|
10
|
The Repertoire of RNA Modifications Orchestrates a Plethora of Cellular Responses. Int J Mol Sci 2023; 24:ijms24032387. [PMID: 36768716 PMCID: PMC9916637 DOI: 10.3390/ijms24032387] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Although a plethora of DNA modifications have been extensively investigated in the last decade, recent breakthroughs in molecular biology, including high throughput sequencing techniques, have enabled the identification of post-transcriptional marks that decorate RNAs; hence, epitranscriptomics has arisen. This recent scientific field aims to decode the regulatory layer of the transcriptome and set the ground for the detection of modifications in ribose nucleotides. Until now, more than 170 RNA modifications have been reported in diverse types of RNA that contribute to various biological processes, such as RNA biogenesis, stability, and transcriptional and translational accuracy. However, dysfunctions in the RNA-modifying enzymes that regulate their dynamic level can lead to human diseases and cancer. The present review aims to highlight the epitranscriptomic landscape in human RNAs and match the catalytic proteins with the deposition or deletion of a specific mark. In the current review, the most abundant RNA modifications, such as N6-methyladenosine (m6A), N5-methylcytosine (m5C), pseudouridine (Ψ) and inosine (I), are thoroughly described, their functional and regulatory roles are discussed and their contributions to cellular homeostasis are stated. Ultimately, the involvement of the RNA modifications and their writers, erasers, and readers in human diseases and cancer is also discussed.
Collapse
|
11
|
Age-associated changes in gene expression in the anterior pituitary glands of female Japanese black cattle. Mamm Genome 2022; 33:606-618. [PMID: 35838775 DOI: 10.1007/s00335-022-09958-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/14/2022] [Indexed: 10/17/2022]
Abstract
Proper functioning of the anterior pituitary (AP) gland is imperative, however, is suppressed by aging via unclear mechanisms. Therefore, we identified differentially expressed genes (DEGs) in the AP glands of Japanese Black young heifers (approximately 22 months old) compared to old cows (approximately 120 months old) via deep sequencing of the transcriptome (RNA-seq) to characterize potentially important pathways. The young and old AP glands expressed 20,171 annotated genes. Of the total transcripts per million, approximately 41.6% and 35.5% were the sum of seven AP hormone genes in young and old AP glands, respectively, with difference observed in the sum between the young and old AP glands (P < 0.05). Moreover, we identified 48 downregulated genes and 218 upregulated genes in old compared to young AP glands (P < 0.01, fold change > 120%). The DEGs included 1 cytokine (AIMP1), 3 growth factors (NRG2, PTN, and TGFB1), 1 receptor-associated protein gene (AGTRAP), and 10 receptor genes, including PRLHR and two orphan G-protein-coupled receptors (GPR156 and GPR176). Metascape analysis of the DEGs revealed "Peptide metabolic process," "Regulation of hormone levels," and "Peptide hormone processing" as enriched pathways. Furthermore, Ingenuity Pathway analysis of the DEGs revealed (1) a network of 24 genes (including GPR156 and PRLHR) named "Neurological disease, organismal injury and abnormalities, and psychological disorders", and (2) two canonical pathways (P < 0.01), namely "Huntington's disease signaling", and "AMPK signaling". Thus, the findings of the current study revealed relevant DEGs, while identifying important pathways that occur during aging in AP glands of female cattle.
Collapse
|
12
|
Expression Quantitative Trait Loci (eQTLs) Associated with Retrotransposons Demonstrate their Modulatory Effect on the Transcriptome. Int J Mol Sci 2021; 22:ijms22126319. [PMID: 34204806 PMCID: PMC8231655 DOI: 10.3390/ijms22126319] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/03/2021] [Accepted: 06/10/2021] [Indexed: 12/26/2022] Open
Abstract
Transposable elements (TEs) are repetitive elements that belong to a variety of functional classes and have an important role in shaping genome evolution. Around 50% of the human genome contains TEs, and they have been termed the "dark matter" of the genome because relatively little is known about their function. While TEs have been shown to participate in aberrant gene regulation and the pathogenesis of diseases, only a few studies have explored the systemic effect of TEs on gene expression. In the present study, we analysed whole genome sequences and blood whole transcriptome data from 570 individuals within the Parkinson's Progressive Markers Initiative (PPMI) cohort to identify expression quantitative trait loci (eQTL) regulating genome-wide gene expression associated with TEs. We identified 2132 reference TEs that were polymorphic for their presence or absence in our study cohort. The presence or absence of the TE element could change the expression of the gene or gene clusters from zero to tens of thousands of copies of RNA. The main finding is that many TEs possess very strong regulatory effects, and they have the potential to modulate large genetic networks with hundreds of target genes over the genome. We illustrate the plethora of regulatory mechanisms using examples of their action at the HLA gene cluster and data showing different TEs' convergence to modulate WFS1 gene expression. In conclusion, the presence or absence of polymorphisms of TEs has an eminent genome-wide regulatory function with large effect size at the level of the whole transcriptome. The role of TEs in explaining, in part, the missing heritability for complex traits is convincing and should be considered.
Collapse
|