1
|
Feng C, Tang J, Wu K, Cheng L, Zhao L, Zhu W, Zhang Y, Zhao X, Cai B, He R. The path winds along isolation and analyses of fetal nucleated red blood cells in maternal peripheral blood: Past, present, and future toward non-invasive prenatal diagnosis. Life Sci 2025; 369:123530. [PMID: 40057228 DOI: 10.1016/j.lfs.2025.123530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 03/01/2025] [Accepted: 03/03/2025] [Indexed: 03/30/2025]
Abstract
Traditional prenatal diagnosis detects fetal disorders through invading uterus to access fetal cells, which may cause maternal complications, fetal injury, or even miscarriage. Safe and convenient non-invasive prenatal testing (NIPT) by analyzing fetal materials (cell-free DNA/RNA, cells, and extracellular vesicles) that circulate in maternal peripheral blood attracts great attention and has been applied in risk evaluation of several fetal disorders. Among those fetal analytes, fetal nucleated red blood cells (fNRBCs) comprise entire fetal genome, possess distinct membrane antigens, and have a lifespan limited in every single gestation. They were once expected to be an ideal biomarker for NIPT and even definitive prenatal diagnosis. However, recent advances of fNRBC-based NIPT are limited and their applications toward clinical practices are still challenging. Herein, we comprehensively overview research on fNRBCs in maternal peripheral blood, trying to dissect current predicament and inspire potential solutions. The source and lineage of fNRBCs, their entrance into maternal peripheral blood, and their physiochemical characteristics are discussed, and various strategies of label-free or immuno-affinitive isolation and subsequential identification of fNRBCs from maternal blood cells are summarized. Although proof-of-concept analyses toward detecting a few fetal disorders are demonstrated, current fNRBC-based NIPT still suffers many challenges when applied to clinical practices. Nevertheless, via thorough investigation and new analytical technologies, it is believed fNRBC-based NIPT will provide a promising platform to supplement the insufficiency of current strategies.
Collapse
Affiliation(s)
- Chun Feng
- Gynaecology Department, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430070, China
| | - Jing Tang
- Gynaecology Department, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430070, China
| | - Ke Wu
- School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Lin Cheng
- Clinical Research Center for Prenatal Diagnosis and Birth Health of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Lei Zhao
- Gynaecology Department, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430070, China
| | - Wentao Zhu
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yuanzhen Zhang
- Clinical Research Center for Prenatal Diagnosis and Birth Health of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xingzhong Zhao
- School of Electronic and Electrical Engineering, Wuhan Textile University, Wuhan 430200, China; School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Bo Cai
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China.
| | - Rongxiang He
- School of Electronic and Electrical Engineering, Wuhan Textile University, Wuhan 430200, China.
| |
Collapse
|
2
|
Wu H, Si S, Li Z, Su J, Jia S, He H, Peng C, Cheng T, Wu Q. Determination of Lactoferrin Using High-Frequency Piezoelectric Quartz Aptamer Biosensor Based on Molecular Bond Rupture. Molecules 2024; 29:5699. [PMID: 39683858 DOI: 10.3390/molecules29235699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
In this study, an aptamer biosensor for detecting lactoferrin (LF) was developed using piezoelectric quartz-induced bond rupture sensing technology. The thiol-modified aptamer I was immobilized on the gold electrode surface of the quartz crystal microbalance (QCM) through an Au-S bond to specifically bind LF. It was then combined with aptamer-magnetic beads to amplify the mass signal. The peak excitation voltage was 8 V at the resonance frequency for the 60 MHz gold-plated quartz crystal. When the molecular bond cracking process occurred, the aptamer-magnetic beads combined on the surface of the piezoelectric quartz were removed, which resulted in an increase in quartz crystal resonance frequency. Therefore, the specific detection of LF can be realized. Under optimized experimental conditions, the linear range for LF was 10-500 ng/mL, the detection limit (3σ) was 8.2 ng/mL, and the sample recoveries for actual milk powder samples ranged from 97.2% to 106.0%. Compared with conventional QCM sensing technology, the signal acquisition process of this sensing method is simple, fast, and easy to operate.
Collapse
Affiliation(s)
- Haizhi Wu
- Hunan Provincial Institute of Product and Goods Quality Inspection, Changsha 410007, China
| | - Shihui Si
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Zheng Li
- Hunan Provincial Institute of Product and Goods Quality Inspection, Changsha 410007, China
| | - Jiayou Su
- Hunan Provincial Institute of Product and Goods Quality Inspection, Changsha 410007, China
| | - Shangguan Jia
- Hunan Provincial Institute of Product and Goods Quality Inspection, Changsha 410007, China
| | - Hao He
- Hunan Provincial Institute of Product and Goods Quality Inspection, Changsha 410007, China
| | - Chengcheng Peng
- Hunan Provincial Institute of Product and Goods Quality Inspection, Changsha 410007, China
| | - Tongqiang Cheng
- Hunan Provincial Institute of Product and Goods Quality Inspection, Changsha 410007, China
| | - Qian Wu
- Hunan Provincial Institute of Product and Goods Quality Inspection, Changsha 410007, China
| |
Collapse
|
3
|
Bragança J, Pinto R, Silva B, Marques N, Leitão HS, Fernandes MT. Charting the Path: Navigating Embryonic Development to Potentially Safeguard against Congenital Heart Defects. J Pers Med 2023; 13:1263. [PMID: 37623513 PMCID: PMC10455635 DOI: 10.3390/jpm13081263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023] Open
Abstract
Congenital heart diseases (CHDs) are structural or functional defects present at birth due to improper heart development. Current therapeutic approaches to treating severe CHDs are primarily palliative surgical interventions during the peri- or prenatal stages, when the heart has fully developed from faulty embryogenesis. However, earlier interventions during embryonic development have the potential for better outcomes, as demonstrated by fetal cardiac interventions performed in utero, which have shown improved neonatal and prenatal survival rates, as well as reduced lifelong morbidity. Extensive research on heart development has identified key steps, cellular players, and the intricate network of signaling pathways and transcription factors governing cardiogenesis. Additionally, some reports have indicated that certain adverse genetic and environmental conditions leading to heart malformations and embryonic death may be amendable through the activation of alternative mechanisms. This review first highlights key molecular and cellular processes involved in heart development. Subsequently, it explores the potential for future therapeutic strategies, targeting early embryonic stages, to prevent CHDs, through the delivery of biomolecules or exosomes to compensate for faulty cardiogenic mechanisms. Implementing such non-surgical interventions during early gestation may offer a prophylactic approach toward reducing the occurrence and severity of CHDs.
Collapse
Affiliation(s)
- José Bragança
- Algarve Biomedical Center-Research Institute (ABC-RI), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Rute Pinto
- Algarve Biomedical Center-Research Institute (ABC-RI), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
| | - Bárbara Silva
- Algarve Biomedical Center-Research Institute (ABC-RI), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- PhD Program in Biomedical Sciences, Faculty of Medicine and Biomedical Sciences, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Nuno Marques
- Algarve Biomedical Center-Research Institute (ABC-RI), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
| | - Helena S. Leitão
- Algarve Biomedical Center-Research Institute (ABC-RI), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
| | - Mónica T. Fernandes
- Algarve Biomedical Center-Research Institute (ABC-RI), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- School of Health, University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
4
|
Cui J, Li Y, Zhu M, Liu Y, Liu Y. Analysis of the Research Hotspot of Exosomes in Cardiovascular Disease: A Bibliometric-based Literature Review. Curr Vasc Pharmacol 2023; 21:316-345. [PMID: 37779407 DOI: 10.2174/0115701611249727230920042944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 08/21/2023] [Accepted: 08/29/2023] [Indexed: 10/03/2023]
Abstract
OBJECTIVE To investigate the current status and development trend of research on exosomes in cardiovascular disease (CVD) using bibliometric analysis and to elucidate trending research topics. METHODS Research articles on exosomes in CVD published up to April 2022 were retrieved from the Web of Science database. Data were organized using Microsoft Office Excel 2019. CiteSpace 6.1 and VOSviewer 1.6.18 were used for bibliometric analysis and result visualization. RESULTS Overall, 256 original research publications containing 190 fundamental research publications and 66 clinical research publications were included. "Extracellular vesicle" was the most frequent research keyword, followed by "microrna," "apoptosis," and "angiogenesis." Most publications were from China (187, 73.05%), followed by the United States (57, 22.27%), the United Kingdom (7, 2.73%), and Japan (7, 2.73%). A systematic review of the publications revealed that myocardial infarction and stroke were the most popular topics and that exosomes and their contents, such as microRNAs (miRNAs), play positive roles in neuroprotection, inhibition of autophagy and apoptosis, promotion of angiogenesis, and protection of cardiomyocytes. CONCLUSION Research on exosomes in CVD has attracted considerable attention, with China having the most published studies. Fundamental research has focused on CVD pathogenesis; exosomes regulate the progression of CVD through biological processes, such as the inflammatory response, autophagy, and apoptosis. Clinical research has focused on biomarkers for CVD; studies on using miRNAs in exosomes as disease markers for diagnosis could become a future trend.
Collapse
Affiliation(s)
- Jing Cui
- National Clinical Research Centre for Chinese Medicine Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yiwen Li
- National Clinical Research Centre for Chinese Medicine Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Mengmeng Zhu
- National Clinical Research Centre for Chinese Medicine Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanfei Liu
- National Clinical Research Centre for Chinese Medicine Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Second Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yue Liu
- National Clinical Research Centre for Chinese Medicine Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
5
|
He J, Xie L, Yu L, Liu L, Xu H, Wang T, Gao Y, Wang X, Duan Y, Liu H, Dai L. Maternal serum CFHR4 protein as a potential non-invasive marker of ventricular septal defects in offspring: evidence from a comparative proteomics study. Clin Proteomics 2022; 19:17. [PMID: 35590261 PMCID: PMC9117979 DOI: 10.1186/s12014-022-09356-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/27/2022] [Indexed: 12/03/2022] Open
Abstract
Background Despite advances in diagnosis of congenital heart defects, there is no non-invasive biomarker clinically available for the early detection of fetal ventricular septal defects (VSD). Methods This study was to profile differentially expressed proteins (DEP) in the first trimester maternal plasma samples that were collected in the 12th–14th week of gestation and identify potential biomarkers for VSD. Maternal plasma samples of ten case–control pairs of women (who had given birth to an isolated VSD infant or not) were selected from a birth cohort biospecimen bank for identifying DEPs by using high-performance liquid chromatography-tandem mass spectrometry-based comparative proteomics. Results There were 35 proteins with significantly different levels between cases and controls, including 9 upregulated and 26 downregulated proteins. With Gene Ontology, Kyoto Encyclopedia of Genes and Genomes pathway enrichment, and protein–protein interaction analyses, most of the DEPs were clustered in pathways related to B cell-mediated immune responses, complement activation, and phagocytosis. Three DEPs were validated using enzyme-linked immunosorbent assay in another set of samples consisting of 31 cases and 33 controls. And CFHR4, a key regulator in complement cascades, was found to be significantly upregulated in cases as compared to controls. Conclusions Subsequent logistic regression and receiver operating characteristic analysis suggested maternal serum CFHR4 as a promising biomarker of fetal VSD. Further studies are warranted to verify the findings. Supplementary Information The online version contains supplementary material available at 10.1186/s12014-022-09356-y.
Collapse
Affiliation(s)
- Jing He
- Department of Pediatrics, Chengdu Fifth People's Hospital, Chengdu, 610041, China.,The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Liang Xie
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, China.,National Center for Birth Defects Monitoring, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.,NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China
| | - Li Yu
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, China
| | - Lijun Liu
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, China.,National Center for Birth Defects Monitoring, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.,NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China
| | - Hong Xu
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, China.,National Center for Birth Defects Monitoring, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.,NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China
| | - Tao Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, China
| | - Yuyang Gao
- National Center for Birth Defects Monitoring, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Xuedong Wang
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China
| | - You Duan
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, China.,NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China
| | - Hanmin Liu
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, 610041, Chengdu, China. .,The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China. .,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, China. .,National Center for Birth Defects Monitoring, West China Second University Hospital, Sichuan University, Chengdu, 610041, China. .,NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China. .,Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China.
| | - Li Dai
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China. .,National Center for Birth Defects Monitoring, West China Second University Hospital, Sichuan University, Chengdu, 610041, China. .,Med-X Center for Informatics, Sichuan University, Chengdu, 610041, China. .,NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China.
| |
Collapse
|