1
|
Li S, Pandat T, Chi B, Moon D, Mas M. Management Approaches to Spastic Gait Disorders. Muscle Nerve 2025. [PMID: 40196899 DOI: 10.1002/mus.28402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 03/16/2025] [Accepted: 03/18/2025] [Indexed: 04/09/2025]
Abstract
Spastic gait presents clinically as the net mechanical consequence of neurological impairments of spasticity, weakness, and abnormal synergies and their interactions with the ground reaction force in patients with upper motor neuron syndromes and with some neuromuscular diseases. It is critical to differentiate whether the primary problem is weakness or spasticity, thus better understanding different phenotypes of spastic gait disorders. Pelvic girdle abnormality plays a pivotal role in determining the clinical presentation of gait disorders, since it determines the body vector and compensatory kinetic chain reactions in the knee and ankle joints. Knee joint abnormality can be a mechanical compensation for hip and/or ankle and foot abnormality. Diagnostic nerve blocks and instrumented gait analysis may be needed for diagnosing the underlying problems and developing an individualized plan of care. A wide spectrum of treatment options has been used to manage spastic gait disorders. Some are in early and investigational stages, such as neuromodulation modalities, while others are well-developed, such as therapeutic exercise, ankle-foot orthoses, botulinum toxin treatment, and surgical interventions. Physicians and other healthcare providers who manage spastic gait disorders should be familiar with these treatment options and should employ appropriate interventions concurrently rather than serially. The most effective treatments can be selected based on careful evaluation, inputs from patients, family, and therapists, along with appropriate goal setting. Treatment plans need to be re-evaluated for effectiveness, relevance, and in concordance with disease progress. This is particularly important for patients with progressive neuromuscular diseases such as amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Sheng Li
- Department of Physical Medicine and Rehabilitation, McGovern Medical School, University of Texas Health Science Center - Houston, Houston, Texas, USA
- TIRR Memorial Hermann, Houston, Texas, USA
| | - Tulsi Pandat
- Department of Physical Medicine and Rehabilitation, McGovern Medical School, University of Texas Health Science Center - Houston, Houston, Texas, USA
- TIRR Memorial Hermann, Houston, Texas, USA
| | - Bradley Chi
- Department of Physical Medicine and Rehabilitation, McGovern Medical School, University of Texas Health Science Center - Houston, Houston, Texas, USA
- TIRR Memorial Hermann, Houston, Texas, USA
| | - Daniel Moon
- Jefferson Moss Magee Rehab, Elkins Park, Pennsylvania, USA
| | - Manuel Mas
- Department of Physical Medicine and Rehabilitation, School of Medicine, University of Puerto Rico - San Juan, San Juan, Puerto Rico
| |
Collapse
|
2
|
Urbin MA, Liu F, Moon CH. Preserved force control by the digits via minimal sparing of cortico-spinal connectivity after stroke. Exp Physiol 2025; 110:363-369. [PMID: 39673738 PMCID: PMC11868025 DOI: 10.1113/ep092134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/15/2024] [Indexed: 12/16/2024]
Abstract
The ability to regulate finger forces is critical for manipulating objects during everyday tasks but is impaired after damage to white matter tracts that transmit motor commands into the spinal cord. This study examines cortico-spinal connectivity required for force control by the digits after neurological injury. We report on a unique case of a stroke survivor who retained the ability to control finger forces at a level comparable to neurologically intact adults despite extensive loss of white matter volume and severely compromised transmission from cortical motor areas onto the final common pathway. Using a combination of imaging methods and noninvasive stimulation techniques, we illustrate the structure and function of a slow-conducting, cortico-spinal pathway minimally spared by stroke that underlies this stroke survivor's ability to transition and stabilize finger forces of the paretic hand during precision grip. We interpret findings in the context of physiological mechanisms underlying distal limb control and current thinking on neural adaptation after brain injury due to stroke.
Collapse
Affiliation(s)
- Michael A. Urbin
- Human Engineering Research Laboratories, VA RR&D Center of ExcellenceVA Pittsburgh Healthcare SystemPittsburghPennsylvaniaUSA
| | - Fang Liu
- Department of Physical Medicine & RehabilitationUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Chan Hong Moon
- Department of RadiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
3
|
Cho N, Kalia LV, Kalia SK. Re-examining the pathobiological basis of gait dysfunction in Parkinson's disease. Trends Neurosci 2025; 48:189-199. [PMID: 39884904 DOI: 10.1016/j.tins.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/23/2024] [Accepted: 01/14/2025] [Indexed: 02/01/2025]
Abstract
Parkinson's disease (PD) is a significant source of morbidity, especially with an aging population. Gait problems, particularly freezing of gait (FOG), remain a persistent issue, causing falls and reduced quality of life without consistent responses to therapies. PD and related symptoms have classically been attributed to dopamine deficiency secondary to substantia nigra degeneration from Lewy body (LB) and Lewy neurite (LN) infiltration. However, Lewy-related pathology is present in other areas of the brainstem and spinal cord that control gait function, yet these other circuits have not been routinely considered in the design of current therapeutic options. In this review, we summarize changes in brainstem and spinal cord circuits in individuals affected by PD and the implications for understanding of gait dysfunction in PD.
Collapse
Affiliation(s)
- Newton Cho
- Department of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada.
| | - Lorraine V Kalia
- Krembil Brain Institute, Toronto Western Hospital, Toronto, Ontario, Canada; Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, Ontario, Canada; Department of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Suneil K Kalia
- Department of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada; Krembil Brain Institute, Toronto Western Hospital, Toronto, Ontario, Canada; Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, Ontario, Canada
| |
Collapse
|
4
|
Zhang H, Zhao J, Fan L, Gao C, Li F, Liu J, Bai C, Li X, Li B, Zhang T. Somatosensory-Thalamic Functional Dysconnectivity Associated With Poststroke Motor Function Rehabilitation: A Resting-State fMRI Study. Brain Behav 2025; 15:e70321. [PMID: 39935146 DOI: 10.1002/brb3.70321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/28/2024] [Accepted: 01/18/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND The thalamus plays a pivotal role in functional brain networks, yet its contribution to motor function recovery following stroke remains elusive. We aim to explore changes in thalamocortical functional connectivity poststroke and its correlation with motor function. METHODS Thirty-nine subacute ischemic stroke patients and 32 healthy individuals underwent resting-state functional magnetic resonance imaging (MRI). The Fugl-Meyer Assessment (FMA) was employed to evaluate upper and lower extremity motor function before and 1 year after stroke rehabilitation. The ipsilesional thalamus and contralesional thalamus were parceled into functional regions of interest (ROIs) based on connectivity with six cortical ROIs: prefrontal, motor, temporal, posterior parietal, somatosensory, and occipital cortex. Functional connectivity between each cortical ROI and its corresponding thalamic ROI was calculated and compared between groups. Differences identified in the ROI-to-ROI analysis were further investigated through seed-to-voxel whole-brain connectivity analyses to pinpoint thalamic dysconnectivity. Correlations with upper and lower extremity motor function were also analyzed. RESULTS Significant changes in thalamocortical functional connectivity were observed after stroke in ROI-to-ROI analysis, with bilateral somatosensory-thalamic connectivity decreased and ipsilesional temporal-thalamic and bilateral occipital-thalamic connectivity increased. Seed-to-voxel analysis localized ipsilesional thalamic hypoconnectivity to the ipsilesional rolandic operculum and ipsilesional precentral gyrus. Ipsilesional somatosensory-thalamic connectivity was positively correlated with baseline upper extremity FMA scores and negatively correlated with upper extremity motor function change rate at 1-year postdischarge. CONCLUSIONS This study provides new insights into the role of the thalamus in motor function recovery after stroke, offering preliminary evidence for its potential as a therapeutic target in poststroke rehabilitation.
Collapse
Affiliation(s)
- Haojie Zhang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Center of Neurological Rehabilitation, China Rehabilitation Research Center, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
| | - Jun Zhao
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Neurology, China Rehabilitation Research Center, Beijing, China
| | - Lingzhong Fan
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
| | - Chaohong Gao
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- Sino-Danish Center, Beijing, China
| | - Fang Li
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Neurology, China Rehabilitation Research Center, Beijing, China
| | - Jingya Liu
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Occupational Therapy, China Rehabilitation Research Center, Beijing, China
| | - Chen Bai
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Center of Neurological Rehabilitation, China Rehabilitation Research Center, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
| | - Xingzhu Li
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Center of Neurological Rehabilitation, China Rehabilitation Research Center, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
| | - Bingjie Li
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Neurology, China Rehabilitation Research Center, Beijing, China
| | - Tong Zhang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Center of Neurological Rehabilitation, China Rehabilitation Research Center, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
| |
Collapse
|
5
|
Carson RG, Hayward KS. Using mechanistic knowledge to appraise contemporary approaches to the rehabilitation of upper limb function following stroke. J Physiol 2025; 603:635-650. [PMID: 39129269 PMCID: PMC11782907 DOI: 10.1113/jp285559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 07/12/2024] [Indexed: 08/13/2024] Open
Abstract
It is a paradox of neurological rehabilitation that, in an era in which preclinical models have produced significant advances in our mechanistic understanding of neural plasticity, there is inadequate support for many therapies recommended for use in clinical practice. When the goal is to estimate the probability that a specific form of therapy will have a positive clinical effect, the integration of mechanistic knowledge (concerning 'the structure or way of working of the parts in a natural system') may improve the quality of inference. This is illustrated by analysis of three contemporary approaches to the rehabilitation of lateralized dysfunction affecting people living with stroke: constraint-induced movement therapy; mental practice; and mirror therapy. Damage to 'cross-road' regions of the structural (white matter) brain connectome generates deficits that span multiple domains (motor, language, attention and verbal/spatial memory). The structural integrity of these regions determines not only the initial functional status, but also the response to therapy. As structural disconnection constrains the recovery of functional capability, 'disconnectome' modelling provides a basis for personalized prognosis and precision rehabilitation. It is now feasible to refer a lesion delineated using a standard clinical scan to a (dis)connectivity atlas derived from the brains of other stroke survivors. As the individual disconnection pattern thus obtained suggests the functional domains most likely be compromised, a therapeutic regimen can be tailored accordingly. Stroke is a complex disorder that burdens individuals with distinct constellations of brain damage. Mechanistic knowledge is indispensable when seeking to ameliorate the behavioural impairments to which such damage gives rise.
Collapse
Affiliation(s)
- Richard G. Carson
- Trinity College Institute of Neuroscience and School of PsychologyTrinity College DublinDublin 2Ireland
- School of PsychologyQueen's University BelfastBelfastUK
- School of Human Movement and Nutrition SciencesThe University of QueenslandBrisbaneQueenslandAustralia
| | - Kathryn S. Hayward
- Departments of PhysiotherapyUniversity of MelbourneMelbourneAustralia
- Department of MedicineUniversity of MelbourneMelbourneAustralia
- The FloreyUniversity of MelbourneMelbourneAustralia
| |
Collapse
|
6
|
Kim D, O'Shea LM, Aghamohammadi NR. Insights into the dependence of post-stroke motor recovery on the initial corticospinal tract connectivity from a computational model. J Neuroeng Rehabil 2025; 22:8. [PMID: 39833900 PMCID: PMC11749208 DOI: 10.1186/s12984-024-01513-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 11/25/2024] [Indexed: 01/22/2025] Open
Abstract
There is a consensus that motor recovery post-stroke primarily depends on the degree of the initial connectivity of the ipsilesional corticospinal tract (CST). Indeed, if the residual CST connectivity is sufficient to convey motor commands, the neuromotor system continues to use the CST predominantly, and motor function recovers up to 80%. In contrast, if the residual CST connectivity is insufficient, hand/arm dexterity barely recovers, even as the phases of stroke progress. Instead, the functional upregulation of the reticulospinal tract (RST) often occurs. In this study, we construct a computational model that reproduces the dependence of post-stroke motor recovery on the initial CST connectivity. The model emulates biologically plausible evolutions of primary motor descending tracts, based on activity-dependent or use-dependent plasticity and the preferential use of more strongly connected neural circuits. The model replicates several elements of the empirical evidence presented by the Fugl-Meyer Assessment (FMA) subscores, which evaluate the capabilities for out-of-synergy and in-synergy movements. These capabilities presumably change differently depending on the degree of the initial CST connectivity post-stroke, providing insights into the interactive dynamics of the primary descending motor tracts. We discuss findings derived from the proposed model in relation to the well-known proportional recovery rule. This modeling study aims to present a way to differentiate individuals who can achieve 70 to 80% recovery in the chronic phase from those who cannot by examining the interactive evolution of out-of-synergy and in-synergy movement capabilities during the subacute phase, as assessed by the FMA.
Collapse
Affiliation(s)
- Dongwon Kim
- Shirley Ryan AbilityLab, Chicago, IL, USA.
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA.
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, USA.
| | - Leah M O'Shea
- Shirley Ryan AbilityLab, Chicago, IL, USA
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, USA
| | - Naveed R Aghamohammadi
- Shirley Ryan AbilityLab, Chicago, IL, USA
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
7
|
Lee K, Barradas V, Schweighofer N. Self-organizing recruitment of compensatory areas maximizes residual motor performance post-stroke. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.601213. [PMID: 39005333 PMCID: PMC11244868 DOI: 10.1101/2024.06.28.601213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Whereas the orderly recruitment of compensatory motor cortical areas after stroke depends on the size of the motor cortex lesion affecting arm and hand movements, the mechanisms underlying this reorganization are unknown. Here, we hypothesized that the recruitment of compensatory areas results from the motor system's goal to optimize performance given the anatomical constraints before and after the lesion. This optimization is achieved through two complementary plastic processes: a homeostatic regulation process, which maximizes information transfer in sensory-motor networks, and a reinforcement learning process, which minimizes movement error and effort. To test this hypothesis, we developed a neuro-musculoskeletal model that controls a 7-muscle planar arm via a cortical network that includes a primary motor cortex and a premotor cortex that directly project to spinal motor neurons, and a contra-lesional primary motor cortex that projects to spinal motor neurons via the reticular formation. Synapses in the cortical areas are updated via reinforcement learning and the activity of spinal motor neurons is adjusted through homeostatic regulation. The model replicated neural, muscular, and behavioral outcomes in both non-lesioned and lesioned brains. With increasing lesion sizes, the model demonstrated systematic recruitment of the remaining primary motor cortex, premotor cortex, and contra-lesional cortex. The premotor cortex acted as a reserve area for fine motor control recovery, while the contra-lesional cortex helped avoid paralysis at the cost of poor joint control. Plasticity in spinal motor neurons enabled force generation after large cortical lesions despite weak corticospinal inputs. Compensatory activity in the premotor and contra-lesional motor cortex was more prominent in the early recovery period, gradually decreasing as the network minimized effort. Thus, the orderly recruitment of compensatory areas following strokes of varying sizes results from biologically plausible local plastic processes that maximize performance, whether the brain is intact or lesioned.
Collapse
Affiliation(s)
- Kevin Lee
- Computer Science, University of Southern California, Los Angeles, USA
| | - Victor Barradas
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Nicolas Schweighofer
- Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, USA
| |
Collapse
|
8
|
Kim D, Ko SH, Han J, Kim YT, Kim YH, Chang WH, Shin YI. Correlations in abnormal synergies between the upper and lower extremities across various phases of stroke. J Neurophysiol 2024; 132:87-95. [PMID: 38748436 DOI: 10.1152/jn.00102.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/25/2024] [Accepted: 05/10/2024] [Indexed: 05/28/2024] Open
Abstract
The flexion synergy and extension synergy are a representative consequence of a stroke and appear in the upper extremity and the lower extremity. Since the ipsilesional corticospinal tract (CST) is the most influential neural pathway for both extremities in motor execution, damage by a stroke to this tract could lead to similar motor pathological features (e.g., abnormal synergies) in both extremities. However, less attention has been paid to the interlimb correlations in the flexion synergy and extension synergy across different recovery phases of a stroke. We used results of the Fugl-Meyer assessment (FMA) to characterize those correlations in a total of 512 participants with hemiparesis after stroke from the acute phase to 1 year. The FMA provides indirect indicators of the degrees of the flexion synergy and extension synergy after stroke. We found that, generally, strong interlimb correlations (r > 0.65 with all P values < 0.0001) between the flexion synergy and extension synergy appeared in the acute-to-subacute phase (<90 days). However, the correlations of the lower-extremity extension synergy with the upper-extremity flexion synergy and extension synergy decreased (down to r = 0.38) 360 days after stroke (P < 0.05). These results suggest that the preferential use of alternative neural pathways after damage by a stroke to the CST enhances the interlimb correlations between the flexion synergy and extension synergy. At the same time, the results imply that the recovery of CST integrity or/and the fragmentation (remodeling) of the alternative neural substrates in the chronic phase may contribute to diversity in neural pathways in motor execution, eventually leading to reduced interlimb correlations.NEW & NOTEWORTHY For the first time, this article addresses the asynchronous relationships in the strengths of flexion and extension synergy expressions between the paretic upper extremity and lower extremity across various phases of stroke.
Collapse
Affiliation(s)
- Dongwon Kim
- Shirley Ryan AbilityLab, Chicago, Illinois, United States
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois, United States
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Sung-Hwa Ko
- Department of Rehabilitation Medicine, Pusan National University School of Medicine, Pusan, Republic of Korea
- Department of Rehabilitation Medicine, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Junhee Han
- Department of Statistics, Hallym University, Chuncheon-si, Republic of Korea
| | - Young-Taek Kim
- Department of Preventive Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Yun-Hee Kim
- Department of Health Sciences and Technology, Department of Medical Device Management and Research, Department of Digital Health, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea
| | - Won Hyuk Chang
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yong-Il Shin
- Department of Rehabilitation Medicine, Pusan National University School of Medicine, Pusan, Republic of Korea
- Department of Rehabilitation Medicine, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| |
Collapse
|
9
|
Kim D, Ko SH, Han J, Kim YT, Kim YH, Chang WH, Shin YI. Evidence of the existence of multiple modules for the stroke-caused flexion synergy from Fugl-Meyer assessment scores. J Neurophysiol 2024; 132:78-86. [PMID: 38691520 PMCID: PMC11381114 DOI: 10.1152/jn.00067.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/25/2024] [Accepted: 04/27/2024] [Indexed: 05/03/2024] Open
Abstract
Stroke-caused synergies may result from the preferential use of the reticulospinal tract (RST) due to damage to the corticospinal tract. The RST branches multiple motoneuron pools across the arm together resulting in gross motor control or abnormal synergies, and accordingly, the controllability of individual muscles decreases. However, it is not clear whether muscles involuntarily activated by abnormal synergy vary depending on the muscles voluntarily activated when motor commands descend through the RST. Studies showed that abnormal synergies may originate from the merging and reweighting of synergies in individuals without neurological deficits. This leads to a hypothesis that those abnormal synergies are still selectively excited depending on the context. In this study, we test this hypothesis, leveraging the Fugl-Meyer assessment that could characterize the neuroanatomical architecture in individuals with a wide range of impairments. We examine the ability to perform an out-of-synergy movement with the flexion synergy caused by either shoulder or elbow loading. The results reveal that about 14% [8/57, 95% confidence interval (5.0%, 23.1%)] of the participants with severe impairment (total Fugl-Meyer score <29) in the chronic phase (6 months after stroke) are able to keep the elbow extended during shoulder loading and keep the shoulder at neutral during elbow loading. Those participants underwent a different course of neural reorganization, which enhanced abnormal synergies in comparison with individuals with mild impairment (P < 0.05). These results provide evidence that separate routes and synergy modules to motoneuron pools across the arm might exist even if the motor command is mediated possibly via the RST.NEW & NOTEWORTHY We demonstrate that abnormal synergies are still selectively excited depending on the context.
Collapse
Affiliation(s)
- Dongwon Kim
- Shirley Ryan AbilityLab, Chicago, Illinois, United States
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois, United States
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Sung-Hwa Ko
- Department of Rehabilitation Medicine, Pusan National University School of Medicine, Yangsan, Republic of Korea
- Department of Rehabilitation Medicine, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Junhee Han
- Department of Statistics, Hallym University, Chuncheon-si, Republic of Korea
| | - Young-Taek Kim
- Department of Preventive Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Yun-Hee Kim
- Department of Health Sciences and Technology, Department of Medical Device Management and Research, Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Won Hyuk Chang
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yong-Il Shin
- Department of Rehabilitation Medicine, Pusan National University School of Medicine, Yangsan, Republic of Korea
- Department of Rehabilitation Medicine, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| |
Collapse
|
10
|
Eilfort AM, Rasenack M, Zörner B, Curt A, Filli L. Evidence for reticulospinal plasticity underlying motor recovery in Brown-Séquard-plus Syndrome: a case report. Front Neurol 2024; 15:1335795. [PMID: 38895696 PMCID: PMC11183277 DOI: 10.3389/fneur.2024.1335795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/10/2024] [Indexed: 06/21/2024] Open
Abstract
Brown-Séquard Syndrome (BSS) is a rare neurological condition caused by a unilateral spinal cord injury (SCI). Upon initial ipsilesional hemiplegia, patients with BSS typically show substantial functional recovery over time. Preclinical studies on experimental BSS demonstrated that spontaneous neuroplasticity in descending motor systems is a key mechanism promoting functional recovery. The reticulospinal (RS) system is one of the main descending motor systems showing a remarkably high ability for neuroplastic adaptations after incomplete SCI. In humans, little is known about the contribution of RS plasticity to functional restoration after SCI. Here, we investigated RS motor drive to different muscles in a subject with Brown-Séquard-plus Syndrome (BSPS) five months post-injury using the StartReact paradigm. RS drive was compared between ipsi- and contralesional muscles, and associated with measures of functional recovery. Additionally, corticospinal (CS) drive was investigated using transcranial magnetic stimulation (TMS) in a subset of muscles. The biceps brachii showed a substantial enhancement of RS drive on the ipsi- vs. contralesional side, whereas no signs of CS plasticity were found ipsilesionally. This finding implies that motor recovery of ipsilesional elbow flexion is primarily driven by the RS system. Results were inversed for the ipsilesional tibialis anterior, where RS drive was not augmented, but motor-evoked potentials recovered over six months post-injury, suggesting that CS plasticity contributed to improvements in ankle dorsiflexion. Our findings indicate that the role of RS and CS plasticity in motor recovery differs between muscles, with CS plasticity being essential for the restoration of distal extremity motor function, and RS plasticity being important for the functional recovery of proximal flexor muscles after SCI in humans.
Collapse
Affiliation(s)
- Antonia Maria Eilfort
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
- Department of Health Science and Technology, ETH Zurich, Zurich, Switzerland
| | - Maria Rasenack
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| | - Björn Zörner
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
- Swiss Paraplegic Center and Swiss Paraplegic Research, Nottwil, Switzerland
| | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Linard Filli
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
- Swiss Center for Movement Analysis, Balgrist Campus AG, Zurich, Switzerland
| |
Collapse
|
11
|
Raghavan P. Top-Down and Bottom-Up Mechanisms of Motor Recovery Poststroke. Phys Med Rehabil Clin N Am 2024; 35:235-257. [PMID: 38514216 DOI: 10.1016/j.pmr.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Stroke remains a leading cause of disability. Motor recovery requires the interaction of top-down and bottom-up mechanisms, which reinforce each other. Injury to the brain initiates a biphasic neuroimmune process, which opens a window for spontaneous recovery during which the brain is particularly sensitive to activity. Physical activity during this sensitive period can lead to rapid recovery by potentiating anti-inflammatory and neuroplastic processes. On the other hand, lack of physical activity can lead to early closure of the sensitive period and downstream changes in muscles, such as sarcopenia, muscle stiffness, and reduced cardiovascular capacity, and blood flow that impede recovery.
Collapse
Affiliation(s)
- Preeti Raghavan
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA; Department of Neurology, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA.
| |
Collapse
|
12
|
Nikonowicz RC, Sergi F. Development of an MRI-compatible robotic perturbation system for studying the task-dependent contribution of the brainstem to long-latency responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.01.583025. [PMID: 38496405 PMCID: PMC10942303 DOI: 10.1101/2024.03.01.583025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Methodological constraints have hindered direct in vivo measurement of reticulospinal tract (RST) function. The RST is thought to contribute to the increase in the amplitude of a long latency response (LLR), a stereotypical response evoked in stretched muscles, that arises when participants are asked to "resist" a perturbation. Thus, functional magnetic resonance imaging (fMRI) during robot-evoked LLRs under different task goals may be a method to measure motor-related RST function. We have developed the Dual Motor StretchWrist (DMSW), a new MR-compatible robotic perturbation system, and validated its functionality via experiments that used surface electromyography (sEMG) and fMRI. A first study was conducted outside the MRI scanner on six participants using sEMG to measure wrist flexor muscle activity associated with LLRs under different task instructions. Participants were given a Yield or Resist instruction before each trial and performance feedback based on the measured resistive torque was provided after every "Resist" trial to standardize LLR amplitude (LLRa). In a second study, ten participants completed two sessions of blocked perturbations under 1) Yield, 2) Resist, and 3) Yield Slow task conditions (control) during whole-brain fMRI. Statistical analysis of sEMG data shows significantly greater LLRa in Resist relative to Yield. Analysis of functional images shows increased activation primarily in the bilateral medulla and midbrain, and contralateral pons and primary motor cortex in the Resist condition. The results validate the capability of the DMSW to elicit LLRs of wrist muscles with different amplitudes as a function of task instruction, and its capability of simultaneous operation during fMRI.
Collapse
Affiliation(s)
- Rebecca C Nikonowicz
- Department of Biomedical Engineering, University of Delaware, 540 S College Ave, Newark, DE 19713, USA
| | - Fabrizio Sergi
- Department of Biomedical Engineering, University of Delaware, 540 S College Ave, Newark, DE 19713, USA
- Department of Mechanical Engineering, University of Delaware, 130 Academy St, Newark, DE 19716, USA
| |
Collapse
|
13
|
Oquita R, Cuello V, Uppati S, Mannuru S, Salinas D, Dobbs M, Potter-Baker KA. Moving toward elucidating alternative motor pathway structures post-stroke: the value of spinal cord neuroimaging. Front Neurol 2024; 15:1282685. [PMID: 38419695 PMCID: PMC10899520 DOI: 10.3389/fneur.2024.1282685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Stroke results in varying levels of motor and sensory disability that have been linked to the neurodegeneration and neuroinflammation that occur in the infarct and peri-infarct regions within the brain. Specifically, previous research has identified a key role of the corticospinal tract in motor dysfunction and motor recovery post-stroke. Of note, neuroimaging studies have utilized magnetic resonance imaging (MRI) of the brain to describe the timeline of neurodegeneration of the corticospinal tract in tandem with motor function following a stroke. However, research has suggested that alternate motor pathways may also underlie disease progression and the degree of functional recovery post-stroke. Here, we assert that expanding neuroimaging techniques beyond the brain could expand our knowledge of alternate motor pathway structure post-stroke. In the present work, we will highlight findings that suggest that alternate motor pathways contribute to post-stroke motor dysfunction and recovery, such as the reticulospinal and rubrospinal tract. Then we review imaging and electrophysiological techniques that evaluate alternate motor pathways in populations of stroke and other neurodegenerative disorders. We will then outline and describe spinal cord neuroimaging techniques being used in other neurodegenerative disorders that may provide insight into alternate motor pathways post-stroke.
Collapse
Affiliation(s)
- Ramiro Oquita
- School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, United States
| | - Victoria Cuello
- School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, United States
| | - Sarvani Uppati
- School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, United States
| | - Sravani Mannuru
- School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, United States
| | - Daniel Salinas
- Department of Neuroscience, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, United States
| | - Michael Dobbs
- Department of Clinical Neurosciences, College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Kelsey A. Potter-Baker
- Department of Neuroscience, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, United States
| |
Collapse
|
14
|
Brunner I, Lundquist CB, Pedersen AR, Spaich EG, Dosen S, Savic A. Brain computer interface training with motor imagery and functional electrical stimulation for patients with severe upper limb paresis after stroke: a randomized controlled pilot trial. J Neuroeng Rehabil 2024; 21:10. [PMID: 38245782 PMCID: PMC10799379 DOI: 10.1186/s12984-024-01304-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 01/09/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Restorative Brain-Computer Interfaces (BCI) that combine motor imagery with visual feedback and functional electrical stimulation (FES) may offer much-needed treatment alternatives for patients with severely impaired upper limb (UL) function after a stroke. OBJECTIVES This study aimed to examine if BCI-based training, combining motor imagery with FES targeting finger/wrist extensors, is more effective in improving severely impaired UL motor function than conventional therapy in the subacute phase after stroke, and if patients with preserved cortical-spinal tract (CST) integrity benefit more from BCI training. METHODS Forty patients with severe UL paresis (< 13 on Action Research Arm Test (ARAT) were randomized to either a 12-session BCI training as part of their rehabilitation or conventional UL rehabilitation. BCI sessions were conducted 3-4 times weekly for 3-4 weeks. At baseline, Transcranial Magnetic Stimulation (TMS) was performed to examine CST integrity. The main endpoint was the ARAT at 3 months post-stroke. A binominal logistic regression was conducted to examine the effect of treatment group and CST integrity on achieving meaningful improvement. In the BCI group, electroencephalographic (EEG) data were analyzed to investigate changes in event-related desynchronization (ERD) during the course of therapy. RESULTS Data from 35 patients (15 in the BCI group and 20 in the control group) were analyzed at 3-month follow-up. Few patients (10/35) improved above the minimally clinically important difference of 6 points on ARAT, 5/15 in the BCI group, 5/20 in control. An independent-samples Mann-Whitney U test revealed no differences between the two groups, p = 0.382. In the logistic regression only CST integrity was a significant predictor for improving UL motor function, p = 0.007. The EEG analysis showed significant changes in ERD of the affected hemisphere and its lateralization only during unaffected UL motor imagery at the end of the therapy. CONCLUSION This is the first RCT examining BCI training in the subacute phase where only patients with severe UL paresis were included. Though more patients in the BCI group improved relative to the group size, the difference between the groups was not significant. In the present study, preserved CTS integrity was much more vital for UL improvement than which type of intervention the patients received. Larger studies including only patients with some preserved CST integrity should be attempted.
Collapse
Affiliation(s)
- Iris Brunner
- Department of Clinical Medicine, Hammel Neurocenter and University Hospital, Aarhus University, Voldbyvej 12, 8450, Hammel, Denmark.
| | | | - Asger Roer Pedersen
- University Research Clinic for Innovative Patient Pathways, Diagnostic Centre, Silkeborg Regional Hospital, 8600, Silkeborg, Denmark
| | - Erika G Spaich
- Department of Health Science and Technology, Aalborg University, 9220, Aalborg, Denmark
| | - Strahinja Dosen
- Department of Health Science and Technology, Aalborg University, 9220, Aalborg, Denmark
| | - Andrej Savic
- Science and Research Centre, University of Belgrade-School of Electrical Engineering, Belgrade, 11000, Serbia
| |
Collapse
|
15
|
Chung YC, Shemmell J, Kumala C, Soedirdjo SDH, Dhaher YY. Identifying spinal tracts transmitting distant effects of trans-spinal magnetic stimulation. J Neurophysiol 2023; 130:883-894. [PMID: 37646076 PMCID: PMC11918362 DOI: 10.1152/jn.00202.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/14/2023] [Accepted: 08/25/2023] [Indexed: 09/01/2023] Open
Abstract
Estimating the state of tract-specific inputs to spinal motoneurons is critical to understanding movement deficits induced by neurological injury and potential pathways to recovery but remains challenging in humans. In this study, we explored the capability of trans-spinal magnetic stimulation (TSMS) to modulate distal reflex circuits in young adults. TSMS was applied over the thoracic spine to condition soleus H-reflexes involving sacral-level motoneurons. Three TSMS intensities below the motor threshold were applied at interstimulus intervals (ISIs) between 2 and 20 ms relative to peripheral nerve stimulation (PNS). Although low-intensity TSMS yielded no changes in H-reflexes across ISIs, the two higher stimulus intensities yielded two phases of H-reflex inhibition: a relatively long-lasting period at 2- to 9-ms ISIs, and a short phase at 11- to 12-ms ISIs. H-reflex inhibition at 2-ms ISI was uniquely dependent on TSMS intensity. To identify the candidate neural pathways contributing to H-reflex suppression, we constructed a tract-specific conduction time estimation model. Based upon our model, H-reflex inhibition at 11- to 12-ms ISIs is likely a manifestation of orthodromic transmission along the lateral reticulospinal tract. In contrast, the inhibition at 2-ms ISI likely reflects orthodromic transmission along sensory fibers with activation reaching the brain, before descending along motor tracts. Multiple pathways may contribute to H-reflex modulation between 4- and 9-ms ISIs, orthodromic transmission along sensorimotor tracts, and antidromic transmission of multiple motor tracts. Our findings suggest that noninvasive TSMS can influence motoneuron excitability at distal segments and that the contribution of specific tracts to motoneuron excitability may be distinguishable based on conduction velocities.NEW & NOTEWORTHY This study explored the capability of trans-spinal magnetic stimulation (TSMS) over the thoracic spine to modulate distal reflex circuits, H-reflexes involving sacral-level motoneurons, in young adults. TSMS induced two inhibition phases of H-reflex across interstimulus intervals (ISIs): a relatively long-lasting period at 2- to 9-ms ISIs, and a short phase at 11- to 12-ms ISIs. An estimated probability model constructed from tract-specific conduction velocities allowed the identification of potential spinal tracts contributing to the changes in motoneuron excitability.
Collapse
Affiliation(s)
- Yu-Chen Chung
- Department of Physical Medicine and Rehabilitation, UT Southwestern Medical Center, Dallas, Texas, United States
| | - Jonathan Shemmell
- School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia
| | - Caitlin Kumala
- Department of Biology, University of Texas at Dallas, Richardson, Texas, United States
| | - Subaryani D H Soedirdjo
- Department of Physical Medicine and Rehabilitation, UT Southwestern Medical Center, Dallas, Texas, United States
| | - Yasin Y Dhaher
- Department of Physical Medicine and Rehabilitation, UT Southwestern Medical Center, Dallas, Texas, United States
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas, United States
- Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, Texas, United States
| |
Collapse
|
16
|
Xu J, Ma T, Kumar S, Olds K, Brown J, Carducci J, Forrence A, Krakauer J. Loss of finger control complexity and intrusion of flexor biases are dissociable in finger individuation impairment after stroke. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.29.555444. [PMID: 37693573 PMCID: PMC10491249 DOI: 10.1101/2023.08.29.555444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The ability to control each finger independently is an essential component of human hand dexterity. A common observation of hand function impairment after stroke is the loss of this finger individuation ability, often referred to as enslavement, i.e., the unwanted coactivation of non-intended fingers in individuated finger movements. In the previous literature, this impairment has been attributed to several factors, such as the loss of corticospinal drive, an intrusion of flexor synergy due to upregulations of the subcortical pathways, and/or biomechanical constraints. These factors may or may not be mutually exclusive and are often difficult to tease apart. It has also been suggested, based on a prevailing impression, that the intrusion of flexor synergy appears to be an exaggerated pattern of the involuntary coactivations of task-irrelevant fingers seen in a healthy hand, often referred to as a flexor bias. Most previous studies, however, were based on assessments of enslavement in a single dimension (i.e., finger flexion/extension) that coincide with the flexor bias, making it difficult to tease apart the other aforementioned factors. Here, we set out to closely examine the nature of individuated finger control and finger coactivation patterns in all dimensions. Using a novel measurement device and a 3D finger-individuation paradigm, we aim to tease apart the contributions of lower biomechanical, subcortical constraints, and top-down cortical control to these patterns in both healthy and stroke hands. For the first time, we assessed all five fingers' full capacity for individuation. Our results show that these patterns in the healthy and paretic hands present distinctly different shapes and magnitudes that are not influenced by biomechanical constraints. Those in the healthy hand presented larger angular distances that were dependent on top-down task goals, whereas those in the paretic hand presented larger Euclidean distances that arise from two dissociable factors: a loss of complexity in finger control and the dominance of an intrusion of flexor bias. These results suggest that finger individuation impairment after stroke is due to two dissociable factors: the loss of finger control complexity present in the healthy hand reflecting a top-down neural control strategy and an intrusion of flexor bias likely due to an upregulation of subcortical pathways. Our device and paradigm are demonstrated to be a promising tool to assess all aspects of the dexterous capacity of the hand.
Collapse
Affiliation(s)
- Jing Xu
- Department of Kinesiology, University of Georgia, Athens, GA, USA
- The Malone Center for Engineering in Healthcare, Johns Hopkins University, Baltimore, MD, USA
| | - Timothy Ma
- The Malone Center for Engineering in Healthcare, Johns Hopkins University, Baltimore, MD, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Sapna Kumar
- The Malone Center for Engineering in Healthcare, Johns Hopkins University, Baltimore, MD, USA
- Moss Rehabilitation Research Institute, Elkins Park, PA, USA
| | - Kevin Olds
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Jeremy Brown
- The Malone Center for Engineering in Healthcare, Johns Hopkins University, Baltimore, MD, USA
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jacob Carducci
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Alex Forrence
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
- Department of Psychology, Yale University, New Haven, NJ, USA
| | - John Krakauer
- The Malone Center for Engineering in Healthcare, Johns Hopkins University, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
17
|
Germann M, Baker SN. Testing a Novel Wearable Device for Motor Recovery of the Elbow Extensor Triceps Brachii in Chronic Spinal Cord Injury. eNeuro 2023; 10:ENEURO.0077-23.2023. [PMID: 37460228 PMCID: PMC10399611 DOI: 10.1523/eneuro.0077-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 07/29/2023] Open
Abstract
After corticospinal tract damage, reticulospinal connections to motoneurons strengthen preferentially to flexor muscles. This could contribute to the disproportionately poor recovery of extensors often seen after spinal cord injury (SCI) and stroke. In this study, we paired electrical stimulation over the triceps muscle with auditory clicks, using a wearable device to deliver stimuli over a prolonged period of time. Healthy human volunteers wore the stimulation device for ∼6 h and a variety of electrophysiological assessments were used to measure changes in triceps motor output. In contrast to previous results in the biceps muscle, paired stimulation: (1) did not increase the StartReact effect; (2) did not decrease the suppression of responses to transcranial magnetic brain stimulation (TMS) following a loud sound; (3) did not enhance muscle responses elicited by a TMS coil oriented to induce anterior-posterior current. In a second study, chronic cervical SCI survivors wore the stimulation device for ∼4 h every day for four weeks; this was compared with a four-week period without wearing the device. Functional and electrophysiological assessments were repeated at week 0, week 4, and week 8. No significant changes were observed in electrophysiological assessments after paired stimulation. Functional measurements such as maximal force and variability and speed of trajectories made during a planar reaching task also remained unchanged. Our results suggest that the triceps muscle shows less potential for plasticity than biceps; pairing clicks with muscle stimulation does not seem beneficial in enhancing triceps recovery after SCI.
Collapse
Affiliation(s)
- Maria Germann
- Institute of Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Stuart N Baker
- Institute of Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| |
Collapse
|
18
|
Akalu Y, Frazer AK, Howatson G, Pearce AJ, Siddique U, Rostami M, Tallent J, Kidgell DJ. Identifying the role of the reticulospinal tract for strength and motor recovery: A scoping review of nonhuman and human studies. Physiol Rep 2023; 11:e15765. [PMID: 37474275 PMCID: PMC10359156 DOI: 10.14814/phy2.15765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 06/26/2023] [Indexed: 07/22/2023] Open
Abstract
In addition to the established postural control role of the reticulospinal tract (RST), there has been an increasing interest on its involvement in strength, motor recovery, and other gross motor functions. However, there are no reviews that have systematically assessed the overall motor function of the RST. Therefore, we aimed to determine the role of the RST underpinning motor function and recovery. We performed a literature search using Ovid Medline, Embase, CINAHL Plus, and Scopus to retrieve papers using key words for RST, strength, and motor recovery. Human and animal studies which assessed the role of RST were included. Studies were screened and 32 eligible studies were included for the final analysis. Of these, 21 of them were human studies while the remaining were on monkeys and rats. Seven experimental animal studies and four human studies provided evidence for the involvement of the RST in motor recovery, while two experimental animal studies and eight human studies provided evidence for strength gain. The RST influenced gross motor function in two experimental animal studies and five human studies. Overall, the RST has an important role for motor recovery, gross motor function and at least in part, underpins strength gain. The role of RST for strength gain in healthy people and its involvement in spasticity in a clinical population has been limitedly described. Further studies are required to ascertain the role of the RST's role in enhancing strength and its contribution to the development of spasticity.
Collapse
Affiliation(s)
- Yonas Akalu
- Monash Exercise Neuroplasticity Research UnitDepartment of PhysiotherapySchool of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health ScienceMonash UniversityMelbourneVictoriaAustralia
- Department of Human PhysiologySchool of MedicineUniversity of GondarGondarEthiopia
| | - Ashlyn K. Frazer
- Monash Exercise Neuroplasticity Research UnitDepartment of PhysiotherapySchool of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health ScienceMonash UniversityMelbourneVictoriaAustralia
| | - Glyn Howatson
- Department of Sport, Exercise and RehabilitationNorthumbria UniversityNewcastleUK
- Water Research GroupNorth West UniversityPotchefstroomSouth Africa
| | - Alan J. Pearce
- College of Science, Health and EngineeringLa Trobe UniversityMelbourneVictoriaAustralia
| | - Ummatul Siddique
- Monash Exercise Neuroplasticity Research UnitDepartment of PhysiotherapySchool of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health ScienceMonash UniversityMelbourneVictoriaAustralia
| | - Mohamad Rostami
- Monash Exercise Neuroplasticity Research UnitDepartment of PhysiotherapySchool of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health ScienceMonash UniversityMelbourneVictoriaAustralia
| | - Jamie Tallent
- Monash Exercise Neuroplasticity Research UnitDepartment of PhysiotherapySchool of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health ScienceMonash UniversityMelbourneVictoriaAustralia
- School of Sport, Rehabilitation and Exercise SciencesUniversity of EssexColchesterUK
| | - Dawson J. Kidgell
- Monash Exercise Neuroplasticity Research UnitDepartment of PhysiotherapySchool of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health ScienceMonash UniversityMelbourneVictoriaAustralia
| |
Collapse
|
19
|
Cho MJ, Yeo SS, Lee SJ, Jang SH. Correlation between spasticity and corticospinal/corticoreticular tract status in stroke patients after early stage. Medicine (Baltimore) 2023; 102:e33604. [PMID: 37115067 PMCID: PMC10145725 DOI: 10.1097/md.0000000000033604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/23/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
We investigated the correlation between spasticity and the states of the corticospinal tract (CST) and corticoreticular tract (CRT) in stroke patients after early stage. Thirty-eight stroke patients and 26 healthy control subjects were recruited. The modified Ashworth scale (MAS) scale after the early stage (more than 1 month after onset) was used to determine the spasticity state of the stroke patients. Fractional anisotropy (FA), apparent diffusion coefficient (ADC), fiber number (FN), and ipsilesional/contra-lesional ratios for diffusion tensor tractography (DTT) parameters of the CST and CRT after the early stage were measured in both ipsi- and contra-lesional hemispheres. This study was conducted retrospectively. The FA and FN CST-ratios in the patient group were significantly lower than those of the control group (P < .05), except for the ADC CST-ratio (P > .05). Regarding the DTT parameters of the CRT-ratio, the patient group FN value was significantly lower than that of the control group (P < .05), whereas the FA and ADC CRT-ratios did not show significant differences between the patient and control groups (P > .05). MAS scores showed a strong positive correlation with the ADC CRT-ratio (P < .05) and a moderate negative correlation with the FN CRT-ratio (P < .05). We observed that the injury severities of the CST and CRT were related to spasticity severity in chronic stroke patients; moreover, compared to the CST, CRT status was more closely related to spasticity severity.
Collapse
Affiliation(s)
- Min Jye Cho
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Namku, Taegu, Republic of Korea
| | - Sang Seok Yeo
- Department of Physical Therapy, College of Health Sciences, Dankook University, Dongnamgu, Cheonan, Republic of Korea
| | - Sung Jun Lee
- Department of Physical Therapy, College of Health Sciences, Dankook University, Dongnamgu, Cheonan, Republic of Korea
| | - Sung Ho Jang
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Namku, Taegu, Republic of Korea
| |
Collapse
|
20
|
Lafe CW, Liu F, Simpson TW, Moon CH, Collinger JL, Wittenberg GF, Urbin MA. Force oscillations underlying precision grip in humans with lesioned corticospinal tracts. Neuroimage Clin 2023; 38:103398. [PMID: 37086647 PMCID: PMC10173012 DOI: 10.1016/j.nicl.2023.103398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/23/2023] [Accepted: 04/02/2023] [Indexed: 04/24/2023]
Abstract
Stability of precision grip depends on the ability to regulate forces applied by the digits. Increased frequency composition and temporal irregularity of oscillations in the force signal are associated with enhanced force stability, which is thought to result from increased voluntary drive along the corticospinal tract (CST). There is limited knowledge of how these oscillations in force output are regulated in the context of dexterous hand movements like precision grip, which are often impaired by CST damage due to stroke. The extent of residual CST volume descending from primary motor cortex may help explain the ability to modulate force oscillations at higher frequencies. Here, stroke survivors with longstanding hand impairment (n = 17) and neurologically-intact controls (n = 14) performed a precision grip task requiring dynamic and isometric muscle contractions to scale and stabilize forces exerted on a sensor by the index finger and thumb. Diffusion spectrum imaging was used to quantify total white matter volume within the residual and intact CSTs of stroke survivors (n = 12) and CSTs of controls (n = 14). White matter volumes within the infarct region and an analogous portion of overlap with the CST, mirrored onto the intact side, were also quantified in stroke survivors. We found reduced ability to stabilize force and more restricted frequency ranges in force oscillations of stroke survivors relative to controls; though, more broadband, irregular output was strongly related to force-stabilizing ability in both groups. The frequency composition and temporal irregularity of force oscillations observed in stroke survivors did not correlate with maximal precision grip force, suggesting that it is not directly related to impaired force-generating capacity. The ratio of residual to intact CST volumes contained within infarct and mirrored compartments was associated with more broadband, irregular force oscillations in stroke survivors. Our findings provide insight into granular aspects of dexterity altered by corticospinal damage and supply preliminary evidence to support that the ability to modulate force oscillations at higher frequencies is explained, at least in part, by residual CST volume in stroke survivors.
Collapse
Affiliation(s)
- Charley W Lafe
- Human Engineering Research Laboratories, VA RR&D Center of Excellence, VA Pittsburgh Healthcare System, Pittsburgh, PA 15206, USA
| | - Fang Liu
- Rehabilitation Neural Engineering Laboratories, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Tyler W Simpson
- Rehabilitation Neural Engineering Laboratories, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Chan Hong Moon
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jennifer L Collinger
- Human Engineering Research Laboratories, VA RR&D Center of Excellence, VA Pittsburgh Healthcare System, Pittsburgh, PA 15206, USA; Rehabilitation Neural Engineering Laboratories, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - George F Wittenberg
- Human Engineering Research Laboratories, VA RR&D Center of Excellence, VA Pittsburgh Healthcare System, Pittsburgh, PA 15206, USA; Rehabilitation Neural Engineering Laboratories, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Michael A Urbin
- Human Engineering Research Laboratories, VA RR&D Center of Excellence, VA Pittsburgh Healthcare System, Pittsburgh, PA 15206, USA; Rehabilitation Neural Engineering Laboratories, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
21
|
Germann M, Maffitt NJ, Poll A, Raditya M, Ting JSK, Baker SN. Pairing Transcranial Magnetic Stimulation and Loud Sounds Produces Plastic Changes in Motor Output. J Neurosci 2023; 43:2469-2481. [PMID: 36859307 PMCID: PMC10082460 DOI: 10.1523/jneurosci.0228-21.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 11/29/2022] [Accepted: 12/09/2022] [Indexed: 03/03/2023] Open
Abstract
Most current methods for neuromodulation target the cortex. Approaches for inducing plasticity in subcortical motor pathways, such as the reticulospinal tract, could help to boost recovery after damage (e.g., stroke). In this study, we paired loud acoustic stimulation (LAS) with transcranial magnetic stimulation (TMS) over the motor cortex in male and female healthy humans. LAS activates the reticular formation; TMS activates descending systems, including corticoreticular fibers. Two hundred paired stimuli were used, with 50 ms interstimulus interval at which LAS suppresses TMS responses. Before and after stimulus pairing, responses in the contralateral biceps muscle to TMS alone were measured. Ten, 20, and 30 min after stimulus pairing ended, TMS responses were enhanced, indicating the induction of LTP. No long-term changes were seen in control experiments which used 200 unpaired TMS or LAS, indicating the importance of associative stimulation. Following paired stimulation, no changes were seen in responses to direct corticospinal stimulation at the level of the medulla, or in the extent of reaction time shortening by a loud sound (StartReact effect), suggesting that plasticity did not occur in corticospinal or reticulospinal synapses. Direct measurements in female monkeys undergoing a similar paired protocol revealed no enhancement of corticospinal volleys after paired stimulation, suggesting no changes occurred in intracortical connections. The most likely substrate for the plastic changes, consistent with all our measurements, is an increase in the efficacy of corticoreticular connections. This new protocol may find utility, as it seems to target different motor circuits compared with other available paradigms.SIGNIFICANCE STATEMENT Induction of plasticity by neurostimulation protocols may be promising to enhance functional recovery after damage such as following stroke, but current protocols mainly target cortical circuits. In this study, we developed a novel paradigm which may generate long-term changes in connections between cortex and brainstem. This could provide an additional tool to modulate and improve recovery.
Collapse
Affiliation(s)
- Maria Germann
- Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Natalie J Maffitt
- Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Annie Poll
- Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Marco Raditya
- Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Jason S K Ting
- Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Stuart N Baker
- Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| |
Collapse
|
22
|
Kim D, Baghi R, Koh K, Zhang LQ. MCP extensors respond faster than flexors in individuals with severe-to-moderate stroke-caused impairment: Evidence of uncoupled neural pathways. Front Neurol 2023; 14:1119761. [PMID: 37034096 PMCID: PMC10075324 DOI: 10.3389/fneur.2023.1119761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/28/2023] [Indexed: 04/11/2023] Open
Abstract
Damage in the corticospinal system following stroke produces imbalance between flexors and extensors in the upper extremity, eventually leading to flexion-favored postures. The substitution of alternative tracts for the damaged corticospinal tract is known to excessively activate flexors of the fingers while the fingers are voluntarily being extended. Here, we questioned whether the cortical source or/and neural pathways of the flexors and extensors of the fingers are coupled and what factor of impairment influences finger movement. In this study, a total of seven male participants with severe-to-moderate impairment by a hemiplegic stroke conducted flexion and extension at the metacarpophalangeal (MCP) joints in response to auditory tones. We measured activation and de-activation delays of the flexor and extensor of the MCP joints on the paretic side, and force generation. All participants generated greater torque in the direction of flexion (p = 0.017). Regarding co-contraction, coupled activation of the extensor is also made during flexion in the similar way to coupled activation of the flexor made during extension. As opposite to our expectation, we observed that during extension, the extensor showed marginally significantly faster activation (p = 0.66) while it showed faster de-activation (p = 0.038), in comparison to activation and de-activation of the flexor during flexion. But movement smoothness was not affected by those factors. Our results imply that the cortical source and neural pathway for the extensors of the MCP joints are not coupled with those for the flexors of the MCP joints.
Collapse
Affiliation(s)
- Dongwon Kim
- Department of Physical Therapy and Rehabilitation Science, University of Maryland, Baltimore, MD, United States
- Department of Bioengineering, School of Engineering, University of Maryland, College Park, MD, United States
| | - Raziyeh Baghi
- Department of Physical Therapy and Rehabilitation Science, University of Maryland, Baltimore, MD, United States
| | - Kyung Koh
- Department of Physical Therapy and Rehabilitation Science, University of Maryland, Baltimore, MD, United States
| | - Li-Qun Zhang
- Department of Physical Therapy and Rehabilitation Science, University of Maryland, Baltimore, MD, United States
- Department of Bioengineering, School of Engineering, University of Maryland, College Park, MD, United States
- Department of Orthopedics, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
23
|
Xia N, He C, Wei X, Li YA, Lou W, Gu M, Chen Z, Xu J, Liu Y, Han X, Huang X. Altered frontoparietal activity in acoustic startle priming tasks during reticulospinal tract facilitation: An fNIRS study. Front Neurosci 2023; 17:1112046. [PMID: 36875651 PMCID: PMC9978531 DOI: 10.3389/fnins.2023.1112046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/02/2023] [Indexed: 02/18/2023] Open
Abstract
Background Because it is one of the important pathways for promoting motor recovery after cortical injury, the function of the reticulospinal tract (RST) has received increasing attention in recent years. However, the central regulatory mechanism of RST facilitation and reduction of apparent response time is not well understood. Objectives To explore the potential role of RST facilitation in the acoustic startle priming (ASP) paradigm and observe the cortical changes induced by ASP reaching tasks. Methods Twenty healthy participants were included in this study. The reaching tasks were performed with their left and right hands. Participants were instructed to get ready after the warning cue and complete the reach as soon as they heard the Go cue. Half of the testing trials were set as control trials with an 80-dB Go cue. The other half of the trials had the Go cue replaced with 114-dB white noise to evoke the StartleReact effect, inducing reticulospinal tract facilitation. The response of the bilateral sternocleidomastoid muscle (SCM) and the anterior deltoid was recorded via surface electromyography. Startle trials were labeled as exhibiting a positive or negative StartleReact effect, according to whether the SCM was activated early (30-130 ms after the Go cue) or late, respectively. Functional near-infrared spectroscopy was used to synchronously record the oxyhemoglobin and deoxyhemoglobin fluctuations in bilateral motor-related cortical regions. The β values representing cortical responses were estimated via the statistical parametric mapping technique and included in the final analyses. Results Separate analyses of data from movements of the left or right side revealed significant activation of the right dorsolateral prefrontal cortex during RST facilitation. Moreover, left frontopolar cortex activation was greater in positive startle trials than in control or negative startle trials during left-side movements. Furthermore, decreased activity of the ipsilateral primary motor cortex in positive startle trials during ASP reaching tasks was observed. Conclusion The right dorsolateral prefrontal cortex and the frontoparietal network to which it belongs may be the regulatory center for the StartleReact effect and RST facilitation. In addition, the ascending reticular activating system may be involved. The decreased activity of the ipsilateral primary motor cortex suggests enhanced inhibition of the non-moving side during the ASP reaching task. These findings provide further insight into the SE and into RST facilitation.
Collapse
Affiliation(s)
- Nan Xia
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,World Health Organization Collaborating Centre for Training and Research in Rehabilitation, Wuhan, China
| | - Chang He
- Institute of Medical Equipment Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China.,State Key Lab of Digital Manufacturing Equipment and Technology, Institute of Rehabilitation and Medical Robotics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiupan Wei
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,World Health Organization Collaborating Centre for Training and Research in Rehabilitation, Wuhan, China
| | - Yang-An Li
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,World Health Organization Collaborating Centre for Training and Research in Rehabilitation, Wuhan, China
| | - Weiwei Lou
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,World Health Organization Collaborating Centre for Training and Research in Rehabilitation, Wuhan, China
| | - Minghui Gu
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,World Health Organization Collaborating Centre for Training and Research in Rehabilitation, Wuhan, China
| | - Zejian Chen
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,World Health Organization Collaborating Centre for Training and Research in Rehabilitation, Wuhan, China
| | - Jiang Xu
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,World Health Organization Collaborating Centre for Training and Research in Rehabilitation, Wuhan, China
| | - Yali Liu
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,World Health Organization Collaborating Centre for Training and Research in Rehabilitation, Wuhan, China
| | - Xiaohua Han
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,World Health Organization Collaborating Centre for Training and Research in Rehabilitation, Wuhan, China
| | - Xiaolin Huang
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,World Health Organization Collaborating Centre for Training and Research in Rehabilitation, Wuhan, China
| |
Collapse
|
24
|
Paul T, Cieslak M, Hensel L, Wiemer VM, Grefkes C, Grafton ST, Fink GR, Volz LJ. The role of corticospinal and extrapyramidal pathways in motor impairment after stroke. Brain Commun 2022; 5:fcac301. [PMID: 36601620 PMCID: PMC9798285 DOI: 10.1093/braincomms/fcac301] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/01/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Anisotropy of descending motor pathways has repeatedly been linked to the severity of motor impairment following stroke-related damage to the corticospinal tract. Despite promising findings consistently tying anisotropy of the ipsilesional corticospinal tract to motor outcome, anisotropy is not yet utilized as a biomarker for motor recovery in clinical practice as several methodological constraints hinder a conclusive understanding of degenerative processes in the ipsilesional corticospinal tract and compensatory roles of other descending motor pathways. These constraints include estimating anisotropy in voxels with multiple fibre directions, sampling biases and confounds due to ageing-related atrophy. The present study addressed these issues by combining diffusion spectrum imaging with a novel compartmentwise analysis approach differentiating voxels with one dominant fibre direction (one-directional voxels) from voxels with multiple fibre directions. Compartmentwise anisotropy for bihemispheric corticospinal and extrapyramidal tracts was compared between 25 chronic stroke patients, 22 healthy age-matched controls, and 24 healthy young controls and its associations with motor performance of the upper and lower limbs were assessed. Our results provide direct evidence for Wallerian degeneration along the entire length of the ipsilesional corticospinal tract reflected by decreased anisotropy in descending fibres compared with age-matched controls, while ageing-related atrophy was observed more ubiquitously across compartments. Anisotropy of descending ipsilesional corticospinal tract voxels showed highly robust correlations with various aspects of upper and lower limb motor impairment, highlighting the behavioural relevance of Wallerian degeneration. Moreover, anisotropy measures of two-directional voxels within bihemispheric rubrospinal and reticulospinal tracts were linked to lower limb deficits, while anisotropy of two-directional contralesional rubrospinal voxels explained gross motor performance of the affected hand. Of note, the relevant extrapyramidal structures contained fibres crossing the midline, fibres potentially mitigating output from brain stem nuclei, and fibres transferring signals between the extrapyramidal system and the cerebellum. Thus, specific parts of extrapyramidal pathways seem to compensate for impaired gross arm and leg movements incurred through stroke-related corticospinal tract lesions, while fine motor control of the paretic hand critically relies on ipsilesional corticospinal tract integrity. Importantly, our findings suggest that the extrapyramidal system may serve as a compensatory structural reserve independent of post-stroke reorganization of extrapyramidal tracts. In summary, compartment-specific anisotropy of ipsilesional corticospinal tract and extrapyramidal tracts explained distinct aspects of motor impairment, with both systems representing different pathophysiological mechanisms contributing to motor control post-stroke. Considering both systems in concert may help to develop diffusion imaging biomarkers for specific motor functions after stroke.
Collapse
Affiliation(s)
- Theresa Paul
- Medical Faculty, University of Cologne, and Department of Neurology, University Hospital Cologne, 50937 Cologne, Germany
| | - Matthew Cieslak
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Lukas Hensel
- Medical Faculty, University of Cologne, and Department of Neurology, University Hospital Cologne, 50937 Cologne, Germany
| | - Valerie M Wiemer
- Medical Faculty, University of Cologne, and Department of Neurology, University Hospital Cologne, 50937 Cologne, Germany
| | - Christian Grefkes
- Medical Faculty, University of Cologne, and Department of Neurology, University Hospital Cologne, 50937 Cologne, Germany,Institute of Neuroscience and Medicine, Cognitive Neuroscience (INM-3), Research Centre Juelich, 52425 Juelich, Germany
| | - Scott T Grafton
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA 93106, United States of America
| | - Gereon R Fink
- Medical Faculty, University of Cologne, and Department of Neurology, University Hospital Cologne, 50937 Cologne, Germany,Institute of Neuroscience and Medicine, Cognitive Neuroscience (INM-3), Research Centre Juelich, 52425 Juelich, Germany
| | - Lukas J Volz
- Correspondence to: Lukas J. Volz, M.D. Department of Neurology, University of Cologne Kerpener Str. 62, 50937 Cologne, Germany E-mail:
| |
Collapse
|
25
|
Srivastava S, Seamon BA, Marebwa BK, Wilmskoetter J, Bowden MG, Gregory CM, Seo NJ, Hanlon CA, Bonilha L, Brown TR, Neptune RR, Kautz SA. The relationship between motor pathway damage and flexion-extension patterns of muscle co-excitation during walking. Front Neurol 2022; 13:968385. [PMID: 36388195 PMCID: PMC9650203 DOI: 10.3389/fneur.2022.968385] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/12/2022] [Indexed: 01/16/2023] Open
Abstract
Background Mass flexion-extension co-excitation patterns during walking are often seen as a consequence of stroke, but there is limited understanding of the specific contributions of different descending motor pathways toward their control. The corticospinal tract is a major descending motor pathway influencing the production of normal sequential muscle coactivation patterns for skilled movements. However, control of walking is also influenced by non-corticospinal pathways such as the corticoreticulospinal pathway that possibly contribute toward mass flexion-extension co-excitation patterns during walking. The current study sought to investigate the associations between damage to corticospinal (CST) and corticoreticular (CRP) motor pathways following stroke and the presence of mass flexion-extension patterns during walking as evaluated using module analysis. Methods Seventeen healthy controls and 44 stroke survivors were included in the study. We used non-negative matrix factorization for module analysis of paretic leg electromyographic activity. We typically have observed four modules during walking in healthy individuals. Stroke survivors often have less independently timed modules, for example two-modules presented as mass flexion-extension pattern. We used diffusion tensor imaging-based analysis where streamlines connecting regions of interest between the cortex and brainstem were computed to evaluate CST and CRP integrity. We also used a coarse classification tree analysis to evaluate the relative CST and CRP contribution toward module control. Results Interhemispheric CST asymmetry was associated with worse lower extremity Fugl-Meyer score (p = 0.023), propulsion symmetry (p = 0.016), and fewer modules (p = 0.028). Interhemispheric CRP asymmetry was associated with worse lower extremity Fugl-Meyer score (p = 0.009), Dynamic gait index (p = 0.035), Six-minute walk test (p = 0.020), Berg balance scale (p = 0.048), self-selected walking speed (p = 0.041), and propulsion symmetry (p = 0.001). The classification tree model reveled that substantial ipsilesional CRP or CST damage leads to a two-module pattern and poor walking ability with a trend toward increased compensatory contralesional CRP based control. Conclusion Both CST and CRP are involved with control of modules during walking and damage to both may lead to greater reliance on the contralesional CRP, which may contribute to a two-module pattern and be associated with worse walking performance.
Collapse
Affiliation(s)
- Shraddha Srivastava
- Ralph H. Johnson VA Medical Center, Charleston, SC, United States,Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States,*Correspondence: Shraddha Srivastava
| | - Bryant A. Seamon
- Ralph H. Johnson VA Medical Center, Charleston, SC, United States,Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States,Division of Physical Therapy, Department of Rehabilitation Sciences, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States
| | - Barbara K. Marebwa
- Department of Neurology, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Janina Wilmskoetter
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States
| | - Mark G. Bowden
- Ralph H. Johnson VA Medical Center, Charleston, SC, United States,Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States,Division of Physical Therapy, Department of Rehabilitation Sciences, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States
| | - Chris M. Gregory
- Ralph H. Johnson VA Medical Center, Charleston, SC, United States,Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States,Division of Physical Therapy, Department of Rehabilitation Sciences, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States
| | - Na Jin Seo
- Ralph H. Johnson VA Medical Center, Charleston, SC, United States,Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States,Division of Occupational Therapy, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States
| | - Colleen A. Hanlon
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Leonardo Bonilha
- Department of Neurology, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Truman R. Brown
- Department of Radiology and Radiological Science, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Richard R. Neptune
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Steven A. Kautz
- Ralph H. Johnson VA Medical Center, Charleston, SC, United States,Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States,Division of Physical Therapy, Department of Rehabilitation Sciences, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
26
|
Škarabot J, Folland JP, Holobar A, Baker SN, Del Vecchio A. Startling stimuli increase maximal motor unit discharge rate and rate of force development in humans. J Neurophysiol 2022; 128:455-469. [PMID: 35829632 PMCID: PMC9423775 DOI: 10.1152/jn.00115.2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Maximal rate of force development in adult humans is determined by the maximal motor unit discharge rate, however the origin of the underlying synaptic inputs remains unclear. Here, we tested a hypothesis that the maximal motor unit discharge rate will increase in response to a startling cue, a stimulus that purportedly activates the pontomedullary reticular formation neurons that make mono- and disynaptic connections to motoneurons via fast-conducting axons. Twenty-two men were required to produce isometric knee extensor forces "as fast and as hard" as possible from rest to 75% of maximal voluntary force, in response to visual (VC), visual-auditory (VAC; 80 dB), or visual-startling cue (VSC; 110 dB). Motoneuron activity was estimated via decomposition of high-density surface electromyogram recordings over the vastus lateralis and medialis muscles. Reaction time was significantly shorter in response to VSC compared to VAC and VC. The VSC further elicited faster neuromechanical responses including a greater number of discharges per motor unit per second and greater maximal rate of force development, with no differences between VAC and VC. We provide evidence, for the first time, that the synaptic input to motoneurons increases in response to a startling cue, suggesting a contribution of subcortical pathways to maximal motoneuron output in humans.
Collapse
Affiliation(s)
- Jakob Škarabot
- School of Sport, Exercise and Health Sciences, grid.6571.5Loughborough University, Loughborough, United Kingdom
| | - Jonathan P Folland
- School of Sport, Exercise and Health Sciences, grid.6571.5Loughborough University, Loughborough, United Kingdom.,Versus Arthritis Centre for Sport, Exercise and Osteoarthritis, Loughborough University, Loughborough, United Kingdom
| | - Ales Holobar
- Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia
| | - Stuart N Baker
- Medical Faculty, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Alessandro Del Vecchio
- Department of Artificial Intelligence in Biomedical Engineering, University of Erlangen-Nuremberg, Erlangen, Bavaria, Germany
| |
Collapse
|
27
|
Seo G, Kishta A, Mugler E, Slutzky MW, Roh J. Myoelectric interface training enables targeted reduction in abnormal muscle co-activation. J Neuroeng Rehabil 2022; 19:67. [PMID: 35778757 PMCID: PMC9250207 DOI: 10.1186/s12984-022-01045-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 06/02/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Abnormal patterns of muscle co-activation contribute to impaired movement after stroke. Previously, we developed a myoelectric computer interface (MyoCI) training paradigm to improve stroke-induced arm motor impairment by reducing the abnormal co-activation of arm muscle pairs. However, it is unclear to what extent the paradigm induced changes in the overall intermuscular coordination in the arm, as opposed to changing just the muscles trained with the MyoCI. This study examined the intermuscular coordination patterns of thirty-two stroke survivors who participated in 6 weeks of MyoCI training. METHODS We used non-negative matrix factorization to identify the arm muscle synergies (coordinated patterns of muscle activity) during a reaching task before and after the training. We examined the extent to which synergies changed as the training reduced motor impairment. In addition, we introduced a new synergy analysis metric, disparity index (DI), to capture the changes in the individual muscle weights within a synergy. RESULTS There was no consistent pattern of change in the number of synergies across the subjects after the training. The composition of muscle synergies, calculated using a traditional synergy similarity metric, also did not change after the training. However, the disparity of muscle weights within synergies increased after the training in the participants who responded to MyoCI training-that is, the specific muscles that the MyoCI was targeting became less correlated within a synergy. This trend was not observed in participants who did not respond to the training. CONCLUSIONS These findings suggest that MyoCI training reduced arm impairment by decoupling only the muscles trained while leaving other muscles relatively unaffected. This suggests that, even after injury, the nervous system is capable of motor learning on a highly fractionated level. It also suggests that MyoCI training can do what it was designed to do-enable stroke survivors to reduce abnormal co-activation in targeted muscles. Trial registration This study was registered at ClinicalTrials.gov (NCT03579992, Registered 09 July 2018-Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT03579992?term=NCT03579992&draw=2&rank=1 ).
Collapse
Affiliation(s)
- Gang Seo
- Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, 3517 Cullen Blvd, SERC Room 2011, Houston, TX, 77204-5060, USA
| | - Ameen Kishta
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Emily Mugler
- Department of Neurology, Northwestern University, 320 E. Superior Ave., Searle 11-473, Chicago, IL, 60611, USA
| | - Marc W Slutzky
- Department of Neurology, Northwestern University, 320 E. Superior Ave., Searle 11-473, Chicago, IL, 60611, USA. .,Department of Neuroscience, Northwestern University, Chicago, IL, USA. .,Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, USA. .,Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
| | - Jinsook Roh
- Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, 3517 Cullen Blvd, SERC Room 2011, Houston, TX, 77204-5060, USA.
| |
Collapse
|
28
|
Lee H, Honeycutt C, Perreault E. Influence of task complexity on movement planning and release after stroke: insights from startReact. Exp Brain Res 2022; 240:1765-1774. [PMID: 35445354 DOI: 10.1007/s00221-022-06368-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 04/05/2022] [Indexed: 11/04/2022]
Abstract
The capacity to plan movement following stroke is diminished when reaching from a standing position. Two mechanisms have been proposed: increased task complexity compared to simpler tasks and inhibition between the pathways controlling whole-body posture and upper extremity reaching. The objective of this study was to determine if task complexity alone can alter planning and release (or involuntary execution) capacity when whole-body postural adjustment is not required. Data were collected from 10 stroke survivors and 8 age-matched controls. Ballistic elbow extension movements were performed with and without voluntary shoulder abduction, adding complexity by anti-gravity arm support that enhanced the expression of abnormal muscle synergies linking elbow and shoulder after stroke. Our primary finding was in support of our hypothesis that startReact (involuntary release of planned movement by a startling stimulus) would be intact but that the increased task complexity would decrease the capacity to plan and release movement. StartReact was intact for both tasks with and without shoulder abduction. Despite the intact startReact response across both conditions following stroke, the incidence of startReact was decreased during the shoulder abduction task similar to prior studies showing a decrease during tasks of higher complexity. Our results suggest that individuals with stroke have a diminished capacity to plan and release movement as task complexity increases. This study highlights the unique potential for startReact to be used as a clinical tool to probe the capacity to plan and release movement following stroke and how that capacity is affected by the complexity of the task being performed. Such a tool may be useful for assessing functional impairments and tracking changes during the rehabilitation process.
Collapse
Affiliation(s)
- Hyunglae Lee
- School for Engineering of Matter, Transport and Energy, 501 E Tyler Mall, ECG 301, Tempe, AZ, 85287, USA.
| | - Claire Honeycutt
- School of Biological and Health Systems Engineering, Tempe, AZ, 85287, USA
| | - Eric Perreault
- Shirley Ryan AbilityLab, Chicago, IL, 60611, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
29
|
Swann Z, Daliri A, Honeycutt CF. Impact of Startling Acoustic Stimuli on Word Repetition in Individuals With Aphasia and Apraxia of Speech Following Stroke. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2022; 65:1671-1685. [PMID: 35377739 DOI: 10.1044/2022_jslhr-21-00486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
PURPOSE The StartReact effect, whereby movements are elicited by loud, startling acoustic stimuli (SAS), allows the evaluation of movements when initiated through involuntary circuitry, before auditory feedback. When StartReact is applied during poststroke upper extremity movements, individuals exhibit increased muscle recruitment, reaction times, and reaching distances. StartReact releases unimpaired speech with similar increases in muscle recruitment and reaction time. However, as poststroke communication disorders have divergent neural circuitry from upper extremity tasks, it is unclear if StartReact will enhance speech poststroke. Our objective is to determine if (a) StartReact is present in individuals with poststroke aphasia and apraxia and (b) SAS exposure enhances speech intelligibility. METHOD We remotely delivered startling, 105-dB white noise bursts (SAS) and quiet, non-SAS cues to 15 individuals with poststroke aphasia and apraxia during repetition of six words. We evaluated average word intensity, pitch, pitch trajectories, vowel formants F1 and F2 (first and second formants), phonemic error rate, and percent incidence of each SAS versus non-SAS-elicited phoneme produced under each cue type. RESULTS For SAS trials compared to non-SAS, speech intensity increased (∆ + 0.6 dB), speech pitch increased (∆ + 22.7 Hz), and formants (F1 and F2) changed, resulting in a smaller vowel space after SAS. SAS affected pitch trajectories for some, but not all, words. Non-SAS trials had more stops (∆ + 4.7 utterances) while SAS trials had more sustained phonemes (fricatives, glides, affricates, liquids; ∆ + 5.4 utterances). SAS trials had fewer distortion errors but no change in substitution errors or overall error rate compared to non-SAS trials. CONCLUSIONS We show that stroke-impaired speech is susceptible to StartReact, evidenced by decreased intelligibility due to altered formants, pitch trajectories, and articulation, including increased incidence of sounds that could not be produced without SAS. Future studies should examine the impact of SAS on voluntary speech intelligibility and clinical measures of aphasia and apraxia.
Collapse
Affiliation(s)
- Zoe Swann
- School of Life Sciences, Arizona State University, Tempe
| | - Ayoub Daliri
- College of Health Solutions, Arizona State University, Tempe
| | - Claire F Honeycutt
- School of Biological and Health Science Engineering, Arizona State University, Tempe
| |
Collapse
|
30
|
McInnes AN, Nguyen AT, Carroll TJ, Lipp OV, Marinovic W. Engagement of the contralateral limb can enhance the facilitation of motor output by loud acoustic stimuli. J Neurophysiol 2022; 127:840-855. [PMID: 35264005 DOI: 10.1152/jn.00235.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
When intense sound is presented during light muscle contraction, inhibition of the corticomotoneuronal pathway is observed. During action preparation, this effect is reversed, with sound resulting in excitation of the corticomotoneuronal pathway. We investigated how combined maintenance of a muscle contraction during preparation for a ballistic action impacts the magnitude of the facilitation of motor output by a loud acoustic stimulus (LAS) - a phenomenon known as the StartReact effect. Participants executed ballistic wrist flexion movements and a LAS was presented simultaneously with the imperative signal in a subset of trials. We examined whether the force level or muscle used to maintain a contraction during preparation for the ballistic response impacted reaction time and/or the force of movements triggered by the LAS. These contractions were sustained either ipsilaterally or contralaterally to the ballistic response. The magnitude of facilitation by the LAS was greatest when low force flexion contractions were maintained in the limb contralateral to the ballistic response during preparation. There was little change in facilitation when contractions recruited the contralateral extensor muscle, or when they were sustained in the same limb that executed the ballistic response. We conclude that a larger network of neurons which may be engaged by a contralateral sustained contraction prior to initiation may be recruited by the LAS, further contributing to the motor output of the response. These findings may be particularly applicable in stroke rehabilitation where engagement of the contralesional side may increase the benefits of a LAS to the functional recovery of movement.
Collapse
Affiliation(s)
- Aaron N McInnes
- School of Population Health, Discipline of Psychology, Curtin University, Perth, Australia.,Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States
| | - An T Nguyen
- School of Population Health, Discipline of Psychology, Curtin University, Perth, Australia
| | - Timothy John Carroll
- School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Ottmar V Lipp
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Welber Marinovic
- School of Population Health, Discipline of Psychology, Curtin University, Perth, Australia
| |
Collapse
|
31
|
DeLuca M, Low D, Kumari V, Parton A, Davis J, Mohagheghi AA. A Systematic Review with Meta-analysis of the StartReact Effect on Motor Responses in Stroke Survivors and Healthy Individuals. J Neurophysiol 2022; 127:938-945. [PMID: 35235444 DOI: 10.1152/jn.00392.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION Control of limb movements may be impaired after stroke due to the loss of connectivity between the cerebral cortex and spinal cord. A notion to improve motor function in stroke survivors is to employ alternate motor fibers, such as the reticulospinal tract (RST), which originate from the brainstem and terminate at different levels of spinal cord. One way of targeting the RST is to use a "StartReact" protocol to foster premature release of a pre-planned movement in response to a startling stimulus. Our aim was to find support for the preservation of such StartReact effect in stroke survivors. METHODS We conducted a systematic review with meta-analysis of literature published in English up to September 2020, to explore differences in motor responses to startling stimuli in StartReact effects. Protocol of the study was registered (PROSPERO Registration No: CRD42020191581). PubMed, Google Scholar, Web of Science, PsycINFO, and Science Direct were searched for relevant literature. The meta-analysis contained six studies involving a total of 151 stroke and healthy participants. Muscle onset latency data was extracted from the qualifying studies and compared using RevMan. RESULTS AND CONCLUSIONS StartReact effect was present in both stroke and healthy groups, represented by shortened muscle onset latency when startling stimulus was present. There was considerable heterogeneity of the outcome measures, which was attributed to the range of motor impairments among stroke survivors and methodologies employed. Our findings support notion of preservation of preprogramming ability and suitability of RST and StartReact effect for motor rehabilitation following stroke.
Collapse
Affiliation(s)
- Mara DeLuca
- Department of Life Sciences, Brunel University, London, United Kingdom
| | - Daniel Low
- Department of Life Sciences, Brunel University, London, United Kingdom
| | - Veena Kumari
- Department of Life Sciences, Brunel University, London, United Kingdom
| | - Andrew Parton
- Department of Life Sciences, Brunel University, London, United Kingdom
| | - Jessica Davis
- Department of Life Sciences, Brunel University, London, United Kingdom
| | - Amir A Mohagheghi
- Department of Life Sciences, Brunel University, London, United Kingdom
| |
Collapse
|
32
|
Xia N, He C, Li YA, Gu M, Chen Z, Wei X, Xu J, Huang X. Startle Increases the Incidence of Anticipatory Muscle Activations but Does Not Change the Task-Specific Muscle Onset for Patients After Subacute Stroke. Front Neurol 2022; 12:789176. [PMID: 35095734 PMCID: PMC8793907 DOI: 10.3389/fneur.2021.789176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Objectives: To demonstrate the task-specificities of anticipatory muscle activations (AMAs) among different forward-reaching tasks and to explore the StartleReact Effect (SE) on AMAs in occurrence proportions, AMA onset latency or amplitude within these tasks in both healthy and stroke population. Methods: Ten healthy and ten stroke subjects were recruited. Participants were asked to complete the three forward-reaching tasks (reaching, reaching to grasp a ball or cup) on the left and right hand, respectively, with two different starting signals (warning-Go, 80 dB and warning-startle, 114 dB). The surface electromyography of anterior deltoid (AD), flexor carpi radialis (FCR), and extensor carpi radialis (ECR) on the moving side was recorded together with signals from bilateral sternocleidomastoid muscles (SCM), lower trapezius (LT), latissimus dorsi (LD), and tibialis anterior (TA). Proportions of valid trials, the incidence of SE, AMA incidence of each muscle, and their onset latency and amplitude were involved in analyses. The differences of these variables across different move sides (healthy, non-paretic, and paretic), normal or startle conditions, and the three tasks were explored. The ECR AMA onset was selected to further explore the SE on the incidence of AMAs. Results: Comparisons between move sides revealed a widespread AMA dysfunction in subacute stroke survivors, which was manifested as lower AMA onset incidence, changed onset latency, and smaller amplitude of AMAs in bilateral muscles. However, a significant effect of different tasks was only observed in AMA onset latency of muscle ECR (F = 3.56, p = 0.03, η 2 p = 0.011), but the significance disappeared in the subsequent analysis of the stroke subjects only (p > 0.05). Moreover, the following post-hoc comparison indicated significant early AMA onsets of ECR in task cup when comparing with reach (p < 0.01). For different stimuli conditions, a significance was only revealed on shortened premotor reaction time under startle for all participants (F = 60.68, p < 0.001, η p 2 = 0.056). Furthermore, stroke survivors had a significantly lower incidence of SE than healthy subjects under startle (p < 0.01). But all performed a higher incidence of ECR AMA onset (p < 0.05) than with normal signal. In addition, the incidence of ECR AMAs of both non-paretic and paretic sides could be increased significantly via startle (p ≤ 0.02). Conclusions: Healthy people have task-specific AMAs of muscle ECR when they perform forward-reaching tasks with different hand manipulations. However, this task-specific adjustment is lost in subacute stroke survivors. SE can improve the incidence of AMAs for all subjects in the forward-reaching tasks involving precision manipulations, but not change AMA onset latency and amplitude.
Collapse
Affiliation(s)
- Nan Xia
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,World Health Organization Collaborating Centre for Training and Research in Rehabilitation, Wuhan, China
| | - Chang He
- State Key Lab of Digital Manufacturing Equipment and Technology, Institute of Rehabilitation and Medical Robotics, Huazhong University of Science and Technology, Wuhan, China
| | - Yang-An Li
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,World Health Organization Collaborating Centre for Training and Research in Rehabilitation, Wuhan, China
| | - Minghui Gu
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,World Health Organization Collaborating Centre for Training and Research in Rehabilitation, Wuhan, China
| | - Zejian Chen
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,World Health Organization Collaborating Centre for Training and Research in Rehabilitation, Wuhan, China
| | - Xiupan Wei
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,World Health Organization Collaborating Centre for Training and Research in Rehabilitation, Wuhan, China
| | - Jiang Xu
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,World Health Organization Collaborating Centre for Training and Research in Rehabilitation, Wuhan, China
| | - Xiaolin Huang
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,World Health Organization Collaborating Centre for Training and Research in Rehabilitation, Wuhan, China
| |
Collapse
|
33
|
Rangarajan V, Schreiber JJ, Barragan B, Schaefer SY, Honeycutt CF. Delays in the Reticulospinal System Are Associated With a Reduced Capacity to Learn a Simulated Feeding Task in Older Adults. Front Neural Circuits 2022; 15:681706. [PMID: 35153677 PMCID: PMC8829385 DOI: 10.3389/fncir.2021.681706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 12/15/2021] [Indexed: 11/13/2022] Open
Abstract
Learning declines with age. Recent evidence indicates that the brainstem may play an important role in learning and motor skill acquisition. Our objective was to determine if delays in the reticular formation, measured via the startle reflex, correspond to age-related deficits in learning and retention. We hypothesized that delays in the startle reflex would be linearly correlated to learning and retention deficits in older adults. To determine if associations were unique to the reticulospinal system, we also evaluated corticospinal contributions with transcranial magnetic stimulation. Our results showed a linear relationship between startle onset latency and percent learning and retention but no relationship between active or passive motor-evoked potential onsets or peak-to-peak amplitude. These results lay the foundation for further study to evaluate if (1) the reticular formation is a subcortical facilitator of skill acquisition and (2) processing delays in the reticular formation contribute to age-related learning deficits.
Collapse
|
34
|
Zhang J, Wang M, Wei B, Shi J, Yu T. Research Progress in the Study of Startle Reflex to Disease States. Neuropsychiatr Dis Treat 2022; 18:427-435. [PMID: 35237036 PMCID: PMC8884703 DOI: 10.2147/ndt.s351667] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/06/2022] [Indexed: 11/23/2022] Open
Abstract
The startle reflex is considered a primitive physiological reflex, a defense response that occurs in the organism when the body feels sudden danger and uneasiness, characterized by habituation and sensitization effects, and studies on the startle reflex often deal with pre-pulse inhibition (PPI) and sensorimotor gating. Under physiological conditions, the startle reflex is stable at a certain level, and when the organism is in a pathological state, such as stroke, spinal cord injury, schizophrenia, and other diseases, the reflex undergoes a series of changes, making it closely related to the progress of disease. This paper summarizes the startle reflex in physiological and pathological states by reviewing the databases of PubMed, Web of Science, Cochrane Library, EMBASE, China Biology Medicine, China National Knowledge Infrastructure, VIP Database for Chinese Technical Periodical, Wanfang Data, and identifies and analyzes the startle reflex and excessive startle reaction disorder.
Collapse
Affiliation(s)
- Junfeng Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300380, People's Republic of China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300380, People's Republic of China
| | - Meng Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300380, People's Republic of China
| | - Baoyu Wei
- State Key Laboratory of Component-based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Jiangwei Shi
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300380, People's Republic of China
| | - Tao Yu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300380, People's Republic of China
| |
Collapse
|
35
|
Ebrahimzadeh M, Ansari NN, Abdollahi I, Akhbari B, Monjezi S. Effects of Dry Needling on Connectivity of Corticospinal Tract, Spasticity, and Function of Upper Extremity in People with Stroke: Study Protocol for a Randomized Controlled Trial. J Acupunct Meridian Stud 2021; 14:238-243. [DOI: 10.51507/j.jams.2021.14.6.238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 08/16/2021] [Accepted: 09/05/2021] [Indexed: 02/05/2023] Open
Affiliation(s)
- Masoome Ebrahimzadeh
- Department of Physiotherapy, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Noureddin Nakhostin Ansari
- Department of Physiotherapy, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for War-affected People, Tehran University of Medical Sciences, Tehran, Iran
| | - Iraj Abdollahi
- Department of Physiotherapy, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Behnam Akhbari
- Department of Physiotherapy, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Saeideh Monjezi
- Musculoskeletal Rehabilitation Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
36
|
Hammerbeck U, Tyson SF, Samraj P, Hollands K, Krakauer JW, Rothwell J. The Strength of the Corticospinal Tract Not the Reticulospinal Tract Determines Upper-Limb Impairment Level and Capacity for Skill-Acquisition in the Sub-Acute Post-Stroke Period. Neurorehabil Neural Repair 2021; 35:812-822. [PMID: 34219510 PMCID: PMC8414832 DOI: 10.1177/15459683211028243] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background. Upper-limb impairment in patients with
chronic stroke appears to be partly attributable to an
upregulated reticulospinal tract (RST). Here, we assessed whether the impact of
corticospinal (CST) and RST connectivity on motor impairment and
skill-acquisition differs in sub-acute stroke, using
transcranial magnetic stimulation (TMS)–based proxy measures.
Methods. Thirty-eight stroke survivors were randomized to
either reach training 3-6 weeks post-stroke (plus usual care) or usual care
only. At 3, 6 and 12 weeks post-stroke, we measured ipsilesional and
contralesional cortical connectivity (surrogates for CST and RST connectivity,
respectively) to weak pre-activated triceps and deltoid muscles with single
pulse TMS, accuracy of planar reaching movements, muscle strength (Motricity
Index) and synergies (Fugl-Meyer upper-limb score). Results.
Strength and presence of synergies were associated with ipsilesional (CST)
connectivity to the paretic upper-limb at 3 and 12 weeks. Training led to planar
reaching skill beyond that expected from spontaneous recovery and occurred for
both weak and strong ipsilesional tract integrity. Reaching ability, presence of
synergies, skill-acquisition and strength were not affected by either the
presence or absence of contralesional (RST) connectivity.
Conclusion. The degree of ipsilesional CST connectivity is
the main determinant of proximal dexterity, upper-limb strength and synergy
expression in sub-acute stroke. In contrast, there is no evidence for enhanced
contralesional RST connectivity contributing to any of these components of
impairment. In the sub-acute post-stroke period, the balance of activity between
CST and RST may matter more for the paretic phenotype than RST upregulation per
se.
Collapse
Affiliation(s)
- Ulrike Hammerbeck
- Geoffrey Jefferson Brain Research Centre, 158986Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Healthy, 5292University of Manchester, Manchester, UK.,Department of Health Professions, Faculty of Health, Psychology and Social Care, 5289Manchester Metropolitan University, Manchester, UK
| | - Sarah F Tyson
- Department of Health Professions, Faculty of Health, Psychology and Social Care, 5289Manchester Metropolitan University, Manchester, UK
| | - Prawin Samraj
- Department of Medical Physics, Northern Care Alliance NHS Trust, Salford, UK
| | - Kristen Hollands
- Department of Health Sciences, 105168University of Salford, Salford, UK
| | - John W Krakauer
- Departments of Neurology, Neuroscience and Physical Medicine & Rehabilitation, 1500The John Hopkins University School of Medicine, Baltimore, MD, USA.,The Santa Fe Institute, Santa Fe, NM, USA
| | - John Rothwell
- Institute of Neurology, University College London, London, UK
| |
Collapse
|
37
|
Roby-Brami A, Jarrassé N, Parry R. Impairment and Compensation in Dexterous Upper-Limb Function After Stroke. From the Direct Consequences of Pyramidal Tract Lesions to Behavioral Involvement of Both Upper-Limbs in Daily Activities. Front Hum Neurosci 2021; 15:662006. [PMID: 34234659 PMCID: PMC8255798 DOI: 10.3389/fnhum.2021.662006] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/27/2021] [Indexed: 01/02/2023] Open
Abstract
Impairments in dexterous upper limb function are a significant cause of disability following stroke. While the physiological basis of movement deficits consequent to a lesion in the pyramidal tract is well demonstrated, specific mechanisms contributing to optimal recovery are less apparent. Various upper limb interventions (motor learning methods, neurostimulation techniques, robotics, virtual reality, and serious games) are associated with improvements in motor performance, but many patients continue to experience significant limitations with object handling in everyday activities. Exactly how we go about consolidating adaptive motor behaviors through the rehabilitation process thus remains a considerable challenge. An important part of this problem is the ability to successfully distinguish the extent to which a given gesture is determined by the neuromotor impairment and that which is determined by a compensatory mechanism. This question is particularly complicated in tasks involving manual dexterity where prehensile movements are contingent upon the task (individual digit movement, grasping, and manipulation…) and its objective (placing, two step actions…), as well as personal factors (motivation, acquired skills, and life habits…) and contextual cues related to the environment (presence of tools or assistive devices…). Presently, there remains a lack of integrative studies which differentiate processes related to structural changes associated with the neurological lesion and those related to behavioral change in response to situational constraints. In this text, we shall question the link between impairments, motor strategies and individual performance in object handling tasks. This scoping review will be based on clinical studies, and discussed in relation to more general findings about hand and upper limb function (manipulation of objects, tool use in daily life activity). We shall discuss how further quantitative studies on human manipulation in ecological contexts may provide greater insight into compensatory motor behavior in patients with a neurological impairment of dexterous upper-limb function.
Collapse
Affiliation(s)
- Agnès Roby-Brami
- ISIR Institute of Intelligent Systems and Robotics, AGATHE Team, CNRS UMR 7222, INSERM U 1150, Sorbonne University, Paris, France
| | - Nathanaël Jarrassé
- ISIR Institute of Intelligent Systems and Robotics, AGATHE Team, CNRS UMR 7222, INSERM U 1150, Sorbonne University, Paris, France
| | - Ross Parry
- ISIR Institute of Intelligent Systems and Robotics, AGATHE Team, CNRS UMR 7222, INSERM U 1150, Sorbonne University, Paris, France.,LINP2-AAPS Laboratoire Interdisciplinaire en Neurosciences, Physiologie et Psychologie: Activité Physique, Santé et Apprentissages, UPL, Paris Nanterre University, Nanterre, France
| |
Collapse
|
38
|
Mattos DJS, Rutlin J, Hong X, Zinn K, Shimony JS, Carter AR. White matter integrity of contralesional and transcallosal tracts may predict response to upper limb task-specific training in chronic stroke. NEUROIMAGE-CLINICAL 2021; 31:102710. [PMID: 34126348 PMCID: PMC8209270 DOI: 10.1016/j.nicl.2021.102710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 11/19/2022]
Abstract
Increase in upper limb function post task specific training in chronic stroke. Motor improvements were not accompanied by changes in white matter integrity. Integrity in contralesional fibers predicted larger motor recovery in Responders. Non-responders had more severe damage of transcallosal fibers than Responders.
Objective To investigate white matter (WM) plasticity induced by intensive upper limb (UL) task specific training (TST) in chronic stroke. Methods Diffusion tensor imaging data and UL function measured by the Action Research Arm Test (ARAT) were collected in 30 individuals with chronic stroke prior to and after intensive TST. ANOVAs tested the effects of training on the entire sample and on the Responders [ΔARAT ≥ 5.8, N = 13] and Non-Responders [ΔARAT < 5.8, N = 17] groups. Baseline fractional anisotropy (FA) values were correlated with ARATpost TST controlling for baseline ARAT and age to identify voxels predictive of response to TST. Results. While ARAT scores increased following training (p < 0.0001), FA changes within major WM tracts were not significant at p < 0.05. In the Responder group, larger baseline FA of both contralesional (CL) and transcallosal tracts predicted larger ARAT scores post-TST. Subcortical lesions and more severe damage to transcallosal tracts were more pronounced in the Non-Responder than in the Responder group. Conclusions The motor improvements post-TST in the Responder group may reflect the engagement of interhemispheric processes not available to the Non-Responder group. Future studies should clarify differences in the role of CL and transcallosal pathways as biomarkers of recovery in response to training for individuals with cortical and subcortical stroke. This knowledge may help to identify sources of heterogeneity in stroke recovery, which is necessary for the development of customized rehabilitation interventions.
Collapse
Affiliation(s)
- Daniela J S Mattos
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | - Jerrel Rutlin
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | - Xin Hong
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | - Kristina Zinn
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Joshua S Shimony
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | - Alexandre R Carter
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO 63110 USA.
| |
Collapse
|
39
|
Maitland S, Baker SN. Ipsilateral Motor Evoked Potentials as a Measure of the Reticulospinal Tract in Age-Related Strength Changes. Front Aging Neurosci 2021; 13:612352. [PMID: 33746734 PMCID: PMC7966512 DOI: 10.3389/fnagi.2021.612352] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/11/2021] [Indexed: 12/31/2022] Open
Abstract
Background: The reticulospinal tract (RST) is essential for balance, posture, and strength, all functions which falter with age. We hypothesized that age-related strength reductions might relate to differential changes in corticospinal and reticulospinal connectivity. Methods: We divided 83 participants (age 20-84) into age groups <50 (n = 29) and ≥50 (n = 54) years; five of which had probable sarcopenia. Transcranial Magnetic Stimulation (TMS) was applied to the left cortex, inducing motor evoked potentials (MEPs) in the biceps muscles bilaterally. Contralateral (right, cMEPs) and ipsilateral (left, iMEPs) MEPs are carried by mainly corticospinal and reticulospinal pathways respectively; the iMEP/cMEP amplitude ratio (ICAR) therefore measured the relative importance of the two descending tracts. Grip strength was measured with a dynamometer and normalized for age and sex. Results: We found valid iMEPs in 74 individuals (n = 44 aged ≥50, n = 29 < 50). Younger adults had a significant negative correlation between normalized grip strength and ICAR (r = -0.37, p = 0.045); surprisingly, in older adults, the correlation was also significant, but positive (r = 0.43, p = 0.0037). Discussion: Older individuals who maintain or strengthen their RST are stronger than their peers. We speculate that reduced RST connectivity could predict those at risk of age-related muscle weakness; interventions that reinforce the RST could be a candidate for treatment or prevention of sarcopenia.
Collapse
Affiliation(s)
- Stuart Maitland
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Stuart N Baker
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
40
|
Nito M, Katagiri N, Yoshida K, Koseki T, Kudo D, Nanba S, Tanabe S, Yamaguchi T. Repetitive Peripheral Magnetic Stimulation of Wrist Extensors Enhances Cortical Excitability and Motor Performance in Healthy Individuals. Front Neurosci 2021; 15:632716. [PMID: 33679314 PMCID: PMC7930341 DOI: 10.3389/fnins.2021.632716] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/26/2021] [Indexed: 11/13/2022] Open
Abstract
Repetitive peripheral magnetic stimulation (rPMS) may improve motor function following central nervous system lesions, but the optimal parameters of rPMS to induce neural plasticity and mechanisms underlying its action remain unclear. We examined the effects of rPMS over wrist extensor muscles on neural plasticity and motor performance in 26 healthy volunteers. In separate experiments, the effects of rPMS on motor evoked potentials (MEPs), short-interval intracortical inhibition (SICI), intracortical facilitation (ICF), direct motor response (M-wave), Hoffmann-reflex, and ballistic wrist extension movements were assessed before and after rPMS. First, to examine the effects of stimulus frequency, rPMS was applied at 50, 25, and 10 Hz by setting a fixed total number of stimuli. A significant increase in MEPs of wrist extensors was observed following 50 and 25 Hz rPMS, but not 10 Hz rPMS. Next, we examined the time required to induce plasticity by increasing the number of stimuli, and found that at least 15 min of 50 and 25 Hz rPMS was required. Based on these parameters, lasting effects were evaluated following 15 min of 50 or 25 Hz rPMS. A significant increase in MEP was observed up to 60 min following 50 and 25 Hz rPMS; similarly, an attenuation of SICI and enhancement of ICF were also observed. The maximal M-wave and Hoffmann-reflex did not change, suggesting that the increase in MEP was due to plastic changes at the motor cortex. This was accompanied by increasing force and electromyograms during wrist ballistic extension movements following 50 and 25 Hz rPMS. These findings suggest that 15 min of rPMS with 25 Hz or more induces an increase in cortical excitability of the relevant area rather than altering the excitability of spinal circuits, and has the potential to improve motor output.
Collapse
Affiliation(s)
- Mitsuhiro Nito
- Department of Anatomy and Structural Science, Yamagata University School of Medicine, Yamagata, Japan
| | - Natsuki Katagiri
- Graduate School of Health Sciences, Yamagata Prefectural University of Health Sciences, Yamagata, Japan
| | - Kaito Yoshida
- Graduate School of Health Sciences, Yamagata Prefectural University of Health Sciences, Yamagata, Japan
| | - Tadaki Koseki
- Graduate School of Health Sciences, Yamagata Prefectural University of Health Sciences, Yamagata, Japan
| | - Daisuke Kudo
- Graduate School of Health Sciences, Yamagata Prefectural University of Health Sciences, Yamagata, Japan
| | - Shigehiro Nanba
- Graduate School of Health Sciences, Yamagata Prefectural University of Health Sciences, Yamagata, Japan
| | - Shigeo Tanabe
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Toyoake-shi, Japan
| | - Tomofumi Yamaguchi
- Graduate School of Health Sciences, Yamagata Prefectural University of Health Sciences, Yamagata, Japan.,Department of Physical Therapy, Faculty of Health Science, Juntendo University, Bunkyo-ku, Japan
| |
Collapse
|
41
|
Germann M, Baker SN. Evidence for Subcortical Plasticity after Paired Stimulation from a Wearable Device. J Neurosci 2021; 41:1418-1428. [PMID: 33441436 PMCID: PMC7896019 DOI: 10.1523/jneurosci.1554-20.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/15/2020] [Accepted: 10/21/2020] [Indexed: 11/21/2022] Open
Abstract
Existing non-invasive stimulation protocols can generate plasticity in the motor cortex and its corticospinal projections; techniques for inducing plasticity in subcortical circuits and alternative descending pathways such as the reticulospinal tract (RST) are less well developed. One possible approach developed by this laboratory pairs electrical muscle stimulation with auditory clicks, using a wearable device to deliver stimuli during normal daily activities. In this study, we applied a variety of electrophysiological assessments to male and female healthy human volunteers during a morning and evening laboratory visit. In the intervening time (∼6 h), subjects wore the stimulation device, receiving three different protocols, in which clicks and stimulation of the biceps muscle were paired at either low or high rate, or delivered at random. Paired stimulation: (1) increased the extent of reaction time shortening by a loud sound (the StartReact effect); (2) decreased the suppression of responses to transcranial magnetic brain stimulation (TMS) following a loud sound; (3) enhanced muscle responses elicited by a TMS coil oriented to induce anterior-posterior (AP) current, but not posterior-anterior (PA) current, in the brain. These measurements have all been suggested to be sensitive to subcortical, possibly reticulospinal, activity. Changes were similar for either of the two paired stimulus rates tested, but absent after unpaired (control) stimulation. Taken together, these results suggest that pairing clicks and muscle stimulation for long periods does indeed induce plasticity in subcortical systems such as the RST.SIGNIFICANCE STATEMENT Subcortical systems such as the reticulospinal tract (RST) are important motor pathways, which can make a significant contribution to functional recovery after cortical damage such as stroke. Here, we measure changes produced after a novel non-invasive stimulation protocol, which uses a wearable device to stimulate for extended periods. We observed changes in electrophysiological measurements consistent with the induction of subcortical plasticity. This protocol may prove an important tool for enhancing motor rehabilitation, in situations where insufficient cortical tissue survives to be a plausible substrate for recovery of function.
Collapse
Affiliation(s)
- Maria Germann
- Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Stuart N Baker
- Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| |
Collapse
|
42
|
Extensive Cortical Convergence to Primate Reticulospinal Pathways. J Neurosci 2021; 41:1005-1018. [PMID: 33268548 PMCID: PMC7880280 DOI: 10.1523/jneurosci.1379-20.2020] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 11/30/2022] Open
Abstract
Early evolution of the motor cortex included development of connections to brainstem reticulospinal neurons; these projections persist in primates. In this study, we examined the organization of corticoreticular connections in five macaque monkeys (one male) using both intracellular and extracellular recordings from reticular formation neurons, including identified reticulospinal cells. Synaptic responses to stimulation of different parts of primary motor cortex (M1) and supplementary motor area (SMA) bilaterally were assessed. Widespread short latency excitation, compatible with monosynaptic transmission over fast-conducting pathways, was observed, as well as longer latency responses likely reflecting a mixture of slower monosynaptic and oligosynaptic pathways. There was a high degree of convergence: 56% of reticulospinal cells with input from M1 received projections from M1 in both hemispheres; for SMA, the equivalent figure was even higher (70%). Of reticulospinal neurons with input from the cortex, 78% received projections from both M1 and SMA (regardless of hemisphere); 83% of reticulospinal cells with input from M1 received projections from more than one of the tested M1 sites. This convergence at the single cell level allows reticulospinal neurons to integrate information from across the motor areas of the cortex, taking account of the bilateral motor context. Reticulospinal connections are known to strengthen following damage to the corticospinal tract, such as after stroke, partially contributing to functional recovery. Extensive corticoreticular convergence provides redundancy of control, which may allow the cortex to continue to exploit this descending pathway even after damage to one area.SIGNIFICANCE STATEMENT The reticulospinal tract (RST) provides a parallel pathway for motor control in primates, alongside the more sophisticated corticospinal system. We found extensive convergent inputs to primate reticulospinal cells from primary and supplementary motor cortex bilaterally. These redundant connections could maintain transmission of voluntary commands to the spinal cord after damage (e.g., after stroke or spinal cord injury), possibly assisting recovery of function.
Collapse
|
43
|
Rahimi M, Swann Z, Honeycutt CF. Does exposure to startle impact voluntary reaching movements in individuals with severe-to-moderate stroke? Exp Brain Res 2021; 239:745-753. [PMID: 33392695 PMCID: PMC7943527 DOI: 10.1007/s00221-020-06005-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 12/04/2020] [Indexed: 12/26/2022]
Abstract
When movements of individuals with stroke (iwS) are elicited by startling acoustic stimulus (SAS), reaching movements are faster, further, and directed away from the body. However, these startle-evoked movements also elicit task-inappropriate flexor activity, raising concerns that chronic exposure to startle might also induce heightened flexor activity during voluntarily elicited movement. The objective of this study is to evaluate the impact of startle exposure on voluntary movements during point-to-point reaching in individuals with moderate and severe stroke. We hypothesize that startle exposure will increase task-inappropriate activity in flexor muscles, which will be associated with worse voluntarily initiated reaching performance (e.g. decreased distance, displacement, and final accuracy). Eleven individuals with moderate-to-severe stroke (UEFM = 8–41/66 and MAS = 0–4/4) performed voluntary point-to-point reaching with 1/3 of trials elicited by an SAS. We used electromyography to measure activity in brachioradialis (BR), biceps (BIC), triceps lateral head (TRI), pectoralis (PEC), anterior deltoid (AD), and posterior deltoid (PD). Conversely to our hypothesis, exposure to startle did not increase abnormal flexion but rather antagonist activity in the elbow flexors and shoulder horizontal adductors decreased, suggesting that abnormal flexor/extensor co-contraction was reduced. This reduction of flexion led to increased reaching distance (18.2% farther), movement onset (8.6% faster), and final accuracy (16.1% more accurate) by the end of the session. This study offers the first evidence that exposure to startle in iwS does not negatively impact voluntary movement; moreover, exposure may improve volitionally activated reaching movements by decreasing abnormal flexion activity.
Collapse
Affiliation(s)
- Marziye Rahimi
- Ira A. Fulton Schools of Engineering, Arizona State University, 699 S Mill Ave, Tempe, AZ, 85281, USA. .,Arizona State University, Mailcode 9709, 611 E Orange St, Tempe, AZ, 85281, USA.
| | - Zoe Swann
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ, 85281, USA
| | - Claire F Honeycutt
- School of Biological and Health Science Engineering, Arizona State University, 501 E Tyler Mall, Tempe, AZ, 85287, USA
| |
Collapse
|
44
|
Hortobágyi T, Granacher U, Fernandez-Del-Olmo M, Howatson G, Manca A, Deriu F, Taube W, Gruber M, Márquez G, Lundbye-Jensen J, Colomer-Poveda D. Functional relevance of resistance training-induced neuroplasticity in health and disease. Neurosci Biobehav Rev 2020; 122:79-91. [PMID: 33383071 DOI: 10.1016/j.neubiorev.2020.12.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 01/13/2023]
Abstract
Repetitive, monotonic, and effortful voluntary muscle contractions performed for just a few weeks, i.e., resistance training, can substantially increase maximal voluntary force in the practiced task and can also increase gross motor performance. The increase in motor performance is often accompanied by neuroplastic adaptations in the central nervous system. While historical data assigned functional relevance to such adaptations induced by resistance training, this claim has not yet been systematically and critically examined in the context of motor performance across the lifespan in health and disease. A review of muscle activation, brain and peripheral nerve stimulation, and imaging data revealed that increases in motor performance and neuroplasticity tend to be uncoupled, making a mechanistic link between neuroplasticity and motor performance inconclusive. We recommend new approaches, including causal mediation analytical and hypothesis-driven models to substantiate the functional relevance of resistance training-induced neuroplasticity in the improvements of gross motor function across the lifespan in health and disease.
Collapse
Affiliation(s)
- Tibor Hortobágyi
- Center for Human Movement Sciences, University of Groningen, University Medical CenterGroningen, Groningen, Netherlands.
| | - Urs Granacher
- Division of Training and Movement Sciences, Research Focus Cognition Sciences, University of Potsdam, Potsdam, Germany
| | - Miguel Fernandez-Del-Olmo
- Area of Sport Sciences, Faculty of Sports Sciences and Physical Education, Center for Sport Studies, King Juan Carlos University, Madrid, Spain
| | - Glyn Howatson
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle, UK; Water Research Group, North West University, Potchefstroom, South Africa
| | - Andrea Manca
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Franca Deriu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Wolfgang Taube
- Department of Neurosciences and Movement Sciences, University of Fribourg, Fribourg, Switzerland
| | - Markus Gruber
- Human Performance Research Centre, Department of Sport Science, University of Konstanz, Konstanz, Germany
| | - Gonzalo Márquez
- Department of Physical Education and Sport, Faculty of Sports Sciences and Physical Education, University of A Coruña, A Coruña, Spain
| | - Jesper Lundbye-Jensen
- Movement & Neuroscience, Department of Nutrition, Exercise & Sports Department of Neuroscience, University of Copenhagenk, Faculty of Health Science, Universidad Isabel I, Burgos, Spain
| | | |
Collapse
|
45
|
Zoghi M, Hafezi P, Amatya B, Khan F, Galea MP. Intracortical Circuits in the Contralesional Primary Motor Cortex in Patients With Chronic Stroke After Botulinum Toxin Type A Injection: Case Studies. Front Hum Neurosci 2020; 14:342. [PMID: 33100987 PMCID: PMC7497670 DOI: 10.3389/fnhum.2020.00342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/03/2020] [Indexed: 11/22/2022] Open
Abstract
Spasticity and motor recovery are both related to neural plasticity after stroke. A balance of activity in the primary motor cortex (M1) in both hemispheres is essential for functional recovery. In this study, we assessed the intracortical inhibitory and facilitatory circuits in the contralesional M1 area in four patients with severe upper limb spasticity after chronic stroke and treated with botulinum toxin-A (BoNT-A) injection and 12 weeks of upper limb rehabilitation. There was little to no change in the level of spasticity post-injection, and only one participant experienced a small improvement in arm function. All reported improvements in quality of life. However, the levels of intracortical inhibition and facilitation in the contralesional hemisphere were different at baseline for all four participants, and there was no clear pattern in the response to the intervention. Further investigation is needed to understand how BoNT-A injections affect inhibitory and facilitatory circuits in the contralesional hemisphere, the severity of spasticity, and functional improvement.
Collapse
Affiliation(s)
- Maryam Zoghi
- Department of Physiotherapy, Podiatry, Prosthetics and Orthotics, La Trobe University, Melbourne, VIC, Australia
| | | | - Bhasker Amatya
- The Royal Melbourne Hospital, Melbourne, VIC, Australia.,University of Melbourne, Melbourne, VIC, Australia
| | - Fary Khan
- The Royal Melbourne Hospital, Melbourne, VIC, Australia.,University of Melbourne, Melbourne, VIC, Australia
| | - Mary Pauline Galea
- The Royal Melbourne Hospital, Melbourne, VIC, Australia.,University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
46
|
Awad LN, Lewek MD, Kesar TM, Franz JR, Bowden MG. These legs were made for propulsion: advancing the diagnosis and treatment of post-stroke propulsion deficits. J Neuroeng Rehabil 2020; 17:139. [PMID: 33087137 PMCID: PMC7579929 DOI: 10.1186/s12984-020-00747-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 08/19/2020] [Indexed: 12/29/2022] Open
Abstract
Advances in medical diagnosis and treatment have facilitated the emergence of precision medicine. In contrast, locomotor rehabilitation for individuals with acquired neuromotor injuries remains limited by the dearth of (i) diagnostic approaches that can identify the specific neuromuscular, biomechanical, and clinical deficits underlying impaired locomotion and (ii) evidence-based, targeted treatments. In particular, impaired propulsion by the paretic limb is a major contributor to walking-related disability after stroke; however, few interventions have been able to target deficits in propulsion effectively and in a manner that reduces walking disability. Indeed, the weakness and impaired control that is characteristic of post-stroke hemiparesis leads to heterogeneous deficits that impair paretic propulsion and contribute to a slow, metabolically-expensive, and unstable gait. Current rehabilitation paradigms emphasize the rapid attainment of walking independence, not the restoration of normal propulsion function. Although walking independence is an important goal for stroke survivors, independence achieved via compensatory strategies may prevent the recovery of propulsion needed for the fast, economical, and stable gait that is characteristic of healthy bipedal locomotion. We posit that post-stroke rehabilitation should aim to promote independent walking, in part, through the acquisition of enhanced propulsion. In this expert review, we present the biomechanical and functional consequences of post-stroke propulsion deficits, review advances in our understanding of the nature of post-stroke propulsion impairment, and discuss emerging diagnostic and treatment approaches that have the potential to facilitate new rehabilitation paradigms targeting propulsion restoration.
Collapse
Affiliation(s)
- Louis N Awad
- College of Health and Rehabilitation Sciences: Sargent College, Boston University, Boston, MA, USA.
| | - Michael D Lewek
- Division of Physical Therapy, Department of Allied Health Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Trisha M Kesar
- Division of Physical Therapy, Emory University, Atlanta, GA, USA
| | - Jason R Franz
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
| | - Mark G Bowden
- Division of Physical Therapy, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
47
|
Senesh MR, Barragan K, Reinkensmeyer DJ. Rudimentary Dexterity Corresponds With Reduced Ability to Move in Synergy After Stroke: Evidence of Competition Between Corticoreticulospinal and Corticospinal Tracts? Neurorehabil Neural Repair 2020; 34:904-914. [PMID: 32830602 PMCID: PMC7572533 DOI: 10.1177/1545968320943582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE When a stroke damages the corticospinal tract (CST), it has been hypothesized that the motor system switches to using the corticoreticulospinal tract (CRST) resulting in abnormal arm synergies. Is use of these tracts mutually exclusive, or can the motor system spontaneously switch between them depending on the type of movement it wants to make? If the motor system can share control at will, then people with a rudimentary ability to make dexterous movements should be able to perform synergistic arm movements as well. METHODS We analyzed clinical assessments of 319 persons' abilities to perform "out-of-synergy" and "in-synergy" arm movements after chronic stroke using the Upper Extremity Fugl-Meyer (UEFM) scale. RESULTS We identified a moderate range of arm impairment (UEFM = ~30-40) where subjects had a rudimentary ability to make out-of-synergy (~23%-50% on the out-of-synergy score) and dexterous hand movements (~3-10 blocks on Box and Blocks Test). Below this range persons could perform in-synergy but not out-of-synergy or dexterous movements. In the moderate range, however, scoring better on out-of-synergy movements correlated with scoring worse on in-synergy movements (P = .001, r ≈ -0.6). CONCLUSION Rudimentary dexterity corresponded with reduced ability to move the arm in-synergy. This finding supports the idea that CST and CRST compete and has implications for rehabilitation therapy.
Collapse
|
48
|
Distinct Corticospinal and Reticulospinal Contributions to Voluntary Control of Elbow Flexor and Extensor Muscles in Humans with Tetraplegia. J Neurosci 2020; 40:8831-8841. [PMID: 32883710 DOI: 10.1523/jneurosci.1107-20.2020] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/20/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022] Open
Abstract
Humans with cervical spinal cord injury (SCI) often recover voluntary control of elbow flexors and, to a much lesser extent, elbow extensor muscles. The neural mechanisms underlying this asymmetrical recovery remain unknown. Anatomical and physiological evidence in animals and humans indicates that corticospinal and reticulospinal pathways differentially control elbow flexor and extensor motoneurons; therefore, it is possible that reorganization in these pathways contributes to the asymmetrical recovery of elbow muscles after SCI. To test this hypothesis, we examined motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation over the arm representation of the primary motor cortex, maximal voluntary contractions, the StartReact response (a shortening in reaction time evoked by a startling stimulus), and the effect of an acoustic startle cue on MEPs elicited by cervicomedullary stimulation (CMEPs) on biceps and triceps brachii in males and females with and without chronic cervical incomplete SCI. We found that SCI participants showed similar MEPs and maximal voluntary contractions in biceps but smaller responses in triceps compared with controls, suggesting reduced corticospinal inputs to elbow extensors. The StartReact and CMEP facilitation was larger in biceps but similar to controls in triceps, suggesting enhanced reticulospinal inputs to elbow flexors. These findings support the hypothesis that the recovery of biceps after cervical SCI results, at least in part, from increased reticulospinal inputs and that the lack of these extra inputs combined with the loss of corticospinal drive contribute to the pronounced weakness found in triceps.SIGNIFICANCE STATEMENT Although a number of individuals with cervical incomplete spinal cord injury show limited functional recovery of elbow extensors compared with elbow flexor muscles, to date, the neural mechanisms underlying this asymmetrical recovery remain unknown. Here, we provide for the first time evidence for increased reticulospinal inputs to biceps but not triceps brachii and loss of corticospinal drive to triceps brachii in humans with tetraplegia. We propose that this reorganization in descending control contributes to the asymmetrical recovery between elbow flexor and extensor muscles after cervical spinal cord injury.
Collapse
|
49
|
Andringa A, Meskers C, van de Port I, van Wegen E, Kwakkel G. Time Course of Wrist Hyper-Resistance in Relation to Upper Limb Motor Recovery Early Post Stroke. Neurorehabil Neural Repair 2020; 34:690-701. [PMID: 32508291 PMCID: PMC7502985 DOI: 10.1177/1545968320932135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Background. Patients with an upper limb motor impairment are likely to develop wrist hyper-resistance during the first months post stroke. The time course of wrist hyper-resistance in terms of neural and biomechanical components, and their interaction with motor recovery, is poorly understood. Objective. To investigate the time course of neural and biomechanical components of wrist hyper-resistance in relation to upper limb motor recovery in the first 6 months post stroke. Methods. Neural (NC), biomechanical elastic (EC), and viscous (VC) components of wrist hyper-resistance (NeuroFlexor device), and upper limb motor recovery (Fugl-Meyer upper extremity scale [FM-UE]), were assessed in 17 patients within 3 weeks and at 5, 12, and 26 weeks post stroke. Patients were stratified according to the presence of voluntary finger extension (VFE) at baseline. Time course of wrist hyper-resistance components and assumed interaction effects were analyzed using linear mixed models. Results. On average, patients without VFE at baseline (n = 8) showed a significant increase in NC, EC, and VC, and an increase in FM-UE from 13 to 26 points within the first 6 months post stroke. A significant increase in NC within 5 weeks preceded a significant increase in EC between weeks 12 and 26. Patients with VFE at baseline (n = 9) showed, on average, no significant increase in components from baseline to 6 months whereas FM-UE scores improved from 38 to 60 points. Conclusion. Our findings suggest that the development of neural and biomechanical wrist hyper-resistance components in patients with severe baseline motor deficits is determined by lack of spontaneous neurobiological recovery early post stroke.
Collapse
Affiliation(s)
- Aukje Andringa
- Department of Rehabilitation Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Carel Meskers
- Department of Rehabilitation Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, USA
| | | | - Erwin van Wegen
- Department of Rehabilitation Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Gert Kwakkel
- Department of Rehabilitation Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, USA.,Department of Neurorehabilitation, Amsterdam Rehabilitation Research Centre, Reade, Amsterdam, The Netherlands
| |
Collapse
|
50
|
Choudhury S, Singh R, Shobhana A, Sen D, Anand SS, Shubham S, Gangopadhyay S, Baker MR, Kumar H, Baker SN. A Novel Wearable Device for Motor Recovery of Hand Function in Chronic Stroke Survivors. Neurorehabil Neural Repair 2020; 34:600-608. [PMID: 32452275 PMCID: PMC8207486 DOI: 10.1177/1545968320926162] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background. In monkey, reticulospinal connections to hand and forearm muscles are spontaneously strengthened following corticospinal lesions, likely contributing to recovery of function. In healthy humans, pairing auditory clicks with electrical stimulation of a muscle induces plastic changes in motor pathways (probably including the reticulospinal tract), with features reminiscent of spike-timing dependent plasticity. In this study, we tested whether pairing clicks with muscle stimulation could improve hand function in chronic stroke survivors. Methods. Clicks were delivered via a miniature earpiece; transcutaneous electrical stimuli at motor threshold targeted forearm extensor muscles. A wearable electronic device (WD) allowed patients to receive stimulation at home while performing normal daily activities. A total of 95 patients >6 months poststroke were randomized to 3 groups: WD with shock paired 12 ms before click; WD with clicks and shocks delivered independently; standard care. Those allocated to the device used it for at least 4 h/d, every day for 4 weeks. Upper-limb function was assessed at baseline and weeks 2, 4, and 8 using the Action Research Arm Test (ARAT), which has 4 subdomains (Grasp, Grip, Pinch, and Gross). Results. Severity across the 3 groups was comparable at baseline. Only the paired stimulation group showed significant improvement in total ARAT (median baseline: 7.5; week 8: 11.5; P = .019) and the Grasp subscore (median baseline: 1; week 8: 4; P = .004). Conclusion. A wearable device delivering paired clicks and shocks over 4 weeks can produce a small but significant improvement in upper-limb function in stroke survivors.
Collapse
Affiliation(s)
| | - Ravi Singh
- Institute of Neurosciences, Kolkata, West Bengal, India
| | - A Shobhana
- Institute of Neurosciences, Kolkata, West Bengal, India
| | - Dwaipayan Sen
- Institute of Neurosciences, Kolkata, West Bengal, India
| | | | | | | | - Mark R Baker
- Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK.,Royal Victoria Infirmary, Newcastle upon Tyne, Tyne and Wear, UK
| | | | - Stuart N Baker
- Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
| |
Collapse
|