1
|
Mateos DM, Perez Velazquez JL. Perspective on equal and cross-frequency neural coupling: Integration and segregation of the function of brain networks. Phys Rev E 2025; 111:014408. [PMID: 39972725 DOI: 10.1103/physreve.111.014408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 11/12/2024] [Indexed: 02/21/2025]
Abstract
We introduce a perspective that has not appeared before in the field of equal and multifrequency coupling derived from considering neuronal synchrony as a possible equivalence relation. The experimental results agree with the theoretical prediction that cross-frequency coupling results in a partition of the brain synchrony state space. We place these results in the framework of the integration and segregation of information in the processing of sensorimotor transformations by the brain cell circuits and propose that equal-frequency (1:1) connectivity favors integration of information in the brain whereas cross-frequency coupling (n:m) favors segregation. These observations may provide an outlook about how to reconcile the need for stability in the brain's operations with the requirement for diversity of activity in order to process many sensorimotor transformations simultaneously.
Collapse
Affiliation(s)
- Diego M Mateos
- Achucarro Basque Center for Neuroscience, 48940 Leioa, Bizkaia, Basque Country, Spain
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1414 Cdad. Autónoma de Buenos Aires, Argentina
| | - Jose Luis Perez Velazquez
- Institute for Globally Distributed Open Research and Education, (IGDORE), Gothenburg, Sweden
- Ronin Institute, The , Montclair, New Jersey 07043, USA
| |
Collapse
|
2
|
Fingelkurts AA, Fingelkurts AA. Turning Back the Clock: A Retrospective Single-Blind Study on Brain Age Change in Response to Nutraceuticals Supplementation vs. Lifestyle Modifications. Brain Sci 2023; 13:520. [PMID: 36979330 PMCID: PMC10046544 DOI: 10.3390/brainsci13030520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND There is a growing consensus that chronological age (CA) is not an accurate indicator of the aging process and that biological age (BA) instead is a better measure of an individual's risk of age-related outcomes and a more accurate predictor of mortality than actual CA. In this context, BA measures the "true" age, which is an integrated result of an individual's level of damage accumulation across all levels of biological organization, along with preserved resources. The BA is plastic and depends upon epigenetics. Brain state is an important factor contributing to health- and lifespan. METHODS AND OBJECTIVE Quantitative electroencephalography (qEEG)-derived brain BA (BBA) is a suitable and promising measure of brain aging. In the present study, we aimed to show that BBA can be decelerated or even reversed in humans (N = 89) by using customized programs of nutraceutical compounds or lifestyle changes (mean duration = 13 months). RESULTS We observed that BBA was younger than CA in both groups at the end of the intervention. Furthermore, the BBA of the participants in the nutraceuticals group was 2.83 years younger at the endpoint of the intervention compared with their BBA score at the beginning of the intervention, while the BBA of the participants in the lifestyle group was only 0.02 years younger at the end of the intervention. These results were accompanied by improvements in mental-physical health comorbidities in both groups. The pre-intervention BBA score and the sex of the participants were considered confounding factors and analyzed separately. CONCLUSIONS Overall, the obtained results support the feasibility of the goal of this study and also provide the first robust evidence that halting and reversal of brain aging are possible in humans within a reasonable (practical) timeframe of approximately one year.
Collapse
|
3
|
Understanding, detecting, and stimulating consciousness recovery in the ICU. Acta Neurochir (Wien) 2022; 165:809-828. [PMID: 36242637 DOI: 10.1007/s00701-022-05378-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/07/2022] [Indexed: 11/01/2022]
Abstract
Coma is a medical and socioeconomic emergency. Although underfunded, research on coma and disorders of consciousness has made impressive progress. Lesion-network-mapping studies have delineated the precise brainstem regions that consistently produce coma when damaged. Functional neuroimaging has revealed how mechanisms like "communication through coherence" and "inhibition by gating" work in synergy to enable cortico-cortical processing and how this information transfer is disrupted in brain injury. On the cellular level, break-down of intracellular communication between the layer 5 pyramidal cell soma and the apical dendritic part impairs dendritic information integration, with up-stream effects on microcircuits in local neuronal populations and on large-scale fronto-parietal networks, which correlates with loss of consciousness. A breakthrough in clinical concepts occurred when fMRI, and later EEG, studies revealed that 15% of clinically unresponsive patients in acute and chronic settings are in fact awake and aware, as shown by their command following abilities revealed by brain activation during motor and locomotion imagery tasks. This condition is now termed "cognitive motor dissociation." Furthermore, epidemiological data on coma were literally non-existent until recently because of difficulties related to case ascertainment with traditional methods, but crowdsourcing of family observations enabled the first estimates of how frequent coma is in the general population (pooled annual incidence of 201 coma cases per 100,000 population in the UK and the USA). Diagnostic guidelines on coma and disorders of consciousness by the American Academy of Neurology and the European Academy of Neurology provide ambitious clinical frameworks to accommodate these achievements. As for therapy, a broad range of medical and non-medical treatment options is now being tested in increasingly larger trials; in particular, amantadine and transcranial direct current stimulation appear promising in this regard. Major international initiatives like the Curing Coma Campaign aim to raise awareness for coma and disorders of consciousness in the public, with the ultimate goal to make more brain-injured patients recover consciousness after a coma. To highlight all these accomplishments, this paper provides a comprehensive overview of recent progress and future challenges related to understanding, detecting, and stimulating consciousness recovery in the ICU.
Collapse
|
4
|
Sarasso S, Casali AG, Casarotto S, Rosanova M, Sinigaglia C, Massimini M. Consciousness and complexity: a consilience of evidence. Neurosci Conscious 2021; 2021:niab023. [PMID: 38496724 PMCID: PMC10941977 DOI: 10.1093/nc/niab023] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/19/2021] [Accepted: 07/29/2021] [Indexed: 03/19/2024] Open
Abstract
Over the last years, a surge of empirical studies converged on complexity-related measures as reliable markers of consciousness across many different conditions, such as sleep, anesthesia, hallucinatory states, coma, and related disorders. Most of these measures were independently proposed by researchers endorsing disparate frameworks and employing different methods and techniques. Since this body of evidence has not been systematically reviewed and coherently organized so far, this positive trend has remained somewhat below the radar. The aim of this paper is to make this consilience of evidence in the science of consciousness explicit. We start with a systematic assessment of the growing literature on complexity-related measures and identify their common denominator, tracing it back to core theoretical principles and predictions put forward more than 20 years ago. In doing this, we highlight a consistent trajectory spanning two decades of consciousness research and provide a provisional taxonomy of the present literature. Finally, we consider all of the above as a positive ground to approach new questions and devise future experiments that may help consolidate and further develop a promising field where empirical research on consciousness appears to have, so far, naturally converged.
Collapse
Affiliation(s)
- Simone Sarasso
- Department of Biomedical and Clinical Sciences ‘L. Sacco’, University of Milan, Milan 20157, Italy
| | - Adenauer Girardi Casali
- Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, Sao Jose dos Campos, 12247-014, Brazil
| | - Silvia Casarotto
- Department of Biomedical and Clinical Sciences ‘L. Sacco’, University of Milan, Milan 20157, Italy
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan 20148, Italy
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences ‘L. Sacco’, University of Milan, Milan 20157, Italy
| | | | - Marcello Massimini
- Department of Biomedical and Clinical Sciences ‘L. Sacco’, University of Milan, Milan 20157, Italy
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan 20148, Italy
| |
Collapse
|
5
|
Modolo J, Hassan M, Wendling F, Benquet P. Decoding the circuitry of consciousness: From local microcircuits to brain-scale networks. Netw Neurosci 2020; 4:315-337. [PMID: 32537530 PMCID: PMC7286300 DOI: 10.1162/netn_a_00119] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/09/2019] [Indexed: 01/25/2023] Open
Abstract
Identifying the physiological processes underlying the emergence and maintenance of consciousness is one of the most fundamental problems of neuroscience, with implications ranging from fundamental neuroscience to the treatment of patients with disorders of consciousness (DOCs). One major challenge is to understand how cortical circuits at drastically different spatial scales, from local networks to brain-scale networks, operate in concert to enable consciousness, and how those processes are impaired in DOC patients. In this review, we attempt to relate available neurophysiological and clinical data with existing theoretical models of consciousness, while linking the micro- and macrocircuit levels. First, we address the relationships between awareness and wakefulness on the one hand, and cortico-cortical and thalamo-cortical connectivity on the other hand. Second, we discuss the role of three main types of GABAergic interneurons in specific circuits responsible for the dynamical reorganization of functional networks. Third, we explore advances in the functional role of nested oscillations for neural synchronization and communication, emphasizing the importance of the balance between local (high-frequency) and distant (low-frequency) activity for efficient information processing. The clinical implications of these theoretical considerations are presented. We propose that such cellular-scale mechanisms could extend current theories of consciousness.
Collapse
Affiliation(s)
- Julien Modolo
- University of Rennes, INSERM, LTSI-U1099, Rennes, France
| | - Mahmoud Hassan
- University of Rennes, INSERM, LTSI-U1099, Rennes, France
| | | | - Pascal Benquet
- University of Rennes, INSERM, LTSI-U1099, Rennes, France
| |
Collapse
|
6
|
Billeri L, Filoni S, Russo EF, Portaro S, Militi D, Calabrò RS, Naro A. Toward Improving Diagnostic Strategies in Chronic Disorders of Consciousness: An Overview on the (Re-)Emergent Role of Neurophysiology. Brain Sci 2020; 10:brainsci10010042. [PMID: 31936844 PMCID: PMC7016627 DOI: 10.3390/brainsci10010042] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/03/2020] [Accepted: 01/08/2020] [Indexed: 12/13/2022] Open
Abstract
The differential diagnosis of patients with Disorder of Consciousness (DoC), in particular in the chronic phase, is significantly difficult. Actually, about 40% of patients with unresponsive wakefulness syndrome (UWS) and the minimally conscious state (MCS) are misdiagnosed. Indeed, only advanced paraclinical approaches, including advanced EEG analyses, can allow achieving a more reliable diagnosis, that is, discovering residual traces of awareness in patients with UWS (namely, functional Locked-In Syndrome (fLIS)). These approaches aim at capturing the residual brain network models, at rest or that may be activated in response to relevant stimuli, which may be appropriate for awareness to emerge (despite their insufficiency to generate purposeful motor behaviors). For this, different brain network models have been studied in patients with DoC by using sensory stimuli (i.e., passive tasks), probing response to commands (i.e., active tasks), and during resting-state. Since it can be difficult for patients with DoC to perform even simple active tasks, this scoping review aims at summarizing the current, innovative neurophysiological examination methods in resting state/passive modality to differentiate and prognosticate patients with DoC. We conclude that the electrophysiologically-based diagnostic procedures represent an important resource for diagnosis, prognosis, and, therefore, management of patients with DoC, using advance passive and resting state paradigm analyses for the patients who lie in the “greyzones” between MCS, UWS, and fLIS.
Collapse
Affiliation(s)
- Luana Billeri
- IRCCS Centro Neurolesi Bonino Pulejo, 98124 Messina, Italy; (L.B.); (S.P.); (A.N.)
| | - Serena Filoni
- Padre Pio Foundation and Rehabilitation Centers, San Giovanni Rotondo, 71013 Foggia, Italy;
- Correspondence: (S.F.); (R.S.C.); Tel.: +39-090-6012-8166 (R.S.C.)
| | | | - Simona Portaro
- IRCCS Centro Neurolesi Bonino Pulejo, 98124 Messina, Italy; (L.B.); (S.P.); (A.N.)
| | | | - Rocco Salvatore Calabrò
- IRCCS Centro Neurolesi Bonino Pulejo, 98124 Messina, Italy; (L.B.); (S.P.); (A.N.)
- Correspondence: (S.F.); (R.S.C.); Tel.: +39-090-6012-8166 (R.S.C.)
| | - Antonino Naro
- IRCCS Centro Neurolesi Bonino Pulejo, 98124 Messina, Italy; (L.B.); (S.P.); (A.N.)
| |
Collapse
|
7
|
Naro A, Bramanti A, Leo A, Cacciola A, Manuli A, Bramanti P, Calabrò RS. Shedding new light on disorders of consciousness diagnosis: The dynamic functional connectivity. Cortex 2018; 103:316-328. [DOI: 10.1016/j.cortex.2018.03.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/23/2018] [Accepted: 03/28/2018] [Indexed: 01/07/2023]
|
8
|
Noel JP, Simon D, Thelen A, Maier A, Blake R, Wallace MT. Probing Electrophysiological Indices of Perceptual Awareness across Unisensory and Multisensory Modalities. J Cogn Neurosci 2018; 30:814-828. [PMID: 29488853 PMCID: PMC10804124 DOI: 10.1162/jocn_a_01247] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The neural underpinnings of perceptual awareness have been extensively studied using unisensory (e.g., visual alone) stimuli. However, perception is generally multisensory, and it is unclear whether the neural architecture uncovered in these studies directly translates to the multisensory domain. Here, we use EEG to examine brain responses associated with the processing of visual, auditory, and audiovisual stimuli presented near threshold levels of detectability, with the aim of deciphering similarities and differences in the neural signals indexing the transition into perceptual awareness across vision, audition, and combined visual-auditory (multisensory) processing. More specifically, we examine (1) the presence of late evoked potentials (∼>300 msec), (2) the across-trial reproducibility, and (3) the evoked complexity associated with perceived versus nonperceived stimuli. Results reveal that, although perceived stimuli are associated with the presence of late evoked potentials across each of the examined sensory modalities, between-trial variability and EEG complexity differed for unisensory versus multisensory conditions. Whereas across-trial variability and complexity differed for perceived versus nonperceived stimuli in the visual and auditory conditions, this was not the case for the multisensory condition. Taken together, these results suggest that there are fundamental differences in the neural correlates of perceptual awareness for unisensory versus multisensory stimuli. Specifically, the work argues that the presence of late evoked potentials, as opposed to neural reproducibility or complexity, most closely tracks perceptual awareness regardless of the nature of the sensory stimulus. In addition, the current findings suggest a greater similarity between the neural correlates of perceptual awareness of unisensory (visual and auditory) stimuli when compared with multisensory stimuli.
Collapse
Affiliation(s)
- Jean-Paul Noel
- Neuroscience Graduate Program, Vanderbilt Brain Institute, Vanderbilt University Medical School, Vanderbilt University, Nashville, TN 37235, USA
- Vanderbilt Brain Institute, Vanderbilt University Medical School, Vanderbilt University, Nashville, TN 37235, USA
| | - David Simon
- Neuroscience Graduate Program, Vanderbilt Brain Institute, Vanderbilt University Medical School, Vanderbilt University, Nashville, TN 37235, USA
- Vanderbilt Brain Institute, Vanderbilt University Medical School, Vanderbilt University, Nashville, TN 37235, USA
| | - Antonia Thelen
- Vanderbilt Brain Institute, Vanderbilt University Medical School, Vanderbilt University, Nashville, TN 37235, USA
| | - Alexander Maier
- Department of Psychology, Vanderbilt University, Nashville, TN 37235, USA
| | - Randolph Blake
- Department of Psychology, Vanderbilt University, Nashville, TN 37235, USA
| | - Mark T. Wallace
- Vanderbilt Brain Institute, Vanderbilt University Medical School, Vanderbilt University, Nashville, TN 37235, USA
- Department of Psychology, Vanderbilt University, Nashville, TN 37235, USA
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37235, USA
- Department of Psychiatry, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| |
Collapse
|
9
|
Fingelkurts AA, Fingelkurts AA, Bagnato S, Boccagni C, Galardi G. Long-Term (Six Years) Clinical Outcome Discrimination of Patients in the Vegetative State Could be Achieved Based on the Operational Architectonics EEG Analysis: A Pilot Feasibility Study. Open Neuroimag J 2016; 10:69-79. [PMID: 27347266 PMCID: PMC4894941 DOI: 10.2174/1874440001610010069] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/06/2016] [Accepted: 04/11/2016] [Indexed: 11/22/2022] Open
Abstract
Electroencephalogram (EEG) recordings are increasingly used to evaluate patients with disorders of consciousness (DOC) or assess their prognosis outcome in the short-term perspective. However, there is a lack of information concerning the effectiveness of EEG in classifying long-term (many years) outcome in chronic DOC patients. Here we tested whether EEG operational architectonics parameters (geared towards consciousness phenomenon detection rather than neurophysiological processes) could be useful for distinguishing a very long-term (6 years) clinical outcome of DOC patients whose EEGs were registered within 3 months post-injury. The obtained results suggest that EEG recorded at third month after sustaining brain damage, may contain useful information on the long-term outcome of patients in vegetative state: it could discriminate patients who remain in a persistent vegetative state from patients who reach a minimally conscious state or even recover a full consciousness in a long-term perspective (6 years) post-injury. These findings, if confirmed in further studies, may be pivotal for long-term planning of clinical care, rehabilitative programs, medical-legal decisions concerning the patients, and policy makers.
Collapse
Affiliation(s)
| | | | - Sergio Bagnato
- Neurorehabilitation Unit, Rehabilitation Department, Fondazione Istituto "San Raffaele - G. Giglio", Cefalù (PA), Italy; Neurophysiology Unit, Rehabilitation Department, Fondazione Istituto "San Raffaele - G. Giglio", Cefalù (PA), Italy
| | - Cristina Boccagni
- Neurorehabilitation Unit, Rehabilitation Department, Fondazione Istituto "San Raffaele - G. Giglio", Cefalù (PA), Italy; Neurophysiology Unit, Rehabilitation Department, Fondazione Istituto "San Raffaele - G. Giglio", Cefalù (PA), Italy
| | - Giuseppe Galardi
- Neurorehabilitation Unit, Rehabilitation Department, Fondazione Istituto "San Raffaele - G. Giglio", Cefalù (PA), Italy; Neurophysiology Unit, Rehabilitation Department, Fondazione Istituto "San Raffaele - G. Giglio", Cefalù (PA), Italy
| |
Collapse
|
10
|
Gosseries O, Pistoia F, Charland-Verville V, Carolei A, Sacco S, Laureys S. The Role of Neuroimaging Techniques in Establishing Diagnosis, Prognosis and Therapy in Disorders of Consciousness. Open Neuroimag J 2016; 10:52-68. [PMID: 27347265 PMCID: PMC4894918 DOI: 10.2174/1874440001610010052] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/06/2016] [Accepted: 04/11/2016] [Indexed: 12/30/2022] Open
Abstract
Non-communicative brain damaged patients raise important clinical and scientific issues. Here, we review three major pathological disorders of consciousness: coma, the unresponsive wakefulness syndrome and the minimally conscious state. A number of clinical studies highlight the difficulty in making a correct diagnosis in patients with disorders of consciousness based only on behavioral examinations. The increasing use of neuroimaging techniques allows improving clinical characterization of these patients. Recent neuroimaging studies using positron emission tomography, functional magnetic resonance imaging, electroencephalography and transcranial magnetic stimulation can help assess diagnosis, prognosis, and therapeutic treatment. These techniques, using resting state, passive and active paradigms, also highlight possible dissociations between consciousness and responsiveness, and are facilitating a more accurate understanding of brain function in this challenging population.
Collapse
Affiliation(s)
- Olivia Gosseries
- Coma Science Group, GIGA, University of Liege, Liege, Belgium; Department of Psychology and Psychiatry, University of Wisconsin, Madison, WI, United-States
| | - Francesca Pistoia
- Department of Biotechnological and Applied Clinical Sciences, Neurological Institute, University of L'Aquila, L'Aquila, Italy
| | | | - Antonio Carolei
- Department of Biotechnological and Applied Clinical Sciences, Neurological Institute, University of L'Aquila, L'Aquila, Italy
| | - Simona Sacco
- Department of Biotechnological and Applied Clinical Sciences, Neurological Institute, University of L'Aquila, L'Aquila, Italy
| | - Steven Laureys
- Coma Science Group, GIGA, University of Liege, Liege, Belgium
| |
Collapse
|
11
|
Lord V, Opacka-Juffry J. Electroencephalography (EEG) Measures of Neural Connectivity in the Assessment of Brain Responses to Salient Auditory Stimuli in Patients with Disorders of Consciousness. Front Psychol 2016; 7:397. [PMID: 27047424 PMCID: PMC4801887 DOI: 10.3389/fpsyg.2016.00397] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 03/04/2016] [Indexed: 12/19/2022] Open
Affiliation(s)
- Victoria Lord
- Department of Life Sciences, University of Roehampton London, UK
| | | |
Collapse
|
12
|
Complexity of Multi-Dimensional Spontaneous EEG Decreases during Propofol Induced General Anaesthesia. PLoS One 2015; 10:e0133532. [PMID: 26252378 PMCID: PMC4529106 DOI: 10.1371/journal.pone.0133532] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 06/28/2015] [Indexed: 11/20/2022] Open
Abstract
Emerging neural theories of consciousness suggest a correlation between a specific type of neural dynamical complexity and the level of consciousness: When awake and aware, causal interactions between brain regions are both integrated (all regions are to a certain extent connected) and differentiated (there is inhomogeneity and variety in the interactions). In support of this, recent work by Casali et al (2013) has shown that Lempel-Ziv complexity correlates strongly with conscious level, when computed on the EEG response to transcranial magnetic stimulation. Here we investigated complexity of spontaneous high-density EEG data during propofol-induced general anaesthesia. We consider three distinct measures: (i) Lempel-Ziv complexity, which is derived from how compressible the data are; (ii) amplitude coalition entropy, which measures the variability in the constitution of the set of active channels; and (iii) the novel synchrony coalition entropy (SCE), which measures the variability in the constitution of the set of synchronous channels. After some simulations on Kuramoto oscillator models which demonstrate that these measures capture distinct 'flavours' of complexity, we show that there is a robustly measurable decrease in the complexity of spontaneous EEG during general anaesthesia.
Collapse
|
13
|
Gosseries O, Zasler ND, Laureys S. Recent advances in disorders of consciousness: Focus on the diagnosis. Brain Inj 2014; 28:1141-50. [PMID: 25099018 DOI: 10.3109/02699052.2014.920522] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Olivia Gosseries
- Coma Science Group, Cyclotron Research Centre and Neurology Department, University and University Hospital of Liege , Liege , Belgium
| | | | | |
Collapse
|
14
|
Cavinato M, Genna C, Manganotti P, Formaggio E, Storti SF, Campostrini S, Arcaro C, Casanova E, Petrone V, Piperno R, Piccione F. Coherence and Consciousness: Study of Fronto-Parietal Gamma Synchrony in Patients with Disorders of Consciousness. Brain Topogr 2014; 28:570-9. [PMID: 25070585 DOI: 10.1007/s10548-014-0383-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 07/07/2014] [Indexed: 12/25/2022]
Abstract
Evaluation of consciousness needs to be supported by the evidence of brain activation during external stimulation in patients with unresponsive wakefulness syndrome (UWS). Assessment of patients should include techniques that do not depend on overt motor responses and allow an objective investigation of the spontaneous patterns of brain activity. In particular, electroencephalography (EEG) coherence allows to easily measure functional relationships between pairs of neocortical regions and seems to be closely correlated with cognitive or behavioral measures. Here, we show the contribution of higher order associative cortices of patients with disorder of consciousness (N = 26) in response to simple sensory stimuli, such as visual, auditory and noxious stimulation. In all stimulus modalities an increase of short-range parietal and long-range fronto-parietal coherences in gamma frequencies were seen in the controls and minimally conscious patients. By contrast, UWS patients showed no significant modifications in the EEG patterns after stimulation. Our results suggest that UWS patients can not activate associative cortical networks, suggesting a lack of information integration. In fact, fronto-parietal circuits result to be connectively disrupted, conversely to patients that exhibit some form of consciousness. In the light of this, EEG coherence can be considered a powerful tool to quantify the involvement of cognitive processing giving information about the integrity of fronto-parietal network. This measure can represent a new neurophysiological marker of unconsciousness and help in determining an accurate diagnosis and rehabilitative intervention in each patient.
Collapse
Affiliation(s)
- Marianna Cavinato
- Neurophysiology Department, San Camillo Foundation, Institute of Care and Research, Via Alberoni, 70, 30126, Venice, Italy,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Significant advances have been made in the behavioral assessment and clinical management of disorders of consciousness (DOC). In addition, functional neuroimaging paradigms are now available to help assess consciousness levels in this challenging patient population. The success of these neuroimaging approaches as diagnostic markers is, however, intrinsically linked to understanding the relationships between consciousness and the brain. In this context, a combined theoretical approach to neuroimaging studies is needed. The promise of such theoretically based markers is illustrated by recent findings that used a perturbational approach to assess the levels of consciousness. Further research on the contents of consciousness in DOC is also needed.
Collapse
Affiliation(s)
- Olivia Gosseries
- Coma Science Group, Cyclotron Research Center and Neurology Department, University of Liege, and University Hospital of Liege, 4000 Liege, Belgium; , , ,
| | | | | | | |
Collapse
|
16
|
Affiliation(s)
- Quentin Noirhomme
- Coma Science Group, Cyclotron Research Centre, University of Liège, Liège, Belgium
| | | |
Collapse
|
17
|
Bagnato S, Boccagni C, Sant'angelo A, Fingelkurts AA, Fingelkurts AA, Galardi G. Emerging from an unresponsive wakefulness syndrome: Brain plasticity has to cross a threshold level. Neurosci Biobehav Rev 2013; 37:2721-36. [PMID: 24060531 DOI: 10.1016/j.neubiorev.2013.09.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 08/29/2013] [Accepted: 09/12/2013] [Indexed: 12/27/2022]
Affiliation(s)
- Sergio Bagnato
- Unit of Neurophysiology and Unit for Severe Acquired Brain Injury, Rehabilitation Department, Fondazione Istituto San Raffaele G. Giglio, Cefalù, PA, Italy.
| | | | | | | | | | | |
Collapse
|
18
|
Bagnato S, Boccagni C, Sant'angelo A, Galardi G. A range of antiepileptic drugs do not affect the recovery of consciousness in vegetative and minimally conscious states. Epilepsy Behav 2013; 27:365-70. [PMID: 23542540 DOI: 10.1016/j.yebeh.2013.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 02/01/2013] [Accepted: 02/02/2013] [Indexed: 11/30/2022]
Abstract
Since most antiepileptic drugs (AEDs) have cognitive effects, the aim of this study was to evaluate the influence of AED therapy on the recovery of consciousness in 103 consecutive patients in a vegetative or minimally conscious state (VS, MCS). The levels of cognitive functioning (LCF) score was retrospectively compared after a three-month period of rehabilitation between patients who were medicated (n=54) and patients who were not medicated (n=49) with AEDs. Mean LCF scores in AED-medicated and nonmedicated patients were 2.2±0.7 and 2.3±0.8 at admission and 3.8±2.2 and 3.7±2.1 after three months, respectively (p values>0.05). These results did not change when we compared patients with the same etiology separately, with the same disorder of consciousness only, or patients treated with only one or more than one AED. In conclusion, AEDs did not affect the recovery of consciousness in a large cohort of patients in a VS or MCS following an acute brain injury.
Collapse
Affiliation(s)
- Sergio Bagnato
- Unit of Neurophysiology, Rehabilitation Department, Fondazione Istituto San Raffaele-G. Giglio, Cefalù (PA), Italy.
| | | | | | | |
Collapse
|