1
|
Russo JS, Shiels TA, Lin CHS, John SE, Grayden DB. Feasibility of source-level motor imagery classification for people with multiple sclerosis. J Neural Eng 2025; 22:026020. [PMID: 40064095 DOI: 10.1088/1741-2552/adbec1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/10/2025] [Indexed: 03/20/2025]
Abstract
Objective.There is limited work investigating brain-computer interface (BCI) technology in people with multiple sclerosis (pwMS), a neurodegenerative disorder of the central nervous system. Present work is limited to recordings at the scalp, which may be significantly altered by changes within the cortex due to volume conduction. The recordings obtained from the sensors, therefore, combine disease-related alterations and task-relevant neural signals, as well as signals from other regions of the brain that are not relevant. The current study aims to unmix signals affected by multiple sclerosis (MS) progression and BCI task-relevant signals using estimated source activity to improve classification accuracy.Approach.Data was collected from eight participants with a range of MS severity and ten neurotypical participants. This dataset was used to report the classification accuracy of imagined movements of the hands and feet at the sensor-level and the source-level in the current study.K-means clustering of equivalent current dipoles was conducted to unmix temporally independent signals. The location of these dipoles was compared between MS and control groups and used for classification of imagined movement. Linear discriminant analysis classification was performed at each time-frequency point to highlight differences in frequency band delay.Main Results.Source-level signal acquisition significantly improved decoding accuracy of imagined movement vs rest and movement vs movement classification in pwMS and controls. There was no significant difference found in alpha (7-13 Hz) and beta (13-30 Hz) band classification delay between the neurotypical control and MS group, including imagery of limbs with weakness or paralysis.Significance.This study is the first to demonstrate the advantages of source-level analysis for BCI applications in pwMS. The results highlight the potential for enhanced clinical outcomes and emphasize the need for longitudinal studies to assess the impact of MS progression on BCI performance, which is crucial for effective clinical translation of BCI technology.
Collapse
Affiliation(s)
- John S Russo
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Australia
| | - Thomas A Shiels
- Department of Medicine, Northern Health, Melbourne, Australia
| | - Chin-Hsuan Sophie Lin
- Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Australia
| | - Sam E John
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Australia
- Graeme Clark Institute, The University of Melbourne, Melbourne, Australia
| | - David B Grayden
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Australia
- Graeme Clark Institute, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
2
|
Wolthuis N, Bosma I, Bastiaanse R, Cherian PJ, Smits M, Veenstra W, Wagemakers M, Vincent A, Satoer D. Distinct Slow-Wave Activity Patterns in Resting-State Electroencephalography and Their Relation to Language Functioning in Low-Grade Glioma and Meningioma Patients. Front Hum Neurosci 2022; 16:748128. [PMID: 35399357 PMCID: PMC8986989 DOI: 10.3389/fnhum.2022.748128] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 02/16/2022] [Indexed: 12/03/2022] Open
Abstract
Introduction Brain tumours frequently cause language impairments and are also likely to co-occur with localised abnormal slow-wave brain activity. However, it is unclear whether this applies specifically to low-grade brain tumours. We investigate slow-wave activity in resting-state electroencephalography (EEG) in low-grade glioma and meningioma patients, and its relation to pre- and postoperative language functioning. Method Patients with a glioma (N = 15) infiltrating the language-dominant hemisphere and patients with a meningioma (N = 10) with mass effect on this hemisphere underwent extensive language testing before and 1 year after surgery. EEG was registered preoperatively, postoperatively (glioma patients only), and once in healthy individuals. Slow-wave activity in delta- and theta- frequency bands was evaluated visually and quantitatively by spectral power at three levels over the scalp: the whole brain, the affected hemisphere, and the affected region. Results Glioma patients had increased delta activity (affected area) and increased theta activity (all levels) before and after surgery. In these patients, increased preoperative theta activity was related to the presence of language impairment, especially to poor word retrieval and grammatical performance. Preoperative slow-wave activity was also related to postoperative language outcomes. Meningioma patients showed no significant increase in EEG slow-wave activity compared to healthy individuals, but they presented with word retrieval, grammatical, and writing problems preoperatively, as well as with writing impairments postoperatively. Discussion Although the brain-tumour pathology in low-grade gliomas and meningiomas has a different effect on resting-state brain activity, patients with low-grade gliomas and meningiomas both suffer from language impairments. Increased theta activity in glioma patients can be considered as a language-impairment marker, with prognostic value for language outcome after surgery.
Collapse
Affiliation(s)
- Nienke Wolthuis
- Center for Language and Cognition Groningen (CLCG), University of Groningen, Groningen, Netherlands
| | - Ingeborg Bosma
- Department of Neurology, University Medical Center Groningen, Groningen, Netherlands
| | - Roelien Bastiaanse
- Center for Language and Cognition Groningen (CLCG), University of Groningen, Groningen, Netherlands
- National Research University Higher School of Economics, Moscow, Russia
| | - Perumpillichira J. Cherian
- Department of Neurology, University Medical Center Rotterdam, Rotterdam, Netherlands
- Division of Neurology, Department of Medicine, McMaster University and Hamilton Health Sciences, Hamilton, ON, Canada
| | - Marion Smits
- Department of Radiology & Nuclear Medicine, Erasmus MC - University Medical Center Rotterdam, Rotterdam, Netherlands
- Brain Tumour Centre, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Wencke Veenstra
- Department of Rehabilitation Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Michiel Wagemakers
- Department of Neurosurgery, University Medical Center Groningen, Groningen, Netherlands
| | - Arnaud Vincent
- Department of Neurosurgery, Erasmus MC – University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Djaina Satoer
- Department of Neurosurgery, Erasmus MC – University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
3
|
Angrand L, Takillah S, Malissin I, Berriche A, Cervera C, Bel R, Gerard Q, Knoertzer J, Baati R, Kononchik JP, Megarbane B, Thibault K, Dal Bo G. Persistent brainwave disruption and cognitive impairment induced by acute sarin surrogate sub-lethal dose exposure. Toxicology 2021; 456:152787. [PMID: 33887375 DOI: 10.1016/j.tox.2021.152787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/11/2021] [Accepted: 04/15/2021] [Indexed: 11/15/2022]
Abstract
Warfare neurotoxicants such as sarin, soman or VX, are organophosphorus compounds which irreversibly inhibit cholinesterase. High-dose exposure with nerve agents (NA) is known to produce seizure activity and related brain damage, while less is known about the effects of acute sub-lethal dose exposure. The aim of this study was to characterize behavioral, brain activity and neuroinflammatory modifications at different time points after exposure to 4-nitrophenyl isopropyl methylphosphonate (NIMP), a sarin surrogate. In order to decipher the impacts of sub-lethal exposure, we chose 4 different doses of NIMP each corresponding to a fraction of the median lethal dose (LD50). First, we conducted a behavioral analysis of symptoms during the first hour following NIMP challenge and established a specific scoring scale for the intoxication severity. The intensity of intoxication signs was dose-dependent and proportional to the cholinesterase activity inhibition evaluated in mice brain. The lowest dose (0.3 LD50) did not induce significant behavioral, electrocorticographic (ECoG) nor cholinesterase activity changes. Animals exposed to one of the other doses (0.5, 0.7 and 0.9 LD50) exhibited substantial changes in behavior, significant cholinesterase activity inhibition, and a disruption of brainwave distribution that persisted in a dose-dependent manner. To evaluate long lasting changes, we conducted ECoG recording for 30 days on mice exposed to 0.5 or 0.9 LD50 of NIMP. Mice in both groups showed long-lasting impairment of theta rhythms, and a lack of restoration in hippocampal ChE activity after 1-month post-exposure. In addition, an increase in neuroinflammatory markers (IBA-1, TNF-α, NF-κB) and edema were transiently observed in mice hippocampus. Furthermore, a novel object recognition test showed an alteration of short-term memory in both groups, 1-month post-NIMP intoxication. Our findings identified both transient and long-term ECoG alterations and some long term cognitive impairments following exposure to sub-lethal doses of NIMP. These may further impact morphopathological alterations in the brain.
Collapse
Affiliation(s)
- Loïc Angrand
- Departement of Toxicology and Chemical Risks, French Armed Forces Biomedical Research Institute, Bretigny sur Orge, France; EnvA, IMRB, Maisons-Alfort, France; Université Paris-Est Créteil, INSERM, Team Relaix, Créteil, France
| | - Samir Takillah
- Departement of Neuroscience, Unit of Fatigue and Vigilance, French Armed Forces Biomedical Research Institute, Bretigny sur Orge, France; VIFASOM Team (EA 7330), Paris Descartes University, Sorbonne Paris Cité, Hôtel Dieu, Paris, France
| | - Isabelle Malissin
- Department of Medical and Toxicological Critical Care, Lariboisière Hospital, Federation of Toxicology APHP, Paris-Diderot University, INSERM UMRS-1144, Paris, France
| | - Asma Berriche
- Departement of Toxicology and Chemical Risks, French Armed Forces Biomedical Research Institute, Bretigny sur Orge, France; CEA, Fontenay aux roses, France
| | - Chloe Cervera
- Departement of Toxicology and Chemical Risks, French Armed Forces Biomedical Research Institute, Bretigny sur Orge, France
| | - Rosalie Bel
- Departement of Toxicology and Chemical Risks, French Armed Forces Biomedical Research Institute, Bretigny sur Orge, France
| | - Quentin Gerard
- Departement of Toxicology and Chemical Risks, French Armed Forces Biomedical Research Institute, Bretigny sur Orge, France; Normandie University, UNICAEN, INSERM, GIP Cyceron, Institut Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Caen, France
| | - Julie Knoertzer
- Departement of Toxicology and Chemical Risks, French Armed Forces Biomedical Research Institute, Bretigny sur Orge, France
| | - Rachid Baati
- ICPEES UMR CNRS 7515, Institut de Chimie des Procédés, pour l'Energie, l'Environnement, et la Santé, Strasbourg, France
| | - Joseph P Kononchik
- Departement of Toxicology and Chemical Risks, French Armed Forces Biomedical Research Institute, Bretigny sur Orge, France
| | - Bruno Megarbane
- VIFASOM Team (EA 7330), Paris Descartes University, Sorbonne Paris Cité, Hôtel Dieu, Paris, France; Department of Medical and Toxicological Critical Care, Lariboisière Hospital, Federation of Toxicology APHP, Paris-Diderot University, INSERM UMRS-1144, Paris, France
| | - Karine Thibault
- Departement of Toxicology and Chemical Risks, French Armed Forces Biomedical Research Institute, Bretigny sur Orge, France.
| | - Gregory Dal Bo
- Departement of Toxicology and Chemical Risks, French Armed Forces Biomedical Research Institute, Bretigny sur Orge, France.
| |
Collapse
|
4
|
Quantitative electrocorticographic biomarkers of clinical outcomes in mesial temporal lobe epileptic patients treated with the RNS® system. Clin Neurophysiol 2019; 130:1364-1374. [DOI: 10.1016/j.clinph.2019.05.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/30/2019] [Accepted: 05/17/2019] [Indexed: 01/12/2023]
|
5
|
Milner R, Lewandowska M, Ganc M, Włodarczyk E, Grudzień D, Skarżyński H. Abnormal Resting-State Quantitative Electroencephalogram in Children With Central Auditory Processing Disorder: A Pilot Study. Front Neurosci 2018; 12:292. [PMID: 29867312 PMCID: PMC5958225 DOI: 10.3389/fnins.2018.00292] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 04/13/2018] [Indexed: 11/25/2022] Open
Abstract
In this study, we showed an abnormal resting-state quantitative electroencephalogram (QEEG) pattern in children with central auditory processing disorder (CAPD). Twenty-seven children (16 male, 11 female; mean age = 10.7 years) with CAPD and no symptoms of other developmental disorders, as well as 23 age- and sex-matched, typically developing children (TDC, 11 male, 13 female; mean age = 11.8 years) underwent examination of central auditory processes (CAPs) and QEEG evaluation consisting of two randomly presented blocks of “Eyes Open” (EO) or “Eyes Closed” (EC) recordings. Significant correlations between individual frequency band powers and CAP tests performance were found. The QEEG studies revealed that in CAPD relative to TDC there was no effect of decreased delta absolute power (1.5–4 Hz) in EO compared to the EC condition. Furthermore, children with CAPD showed increased theta power (4–8 Hz) in the frontal area, a tendency toward elevated theta power in EO block, and reduced low-frequency beta power (12–15 Hz) in the bilateral occipital and the left temporo-occipital regions for both EO and EC conditions. Decreased middle-frequency beta power (15–18 Hz) in children with CAPD was observed only in the EC block. The findings of the present study suggest that QEEG could be an adequate tool to discriminate children with CAPD from normally developing children. Correlation analysis shows relationship between the individual EEG resting frequency bands and the CAPs. Increased power of slow waves and decreased power of fast rhythms could indicate abnormal functioning (hypoarousal of the cortex and/or an immaturity) of brain areas not specialized in auditory information processing.
Collapse
Affiliation(s)
- Rafał Milner
- Department of Experimental Audiology, World Hearing Center, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - Monika Lewandowska
- Bioimaging Research Center, World Hearing Center, Institute of Physiology and Pathology of Hearing, Warsaw, Poland.,Faculty of Humanities, Nicolaus Copernicus University, Toruń, Poland
| | - Małgorzata Ganc
- Department of Experimental Audiology, World Hearing Center, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - Elżbieta Włodarczyk
- Audiology and Phoniatrics Clinic, World Hearing Center, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - Diana Grudzień
- Rehabilitation Clinic, World Hearing Center, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - Henryk Skarżyński
- World Hearing Center, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| |
Collapse
|
6
|
Bosch-Bayard J, Valdés-Sosa P, Virues-Alba T, Aubert-Vázquez E, John ER, Harmony T, Riera-Díaz J, Trujillo-Barreto N. 3D Statistical Parametric Mapping of EEG Source Spectra by Means of Variable Resolution Electromagnetic Tomography (VARETA). ACTA ACUST UNITED AC 2016; 32:47-61. [PMID: 11360721 DOI: 10.1177/155005940103200203] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This article describes a new method for 3D QEEG tomography in the frequency domain. A variant of Statistical Parametric Mapping is presented for source log spectra. Sources are estimated by means of a Discrete Spline EEG inverse solution known as Variable Resolution Electromagnetic Tomography (VARETA). Anatomical constraints are incorporated by the use of the Montreal Neurological Institute (MNI) probabilistic brain atlas. Efficient methods are developed for frequency domain VARETA in order to estimate the source spectra for the set of 103–105 voxels that comprise an EEG/MEG inverse solution. High resolution source Z spectra are then defined with respect to the age dependent mean and standard deviations of each voxel, which are summarized as regression equations calculated from the Cuban EEG normative database. The statistical issues involved are addressed by the use of extreme value statistics. Examples are shown that illustrate the potential clinical utility of the methods herein developed.
Collapse
Affiliation(s)
- J Bosch-Bayard
- Laboratory of Neurosciences, Cuban National Scientific Research Center, Havana, Cuba.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Prichep LS, John ER, Tom ML. Localization of Deep White Matter Lymphoma Using VARETA: A Case Study. ACTA ACUST UNITED AC 2016; 32:62-6. [PMID: 11360722 DOI: 10.1177/155005940103200204] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Methods have recently been proposed for localization of multiple brain sources of particular EEG frequencies recorded from the scalp, to identify their most probable neuroanatomical generators. This paper reports the accurate localization of a deep white matter lymphoma, using Variable Resolution Electromagnetic Tomography (VARETA). The accuracy of this localization was confirmed by MRI studies. The patient was referred for a quantitative EEG evaluation, two weeks following an automobile accident, with no known loss of consciousness. There was marked excess and asymmetry of frontal slow wave activity, with highly significant hypocoherence. Significant gradient shifts within the left hemisphere were also seen. Visual inspection of the EEG tracings revealed theta paroxysms in left dorsolateral and mesial frontal regions. The MRI revealed a large space-occupying lesion deep within the white matter of the left frontal lobe, with evidence of subependymal spread and significant surrounding vasogenic edema. Localization of the sources of the maximal QEEG abnormalities using VARETA was consistent with the lesion location seen in the MRI images. This case demonstrates that VARETA can achieve highly sensitive and accurate localization of sources of QEEG abnormalities which lie in the deepest brain regions.
Collapse
Affiliation(s)
- L S Prichep
- Brain Research Laboratories, Dept. Psychiatry, 550 First Avenue, New York, NY 10016, USA.
| | | | | |
Collapse
|
8
|
Applications of electroencephalography to characterize brain activity: perspectives in stroke. J Neurol Phys Ther 2015; 39:43-51. [PMID: 25522236 DOI: 10.1097/npt.0000000000000072] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A wide array of neuroimaging technologies are now available that offer unprecedented opportunities to study the brain in health and disease. Each technology has associated strengths and weaknesses that need to be considered to maximize their utility, especially when used in combination. One imaging technology, electroencephalography (EEG), has been in use for more than 80 years, but as a result of recent technologic advancements EEG has received renewed interest as an inexpensive, noninvasive and versatile technique to evaluate neural activity in the brain. In part, this is due to new opportunities to combine EEG not only with other imaging modalities, but also with neurostimulation and robotics technologies. When used in combination, noninvasive brain stimulation and EEG can be used to study cause-and-effect relationships between interconnected brain regions providing new avenues to study brain function. Although many of these approaches are still in the developmental phase, there is substantial promise in their ability to deepen our understanding of brain function. The ability to capture the causal relationships between brain function and behavior in individuals with neurologic disorders or injury has important clinical implications for the development of novel biomarkers of recovery and response to therapeutic interventions. The goals of this paper are to provide an overview of the fundamental principles of EEG; discuss past, present, and future applications of EEG in the clinical management of stroke; and introduce the technique of combining EEG with a form of noninvasive brain stimulation, transcranial magnetic stimulation, as a powerful synergistic research paradigm to characterize brain function in both health and disease.Video Abstract available (see Supplemental Digital Content 1, http://links.lww.com/JNPT/A87) for more insights from the authors.
Collapse
|
9
|
Almeida Montes LG, Prado Alcántara H, Portillo Cedeño BA, Hernández García AO, Fuentes Rojas PE. Persistent decrease in alpha current density in fully remitted subjects with major depressive disorder treated with fluoxetine: A prospective electric tomography study. Int J Psychophysiol 2015; 96:191-200. [PMID: 25835548 DOI: 10.1016/j.ijpsycho.2015.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/05/2015] [Accepted: 03/24/2015] [Indexed: 12/28/2022]
Abstract
Major depressive disorder (MDD) is recurrent, and its pathophysiology is not fully understood. Studies using electric tomography (ET) have identified abnormalities in the current density (CD) of MDD subjects in regions associated with the neurobiology of MDD, such as the anterior cingulate cortex (ACC) and medial orbitofrontal cortex (mOFC). However, little is known regarding the long-term CD changes in MDD subjects who respond to antidepressants. The aim of this study was to compare CD between healthy and MDD subjects who received 1-year open-label treatment with fluoxetine. Thirty-two-channel electroencephalograms (EEGs) were collected from 70 healthy controls and 74 MDD subjects at baseline (pre-treatment), 1 and 2weeks and 1, 2, 6, 9 and 12months. Variable-resolution ET (VARETA) was used to assess the CD between subject groups at each time point. The MDD group exhibited decreased alpha CD (αCD) in the occipital and parietal cortices, ACC, mOFC, thalamus and caudate nucleus at each time point. The αCD abnormalities persisted in the MDD subjects despite their achieving full remission. The low sub-alpha band was different between the healthy and MDD subjects. Differences in the amount of αCD between sexes and treatment outcomes were observed. Lack of a placebo arm and the loss of depressed patients to follow-up were significant limitations. The persistence of the decrease in αCD might suggest that the underlying pathophysiologic mechanisms of MDD are not corrected despite the asymptomatic state of MDD subjects, which could be significant in understanding the highly recurrent nature of MDD.
Collapse
Affiliation(s)
- Luis Guillermo Almeida Montes
- Centro Estatal de Salud Mental, Servicios de Salud del Estado de Querétaro (SESEQ), Avenida 5 de Febrero 105, Los Virreyes, C.P. 76170 Querétaro, México.
| | - Hugo Prado Alcántara
- Centro Estatal de Salud Mental, Servicios de Salud del Estado de Querétaro (SESEQ), Avenida 5 de Febrero 105, Los Virreyes, C.P. 76170 Querétaro, México
| | - Bertha Alicia Portillo Cedeño
- Centro Estatal de Salud Mental, Servicios de Salud del Estado de Querétaro (SESEQ), Avenida 5 de Febrero 105, Los Virreyes, C.P. 76170 Querétaro, México
| | - Ana Olivia Hernández García
- Centro Estatal de Salud Mental, Servicios de Salud del Estado de Querétaro (SESEQ), Avenida 5 de Febrero 105, Los Virreyes, C.P. 76170 Querétaro, México
| | - Patricia Elisa Fuentes Rojas
- Centro Estatal de Salud Mental, Servicios de Salud del Estado de Querétaro (SESEQ), Avenida 5 de Febrero 105, Los Virreyes, C.P. 76170 Querétaro, México
| |
Collapse
|
10
|
Rodriguez R, Lopera F, Alvarez A, Fernandez Y, Galan L, Quiroz Y, Bobes MA. Spectral Analysis of EEG in Familial Alzheimer's Disease with E280A Presenilin-1 Mutation Gene. Int J Alzheimers Dis 2014; 2014:180741. [PMID: 24551475 PMCID: PMC3914466 DOI: 10.1155/2014/180741] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 10/13/2013] [Indexed: 11/17/2022] Open
Abstract
To evaluate the hypothesis that quantitative EEG (qEEG) analysis is susceptible to detect early functional changes in familial Alzheimer's disease (AD) preclinical stages. Three groups of subjects were selected from five extended families with hereditary AD: a Probable AD group (18 subjects), an asymptomatic carrier (ACr) group (21 subjects), with the mutation but without any clinical symptoms of dementia, and a normal group of 18 healthy subjects. In order to reveal significant differences in the spectral parameter, the Mahalanobis distance (D (2)) was calculated between groups. To evaluate the diagnostic efficiency of this statistic D (2), the ROC models were used. The ROC curve was summarized by accuracy index and standard deviation. The D (2) using the parameters of the energy in the fast frequency bands shows accurate discrimination between normal and ACr groups (area ROC = 0.89) and between AD probable and ACr groups (area ROC = 0.91). This is more significant in temporal regions. Theses parameters could be affected before the onset of the disease, even when cognitive disturbance is not clinically evident. Spectral EEG parameter could be firstly used to evaluate subjects with E280A Presenilin-1 mutation without impairment in cognitive function.
Collapse
Affiliation(s)
- Rene Rodriguez
- Clinical Neurophysiology Department, Cuban Neuroscience Center, Havana, CP 10400, Cuba
| | | | - Alfredo Alvarez
- Clinical Neurophysiology Department, Cuban Neuroscience Center, Havana, CP 10400, Cuba
| | - Yuriem Fernandez
- Cognitive Department, Cuban Neuroscience Center, Havana, CP 10400, Cuba
| | - Lidice Galan
- Cognitive Department, Cuban Neuroscience Center, Havana, CP 10400, Cuba
| | | | | |
Collapse
|
11
|
Tarapore PE, Martino J, Guggisberg AG, Owen J, Honma SM, Findlay A, Berger MS, Kirsch HE, Nagarajan SS. Magnetoencephalographic imaging of resting-state functional connectivity predicts postsurgical neurological outcome in brain gliomas. Neurosurgery 2013; 71:1012-22. [PMID: 22895403 DOI: 10.1227/neu.0b013e31826d2b78] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The removal of brain tumors in perieloquent or eloquent cortex risks causing new neurological deficits in patients. The assessment of the functionality of perilesional tissue is essential to avoid postoperative neurological morbidity. OBJECTIVE To evaluate preoperative magnetoencephalography-based functional connectivity as a predictor of short- and medium-term neurological outcome after removal of gliomas in perieloquent and eloquent areas. METHODS Resting-state whole-brain magnetoencephalography recordings were obtained from 79 consecutive subjects with focal brain gliomas near or within motor, sensory, or language areas. Neural activity was estimated using adaptive spatial filtering. The mean imaginary coherence between voxels in and around brain tumors was compared with contralesional voxels and used as an index of their functional connectivity with the rest of the brain. The connectivity values of the tissue resected during surgery were correlated with the early (1 week postoperatively) and medium-term (6 months postoperatively) neurological morbidity. RESULTS Patients undergoing resection of tumors with decreased functional connectivity had a 29% rate of a new neurological deficit 1 week after surgery and a 0% rate at 6-month follow-up. Patients undergoing resection of tumors with increased functional connectivity had a 60% rate of a new deficit at 1 week and a 25% rate at 6 months. CONCLUSION Magnetoencephalography connectivity analysis gives a valuable preoperative evaluation of the functionality of the tissue surrounding tumors in perieloquent and eloquent areas. These data may be used to optimize preoperative patient counseling and surgical strategy.
Collapse
Affiliation(s)
- Phiroz E Tarapore
- Department of Neurological Surgery, University of California-San Francisco, San Francisco, California 94143-0628, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
van Wijk BCM, Willemse RB, Peter Vandertop W, Daffertshofer A. Slowing of M1 oscillations in brain tumor patients in resting state and during movement. Clin Neurophysiol 2012; 123:2212-9. [PMID: 22608483 DOI: 10.1016/j.clinph.2012.04.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 03/22/2012] [Accepted: 04/05/2012] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Brain tumors may severely disrupt the structure and function of the brain. While abnormal low-frequency activity can be found around tumor borders, disrupted structural connectivity may also impinge on neural activity in distant brain regions and other frequency bands. We investigated how glioma in patients with normal motor functioning affects activity in primary motor areas (M1). METHODS Using magnetoencephalography in 12 patients with unilateral glioma located around the central sulcus, we studied activity in bilateral M1s in resting state and during movement with focus on motor-related mu (8-12Hz) and beta rhythms (15-30Hz). Principal component analysis served to test for differences in spectral content. RESULTS A shift was found towards lower frequencies for M1 in the tumor hemisphere compared to M1 in the healthy hemisphere, caused by an increase in mu and decrease in beta power. This pattern was observed both in resting state and during movement. CONCLUSIONS This 'slowing' of brain oscillations in M1 resembles findings in patients with monohemispheric stroke and Parkinson's disease. A loss of intra-cortical connectivity may account for these findings, possibly supplemented by tumor-induced changes in neurotransmitter systems. SIGNIFICANCE Motor functioning may be unaffected by a spectral shift of mu and beta oscillations.
Collapse
|
13
|
Golukhova EZ, Polunina AG, Lefterova NP, Begachev AV. Electroencephalography as a tool for assessment of brain ischemic alterations after open heart operations. Stroke Res Treat 2011; 2011:980873. [PMID: 21776370 PMCID: PMC3138153 DOI: 10.4061/2011/980873] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 03/31/2011] [Accepted: 03/31/2011] [Indexed: 11/24/2022] Open
Abstract
Cardiac surgery is commonly associated with brain ischemia. Few studies addressed brain electric activity changes after on-pump operations. Eyes closed EEG was performed in 22 patients (mean age: 45.2 ± 11.2) before and two weeks after valve replacement. Spouses of patients were invited to participate as controls. Generalized increase of beta power most prominent in beta-1 band was an unambiguous pathological sign of postoperative cortex dysfunction, probably, manifesting due to gamma-activity slowing (“beta buzz” symptom). Generalized postoperative increase of delta-1 mean frequency along with increase of slow-wave activity in right posterior region may be hypothesized to be a consequence of intraoperative ischemia as well. At the same time, significant changes of alpha activity were observed in both patient and control groups, and, therefore, may be considered as physiological. Unexpectedly, controls showed prominent increase of electric activity in left temporal region whereas patients were deficient in left hemisphere activity in comparison with controls at postoperative followup. Further research is needed in order to determine the true neurological meaning of the EEG findings after on-pump operations.
Collapse
Affiliation(s)
- Elena Z Golukhova
- Bakulev Scientific Center of Cardiovascular Surgery, Russian Academy of Medical Sciences, Leninsky Prospekt 156-368, Moscow 119571, Russia
| | | | | | | |
Collapse
|
14
|
Martino J, Honma SM, Findlay AM, Guggisberg AG, Owen JP, Kirsch HE, Berger MS, Nagarajan SS. Resting functional connectivity in patients with brain tumors in eloquent areas. Ann Neurol 2011; 69:521-32. [PMID: 21400562 DOI: 10.1002/ana.22167] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 06/23/2010] [Accepted: 07/16/2010] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Resection of brain tumors adjacent to eloquent areas represents a challenge in neurosurgery. If maximal resection is desired without inducing postoperative neurological deficits, a detailed knowledge of the functional topography in and around the tumor is crucial. The aim of the present work is to evaluate the value of preoperative magnetoencephalography (MEG) imaging of functional connectivity to predict the results of intraoperative electrical stimulation (IES) mapping, the clinical gold standard for neurosurgical localization of functional areas. METHODS Resting-state whole-cortex MEG recordings were obtained from 57 consecutive subjects with focal brain tumors near or within motor, sensory, or language areas. Neural activity was estimated using adaptive spatial filtering algorithms, and the mean imaginary coherence between the rest of the brain and voxels in and around brain tumors were compared to the mean imaginary coherence between the rest of the brain and contralesional voxels as an index of functional connectivity. IES mapping was performed in all subjects. The cortical connectivity pattern near the tumor was compared to the IES results. RESULTS Maps with decreased resting-state functional connectivity in the entire tumor area had a negative predictive value of 100% for absence of eloquent cortex during IES. Maps showing increased resting-state functional connectivity within the tumor area had a positive predictive value of 64% for finding language, motor, or sensory cortical sites during IES mapping. INTERPRETATION Preoperative resting state MEG connectivity analysis is a useful noninvasive tool to evaluate the functionality of the tissue surrounding tumors within eloquent areas, and could potentially contribute to surgical planning and patient counseling.
Collapse
Affiliation(s)
- Juan Martino
- Department of Neurological Surgery, Hospital Universitario Marqués de Valdecilla, Instituto de Formación e Investigación Marqués de Valdecilla, Santander, Cantabria, Spain
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Gerez M, Sada A, Tello A. Amygdalar hyperactivity, a fear-related link between panic disorder and mesiotemporal epilepsy. Clin EEG Neurosci 2011; 42:29-39. [PMID: 21309440 DOI: 10.1177/155005941104200108] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The sudden onset, short duration and stereotyped features of panic attacks, and the fear aura of seizures starting at the mesial aspects of the temporal lobe, suggest common mechanisms underlying panic disorder (PD) and mesiotemporal epilepsy (MTLE). However, current consensus emphasizes the importance of differentiating the two entities based on 1) intact consciousness in panic attacks, 2) poor response to antiepileptics, and 3) unsuccessful electrophysiological attempts to demonstrate a relationship. We report two cases with a diagnosis of PD that had been partially responsive to first line treatments. During the EEG session, both patients developed panic symptoms with minimal EEG changes in response to paper bag-hyperventilation (PB-HV), and several minutes later presented a clear ictal EEG pattern associated with very different clinical symptoms, but both with strong fear content. Z-scored LORETA analysis showed increased current source densities (CSD) at the right amygdala in both subjects during the induced panic symptoms. Several areas were involved during the seizure, different in each subject. Yet, a very significant increase at the amygdala was found in both cases. The LORETA Z-scored source correlation (LSC) analysis also showed similar abnormal patterns during the panic symptoms in both patients, and marked differences during the seizure. These findings show a major role of amygdalar hyperactivity in both fear-related conditions for the two patients, and are discussed in relation to existing models of PD in general. Abnormal overactivation at mesiotemporal regions is poorly represented at the surface recordings but can be detected by the appropriate analytical techniques.
Collapse
Affiliation(s)
- M Gerez
- Department of Neurophysiology, Hospital Español de Mexico, Mexico City 11520, USA.
| | | | | |
Collapse
|
16
|
Mielke R, Szelies B. Neuronal plasticity in poststroke aphasia: insights by quantitative electroencephalography. Expert Rev Neurother 2010; 3:373-80. [PMID: 19810904 DOI: 10.1586/14737175.3.3.373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
After stroke, the interhemispheric reorganization of the neural network implicated in language is hypothesized to be a function not only at the site of the lesion but also of dynamic right hemispheric and subcortical neural systems. These neural systems may have different functional shares in the utilization of particular language tasks. Important insights in language rehabilitation have been gained by quantitative topographical electroencephalography. It has been demonstrated that abnormalities within and outside speech relevant areas are related to restitution of poststroke aphasia. In the ischemic regions they indicate local disturbances, outside they reflect failures in neuronal networks involved in the generation and propagation of the alpha-rhythm. Treatment by a neuromodulatory agent has shown a significant shift of alpha-rhythm from frontal to occipital regions which may be due to a restitution of corticothalamic circuits in parallel to an improvement of neuropsychological scores in different language domains.
Collapse
Affiliation(s)
- Ruediger Mielke
- Max Planck Institut für neurologische Forschung, Gleueler Str. 50, D 50931 Köln, Germany.
| | | |
Collapse
|
17
|
Melloni L, Schwiedrzik CM, Wibral M, Rodriguez E, Singer W. Response to: Yuval-Greenberg et al., "Transient Induced Gamma-Band Response in EEG as a Manifestation of Miniature Saccades." Neuron 58, 429-441. Neuron 2009; 62:8-10; author reply 10-12. [PMID: 19376062 DOI: 10.1016/j.neuron.2009.04.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Repetitive transcranial magnetic stimulation decreases the number of seizures in patients with focal neocortical epilepsy. Seizure 2008; 17:677-83. [DOI: 10.1016/j.seizure.2008.04.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 03/18/2008] [Accepted: 04/11/2008] [Indexed: 11/22/2022] Open
|
19
|
Ricardo-Garcell J, González-Olvera JJ, Miranda E, Harmony T, Reyes E, Almeida L, Galán L, Díaz D, Ramírez L, Fernández-Bouzas A, Aubert E. EEG sources in a group of patients with major depressive disorders. Int J Psychophysiol 2008; 71:70-4. [PMID: 18755226 DOI: 10.1016/j.ijpsycho.2008.07.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
EEG sources were assessed in a group of patients with major moderate-severe depressive disorder (MDD) as classified by trained clinicians according to DSM-IV criteria. Frequency Domain Variable Resolution Electromagnetic Tomography (FD-VARETA) was used to calculate EEG sources. The Z-values indicated that EEG sources were abnormal (increase in current density) in all patients, with most demonstrating abnormal EEG sources in both hemispheres but with maximal inverse solution located primarily in the right. Twenty-nine patients had a predominant topography of the abnormal EEG maximal inverse solution in the frontal lobes. The remaining seven patients had a bilateral abnormal increase in current density in the superior parietal lobe. The EEG maximal abnormal inverse solution frequency was observed in both hemispheres such that the increases in current density were prevalent in alpha and theta bands. The results suggest that any of the two hemispheres could be affected by MDD, but abnormal EEG sources can be found more frequently in the right one, with the maximal abnormal inverse solution at the alpha and theta bands in frontal and parietal cortices.
Collapse
Affiliation(s)
- Josefina Ricardo-Garcell
- Dpto. de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus, Juriquilla, Querétaro, México.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Association study of theta EEG asymmetry and brain-derived neurotrophic factor gene variants in childhood-onset mood disorder. Neuromolecular Med 2008; 10:343-55. [PMID: 18543122 DOI: 10.1007/s12017-008-8038-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Accepted: 05/06/2008] [Indexed: 01/30/2023]
Abstract
BACKGROUND Childhood-onset mood disorders (COMD) include various serious, disabling psychiatric conditions that are heterogeneous in presentation and etiology. Because intermediate phenotypes may help to identify genetic contributors to COMD, we tested for an association between variants in the brain-derived neurotrophic factor (BDNF) gene and theta EEG asymmetry, both of which have been independently implicated in affective disorders. METHODS Theta EEG asymmetry measures were calculated for a total of 191 individuals with COMD and 93 controls, who were also genotyped at seven BDNF single-nucleotide polymorphism (SNPs), two intergenic flanking SNPs, and one SNP in the lin-7 homolog C (Caenorhabditis elegans) (LIN7C) gene. RESULTS Adjusting for sex and ethnicity in linear models of asymmetry scores at ten brain regions, significant genotype and genotype-by-ethnicity interactions were observed for marker Val66Met in two parietal (P3/4 and P7/8) regions in the depressed group only. CONCLUSIONS Our results suggest that the functional Val66Met polymorphism affects theta EEG asymmetry in parietal brain regions specifically in individuals with COMD.
Collapse
|
21
|
Foster PS, Harrison DW, Crucian GP, Drago V, Rhodes RD, Heilman KM. Reduced Verbal Learning Associated With Posterior Temporal Lobe Slow Wave Activity. Dev Neuropsychol 2007; 33:25-43. [DOI: 10.1080/87565640701729706] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Fernández T, Harmony T, Fernández-Bouzas A, Díaz-Comas L, Prado-Alcalá RA, Valdés-Sosa P, Otero G, Bosch J, Galán L, Santiago-Rodríguez E, Aubert E, García-Martínez F. Changes in EEG Current Sources Induced by Neurofeedback in Learning Disabled Children. An Exploratory Study. Appl Psychophysiol Biofeedback 2007; 32:169-83. [DOI: 10.1007/s10484-007-9044-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2006] [Accepted: 10/05/2007] [Indexed: 11/29/2022]
|
23
|
Finnigan SP, Walsh M, Rose SE, Chalk JB. Quantitative EEG indices of sub-acute ischaemic stroke correlate with clinical outcomes. Clin Neurophysiol 2007; 118:2525-32. [PMID: 17889600 DOI: 10.1016/j.clinph.2007.07.021] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Revised: 06/12/2007] [Accepted: 07/15/2007] [Indexed: 11/25/2022]
Abstract
OBJECTIVE We investigated the ability of quantitative electroencephalography (QEEG) measures in sub-acute stroke to assist monitoring or prognostication of stroke evolution. QEEG indices and National Institutes of Health Stroke Scale (NIHSS) scores were compared. METHODS Ischaemic cortical stroke patients were studied. Resting, 62-channel EEG and NIHSS score were acquired at 49+/-3h post-symptom onset, and NIHSS administered at 30+/-2 days post-stroke. Mean power was calculated for delta (1-4 Hz), theta (4.1-8 Hz), alpha (8.1-12.5 Hz) and beta (12.6-30 Hz) frequency bands, using a 62-channel electrode array and a 19-channel subset. RESULTS Thirteen patients (6 male, median age 66, range 54-86 years) were studied. Sub-acute delta:alpha power ratio (DAR; r=0.91, P<0.001), relative alpha power (r=-0.82, P<0.01), and NIHSS score (r=0.92, P<0.001) each were significantly correlated with 30-day NIHSS score. The former two significant correlations were upheld in 19-channel EEG data. QEEG measures involving theta or beta power were not significantly correlated with NIHSS scores. CONCLUSIONS QEEG measures such as DAR demonstrate potential to augment bedside assessment of cerebral pathophysiology and prognostication of stroke evolution. A standard, 19-channel array seems adequate for these purposes. Future studies in larger samples should investigate the potential effects on these measures of sleep state and possible causes of artefacts. SIGNIFICANCE QEEG measures from a standard number of electrodes, if available rapidly and robust to potential artefacts, may inform future management of stroke patients.
Collapse
Affiliation(s)
- Simon P Finnigan
- Centre for Magnetic Resonance, The University of Queensland, Brisbane, Australia.
| | | | | | | |
Collapse
|
24
|
Cuspineda E, Machado C, Galán L, Aubert E, Alvarez MA, Llopis F, Portela L, García M, Manero JM, Avila Y. QEEG prognostic value in acute stroke. Clin EEG Neurosci 2007; 38:155-60. [PMID: 17844945 DOI: 10.1177/155005940703800312] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The objective of our study is to determine the predictive value of QEEG in patients suffering from an acute ischemic cerebral stroke. Twenty-eight patients were studied within the first 72 hours of clinical evolution of middle cerebral artery territory ischemic stroke. Thirty-seven QEEG recordings were obtained: 13 in the first 24 hours after cerebral stroke onset, 9 between 24-48 hours and 15 between 48-72 hours. Absolute Energies (AE) were the QEEG selected variables for statistical analysis: first, AE Z values were calculated using the Cuban QEEG norms, then the maximum and minimum AE Z values were selected within each frequency band and total power. The medians of the five neighboring Z values were also chosen. Regression models were estimated using the RANKIN scores as dependent variables and the selected QEEG variables as independent, then outcome predictions at hospital discharge and 3 months later were calculated. Percentages of concordance and errors between the estimated and real outcome scores were obtained. Alpha and theta AE were the best predictor for short-term outcome and delta AE for long-term outcome. We conclude that QEEG performed within the first 72 hours of ischemic stroke might be a powerful tool predicting short- and long-term outcome.
Collapse
Affiliation(s)
- E Cuspineda
- Havana Institute of Neurology and Neurosurgery, Cuba
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Oshino S, Kato A, Wakayama A, Taniguchi M, Hirata M, Yoshimine T. Magnetoencephalographic analysis of cortical oscillatory activity in patients with brain tumors: Synthetic aperture magnetometry (SAM) functional imaging of delta band activity. Neuroimage 2007; 34:957-64. [PMID: 17175174 DOI: 10.1016/j.neuroimage.2006.08.054] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2005] [Revised: 08/09/2006] [Accepted: 08/13/2006] [Indexed: 11/26/2022] Open
Abstract
Abnormal focal slow wave activity on electroencephalography and magnetoencephalography (MEG) is often seen in patients with various brain pathologies and MEG is capable of localizing cortical oscillatory activity with enhanced accuracy. In addition, MEG with synthetic aperture magnetometry (SAM) can depict changes in cortical oscillatory activity tomographically. Using SAM, we recorded cortical rhythms in patients with a brain tumor and evaluated the tomographic appearance of focal slow wave activity in relation to clinical signs and symptoms. Spontaneous MEG recordings were obtained in 15 patients with brain tumors. Statistically-determined power distributions in the delta-, theta-, and alpha-frequency bands were displayed tomographically and overlaid on individual magnetic resonance images. The location, strength and volume of enhanced activity were analyzed. Delta and theta band activities were significantly more intense in the cortex adjacent to tumors and in the surrounding edematous cortical areas than in other portions of the cortex. In 13 of the 15 patients, spatial distribution of enhanced focal delta activity coincided with the area responsible for the presenting signs and symptoms. Volumetric analysis revealed that emergence of tumor-related focal delta band activity in the cortex adjacent to a tumor, or with peritumoral edema, was greater for intra-axial tumors involving subcortical fibers than for extra-axial tumors. Patients with an increased volume of enhanced delta activity exhibited poor recovery of function in the early postoperative period. It is concluded that SAM imaging of focal delta activity can reveal functional alterations in cortical activity in patients with brain tumors and is useful for assessing cortical states associated with the existing pathology.
Collapse
Affiliation(s)
- Satoru Oshino
- Department of Neurosurgery, Osaka University Graduate School of Medicine, 2-2 Yamdaoka, Suita, 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Santiago-Rodríguez E, Harmony T, Graef A, García JC, Fernández-Bouzas A, Hernández-Balderas A, Fernández T. Interictal Regional Cerebral Blood Flow and Electrical Source Analysis in Patients with Complex Partial Seizures. Arch Med Res 2006; 37:145-9. [PMID: 16314201 DOI: 10.1016/j.arcmed.2005.05.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2005] [Accepted: 05/27/2005] [Indexed: 11/29/2022]
Abstract
BACKGROUND Recently, new methods of EEG source analysis have been developed. Dipole modeling and brain distributed source analysis localize in three-dimensions the origin of the electrical source of spikes registered in EEG. With single photon emission computed tomography (SPECT), it is possible to detect hypo- and hyperperfusion zones. Our aim in this study is to compare the regions where the electrical sources are detected, with the hypoperfusion regions in patients with complex partial seizures (CPS). METHODS The concordance of localization with dipole analysis, brain distributed source analysis and regional cerebral flow blood in patients with CPS was studied. The hypoperfusion zones detected with interictal SPECT were compared with electrical sources localized with brain electric source analysis (BESA) and brain distributed source analysis with variable resolution electromagnetic tomography (VARETA). RESULTS Hypoperfusion zones were found to localize with the origin of dipoles in 18 cases (90%), between lobes in 17 (85%) and between mesial or lateral regions in the temporal lobe in 12 cases (60%). With VARETA, agreement between side of hypoperfusion and electrical current source localization was found in 18/20 cases (90%), with lobes in 17 (85%) and with mesial or lateral regions of the temporal lobe only in 2 cases (10%). CONCLUSIONS Hypoperfusion zones in interictal SPECT of patients with CPS are in agreement with the origin of dipoles in 85% of the cases, but in specifics zones of temporal lobe the agreement falls to 60%. The concordance of hypoperfusion zones was better with dipole analysis than with VARETA.
Collapse
|
27
|
Congedo M, Lubar JF, Joffe D. Low-resolution electromagnetic tomography neurofeedback. IEEE Trans Neural Syst Rehabil Eng 2005; 12:387-97. [PMID: 15614994 DOI: 10.1109/tnsre.2004.840492] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Through continuous feedback of the electroencephalogram (EEG) humans can learn how to shape their brain electrical activity in a desired direction. The technique is known as EEG biofeedback, or neurofeedback, and has been used since the late 1960s in research and clinical applications. A major limitation of neurofeedback relates to the limited information provided by a single or small number of electrodes placed on the scalp. We establish a method for extracting and feeding back intracranial current density and we carry out an experimental study to ascertain the ability of the participants to drive their own EEG power in a desired direction. To derive current density within the brain volume, we used the low-resolution electromagnetic tomography (LORETA). Six undergraduate students (three males, three females) underwent tomographic neurofeedback (based on 19 electrodes placed according to the 10-20 system) to enhance the current density power ratio between the frequency bands beta (16-20 Hz) and alpha (8-10 Hz). According to LORETA modeling, the region of interest corresponded to the Anterior Cingulate (cognitive division). The protocol was designed to improve the performance of the subjects on the dimension of sustained attention. Two hypotheses were tested: 1) that the beta/alpha current density power ratio increased over sessions and 2) that by the end of the training subjects acquired the ability of increasing that ratio at will. Both hypotheses received substantial experimental support in this study. This is the first application of an EEG inverse solution to neurofeedback. Possible applications of the technique include the treatment of epileptic foci, the rehabilitation of specific brain regions damaged as a consequence of traumatic brain injury and, in general, the training of any spatial specific cortical electrical activity. These findings may also have relevant consequences for the development of brain-computer interfaces.
Collapse
Affiliation(s)
- Marco Congedo
- Department of Psychology of the University of Tennessee, Knoxville, TN 37996-0900, USA.
| | | | | |
Collapse
|
28
|
Harmony T, Fernández T, Gersenowies J, Galán L, Fernández-Bouzas A, Aubert E, Díaz-Comas L. Specific EEG frequencies signal general common cognitive processes as well as specific task processes in man. Int J Psychophysiol 2004; 53:207-16. [PMID: 15246674 DOI: 10.1016/j.ijpsycho.2004.04.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2003] [Revised: 03/30/2004] [Accepted: 04/07/2004] [Indexed: 11/22/2022]
Abstract
The EEG of 10 normal male young adults was recorded during the performance of three different tasks: mental calculation, verbal working memory (VWM) and spatial working memory (SWM). The stimuli used in the three tasks were the same, only the instructions to the subjects were different. Narrow band analysis of the EEG and distributed sources for each EEG frequency were calculated using variable resolution electromagnetic tomography (VARETA). At some frequencies (1.56, 4.68, 7.80 to 10.92 Hz) at least two tasks produced similar EEG patterns that were interpreted as the reflex of common cognitive processes, such as attention, inhibition of irrelevant stimuli, etc. Specific changes were also observed at 2.34, 3.12, 3.90, 5.46 and 6.24 Hz. The first three of these frequencies showed similar changes during VWM and calculus at the left frontal cortex, suggesting the activation of working memory (WM) processes. The interaction effect at these frequencies was mainly observed at the anterior cingulate cortex and frontal cortex. At 5.46 and 6.24 Hz, changes were only observed during mental calculation.
Collapse
Affiliation(s)
- Thalía Harmony
- Instituto de Neurobiología, Campus UNAM-UAQ Juriquilla, Apartado Postal 1-11141 Querétaro, Qro, 76230, Mexico.
| | | | | | | | | | | | | |
Collapse
|
29
|
Machado C, Cuspineda E, Valdés P, Virues T, Llopis F, Bosch J, Aubert E, Hernández E, Pando A, Alvarez MA, Barroso E, Galán L, Avila Y. Assessing acute middle cerebral artery ischemic stroke by quantitative electric tomography. Clin EEG Neurosci 2004; 35:116-24. [PMID: 15259617 DOI: 10.1177/155005940403500303] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This paper focuses on the application of quantitative electric tomography (qEEGT) to map changes in EEG generators for detection of early signs of ischemia in patients with acute middle cerebral artery stroke. Thirty-two patients were studied with the diagnosis of acute ischemic stroke of the left middle cerebral artery territory, within the first 24 hours of their clinical evolution. Variable Resolution Electrical Tomography was used for estimating EEG source generators. High resolution source Z-spectra and 3- dimensional images of Z values for all the sources at each frequency were obtained for all cases. To estimate statistically significant increments and decrements of brain electric activity within the frequency spectra, the t-Student vs. Zero test was performed. A significant increment of delta activity was observed on the affected vascular territory, and a more extensive increment of theta activity was detected. A significant alpha decrement was found in the parieto-occipital region of the affected cerebral hemisphere (left), and in the medial and posterior region of the right hemisphere. These findings suggest that qEEGT Z delta images are probably related to the main ischemic core within the affected arterial territory; penumbra, diaschisis, edema, might explain those observed theta and alpha abnormalities. It was concluded that qEEGT is useful for the detection of early signs of ischemia in acute ischemic stroke.
Collapse
|
30
|
Babiloni C, Binetti G, Cassetta E, Cerboneschi D, Dal Forno G, Del Percio C, Ferreri F, Ferri R, Lanuzza B, Miniussi C, Moretti DV, Nobili F, Pascual-Marqui RD, Rodriguez G, Romani GL, Salinari S, Tecchio F, Vitali P, Zanetti O, Zappasodi F, Rossini PM. Mapping distributed sources of cortical rhythms in mild Alzheimer's disease. A multicentric EEG study. Neuroimage 2004; 22:57-67. [PMID: 15109997 DOI: 10.1016/j.neuroimage.2003.09.028] [Citation(s) in RCA: 195] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2003] [Revised: 09/10/2003] [Accepted: 09/10/2003] [Indexed: 10/26/2022] Open
Abstract
The study aimed at mapping (i) the distributed electroencephalographic (EEG) sources specific for mild Alzheimer's disease (AD) compared to vascular dementia (VaD) or normal elderly people (Nold) and (ii) the distributed EEG sources sensitive to the mild AD at different stages of severity. Resting EEG (10-20 electrode montage) was recorded from 48 mild AD, 20 VaD, and 38 Nold subjects. Both AD and VaD patients had 24-17 of mini mental state examination (MMSE). EEG rhythms were delta (2-4 Hz), theta (4-8 Hz), alpha 1 (8-10.5 Hz), alpha 2 (10.5-13 Hz), beta 1 (13-20 Hz), and beta 2 (20-30 Hz). Cortical EEG sources were modeled by low resolution brain electromagnetic tomography (LORETA). Regarding issue i, there was a decline of central, parietal, temporal, and limbic alpha 1 (low alpha) sources specific for mild AD group with respect to Nold and VaD groups. Furthermore, occipital alpha 1 sources showed a strong decline in mild AD compared to VaD group. Finally, distributed theta sources were largely abnormal in VaD but not in mild AD group. Regarding issue ii, there was a lower power of occipital alpha 1 sources in mild AD subgroup having more severe disease. Compared to previous field studies, this was the first investigation that illustrated the power spectrum profiles at the level of cortical (macroregions) EEG sources in mild AD patients having different severity of the disease with respect to VaD and normal subjects. Future studies should evaluate the clinical usefulness of this approach in early differential diagnosis, disease staging, and therapy monitoring.
Collapse
Affiliation(s)
- Claudio Babiloni
- Dipartimento di Fisiologia Umana e Farmacologia, Sezione di EEG ad Alta Risoluzione, Universita degli Studi di Roma La Sapienza, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Fernández-Bouzas A, Harmony T, Fernández T, Ricardo-Garcell J, Santiago E. Variable resolution electromagnetic tomography (VARETA) in evaluation of compression of cerebral arteries due to deep midline brain lesions. Arch Med Res 2004; 35:225-30. [PMID: 15163464 DOI: 10.1016/j.arcmed.2004.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2003] [Accepted: 02/18/2004] [Indexed: 11/25/2022]
Abstract
BACKGROUND Hemispheric tumors produced electroencephalographic (EEG) delta activity mainly due to deafferentation of cerebral cortex. In small, deep midline lesions that compressed cerebral arteries, the most important abnormality should have been in EEG theta band that selectively responded to brain ischemia. Frequency domain-variable resolution electromagnetic tomography (FD-VARETA) has been applied satisfactorily to the study of brain tumors, cerebral infarcts, and brain hemorrhages and was shown to localize areas of hypoperfusion. METHODS Twelve patients with deep midline lesions compressing different cerebral arteries were studied. Computer tomography (CT) and/or magnetic resonance imaging (MRI) as well as quantitative EEG with source calculation in frequency domain were obtained. Brain electromagnetic tomographies (BETs) were calculated to evaluate localization and extension of functional abnormalities. RESULTS Ten of twelve cases presented abnormal sources in theta band as main abnormal source. In only two cases was the main source in delta band, but these cases also had abnormal Z values in theta band. In four patients there were only abnormal values in theta range. Sources of abnormal theta activity were observed in regions irrigated by the arteries compressed. CONCLUSIONS In deep midline lesions, compression of cerebral arteries producing relative ischemia may explain abnormal EEG sources in theta band. Patients with main source in theta band showed vascular compression and some patients exhibited vasogenic edema. Thus, theta might be due to relative ischemia produced by both hypoperfusion and edema. Once again, VARETA has found to be very useful in evaluation of functional abnormalities.
Collapse
Affiliation(s)
- Antonio Fernández-Bouzas
- Laboratorio de Psicofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-UAQ, Juriquilla, Querétaro, Mexico.
| | | | | | | | | |
Collapse
|
32
|
Wienbruch C, Moratti S, Elbert T, Vogel U, Fehr T, Kissler J, Schiller A, Rockstroh B. Source distribution of neuromagnetic slow wave activity in schizophrenic and depressive patients. Clin Neurophysiol 2004; 114:2052-60. [PMID: 14580603 DOI: 10.1016/s1388-2457(03)00210-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Focal slow waves in the delta and theta frequency range frequently appear in psychopathological conditions. Due to their focal nature they can be localized by dipole modeling. We previously reported regional clustering of slow waves in temporal and parietal cortex of schizophrenic patients whereas such activity is largely absent in normals. Here we examine, to what extent distribution of slow wave generators differentiates schizophrenic from depressive syndromes. METHODS The regional densities of generators of focal slow waves were determined during resting conditions in patients with DSM-IV diagnoses of schizophrenia (N=25) and depression (N=27) and in 18 healthy controls. RESULTS Schizophrenic patients demonstrated accentuated temporal and parietal delta and theta dipole clustering, when compared to both the control and the depressive sample. In contrast, depressive patients had reduced frontal and prefrontal delta and theta dipole density relative to both schizophrenics and controls. This pattern was not related to age. Men generally displayed somewhat higher slow wave activity than women. For the areas of most pronounced slow wave deviances activity within each group was related to symptom scores: higher left-temporal slow wave activity was associated with hallucinations in schizophrenics, suppression of left-prefrontal slow wave activity correlated with depression scores. CONCLUSIONS Results suggest that slow wave distribution may assist in differentially diagnosing psychopathological conditions.
Collapse
|
33
|
|
34
|
Fernández T, Harmony T, Fernández-Bouzas A, Silva J, Herrera W, Santiago-Rodríguez E, Sánchez L. Sources of EEG activity in learning disabled children. CLINICAL EEG (ELECTROENCEPHALOGRAPHY) 2002; 33:160-4. [PMID: 12449846 DOI: 10.1177/155005940203300405] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The sources of different EEG frequencies were studied in 25 normal children and 46 learning disabled (not otherwise specified) children between 7 and 11 years old. The EEG sources were computed using Frequency-domain Variable Resolution Electromagnetic Tomography which produces a three dimensional picture of the currents at each EEG frequency. Significant differences between groups were observed. LD children showed more theta activity (3.5 to 7.02 Hz) in the frontal lobes and control children more alpha (9.75 to 12.87 Hz) in occipital areas. These results may support the maturational lag hypothesis, as the neurobiological cause of learning deficiencies not otherwise specified.
Collapse
Affiliation(s)
- Thalía Fernández
- Institute of Neurobiology, National Autonomous University of Mexico, Campus UNAM-UAQ Juriquilla, Querètaro 76230, México.
| | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Consciousness combines information about attributes of the present multimodal sensory environment with relevant elements of the past. Information from each modality is continuously fractionated into distinct features, processed locally by different brain regions relatively specialized for extracting these disparate components and globally by interactions among these regions. Information is represented by levels of synchronization within neuronal populations and of coherence among multiple brain regions that deviate from random fluctuations. Significant deviations constitute local and global negative entropy, or information. Local field potentials reflect the degree of synchronization among the neurons of the local ensembles. Large-scale integration, or 'binding', is proposed to involve oscillations of local field potentials that play an important role in facilitating synchronization and coherence, assessed by neuronal coincidence detectors, and parsed into perceptual frames by cortico-thalamo-cortical loops. The most probable baseline levels of local synchrony, coherent interactions among brain regions, and frame durations have been quantitatively described in large studies of their age-appropriate normative distributions and are considered as an approximation to a conscious 'ground state'. The level of consciousness during anesthesia can be accurately predicted by the magnitude and direction of reversible multivariate deviations from this ground state. An invariant set of changes takes place during anesthesia, independent of the particular anesthetic agent. Evidence from a variety of neuroscience areas supporting these propositions, together with the invariant reversible electrophysiological changes observed with loss and return of consciousness, are used to provide a foundation for this theory of consciousness. This paper illustrates the increasingly recognized need to consider global as well as local processes in the search for better explanations of how the brain accomplishes the transformation from synchronous and distributed neuronal discharges to seamless global subjective awareness.
Collapse
Affiliation(s)
- E Roy John
- Brain Research Laboratories, NYU School of Medicine, 550 First Avenue, New York 10016, USA.
| |
Collapse
|
36
|
Fernández-Bouzas A, Harmony T, Fernández T, Aubert E, Ricardo-Garcell J, Valdés P, Bosch J, Casián G, Sánchez-Conde R. Sources of abnormal EEG activity in spontaneous intracerebral hemorrhage. CLINICAL EEG (ELECTROENCEPHALOGRAPHY) 2002; 33:70-6. [PMID: 12025734 DOI: 10.1177/155005940203300205] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
UNLABELLED This report describes the results obtained with EEG source analysis in the frequency domain (FD-VARETA), in 14 patients with brain hemorrhages; 6 hemorrhages were located in the putaminal region, 1 was mesencephalic and 7 were lobar cerebral hemorrhages. Our goal was to evaluate FD-VARETA accuracy for the localization of fast growth expansive brain lesions. FD-VARETA produces brain electromagnetic tomography images of EEG sources in every frequency. The location of the most abnormal or the maximum Z value across all frequencies was compared with the location of spontaneous hemorrhages in computed tomographies (CT). In all patients the main source was within delta or theta bands. The spatial extent of the sources, in the brain atlas, at these frequency values was almost the same as the volume of hematoma in CT. Putaminal lesions produced larger regions of cortical deafferentation than lobar hematomas, with higher abnormal Z values. FD-VARETA was more accurate in locating the lesions than traditional maps of absolute and relative power in delta, theta, alpha and beta bands. CONCLUSION FD-VARETA is a valuable procedure for the functional evaluation of brain hemorrhages.
Collapse
|
37
|
Santiago-Rodríguez E, Harmony T, Fernández-Bouzas A, Hernández A, Martínez-López M, Graef A, García JC, Silva-Pereyra J, Fernández T. EEG source localization of interictal epileptiform activity in patients with partial complex epilepsy: comparison between dipole modeling and brain distributed source models. CLINICAL EEG (ELECTROENCEPHALOGRAPHY) 2002; 33:42-7. [PMID: 11795210 DOI: 10.1177/155005940203300107] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The precision between dipole Brain Electric Source Analysis (BESA) and brain distributed Variable Resolution Electromagnetic Tomography (VARETA) models for the localization of brain sources of interictal epileptiform discharges in patients with partial complex epilepsy was compared. The localization of brain sources calculated with dipole analysis and variable resolution electromagnetic tomography in 20 interictal recordings was analyzed. The origin of the dipoles was temporal in 18 cases, frontal in 1 and occipital in another. One dipole was enough in 7 cases, whereas two dipoles were necessary in 13 cases. The localization of paroxysmal activity was the same with BESA and VARETA in 17 patients. BESA and VARETA are useful methods for EEG sources analysis; BESA has more precision for the localization of punctate epileptogenic regions, and VARETA provides more information concerning the extension of the epileptic zone.
Collapse
Affiliation(s)
- Efraín Santiago-Rodríguez
- Centro de Neurobiología, Campus UNAM-UAQ Juriquilla, Querétaro, Qro. 76001 México, Apdo. Postal 1141
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Chapter 41 Sources of EEG activity during a verbal working memory task in adults and children. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s1567-424x(09)70461-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
39
|
Fernández-Bouzas A, Harmony T, Fernández T, Ricardo-Garcell J, Casián G, Sánchez-Conde R. Cerebral blood flow and sources of abnormal EEG activity (VARETA) in neurocysticercosis. Clin Neurophysiol 2001; 112:2281-7. [PMID: 11738200 DOI: 10.1016/s1388-2457(01)00690-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVES To compare two different functional procedures in the assessment of brain ischemia in patients with neurocysticercosis (NCC): (1) electroencephalography (EEG) evaluated by brain maps and EEG current sources in the frequency domain using variable resolution electromagnetic tomography and (2) blood flow analyzed by computerized tomography assessed with stable Xe (Xe-CT). METHODS Eleven patients with NCC at different evolution stages were studied. CT and Xe-CT scans, as well as quantitative electroencephalography with source calculation in the frequency domain, were obtained. All patients showed cysts and in 6 of them there were also vascular complications: two of them presented calcifications of the middle cerebral artery, two other subjects showed calcifications of the vessels in the circle of Willis and the remaining two had brain infarctions. RESULTS In the cyst areas important hypoperfused zones were observed, as intense as those observed in infarcted areas. Damage to the blood-brain barrier was originated by parasites in colloidal phase (final cysticerci stage) producing large areas of edema and hypoperfusion. Abnormal delta EEG activity was observed in very large lesions, probably generated by partial cortical deafferentation; and abnormal theta activity was mainly related to the presence of edema. CONCLUSIONS Sources of abnormal EEG activity were very similar in topography to the hypoperfused areas.
Collapse
Affiliation(s)
- A Fernández-Bouzas
- ENEP Iztacala, Universidad Nacional Autónoma de México (UNAM), Avenida Los Reyes s/n, Los Reyes, Iztacala, Estado de México, Tlanepantla, Mexico.
| | | | | | | | | | | |
Collapse
|
40
|
Harmony T, Fernández T, Fernández-Bouzas A, Silva-Pereyra J, Bosch J, Díaz-Comas L, Galán L. EEG changes during word and figure categorization. Clin Neurophysiol 2001; 112:1486-98. [PMID: 11459689 DOI: 10.1016/s1388-2457(01)00582-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE To analyze whether the EEG changes observed during figure and word categorization are compatible with either the dual, the common amodal, or the alternative model (modality-specific codes for words and pictures, where meaning is represented for both in a higher-order amodal system) for semantic knowledge. METHODS EEG was recorded during word and figure categorization of animals or non-animals in a group of 28 children 8-10 years old. Computation of EEG sources in the frequency domain using variable resolution electrical tomography (VARETA) and their statistical evaluation by statistical parametric mapping were carried out. RESULTS At all frequencies, there were significant changes between EEG segments prior to the presentation of the stimuli and EEG segments recorded after the stimuli. Post-segments showed more power from 1.56 to 7.02 Hz, and less power than pre-segments from 8 to 12.48 Hz. EEG changes were only observed in the word task at: 3.9 (left occipital), 4.68, 5.46, and 6.24 Hz (temporo-occipital regions). These changes may be associated with visual encoding of words. Frequencies 7.8 and 17.94 Hz increased in prefrontal, anterior cingulate, and anterior temporal regions only during figure categorization. The prefrontal region may be related to object working memory. Thus, these frequencies might be related to figure codification. No significant differences between tasks were observed at 3.12 and 7.02 Hz in very wide brain areas (all lobes except occipital), suggesting that the amodal semantic system storage could be the model compatible with figure and word categorization. CONCLUSIONS Thus, our results support the modified amodal semantic hypothesis, which advocates that the meanings of both kinds of stimuli are represented in a conceptual memory that receives input from the logogen and iconogen systems.
Collapse
Affiliation(s)
- T Harmony
- Centro de Neurobiología, UNAM Campus Juriquilla, Qro., Juriquilla Querétaro, Mexico.
| | | | | | | | | | | | | |
Collapse
|
41
|
|
42
|
John ER, Prichep LS, Kox W, Valdés-Sosa P, Bosch-Bayard J, Aubert E, Tom M, di Michele F, Gugino LD, diMichele F. Invariant reversible QEEG effects of anesthetics. Conscious Cogn 2001; 10:165-83. [PMID: 11414713 DOI: 10.1006/ccog.2001.0507] [Citation(s) in RCA: 184] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Continuous recordings of brain electrical activity were obtained from a group of 176 patients throughout surgical procedures using general anesthesia. Artifact-free data from the 19 electrodes of the International 10/20 System were subjected to quantitative analysis of the electroencephalogram (QEEG). Induction was variously accomplished with etomidate, propofol or thiopental. Anesthesia was maintained throughout the procedures by isoflurane, desflurane or sevoflurane (N = 68), total intravenous anesthesia using propofol (N = 49), or nitrous oxide plus narcotics (N = 59). A set of QEEG measures were found which reversibly displayed high heterogeneity of variance between four states as follows: (1) during induction; (2) just after loss of consciousness (LOC); (3) just before return of consciousness (ROC); (4) just after ROC. Homogeneity of variance across all agents within states was found. Topographic statistical probability images were compared between states. At LOC, power increased in all frequency bands in the power spectrum with the exception of a decrease in gamma activity, and there was a marked anteriorization of power. Additionally, a significant change occurred in hemispheric relationships, with prefrontal and frontal regions of each hemisphere becoming more closely coupled, and anterior and posterior regions on each hemisphere, as well as homologous regions between the two hemispheres, uncoupling. All of these changes reversed upon ROC. Variable resolution electromagnetic tomography (VARETA) was performed to localize salient features of power anteriorization in three dimensions. A common set of neuroanatomical regions appeared to be the locus of the most probable generators of the observed EEG changes.
Collapse
Affiliation(s)
- E R John
- Department of Psychiatry, Brain Research Laboratories, New York University School of Medicine, 550 First Avenue, New York, New York, 10016, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Fernández-Bouzas A, Harmony T, Fernández T, Silva-Pereyra J, Valdés P, Bosch J, Aubert E, Casián G, Otero Ojeda G, Ricardo J, Hernández-Ballesteros A, Santiago E. Sources of abnormal EEG activity in brain infarctions. CLINICAL EEG (ELECTROENCEPHALOGRAPHY) 2000; 31:165-9. [PMID: 11056837 DOI: 10.1177/155005940003100403] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
EEGs from 16 patients with stroke in three different stages of evolution were recorded. EEG sources were calculated every 0.39 Hz by frequency domain VARETA. The main source was within the delta band in 2 out of 4 chronic patients, and in 67% of the patients in the acute or subacute stages when edema (cytotoxic or vasogenic) was present. Moreover, all patients showed abnormal activity in the theta band. Sources of abnormal activity in cortical or corticosubcortical infarcts were located in the cortex, surrounding the lesion. At the site of the infarct, a decrease of EEG power was observed. Sources of abnormal theta power coincided with edema and/or ischemic penumbra.
Collapse
Affiliation(s)
- A Fernández-Bouzas
- ENEP Iziacala, Universidad Nacional Autónoma de México (UNAM), D.F., Mexico
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Harmony T, Fernández T, Silva J, Bosch J, Valdés P, Fernández-Bouzas A, Galán L, Aubert E, Rodríguez D. Do specific EEG frequencies indicate different processes during mental calculation? Neurosci Lett 1999; 266:25-8. [PMID: 10336175 DOI: 10.1016/s0304-3940(99)00244-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
EEG recordings during mental calculation and a control task (with presentation of stimuli with similar physical characteristics to the arithmetic symbols) were obtained in 10 subjects. Narrow band analyses of the EEG and distributed sources for each EEG frequency were calculated using variable resolution electromagnetic tomography. Significant differences between the sources for arithmetic and control tasks were observed at 3.9 Hz within Broca's and left parietotemporal cortices, suggesting that this frequency may be related with the production of internal speech, storage and rehearsal of verbal working memory. Differences at 5.46 Hz within the right dorsolateral prefrontal cortex were considered to be associated to sustained attention. The decrease at 12.46 Hz within the left parietal cortex was interpreted as a sign of retrieval of arithmetic facts from long term memory.
Collapse
Affiliation(s)
- T Harmony
- Centro de Neurobiología, Querétaro, Qro, Mexico.
| | | | | | | | | | | | | | | | | |
Collapse
|