1
|
Supawat B, Kothan S, Kaewkhao J, Tima S, Tungjai M. Effect of low-dose radiation on the kinetics of pirarubicin and daunorubicin transport in K562 cells and drug resistant K562/
adr
cells. RADIATION EFFECTS AND DEFECTS IN SOLIDS 2025:1-17. [DOI: 10.1080/10420150.2025.2495583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 03/26/2025] [Indexed: 05/02/2025]
|
2
|
Abishev Z, Ruslanova B, Apbassova S, Chaizhunussova N, Shabdarbayeva D, Azimkhanov A, Zhumadilov K, Stepanenko V, Ivanov S, Shegay P, Hoshi M, Fujimoto N. Effects of Internal Exposure of Radioactive 56MnO2 Particles on the Lung in C57BL Mice. Curr Issues Mol Biol 2023; 45:3208-3218. [PMID: 37185733 PMCID: PMC10137078 DOI: 10.3390/cimb45040209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023] Open
Abstract
The investigation of the radiation effects of the atomic bombing in Hiroshima and Nagasaki has revealed concerns about the impact of the residual radioactive dust produced in the soil. Manganese-56 is one of the major radioisotopes produced by neutrons from the bomb; hence, we previously examined the biological effects of manganese dioxide-56 (56MnO2) in Wistar rats, in which significant changes were found in the lung. In the present study, ten-week-old male C57BL mice were exposed to three doses of radioactive 56MnO2, stable MnO2 particles, or external γ-rays (2 Gy) to further examine the effects of 56MnO2 in a different species. The estimated absorbed radiation doses from 56MnO2 were 26, 96, and 250 mGy in the lung. The animals were examined at 3, 14, and 70 days post exposure. Histologically, no exposure-related changes were found in the lungs of any group. However, pulmonary mRNA expression of aquaporin 1, which is a useful marker for lung pathophysiology, was significantly elevated at 14 and 70 days, although no such changes were found in the mice exposed to external γ-rays (2 Gy). These data indicated that the inhalation exposure to 56MnO2 particles, with <250 mGy of organ doses, produced significant biological responses in the lung.
Collapse
Affiliation(s)
- Zhaslan Abishev
- Department of Pathological Anatomy and Forensic Medicine, Semey Medical University, Semey 071400, Kazakhstan
| | - Bakhyt Ruslanova
- Department of Pathological Anatomy and Forensic Medicine, Semey Medical University, Semey 071400, Kazakhstan
| | - Saulesh Apbassova
- Department of Pathological Anatomy and Forensic Medicine, Semey Medical University, Semey 071400, Kazakhstan
| | | | - Dariya Shabdarbayeva
- Department of Pathological Anatomy and Forensic Medicine, Semey Medical University, Semey 071400, Kazakhstan
| | - Almas Azimkhanov
- National Nuclear Center of the Republic of Kazakhstan, Kurchatov 071100, Kazakhstan
| | - Kassym Zhumadilov
- Department of Nuclear Physics, L.N. Gumilyov Eurasian National University, Astana 010000, Kazakhstan
| | - Valeriy Stepanenko
- A. Tsyb Medical Radiological Research Center—National Medical Research Center of Radiology, Ministry of Health of Russian Federation, 249031 Obninsk, Russia
| | - Sergey Ivanov
- A. Tsyb Medical Radiological Research Center—National Medical Research Center of Radiology, Ministry of Health of Russian Federation, 249031 Obninsk, Russia
| | - Peter Shegay
- National Medical Research Center of Radiology, Ministry of Health of the Russian Federation, 249031 Obninsk, Russia
| | - Masaharu Hoshi
- The Center for Peace, Hiroshima University, Hiroshima 730-0053, Japan
| | - Nariaki Fujimoto
- Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-0037, Japan
| |
Collapse
|
3
|
Supawat B, Vorasiripreecha W, Wattanapongpitak S, Kothan S, Tungjai M. Effects of low-dose radiation on human blood components after in vitro exposure to gamma radiation from 137Cs radioactivity. Appl Radiat Isot 2023; 192:110577. [PMID: 36459900 DOI: 10.1016/j.apradiso.2022.110577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/14/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
This current study was designed to determine the effects of in vitro exposure to radioactive cesium-137 on human blood components. Whole blood samples were given a radiation dose of 0.02, 0.05, 0.1, 0.2, and 0.3 mGy of gamma radiation using a 137Cs radioactive standard source. The whole blood samples that were exposed to 0 mGy served as sham-controls. The spectrofluoroscopic technique was used to determine the autofluorescence spectrum of protein in plasma or red blood cells by using excitation wavelength and range of emission wavelengths at 280 nm and 300-550 nm, respectively. The hemolysis of red blood cells was evaluated by determination of the release of hemoglobin from the red blood cells to the supernatant. Complete blood counts were also determined in whole blood. The results showed that there was no change in the ratio of fluorescence emission intensity at 340 nm of wavelength of protein extract from irradiated whole blood or red blood cells compared to the corresponding non-irradiated control. The hemolysis value did not change in irradiated whole blood when compared to the corresponding non-irradiated group. In addition, complete blood count values in irradiated groups did not differ from non-irradiated group. These current results suggested that there were no harmful effects of the low-dose gamma radiation from radioactive 137Cs on blood components when human whole blood was exposed to gamma radiation in an in vitro condition.
Collapse
Affiliation(s)
- Benjamaporn Supawat
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand; Radiation Research and Medical Imaging Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Watcharit Vorasiripreecha
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sakornniya Wattanapongpitak
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand; Radiation Research and Medical Imaging Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Suchart Kothan
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand; Radiation Research and Medical Imaging Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Montree Tungjai
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand; Radiation Research and Medical Imaging Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
4
|
Sallam M, Mysara M, Benotmane MA, Tamarat R, Santos SCR, Crijns APG, Spoor D, Van Nieuwerburgh F, Deforce D, Baatout S, Guns PJ, Aerts A, Ramadan R. DNA Methylation Alterations in Fractionally Irradiated Rats and Breast Cancer Patients Receiving Radiotherapy. Int J Mol Sci 2022; 23:16214. [PMID: 36555856 PMCID: PMC9783664 DOI: 10.3390/ijms232416214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Radiation-Induced CardioVascular Disease (RICVD) is an important concern in thoracic radiotherapy with complex underlying pathophysiology. Recently, we proposed DNA methylation as a possible mechanism contributing to RICVD. The current study investigates DNA methylation in heart-irradiated rats and radiotherapy-treated breast cancer (BC) patients. Rats received fractionated whole heart X-irradiation (0, 0.92, 6.9 and 27.6 Gy total doses) and blood was collected after 1.5, 3, 7 and 12 months. Global and gene-specific methylation of the samples were evaluated; and gene expression of selected differentially methylated regions (DMRs) was validated in rat and BC patient blood. In rats receiving an absorbed dose of 27.6 Gy, DNA methylation alterations were detected up to 7 months with differential expression of cardiac-relevant DMRs. Of those, SLMAP showed increased expression at 1.5 months, which correlated with hypomethylation. Furthermore, E2F6 inversely correlated with a decreased global longitudinal strain. In BC patients, E2F6 and SLMAP exhibited differential expression directly and 6 months after radiotherapy, respectively. This study describes a systemic radiation fingerprint at the DNA methylation level, elucidating a possible association of DNA methylation to RICVD pathophysiology, to be validated in future mechanistic studies.
Collapse
Affiliation(s)
- Magy Sallam
- Radiobiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre, SCK CEN, 2400 Mol, Belgium; (M.S.); (M.M.); (M.A.B.); (S.B.); (A.A.)
- Laboratory of Physiopharmacology, University of Antwerp, 2610 Wilrijk, Belgium;
| | - Mohamed Mysara
- Radiobiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre, SCK CEN, 2400 Mol, Belgium; (M.S.); (M.M.); (M.A.B.); (S.B.); (A.A.)
| | - Mohammed Abderrafi Benotmane
- Radiobiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre, SCK CEN, 2400 Mol, Belgium; (M.S.); (M.M.); (M.A.B.); (S.B.); (A.A.)
| | - Radia Tamarat
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PRP-HOM, SRBE, LR2I, 92260 Fontenay-aux-Roses, France;
| | - Susana Constantino Rosa Santos
- Centro Cardiovascular da Universidade de Lisboa (CCUL@RISE), Lisbon School of Medicine of the Universidade de Lisboa, 1649-028 Lisbon, Portugal;
| | - Anne P. G. Crijns
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (A.P.G.C.); (D.S.)
| | - Daan Spoor
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (A.P.G.C.); (D.S.)
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Ghent University, 9000 Ghent, Belgium; (F.V.N.); (D.D.)
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Ghent University, 9000 Ghent, Belgium; (F.V.N.); (D.D.)
| | - Sarah Baatout
- Radiobiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre, SCK CEN, 2400 Mol, Belgium; (M.S.); (M.M.); (M.A.B.); (S.B.); (A.A.)
- Department of Molecular Biotechnology, Ghent University, 9000 Ghent, Belgium
| | - Pieter-Jan Guns
- Laboratory of Physiopharmacology, University of Antwerp, 2610 Wilrijk, Belgium;
| | - An Aerts
- Radiobiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre, SCK CEN, 2400 Mol, Belgium; (M.S.); (M.M.); (M.A.B.); (S.B.); (A.A.)
| | - Raghda Ramadan
- Radiobiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre, SCK CEN, 2400 Mol, Belgium; (M.S.); (M.M.); (M.A.B.); (S.B.); (A.A.)
| |
Collapse
|
5
|
Peanlikhit T, Honikel L, Liu J, Zimmerman T, Rithidech K. Countermeasure efficacy of apigenin for silicon-ion-induced early damage in blood and bone marrow of exposed C57BL/6J mice. LIFE SCIENCES IN SPACE RESEARCH 2022; 35:44-52. [PMID: 36336369 DOI: 10.1016/j.lssr.2022.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/09/2022] [Accepted: 05/25/2022] [Indexed: 06/16/2023]
Abstract
We investigated the countermeasure efficacy of apigenin (AP), given as a diet supplement, for radiation-induced damage in the hematopoietic tissues collected on day 7 after a total-body exposure of male C57BL/6J mice to 0 or 0.5 Gy of 260 MeV/n silicon (28Si) ions. We gave food with AP at the concentration of 20 mg/kg body weight (bw) (AP20) or without AP (AP0) to mice before and after irradiation. There were four groups of mice (six mice in each): Group 1- Control, i.e. No Radiation (0 Gy) with AP0; Group 2 - Radiation (0.5 Gy) with AP0; Group 3 - No Radiation (0 Gy) with AP20; and Group 4 - Radiation (0.5 Gy) with AP20. The complete blood count (CBC) and differential blood count were performed for each mouse. In the same mouse, an anti-clastogenic activity of AP was evaluated using the in vivo blood-erythrocyte micronucleus (MN) assay. Further in each mouse, bone marrow (BM) cells were collected and used for measuring the levels of activated nuclear factor-kappa B (NF-κB), and pro-inflammatory cytokines (i.e. tumor necrotic factor-alpha (TNF-α), interleukin-1α (IL-1α), IL-1 beta (IL-1β), and IL-6). We used the colony-forming unit assay (CFU-A) as a tool to study the countermeasure efficacy of AP against the harmful effects of 28Si ions on the proliferation of the hematopoietic stem/progenitor cells (HSPCs). Our results showed that AP is highly effective not only in the prevention of leukopenia and thrombocytopenia but also in the enhancement of erythropoiesis and the proliferation of HSPCs. We also observed the potent anti-clastogenic activity of AP given to mice as a diet supplement. Further, we found that AP is very effective in the suppression of activated NF-κB and pro-inflammatory cytokines, suggesting that AP given as a diet supplement protects mice from 28Si-ion-induced damage in the hematopoietic tissues of irradiated male C57BL/6J mice via its anti-inflammation activity.
Collapse
Affiliation(s)
- Tanat Peanlikhit
- Pathology Department, Stony Brook University, Stony Brook, NY 11794-8691, USA
| | - Louise Honikel
- Pathology Department, Stony Brook University, Stony Brook, NY 11794-8691, USA
| | - Jingxuan Liu
- Pathology Department, Stony Brook University, Stony Brook, NY 11794-8691, USA
| | - Thomas Zimmerman
- Pathology Department, Stony Brook University, Stony Brook, NY 11794-8691, USA; Division of Laboratory Animal Resources, Stony Brook University, Stony Brook, NY 11794-8611, USA
| | - Kanokporn Rithidech
- Pathology Department, Stony Brook University, Stony Brook, NY 11794-8691, USA
| |
Collapse
|
6
|
Li J, Wang R, Shi W, Chen X, Yi J, Yang X, Jin S. Epigenetic regulation in radiation-induced pulmonary fibrosis. Int J Radiat Biol 2022; 99:384-395. [PMID: 35895014 DOI: 10.1080/09553002.2022.2089365] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
PURPOSE Radiation-induced pulmonary fibrosis (RIPF) is a common and serious adverse effect of radiotherapy for thoracic tumors, which occurs in the irreversible stage of radiation-induced lung injury (RILI) >6 months after irradiation. It is characterized by progressive and irreversible destruction of lung tissue and deterioration of lung function, which may impair quality of life and lead to respiratory failure and death. We hope this will draw attention to the involvement of epigenetics in the regulation of RIPF. CONCLUSIONS This review summarizes research progress on the role and mechanism of DNA methylation, noncoding RNA and RNA methylation in RIPF or RILI, and the possible role and mechanism of histone modification in RIPF. We have noticed that in tissue fibrosis, the epigenetic regulation mechanisms inside and outside the nucleus can influence each other. We speculate that RIPF may be regulated by an epigenetic regulatory network during its development, and believe that TGF-β, SNAIL, PTEN and EZH2 are four targets worthy of in-depth study.
Collapse
Affiliation(s)
- Jiale Li
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Rui Wang
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Wen Shi
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Xiaoyi Chen
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Junxuan Yi
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Xiangshan Yang
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Shunzi Jin
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| |
Collapse
|
7
|
Sallam M, Benotmane MA, Baatout S, Guns PJ, Aerts A. Radiation-induced cardiovascular disease: an overlooked role for DNA methylation? Epigenetics 2022; 17:59-80. [PMID: 33522387 PMCID: PMC8812767 DOI: 10.1080/15592294.2021.1873628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/27/2020] [Accepted: 01/04/2021] [Indexed: 11/25/2022] Open
Abstract
Radiotherapy in cancer treatment involves the use of ionizing radiation for cancer cell killing. Although radiotherapy has shown significant improvements on cancer recurrence and mortality, several radiation-induced adverse effects have been documented. Of these adverse effects, radiation-induced cardiovascular disease (CVD) is particularly prominent among patients receiving mediastinal radiotherapy, such as breast cancer and Hodgkin's lymphoma patients. A number of mechanisms of radiation-induced CVD pathogenesis have been proposed such as endothelial inflammatory activation, premature endothelial senescence, increased ROS and mitochondrial dysfunction. However, current research seems to point to a so-far unexamined and potentially novel involvement of epigenetics in radiation-induced CVD pathogenesis. Firstly, epigenetic mechanisms have been implicated in CVD pathophysiology. In addition, several studies have shown that ionizing radiation can cause epigenetic modifications, especially DNA methylation alterations. As a result, this review aims to provide a summary of the current literature linking DNA methylation to radiation-induced CVD and thereby explore DNA methylation as a possible contributor to radiation-induced CVD pathogenesis.
Collapse
Affiliation(s)
- Magy Sallam
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Laboratory of Physiopharmacology, University of Antwerp, Wilrijk, Belgium
| | - Mohammed Abderrafi Benotmane
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| | - Pieter-Jan Guns
- Laboratory of Physiopharmacology, University of Antwerp, Wilrijk, Belgium
| | - An Aerts
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| |
Collapse
|
8
|
Evaluation of Global DNA Methylation and Gene Expression of Izumo1 and Izumo1r in Gonads after High- and Low-Dose Radiation in Neonatal Mice. BIOLOGY 2021; 10:biology10121270. [PMID: 34943185 PMCID: PMC8698457 DOI: 10.3390/biology10121270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/11/2021] [Accepted: 12/01/2021] [Indexed: 11/17/2022]
Abstract
The intergenerational effects from chronic low-dose exposure are matters of concern. It is thus important to elucidate the radiation-induced effects of germ cell maturation, fertilization and embryonic development. It is well known that DNA methylation levels in CpG sites in gametes are reprogrammed in stages during their maturity. Furthermore, the binding of Izumo on the surface of sperm and Juno on the surface of oocytes is essential for fertilization. Thus, there is a possibility that these genes are useful indicators to evaluate fertility in mice after irradiation exposure. Therefore, in this study, we analyzed global DNA methylation patterns in the testes and gene expression of Izumo1 and Izumo1r (Juno) in the gonads of mice after neonatal acute high-dose ionizing radiation (HDR) and chronic low-dose ionizing radiation (LDR). One-week-old male and female mice were irradiated with a total dose of 4 Gy, with acute HDR at 7 days at a dose rate of 30 Gy/h and LDR continuously at a dose rate of 6 mGy/h from 7 to 35 days. Their gonads were subsequently analyzed. The results of global DNA methylation patterns in the testes showed that methylation level increased with age in the control group, the LDR group maintained its DNA methylation level, and the HDR group showed decreased DNA methylation levels with age. In the control group, the gene expression level of Izumo1 in the testis did not show age-related changes, although there was high expression at 100 days of age. However, in the LDR group, the expression level recovered after the end of irradiation, while it remained low regardless of age in the HDR group. Conversely, gene expression of Izumo1r (Izumo1 receptor) in the ovary decreased with age in the control group. Although the gene expression of Izumo1r decreased with age in the LDR group, it remained low in the HDR group. Our results indicate that LDR can induce different DNA methylation patterns, and both high- and low-dose radiation before sexual maturity might affect gametogenesis and fertility.
Collapse
|
9
|
Qin F, Liu N, Nie J, Shen T, Xu Y, Pan S, Pei H, Zhou G. Circadian effects of ionizing radiation on reproductive function and clock genes expression in male mouse. Environ Health Prev Med 2021; 26:103. [PMID: 34635049 PMCID: PMC8507176 DOI: 10.1186/s12199-021-01021-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 09/24/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Exposure to the ionizing radiation (IR) encountered outside the magnetic field of the Earth poses a persistent threat to the reproductive functions of astronauts. The potential effects of space IR on the circadian rhythms of male reproductive functions have not been well characterized so far. METHODS Here, we investigated the circadian effects of IR exposure (3 Gy X-rays) on reproductive functional markers in mouse testicular tissue and epididymis at regular intervals over a 24-h day. For each animal, epididymis was tested for sperm motility, and the testis tissue was used for daily sperm production (DSP), testosterone levels, and activities of testicular enzymes (glucose-6-phosphate dehydrogenase (G6PDH), sorbitol dehydrogenase (SDH), lactic dehydrogenase (LDH), and acid phosphatase (ACP)), and the clock genes mRNA expression such as Clock, Bmal1, Ror-α, Ror-β, or Ror-γ. RESULTS Mice exposed to IR exhibited a disruption in circadian rhythms of reproductive markers, as indicated by decreased sperm motility, increased daily sperm production (DSP), and reduced activities of testis enzymes such as G6PDH, SDH, LDH, and ACP. Moreover, IR exposure also decreased mRNA expression of five clock genes (Clock, Bmal1, Ror-α, Ror-β, or Ror-γ) in testis, with alteration in the rhythm parameters. CONCLUSION These findings suggested potential health effects of IR exposure on reproductive functions of male astronauts, in terms of both the daily overall level as well as the circadian rhythmicity.
Collapse
MESH Headings
- ARNTL Transcription Factors/genetics
- Acid Phosphatase
- Animals
- CLOCK Proteins/genetics
- Circadian Rhythm/radiation effects
- Epididymis/radiation effects
- Gene Expression/radiation effects
- Genitalia, Male/radiation effects
- Glucosephosphate Dehydrogenase
- L-Iditol 2-Dehydrogenase
- L-Lactate Dehydrogenase
- Male
- Mice
- Mice, Inbred C57BL
- Models, Animal
- Nuclear Receptor Subfamily 1, Group F, Member 1/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 2/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 3/genetics
- RNA, Messenger/genetics
- Radiation Exposure
- Radiation, Ionizing
- Reproductive Physiological Phenomena/radiation effects
- Sperm Motility/radiation effects
- Spermatozoa/radiation effects
- Testis/enzymology
- Testis/radiation effects
Collapse
Affiliation(s)
- Fenju Qin
- School of Chemistry and Life science, Suzhou University of Science and Technology, Suzhou, 215009, China.
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, 215123, China.
| | - Ningang Liu
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, 215123, China
| | - Jing Nie
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, 215123, China
| | - Tao Shen
- School of Chemistry and Life science, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yingjie Xu
- School of Chemistry and Life science, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Shuxian Pan
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, 215123, China
| | - Hailong Pei
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, 215123, China
| | - Guangming Zhou
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, 215123, China.
| |
Collapse
|
10
|
Saleeva DV, Zasukhina GD. [Prospects for using low-dose radiation in the complex therapy for COVID-19]. Vopr Virusol 2021; 66:252-258. [PMID: 34545717 DOI: 10.36233/0507-4088-62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 11/05/2022]
Abstract
This review presents the literature data of new approaches for the treatment of COVID-19 with low doses of radiation (LDR). In addition, data on the use of LDR for the treatment of various disorders, in particular pneumonia, a number of inflammatory processes of various etiology, as well as Alzheimer's disease are discussed. The mechanisms of LDR action are briefly described, associated with the activation of the immune system and antiinflammatory response due to the effect on the processes of oxidative stress, which is reflected in an increase in the activity of cytokines (interleukin- (IL-) 6), changes in the expression of a number of genes (such as P53 and NF-κB (p65)) and long non-coding RNAs (ncRNAs) (the authors' own data are presented). Based on the analysis of the material presented, it can be assumed that further clinical trials of the effect of MDR (5-10 cGy) on patients with COVID-19, who are at different stages of the disease, will reveal the optimal conditions for the development and use of an effective treatment regimen.
Collapse
Affiliation(s)
- D V Saleeva
- FSBI «State Research Center - Burnasyan Federal Medical Biophysical Center» of Federal Medical Biological Agency of Russia
| | - G D Zasukhina
- FSBI «State Research Center - Burnasyan Federal Medical Biophysical Center» of Federal Medical Biological Agency of Russia; FSBIS Vavilov Institute of General Genetics of Russian Academy of Sciences
| |
Collapse
|
11
|
Rithidech KN, Jangiam W, Tungjai M, Reungpatthanaphong P, Gordon C, Honikel L. Early- and late-occurring damage in bone marrow cells of male CBA/Ca mice exposed whole-body to 1 GeV/n 48Ti ions. Int J Radiat Biol 2021; 97:517-528. [PMID: 33591845 DOI: 10.1080/09553002.2021.1884312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 10/20/2020] [Accepted: 01/21/2021] [Indexed: 12/22/2022]
Abstract
PURPOSE To determine the early- and late-occurring damage in the bone marrow (BM) and peripheral blood cells of male CBA/Ca mice after exposure to 0, 0.1, 0.25, or 0.5 Gy of 1 GeV/n titanium (48Ti) ions (one type of space radiation). METHOD We used the mouse in vivo blood-erythrocyte micronucleus (MN) assay for evaluating the cytogenetic effects of various doses of 1 GeV/n 48Ti ions. The MN assay was coupled with the characterization of epigenetic alterations (the levels of global 5-methylcytosine and 5-hydroxymethylcytosine) in DNA samples isolated from BM cells. These analyses were performed in samples collected at an early time-point (1 week) and a late time-point (6 months) post-irradiation. RESULTS Our results showed that 48Ti ions induced genomic instability in exposed mice. Significant dose-dependent loss of global 5-hydroxymethylcytosine was found but there were no changes in global 5-methylcytosine levels. CONCLUSION Since persistent genomic instability and loss of global 5-hydroxymethylcytosine are linked to cancer, our findings suggest that exposure to 48Ti ions may pose health risks.
Collapse
Affiliation(s)
| | - Witawat Jangiam
- Pathology Department, Stony Brook University, Stony Brook, NY, USA
- Department of Chemical Engineering, Faculty of Engineering, Burapha University, Chonburi, Thailand
| | - Montree Tungjai
- Pathology Department, Stony Brook University, Stony Brook, NY, USA
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Paiboon Reungpatthanaphong
- Pathology Department, Stony Brook University, Stony Brook, NY, USA
- Department of Applied Radiation and Isotopes, Faculty of Sciences, Kasetsart University, Bangkok, Thailand
| | - Chris Gordon
- Pathology Department, Stony Brook University, Stony Brook, NY, USA
| | - Louise Honikel
- Pathology Department, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
12
|
Shin E, Lee S, Kang H, Kim J, Kim K, Youn H, Jin YW, Seo S, Youn B. Organ-Specific Effects of Low Dose Radiation Exposure: A Comprehensive Review. Front Genet 2020; 11:566244. [PMID: 33133150 PMCID: PMC7565684 DOI: 10.3389/fgene.2020.566244] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/07/2020] [Indexed: 12/16/2022] Open
Abstract
Ionizing radiation (IR) is a high-energy radiation whose biological effects depend on the irradiation doses. Low-dose radiation (LDR) is delivered during medical diagnoses or by an exposure to radioactive elements and has been linked to the occurrence of chronic diseases, such as leukemia and cardiovascular diseases. Though epidemiological research is indispensable for predicting and dealing with LDR-induced abnormalities in individuals exposed to LDR, little is known about epidemiological markers of LDR exposure. Moreover, difference in the LDR-induced molecular events in each organ has been an obstacle to a thorough investigation of the LDR effects and a validation of the experimental results in in vivo models. In this review, we summarized the recent reports on LDR-induced risk of organ-specifically arranged the alterations for a comprehensive understanding of the biological effects of LDR. We suggested that LDR basically caused the accumulation of DNA damages, controlled systemic immune systems, induced oxidative damages on peripheral organs, and even benefited the viability in some organs. Furthermore, we concluded that understanding of organ-specific responses and the biological markers involved in the responses is needed to investigate the precise biological effects of LDR.
Collapse
Affiliation(s)
- Eunguk Shin
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Sungmin Lee
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Hyunkoo Kang
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Jeongha Kim
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Kyeongmin Kim
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - HyeSook Youn
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, South Korea
| | - Young Woo Jin
- Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul, South Korea
| | - Songwon Seo
- Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul, South Korea
| | - BuHyun Youn
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea.,Department of Biological Sciences, Pusan National University, Busan, South Korea
| |
Collapse
|
13
|
Saleeva DV, Mikhailov VF, Rozhdestvenskii LM, Shulenina LV, Raeva NF, Zasukhina GD. Changes in the Activity of Genes Involved in the Regulation of Hematopoiesis during Tumorigenesis in Irradiated Mice. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2020; 491:57-59. [PMID: 32483710 DOI: 10.1134/s0012496620020106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/04/2019] [Accepted: 12/04/2019] [Indexed: 11/23/2022]
Abstract
We used 183 F1 CBA×C57Bl hybrid mice to study the delayed effects of low-power long-term γ-irradiation at a dose of 12.6 Gy (10 mGy/min) 8 and 10 months after the treatment. Eight months after the treatment we found the increased expression of the transcription factor NFκB and its target genes iNOS and G-SCF in the bone marrow (BM). Ten months after the treatment malignant lymphomas were revealed in 14 of 94 mice in the liver, abdominal cavity, and subcutaneously. In the BM of these mice, the transcription of the PTEN, NFκB, and iNOS genes was inhibited and the contents of long non-coding RNAs (lncRNAs) lnc p21, NEAT1, and microRNA miR-125b were decreased. The expression of the NFκB(p65) gene and miR-125b was inhibited in the BM of irradiated mice without tumors ten months after the treatment. These data show the deregulation of the P53 system supporting the genome stability in the BM of irradiated mice. These indices will be studied as potential markers of risk of development of irradiation-induced tumors.
Collapse
Affiliation(s)
- D V Saleeva
- Burnazyan Federal Medical Biophysical Center, Federal Biomedical Agency of the Russian Federation, 123098, Moscow, Russia.
| | - V F Mikhailov
- Burnazyan Federal Medical Biophysical Center, Federal Biomedical Agency of the Russian Federation, 123098, Moscow, Russia
| | - L M Rozhdestvenskii
- Burnazyan Federal Medical Biophysical Center, Federal Biomedical Agency of the Russian Federation, 123098, Moscow, Russia
| | - L V Shulenina
- Burnazyan Federal Medical Biophysical Center, Federal Biomedical Agency of the Russian Federation, 123098, Moscow, Russia
| | - N F Raeva
- Burnazyan Federal Medical Biophysical Center, Federal Biomedical Agency of the Russian Federation, 123098, Moscow, Russia
| | - G D Zasukhina
- Burnazyan Federal Medical Biophysical Center, Federal Biomedical Agency of the Russian Federation, 123098, Moscow, Russia.,Vavilov Institute of General Genetics, Russian Academy of Sciences, 117971, Moscow, Russia
| |
Collapse
|