1
|
Gomes Torres ACM, Leite N, de Souza RLR, Pizzi J, Milano-Gai GE, Lazarotto L, Tureck LV, Furtado-Alle L. Variants in inflammation-related genes influence the outcomes of physical exercise programs: A longitudinal study in Brazilian adolescents with overweight and obesity. Genet Mol Biol 2024; 47:e20230211. [PMID: 39630946 PMCID: PMC11616735 DOI: 10.1590/1678-4685-gmb-2023-0211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/27/2024] [Indexed: 12/07/2024] Open
Abstract
The expansion of adipose tissue, characteristic of obesity, releases inflammatory cytokines, leading to metabolic disorders. Physical activity, on the other hand, promotes fat loss and changes inflammatory profile. This study aimed to investigate the associations of 20 gene variants (TLR2, TLR4, IL1B, IL6, NFKB1, TNF, NFKBIA, NLRC4, CARD8 and NEK7) with anthropometric and biochemical changes induced by physical exercise programs. Thus, 58 children and adolescents participated of the 12-week exercise programs. Parameters were collected before and after programs: body mass index, body fat percentage, LDL-C, HDL-C, triglycerides, total cholesterol, insulin, glucose, HOMA-IR and QUICKI. Changes in these parameters were calculated (final - initial measurements) for subsequent analyses. Linear regression analyses were performed to investigate associations between genotypes and changes in the analyzed parameters. We found associations between 14 variants in nine genes with anthropometrical and biochemical outcomes. Observing the distribution of the sample, the groups of individuals who responded less in relation to body fat and TG levels concentrated the highest scores of polygenic indexes as a result of a greater number of risk variants. In conclusion, some genotypes related to the inflammatory profile provided less favorable anthropometrical and biochemical outcomes in response to physical exercise programs.
Collapse
Affiliation(s)
- Ana Cláudia M.B. Gomes Torres
- Universidade Federal do Paraná (UFPR), Departamento de Genética, Laboratório de Polimorfismos e Ligação, Curitiba, PR, Brazil
| | - Neiva Leite
- Universidade Federal do Paraná (UFPR), Departamento de Educação Física, Curitiba, PR, Brazil
| | | | - Juliana Pizzi
- Universidade Federal do Paraná (UFPR), Departamento de Educação Física, Curitiba, PR, Brazil
| | | | - Leilane Lazarotto
- Universidade Federal do Paraná (UFPR), Departamento de Educação Física, Curitiba, PR, Brazil
| | - Luciane Viater Tureck
- Universidade Federal do Paraná (UFPR), Departamento de Genética, Laboratório de Polimorfismos e Ligação, Curitiba, PR, Brazil
| | - Lupe Furtado-Alle
- Universidade Federal do Paraná (UFPR), Departamento de Genética, Laboratório de Polimorfismos e Ligação, Curitiba, PR, Brazil
| |
Collapse
|
2
|
Yadav S, Sapra L, Srivastava RK. Polysaccharides to postbiotics: Nurturing bone health via modulating "gut-immune axis". Int J Biol Macromol 2024; 278:134655. [PMID: 39128750 DOI: 10.1016/j.ijbiomac.2024.134655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
The increasing prevalence of individuals affected by bone pathologies globally has sparked catastrophic concerns. Ankylosing spondylitis, osteoporosis, rheumatoid arthritis, osteoarthritis, and fractures alone impact an estimated 1.71 billion people worldwide. The gut microbiota plays a crucial role in interacting with the host through the synthesis of a diverse range of metabolites called gut-associated metabolites (GAMs), which originate from external dietary substrates or endogenous host compounds. Many metabolic disorders have been linked to alterations in the gut microbiota's activity and composition. The development of metabolic illnesses has been linked to certain microbiota-derived metabolites, such as branched-chain amino acids, bile acids, short-chain fatty acids, tryptophan, trimethylamine N-oxide, and indole derivatives. Moreover, the modulation of gut microbiota through biotics (prebiotics, probiotics and postbiotics) presents a promising avenue for therapeutic intervention. Biotics selectively promote the growth of beneficial gut bacteria, thereby enhancing the production of GAMs with potential beneficial effects on bone metabolism. Understanding the intricate interplay between GAMs, and bone-associated genes through molecular informatics holds significant promise for early diagnosis, prognosis, and novel treatment strategies for various bone disorders.
Collapse
Affiliation(s)
- Sumedha Yadav
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Leena Sapra
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Rupesh K Srivastava
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India.
| |
Collapse
|
3
|
Callegari IOM, Rocha GZ, Oliveira AG. Physical exercise, health, and disease treatment: The role of macrophages. Front Physiol 2023; 14:1061353. [PMID: 37179836 PMCID: PMC10166825 DOI: 10.3389/fphys.2023.1061353] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
Subclinical inflammation is linked to comorbidities and risk factors, consolidating the diagnosis of chronic non-communicable diseases, such as insulin resistance, atherosclerosis, hepatic steatosis, and some types of cancer. In this context, the role of macrophages is highlighted as a marker of inflammation as well as for the high power of plasticity of these cells. Macrophages can be activated in a wide range between classical or proinflammatory, named M1, and alternative or anti-inflammatory, also known as M2 polarization. All nuances between M1 and M2 macrophages orchestrate the immune response by secreting different sets of chemokines, while M1 cells promote Th1 response, the M2 macrophages recruit Th2 and Tregs lymphocytes. In turn, physical exercise has been a faithful tool in combating the proinflammatory phenotype of macrophages. This review proposes to investigate the cellular and molecular mechanisms in which physical exercise can help control inflammation and infiltration of macrophages within the non-communicable diseases scope. During obesity progress, proinflammatory macrophages predominate in adipose tissue inflammation, which reduces insulin sensitivity until the development of type 2 diabetes, progression of atherosclerosis, and diagnosis of non-alcoholic fatty liver disease. In this case, physical activity restores the balance between the proinflammatory/anti-inflammatory macrophage ratio, reducing the level of meta-inflammation. In the case of cancer, the tumor microenvironment is compatible with a high level of hypoxia, which contributes to the advancement of the disease. However, exercise increases the level of oxygen supply, favoring macrophage polarization in favor of disease regression.
Collapse
Affiliation(s)
- Irineu O. M. Callegari
- Department of Physical Education, Bioscience Institute, São Paulo State University (UNESP), São Paulo, Brazil
| | - Guilherme Z. Rocha
- Department of Internal Medicine, State University of Campinas, Campinas, Brazil
| | - Alexandre G. Oliveira
- Department of Physical Education, Bioscience Institute, São Paulo State University (UNESP), São Paulo, Brazil
| |
Collapse
|
4
|
Enichen E, Harvey C, Demmig-Adams B. COVID-19 Spotlights Connections between Disease and Multiple Lifestyle Factors. Am J Lifestyle Med 2023; 17:231-257. [PMID: 36883129 PMCID: PMC9445631 DOI: 10.1177/15598276221123005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The SARS-CoV-2 virus (severe acute respiratory syndrome coronavirus 2), and the disease it causes (COVID-19), have had a profound impact on global human society and threaten to continue to have such an impact with newly emerging variants. Because of the widespread effects of SARS-CoV-2, understanding how lifestyle choices impact the severity of disease is imperative. This review summarizes evidence for an involvement of chronic, non-resolving inflammation, gut microbiome disruption (dysbiosis with loss of beneficial microorganisms), and impaired viral defenses, all of which are associated with an imbalanced lifestyle, in severe disease manifestations and post-acute sequelae of SARS-CoV-2 (PASC). Humans' physiological propensity for uncontrolled inflammation and severe COVID-19 are briefly contrasted with bats' low propensity for inflammation and their resistance to viral disease. This insight is used to identify positive lifestyle factors with the potential to act in synergy for restoring balance to the immune response and gut microbiome, and thereby protect individuals against severe COVID-19 and PASC. It is proposed that clinicians should consider recommending lifestyle factors, such as stress management, balanced nutrition and physical activity, as preventative measures against severe viral disease and PASC.
Collapse
Affiliation(s)
- Elizabeth Enichen
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA (EE, CH, BDA)
| | - Caitlyn Harvey
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA (EE, CH, BDA)
| | - Barbara Demmig-Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA (EE, CH, BDA)
| |
Collapse
|
5
|
Ramírez-Moreno E, Arias-Rico J, Jiménez-Sánchez RC, Estrada-Luna D, Jiménez-Osorio AS, Zafra-Rojas QY, Ariza-Ortega JA, Flores-Chávez OR, Morales-Castillejos L, Sandoval-Gallegos EM. Role of Bioactive Compounds in Obesity: Metabolic Mechanism Focused on Inflammation. Foods 2022; 11:foods11091232. [PMID: 35563955 PMCID: PMC9101148 DOI: 10.3390/foods11091232] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/17/2022] [Accepted: 04/18/2022] [Indexed: 02/01/2023] Open
Abstract
Obesity is a disease characterized by an inflammatory process in the adipose tissue due to diverse infiltrated immune cells, an increased secretion of proinflammatory molecules, and a decreased secretion of anti-inflammatory molecules. On the other hand, obesity increases the risk of several diseases, such as cardiovascular diseases, diabetes, and cancer. Their treatment is based on nutritional and pharmacological strategies. However, natural products are currently implemented as complementary and alternative medicine (CAM). Polyphenols and fiber are naturally compounds with potential action to reduce inflammation through several pathways and play an important role in the prevention and treatment of obesity, as well as in other non-communicable diseases. Hence, this review focuses on the recent evidence of the molecular mechanisms of polyphenols and dietary fiber, from Scopus, Science Direct, and PubMed, among others, by using key words and based on recent in vitro and in vivo studies.
Collapse
Affiliation(s)
- Esther Ramírez-Moreno
- Academic Area of Nutrition, Interdisciplinary Research Center, Institute of Health Sciences, Circuit Actopan Tilcuautla s/n, Ex hacienda La Concepción, San Agustin Tlaxiaca, Pachuca 42160, Mexico; (E.R.-M.); (Q.Y.Z.-R.); (J.A.A.-O.)
| | - José Arias-Rico
- Academic Area of Nursing; Institute of Health Sciences, Circuit Actopan Tilcuautla s/n, Ex hacienda La Concepción, San Agustin Tlaxiaca, Pachuca 42160, Mexico; (J.A.-R.); (R.C.J.-S.); (D.E.-L.); (A.S.J.-O.); (O.R.F.-C.); (L.M.-C.)
| | - Reyna Cristina Jiménez-Sánchez
- Academic Area of Nursing; Institute of Health Sciences, Circuit Actopan Tilcuautla s/n, Ex hacienda La Concepción, San Agustin Tlaxiaca, Pachuca 42160, Mexico; (J.A.-R.); (R.C.J.-S.); (D.E.-L.); (A.S.J.-O.); (O.R.F.-C.); (L.M.-C.)
| | - Diego Estrada-Luna
- Academic Area of Nursing; Institute of Health Sciences, Circuit Actopan Tilcuautla s/n, Ex hacienda La Concepción, San Agustin Tlaxiaca, Pachuca 42160, Mexico; (J.A.-R.); (R.C.J.-S.); (D.E.-L.); (A.S.J.-O.); (O.R.F.-C.); (L.M.-C.)
| | - Angélica Saraí Jiménez-Osorio
- Academic Area of Nursing; Institute of Health Sciences, Circuit Actopan Tilcuautla s/n, Ex hacienda La Concepción, San Agustin Tlaxiaca, Pachuca 42160, Mexico; (J.A.-R.); (R.C.J.-S.); (D.E.-L.); (A.S.J.-O.); (O.R.F.-C.); (L.M.-C.)
| | - Quinatzin Yadira Zafra-Rojas
- Academic Area of Nutrition, Interdisciplinary Research Center, Institute of Health Sciences, Circuit Actopan Tilcuautla s/n, Ex hacienda La Concepción, San Agustin Tlaxiaca, Pachuca 42160, Mexico; (E.R.-M.); (Q.Y.Z.-R.); (J.A.A.-O.)
| | - José Alberto Ariza-Ortega
- Academic Area of Nutrition, Interdisciplinary Research Center, Institute of Health Sciences, Circuit Actopan Tilcuautla s/n, Ex hacienda La Concepción, San Agustin Tlaxiaca, Pachuca 42160, Mexico; (E.R.-M.); (Q.Y.Z.-R.); (J.A.A.-O.)
| | - Olga Rocío Flores-Chávez
- Academic Area of Nursing; Institute of Health Sciences, Circuit Actopan Tilcuautla s/n, Ex hacienda La Concepción, San Agustin Tlaxiaca, Pachuca 42160, Mexico; (J.A.-R.); (R.C.J.-S.); (D.E.-L.); (A.S.J.-O.); (O.R.F.-C.); (L.M.-C.)
| | - Lizbeth Morales-Castillejos
- Academic Area of Nursing; Institute of Health Sciences, Circuit Actopan Tilcuautla s/n, Ex hacienda La Concepción, San Agustin Tlaxiaca, Pachuca 42160, Mexico; (J.A.-R.); (R.C.J.-S.); (D.E.-L.); (A.S.J.-O.); (O.R.F.-C.); (L.M.-C.)
| | - Eli Mireya Sandoval-Gallegos
- Academic Area of Nutrition, Interdisciplinary Research Center, Institute of Health Sciences, Circuit Actopan Tilcuautla s/n, Ex hacienda La Concepción, San Agustin Tlaxiaca, Pachuca 42160, Mexico; (E.R.-M.); (Q.Y.Z.-R.); (J.A.A.-O.)
- Correspondence:
| |
Collapse
|
6
|
Lee-Ødegård S, Olsen T, Norheim F, Drevon CA, Birkeland KI. Potential Mechanisms for How Long-Term Physical Activity May Reduce Insulin Resistance. Metabolites 2022; 12:metabo12030208. [PMID: 35323652 PMCID: PMC8950317 DOI: 10.3390/metabo12030208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 02/06/2023] Open
Abstract
Insulin became available for the treatment of patients with diabetes 100 years ago, and soon thereafter it became evident that the biological response to its actions differed markedly between individuals. This prompted extensive research into insulin action and resistance (IR), resulting in the universally agreed fact that IR is a core finding in patients with type 2 diabetes mellitus (T2DM). T2DM is the most prevalent form of diabetes, reaching epidemic proportions worldwide. Physical activity (PA) has the potential of improving IR and is, therefore, a cornerstone in the prevention and treatment of T2DM. Whereas most research has focused on the acute effects of PA, less is known about the effects of long-term PA on IR. Here, we describe a model of potential mechanisms behind reduced IR after long-term PA to guide further mechanistic investigations and to tailor PA interventions in the therapy of T2DM. The development of such interventions requires knowledge of normal glucose metabolism, and we briefly summarize an integrated physiological perspective on IR. We then describe the effects of long-term PA on signaling molecules involved in cellular responses to insulin, tissue-specific functions, and whole-body IR.
Collapse
Affiliation(s)
- Sindre Lee-Ødegård
- Department of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway;
| | - Thomas Olsen
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway; (T.O.); (F.N.); (C.A.D.)
| | - Frode Norheim
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway; (T.O.); (F.N.); (C.A.D.)
| | - Christian Andre Drevon
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway; (T.O.); (F.N.); (C.A.D.)
- Vitas Ltd. Analytical Services, Oslo Science Park, 0349 Oslo, Norway
| | - Kåre Inge Birkeland
- Department of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway;
- Correspondence:
| |
Collapse
|
7
|
Davis ME, Blake C, Perrotta C, Cunningham C, O'Donoghue G. Impact of training modes on fitness and body composition in women with obesity: A systematic review and meta-analysis. Obesity (Silver Spring) 2022; 30:300-319. [PMID: 35088563 DOI: 10.1002/oby.23305] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 01/19/2023]
Abstract
OBJECTIVE This study aimed to assess the effectiveness of different exercise modalities and determine the optimal exercise prescription for improving cardiorespiratory fitness, body composition, and metabolic health of women with obesity. METHODS A systematic review of randomized controlled trials (RCTs) published between January 1988 and October 2020 was conducted. The RCTs were screened using the following inclusion criteria: 1) participants: women aged 18 to 65 years with BMI > 30 kg/m2 and without comorbidities; 2) intervention: exercise; 3) comparison: non-intervention control; and 4) outcomes measures: cardiorespiratory fitness (maximal oxygen consumption), body composition (i.e., body weight, percentage body fat), and/or metabolic measures (i.e., blood pressure, cholesterol). RESULTS A total of 20 RCTs with a total of 2,062 participants were included. Although the results showed that any form of exercise was more effective than control, improvements in fitness and body composition were modest. Aerobic exercise (vigorous and moderate intensity) appeared most promising for improving fitness and body weight, whereas low-load resistance training resulted in the largest improvements in body fatness. CONCLUSIONS In women living with obesity, aerobic exercise was consistently effective in improving fitness and body composition. Although both resistance training and combined exercise interventions appear promising, more research is needed to evaluate their efficacy and determine an optimal exercise prescription for this population.
Collapse
Affiliation(s)
- Mary E Davis
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin 4, Ireland
| | - Catherine Blake
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin 4, Ireland
| | - Carla Perrotta
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin 4, Ireland
| | - Caitriona Cunningham
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin 4, Ireland
| | - Gráinne O'Donoghue
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
8
|
Srivastava RK, Lee ES, Sim E, Sheng NC, Ibáñez CF. Sustained anti-obesity effects of life-style change and anti-inflammatory interventions after conditional inactivation of the activin receptor ALK7. FASEB J 2021; 35:e21759. [PMID: 34245608 DOI: 10.1096/fj.202002785rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 01/11/2023]
Abstract
Life-style change and anti-inflammatory interventions have only transient effects in obesity. It is not clear how benefits obtained by these treatments can be maintained longer term, especially during sustained high caloric intake. Constitutive ablation of the activin receptor ALK7 in adipose tissue enhances catecholamine signaling and lipolysis in adipocytes, and protects mice from diet-induced obesity. Here, we investigated the consequences of conditional ALK7 ablation in adipocytes of adult mice with pre-existing obesity. Although ALK7 deletion had little effect on its own, it synergized strongly with a transient switch to low-fat diet (life-style change) or anti-inflammatory treatment (Na-salicylate), resulting in enhanced lipolysis, increased energy expenditure, and reduced adipose tissue mass and body weight gain, even under sustained high caloric intake. By themselves, diet-switch and salicylate had only a temporary effect on weight gain. Mechanistically, combination of ALK7 ablation with either treatment strongly enhanced the levels of β3-AR, the main adrenergic receptor for catecholamine stimulation of lipolysis, and C/EBPα, an upstream regulator of β3-AR expression. These results suggest that inhibition of ALK7 can be combined with simple interventions to produce longer-lasting benefits in obesity.
Collapse
Affiliation(s)
- Raj Kamal Srivastava
- Department of Physiology and Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Ee-Soo Lee
- Department of Physiology and Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Eunice Sim
- Department of Physiology and Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - New Chih Sheng
- Department of Physiology and Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Carlos F Ibáñez
- Department of Physiology and Life Sciences Institute, National University of Singapore, Singapore, Singapore.,Peking-Tsinghua Center for Life Sciences, Peking University School of Life Sciences, Beijing, China.,PKU-IDG/McGovern Institute for Brain Research, Peking University School of Life Sciences, Beijing, China.,Chinese Institute for Brain Research, Beijing, China.,Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
9
|
Taherkhani S, Suzuki K, Ruhee RT. A Brief Overview of Oxidative Stress in Adipose Tissue with a Therapeutic Approach to Taking Antioxidant Supplements. Antioxidants (Basel) 2021; 10:594. [PMID: 33924341 PMCID: PMC8069597 DOI: 10.3390/antiox10040594] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 12/20/2022] Open
Abstract
One of the leading causes of obesity associated with oxidative stress (OS) is excessive consumption of nutrients, especially fast-foods, and a sedentary lifestyle, characterized by the ample accumulation of lipid in adipose tissue (AT). When the body needs energy, the lipid is broken down into glycerol (G) and free fatty acids (FFA) during the lipolysis process and transferred to various tissues in the body. Materials secreted from AT, especially adipocytokines (interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α)) and reactive oxygen species (ROS), are impressive in causing inflammation and OS of AT. There are several ways to improve obesity, but researchers have highly regarded the use of antioxidant supplements due to their neutralizing properties in removing ROS. In this review, we have examined the AT response to OS to antioxidant supplements focusing on animal studies. The results are inconsistent due to differences in the study duration and diversity in animals (strain, age, and sex). Therefore, there is a need for different studies, especially in humans.
Collapse
Affiliation(s)
- Shima Taherkhani
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, Rasht 4199843653, Iran
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa 359-1192, Japan
| | - Ruheea Taskin Ruhee
- Gradute School of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa 359-1192, Japan
| |
Collapse
|
10
|
Tippairote T, Bjørklund G, Yaovapak A. The continuum of disrupted metabolic tempo, mitochondrial substrate congestion, and metabolic gridlock toward the development of non-communicable diseases. Crit Rev Food Sci Nutr 2021; 62:6837-6853. [PMID: 33797995 DOI: 10.1080/10408398.2021.1907299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Non-communicable diseases (NCD) are the slow-motion disasters with imminent global health care burden. The current dietary management for NCD is dominated by the calorie balance model. Apart from the quantitative balance of calorie, healthy bioenergetics requires temporal eating and fasting rhythms, and the subsequent switching for different metabolic fuels. We herein term these three bioenergetic attributes, i.e., caloric balance, diurnal eating-fasting rhythm, and metabolic flexibility, as the metabolic tempo. These three attributes are intertwined with each other; alteration of one attribute affects one or more other attributes. Lifestyle-induced disrupted metabolic tempo presents a high flux of mixed carbon substrates to mitochondria, with the resulting congestion and indecisiveness of metabolic switches. Such indecisiveness impairs metabolic flexibility, promotes anabolism, and accumulates the energy storage pools. The triggers from hypoxic inducible factor expression could further promote the metabolic gridlock and adipocyte maladaptation. The maladaptive adipocytes lead to ectopic fat deposition, increased circulating lipid levels, insulin resistance, and chronic systemic inflammation. These continuum set stages for clinical NCDs. We propose that the restoration of all tempo attributes through the combined diet-, time-, and calorie-restricted interventions could be the preferred strategy for NCD management.
Collapse
Affiliation(s)
- Torsak Tippairote
- Nutritional and Environmental Section, Thailand Initiatives for Functional Medicine, Bangkok Thailand.,Nutritional and Environmental Medicine, Healing Passion Medical Center, Bangkok Thailand
| | - Geir Bjørklund
- Nutritional and Environmental Medicine, Council for Nutritional and Environmental Medicine, Mo i Rana, Norway
| | - Augchara Yaovapak
- Nutritional and Environmental Section, Thailand Initiatives for Functional Medicine, Bangkok Thailand.,Nutritional and Environmental Medicine, Healing Passion Medical Center, Bangkok Thailand
| |
Collapse
|
11
|
Role of adiposopathy and physical activity in cardio-metabolic disorder diseases. Clin Chim Acta 2020; 511:243-247. [PMID: 33148528 DOI: 10.1016/j.cca.2020.10.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 01/27/2023]
Abstract
Positive calorie balance disrupts the function of visceral adipose tissue, including the cardiac adipose tissue and the perivascular adipose tissue. The inflammatory and hormonal factors, which are released from adipose tissue, play a central role in inter-organ cross talk, affecting the development of obesity. Excess fat in visceral adipocytes impairs endocrine as well as immune response, leading to multiple aberrant status and posing serious risks to the future health of humans. As confirmed in previous studies, up-regulated pro-inflammatory and down-regulated anti-inflammatory cytokines disturb the communication among muscle, liver, and vasculature. In other words, adiposopathy promote cardio-metabolic risk factors, such as atherosclerosis, hypertension, insulin resistance, dyslipidemia, and pro-thrombotic state, which in turn directly and indirectly promote cardio-metabolic disorder diseases. Increasing evidence from human and animal studies has shown that physical activity restores the size of adipocytes and helps in re-browning of white adipose tissue (WAT). This review summarizes the current evidence on the roles of adiposopathy on cardio-metabolic disorder diseases and the importance of physical activity in restoring the function of adipocytes.
Collapse
|
12
|
Safarzade A, Alizadeh H, Bastani Z. The effects of circuit resistance training on plasma progranulin level, insulin resistance and body composition in obese men. Horm Mol Biol Clin Investig 2020; 41:hmbci-2019-0050. [PMID: 32146440 DOI: 10.1515/hmbci-2019-0050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 01/16/2020] [Indexed: 11/15/2022]
Abstract
Background Progranulin (PGRN) is implicated in obesity and insulin resistance (IR). The aim of this study was to evaluate the effects of 8 weeks of circuit resistance training (CRT) on plasma PGRN, IR and body composition in obese men. Materials and methods Twenty-eight healthy obese men [age: 36 ± 7.7 years, body weight (BW): 96.4 ± 15.6 kg, body mass index (BMI): 32.4 ± 4.5 kg/m2] completed the study. Subjects were randomly assigned to two groups of control and training. Subjects in the training group underwent training for 8 weeks, 3 times a week. Blood samples and anthropometric characteristics were taken before the commencement of the exercise protocol and 72 h after the last training session. The homeostatic model assessment of insulin resistance (HOMA-IR) was used to measure IR. Results BW, BF%, BMI, waist-hip ratio (WHR), HOMA-IR and plasma PGRN levels except lean body mass (LBM) were significantly reduced in the training group (p < 0.05). Additionally, except for LBM, subjects in the training group had significantly decreased BW, BF%, BMI, WHR, HOMA-IR and plasma PGRN levels compared to changes in those in the control group (p < 0.05). Significant correlations were found between the changes in plasma PGRN and the changes in insulin, HOMA-IR and BMI (p < 0.05). Conclusions The findings showed that 8 weeks of CRT improved body composition and IR which were accompanied by reduced plasma PGRN levels. This study suggests that CRT has the potential for obese individuals to counteract obesity-associated health impairments.
Collapse
Affiliation(s)
- Alireza Safarzade
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Mazandaran, Babolsar, Iran.,Athletic Performance and Health Research Center, University of Mazandaran, Babolsar, Iran
| | - Hamid Alizadeh
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Mazandaran, Babolsar, Iran
| | - Zainab Bastani
- Department of Exercise Physiology, Faculty of Sport Sciences, Islamic Azad University of Sari Branch, Sari, Iran
| |
Collapse
|
13
|
Szymura J, Kubica J, Wiecek M, Pera J. The Immunomodulary Effects of Systematic Exercise in Older Adults and People with Parkinson's Disease. J Clin Med 2020; 9:jcm9010184. [PMID: 31936624 PMCID: PMC7019419 DOI: 10.3390/jcm9010184] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/05/2020] [Accepted: 01/07/2020] [Indexed: 02/07/2023] Open
Abstract
We sought to investigate whether regular balance training of moderate intensity (BT) has an effect on changes in selected cytokines, neurotrophic factors, CD200 and fractalkine in healthy older adults and participants with Parkinson’s disease (PD). Sixty-two subjects were divided into groups depending on experimental intervention: (1) group of people with PD participating in BT (PDBT), (2) group of healthy older people participating in BT (HBT), (3,4) control groups including healthy individuals (HNT) and people with PD (PDNT). Blood samples were collected twice: before and after 12 weeks of balance exercise (PDBT, HBT), or 12 weeks apart (PDNT, HNT). The study revealed significant increase of interleukin10 (PDBT, p = 0.026; HBT, p = 0.011), β-nerve growth factor (HBT, p = 0.002; PDBT, p = 0.016), transforming growth factor-β1 (PDBT, p = 0.018; HBT, p < 0.004), brain-derived neurotrophic factor (PDBT, p = 0.011; HBT, p < 0.001) and fractalkine (PDBT, p = 0.045; HBT, p < 0.003) concentration only in training groups. In PDBT, we have found a significant decrease of tumor necrosis factor alpha. No training effect on concentration of interleukin6, insulin-like growth factor 1 and CD200 was observed in both training and control groups. Regular training can modulate level of inflammatory markers and induce neuroprotective mechanism to reduce the inflammatory response.
Collapse
Affiliation(s)
- Jadwiga Szymura
- Department of Clinical Rehabilitation, Faculty of Motor Rehabilitation, University of Physical Education in Krakow, 31–571 Krakow, Poland
- Correspondence: (J.S.); (J.K.)
| | - Jadwiga Kubica
- Institute of Physiotherapy, Faculty of Health Science, Jagiellonian University Medical College, 31–126 Krakow, Poland
- Correspondence: (J.S.); (J.K.)
| | - Magdalena Wiecek
- Department of Physiology and Biochemistry, Faculty of Physical Education and Sport, University of Physical Education in Krakow, 31–571 Krakow, Poland;
| | - Joanna Pera
- Department of Neurology, Faculty of Medicine, Jagiellonian University Medical College, 31–503 Krakow, Poland;
| |
Collapse
|
14
|
Elgin TG, Fricke EM, Gong H, Reese J, Mills DA, Kalantera KM, Underwood MA, McElroy SJ. Fetal exposure to maternal inflammation interrupts murine intestinal development and increases susceptibility to neonatal intestinal injury. Dis Model Mech 2019; 12:dmm.040808. [PMID: 31537532 PMCID: PMC6826024 DOI: 10.1242/dmm.040808] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023] Open
Abstract
Fetal exposure to chorioamnionitis can impact the outcomes of the developing fetus both at the time of birth and in the subsequent neonatal period. Infants exposed to chorioamnionitis have a higher incidence of gastrointestinal (GI) pathology, including necrotizing enterocolitis (NEC); however, the mechanism remains undefined. To simulate the fetal exposure to maternal inflammation (FEMI) induced by chorioamnionitis, pregnant mice (C57BL/6J, IL-6 -/-, RAG -/- or TNFR1 -/-) were injected intraperitoneally on embryonic day (E)15.5 with lipopolysaccharide (LPS; 100 µg/kg body weight). Pups were delivered at term, and reared to postnatal day (P)0, P7, P14, P28 or P56. Serum and intestinal tissue samples were collected to quantify growth, inflammatory markers, histological intestinal injury, and goblet and Paneth cells. To determine whether FEMI increased subsequent susceptibility to intestinal injury, a secondary dose of LPS (100 µg/kg body weight) was given on P5, prior to tissue harvesting on P7. FEMI had no effect on growth of the offspring or their small intestine. FEMI significantly decreased both goblet and Paneth cell numbers while simultaneously increasing serum levels of IL-1β, IL-10, KC/GRO (CXCL1 and CXCL2), TNF and IL-6. These alterations were IL-6 dependent and, importantly, increased susceptibility to LPS-induced intestinal injury later in life. Our data show that FEMI impairs normal intestinal development by decreasing components of innate immunity and simultaneously increasing markers of inflammation. These changes increase susceptibility to intestinal injury later in life and provide novel mechanistic data to potentially explain why preterm infants exposed to chorioamnionitis prior to birth have a higher incidence of NEC and other GI disorders.
Collapse
Affiliation(s)
- Timothy G Elgin
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA
| | - Erin M Fricke
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, IA 52242, USA
| | - Huiyu Gong
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA
| | - Jeffrey Reese
- Department of Pediatrics, Vanderbilt University, Nashville, TN 37232, USA
| | - David A Mills
- Department of Food Science and Technology, University of California Davis, Davis, CA 95616, USA
| | - Karen M Kalantera
- Department of Food Science and Technology, University of California Davis, Davis, CA 95616, USA
| | - Mark A Underwood
- Department of Pediatrics, University of California Davis, Sacramento, CA 95817, USA
| | - Steven J McElroy
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA .,Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|