1
|
Itson-Zoske B, Gani U, Mikesell A, Qiu C, Fan F, Stucky CL, Hogan QH, Shin SM, Yu H. Selective RNAi silencing of Schwann cell Piezo1 alleviates mechanical hypersensitization following peripheral nerve injury. Mol Ther Methods Clin Dev 2025; 33:101433. [PMID: 40092637 PMCID: PMC11910156 DOI: 10.1016/j.omtm.2025.101433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 02/07/2025] [Indexed: 03/19/2025]
Abstract
The present study was designed to investigate the role of Schwann cell (SC) Piezo1 in peripheral nociception. We first developed an AAV vector that has primary SC tropism after delivery into the sciatic (or tibial) nerve. This was achieved by packing AAV-GFP transcribed by a CBA promoter using a capsid AAVolig001 to generate AAVolig001-CBA-GFP. Six weeks after intraneural injection of AAVolig001-CBA-GFP in naive rats, GFP expression was detected selectively in both myelinating SCs (mSCs) and non-myelinating SCs (nmSCs). A dual promoter and bidirectional AAV encoding a U6-driven short hairpin RNA against rat Piezo1 (PZ1shRNA) and CBA-transcribed GFP was packed with capsid olig001 (AAVolig001-PZ1shRNA), and AAV was injected into unilateral sciatic (or tibial) nerve immediately after induction of common peroneal nerve injury (CPNI). Results showed that the development of mechanical hypersensitivity in the CPNI rats injected with AAVolig001-PZ1shRNA was mitigated compared to rats subjected to AAVolig001-scramble. Selective in vivo SC transduction and functional block of Piezo1 channel activity of primary cultured SCs was confirmed. These data demonstrate that (1) AAVolig001 has unique and selective primary tropism to SCs via intraneural delivery, and (2) SC Piezo1 contributes to mechanical hypersensitivity following nerve injury.
Collapse
Affiliation(s)
- Brandon Itson-Zoske
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Uarda Gani
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Alexander Mikesell
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Chensheng Qiu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Orthopedic Surgery, Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Fan Fan
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Cheryl L. Stucky
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Quinn H. Hogan
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Seung Min Shin
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Hongwei Yu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
2
|
Chen Y, Li T. Unveiling the Mechanisms of Pain in Endometriosis: Comprehensive Analysis of Inflammatory Sensitization and Therapeutic Potential. Int J Mol Sci 2025; 26:1770. [PMID: 40004233 PMCID: PMC11855056 DOI: 10.3390/ijms26041770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/10/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
Endometriosis is a complicated, estrogen-dependent gynecological condition with a high morbidity rate. Pain, as the most common clinical symptom of endometriosis, severely affects women's physical and mental health and exacerbates socioeconomic burden. However, the specific mechanisms behind the occurrence of endometriosis-related pain remain unclear. It is currently believed that the occurrence of endometriosis pain is related to various factors, such as immune abnormalities, endocrine disorders, the brain-gut axis, angiogenesis, and mechanical stimulation. These factors induce systemic chronic inflammation, which stimulates the nerves and subsequently alters neural plasticity, leading to nociceptive sensitization and thereby causing chronic pain. In this paper, we compile and review the articles published on the study of nociceptive sensitization and endometriosis pain mechanisms. Starting from the factors influencing the chronic pain associated with endometriosis, we explain the relationship between these factors and chronic inflammation and further elaborate on the potential mechanisms by which chronic inflammation induces nociceptive sensitization. We aim to reveal the possible mechanisms of endometriosis pain, as well as nociceptive sensitization, and offer potential new targets for the treatment of endometriosis pain.
Collapse
Affiliation(s)
| | - Tian Li
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China;
| |
Collapse
|
3
|
Wong CE, Liu W, Huang CC, Lee PH, Huang HW, Chang Y, Lo HT, Chen HF, Kuo LC, Lee JS. Sciatic nerve stimulation alleviates neuropathic pain and associated neuroinflammation in the dorsal root ganglia in a rodent model. J Transl Med 2024; 22:770. [PMID: 39143617 PMCID: PMC11325705 DOI: 10.1186/s12967-024-05573-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/04/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Satellite glial cells (SGCs) in the dorsal root ganglia (DRG) play a pivotal role in the formation of neuropathic pain (NP). Sciatic nerve stimulation (SNS) neuromodulation was reported to alleviate NP and reduce neuroinflammation. However, the mechanisms underlying SNS in the DRG remain unclear. This study aimed to elucidate the mechanism of electric stimulation in reducing NP, focusing on the DRG. METHODS L5 nerve root ligation (NRL) NP rat model was studied. Ipsilateral SNS performed 1 day after NRL. Behavioral tests were performed to assess pain phenotypes. NanoString Ncounter technology was used to explore the differentially expressed genes and cellular pathways. Activated SGCs were characterized in vivo and in vitro. The histochemical alterations of SGCs, macrophages, and neurons in DRG were examined in vivo on post-injury day 8. RESULTS NRL induced NP behaviors including decreased pain threshold and latency on von Frey and Hargreaves tests. We found that following nerve injury, SGCs were hyperactivated, neurotoxic and had increased expression of NP-related ion channels including TRPA1, Cx43, and SGC-neuron gap junctions. Mechanistically, nerve injury induced reciprocal activation of SGCs and M1 macrophages via cytokines including IL-6, CCL3, and TNF-α mediated by the HIF-1α-NF-κB pathways. SNS suppressed SGC hyperactivation, reduced the expression of NP-related ion channels, and induced M2 macrophage polarization, thereby alleviating NP and associated neuroinflammation in the DRG. CONCLUSIONS NRL induced hyperactivation of SGCs, which had increased expression of NP-related ion channels. Reciprocal activation of SGCs and M1 macrophages surrounding the primary sensory neurons was mediated by the HIF-1α and NF-κB pathways. SNS suppressed SGC hyperactivation and skewed M1 macrophage towards M2. Our findings establish SGC activation as a crucial pathomechanism in the gliopathic alterations in NP, which can be modulated by SNS neuromodulation.
Collapse
Affiliation(s)
- Chia-En Wong
- Division of Neurosurgery, Department of Surgery, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, No. 138, Sheng-Li Road, Tainan, 70428, Taiwan
| | - Wentai Liu
- Department of Bioengineering, University of California, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
- Department of Electrical and Computer Engineering, Los Angeles, CA, USA
- Brain Research Institute, University of California, Los Angeles, CA, USA
| | - Chi-Chen Huang
- Division of Neurosurgery, Department of Surgery, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, No. 138, Sheng-Li Road, Tainan, 70428, Taiwan
| | - Po-Hsuan Lee
- Division of Neurosurgery, Department of Surgery, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, No. 138, Sheng-Li Road, Tainan, 70428, Taiwan
| | - Han-Wei Huang
- Department of Neurology, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Yu Chang
- Division of Neurosurgery, Department of Surgery, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, No. 138, Sheng-Li Road, Tainan, 70428, Taiwan
| | - Hsin-Tien Lo
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hui-Fang Chen
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Li-Chieh Kuo
- Department of Occupational Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jung-Shun Lee
- Division of Neurosurgery, Department of Surgery, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, No. 138, Sheng-Li Road, Tainan, 70428, Taiwan.
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
4
|
Zhang K, Liu W, Shen F, Luan G, Han Y, Xu J, Fu C, Wu W, Hou Y, Jiang M, Zhang T, Bai G. Ligustilide covalently binds to Cys703 in the pre-S1 helix of TRPA1, blocking the opening of channel and relieving pain in rats with acute soft tissue injury. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118217. [PMID: 38641072 DOI: 10.1016/j.jep.2024.118217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/04/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The natural anodyne Ligustilide (Lig), derived from Angelica sinensis (Oliv.) Diels and Ligusticum chuanxiong Hort., has been traditionally employed for its analgesic properties in the treatment of dysmenorrhea and migraine, and rheumatoid arthritis pain. Despite the existing reports on the correlation between TRP channels and the analgesic effects of Lig, a comprehensive understanding of their underlying mechanisms of action remains elusive. AIM OF THE STUDY The objective of this study is to elucidate the mechanism of action of Lig on the analgesic target TRPA1 channel. METHODS The therapeutic effect of Lig was evaluated in a rat acute soft tissue injury model. The analgesic target was identified through competitive inhibition of TRP channel agonists at the animal level, followed by Fluo-4/Ca2+ imaging on live cells overexpressing TRP proteins. The potential target was verified through in-gel imaging, colocalization using a Lig-derived molecular probe, and a drug affinity response target stability assay. The binding site of Lig was identified through protein spectrometry and further analyzed using molecular docking, site-specific mutation, and multidisciplinary approaches. RESULTS The administration of Lig effectively ameliorated pain and attenuated oxidative stress and inflammatory responses in rats with soft tissue injuries. Moreover, the analgesic effects of Lig were specifically attributed to TRPA1. Mechanistic studies have revealed that Lig directly activates TRPA1 by interacting with the linker domain in the pre-S1 region of TRPA1. Through metabolic transformation, 6,7-epoxyligustilide (EM-Lig) forms a covalent bond with Cys703 of TRPA1 at high concentrations and prolonged exposure time. This irreversible binding prevents endogenous electrophilic products from entering the cysteine active center of ligand-binding pocket of TRPA1, thereby inhibiting Ca2+ influx through the channel opening and ultimately relieving pain. CONCLUSIONS Lig selectively modulates the TRPA1 channel in a bimodal manner via non-electrophilic/electrophilic metabolic conversion. The epoxidized metabolic intermediate EM-Lig exerts analgesic effects by irreversibly inhibiting the activation of TRPA1 on sensory neurons. These findings not only highlight the analgesic mechanism of Lig but also offer a novel nucleophilic attack site for the development of TRPA1 antagonists in the pre-S1 region.
Collapse
Affiliation(s)
- Kaixue Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, PR China
| | - Wenjuan Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, PR China
| | - Fukui Shen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, PR China
| | - Guoqing Luan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, PR China
| | - Yanqi Han
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Key Laboratory of Quality Markers of Traditional Chinese Medicine, Tianjin Institute of Pharmaceutical Research, Tianjin, 300462, PR China
| | - Jun Xu
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Key Laboratory of Quality Markers of Traditional Chinese Medicine, Tianjin Institute of Pharmaceutical Research, Tianjin, 300462, PR China
| | - Cheng Fu
- Jiangxi Baishen Changnuo Pharmaceutical Co., Ltd., Fuzhou, 344000, PR China
| | - Weidong Wu
- Jiangxi Baishen Changnuo Pharmaceutical Co., Ltd., Fuzhou, 344000, PR China
| | - Yuanyuan Hou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, PR China
| | - Min Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, PR China.
| | - Tiejun Zhang
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Key Laboratory of Quality Markers of Traditional Chinese Medicine, Tianjin Institute of Pharmaceutical Research, Tianjin, 300462, PR China.
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, PR China.
| |
Collapse
|
5
|
Qiao LY. Satellite Glial Cells Bridge Sensory Neuron Crosstalk in Visceral Pain and Cross-Organ Sensitization. J Pharmacol Exp Ther 2024; 390:213-221. [PMID: 38777604 PMCID: PMC11264254 DOI: 10.1124/jpet.123.002061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Following colonic inflammation, the uninjured bladder afferent neurons are also activated. The mechanisms and pathways underlying this sensory neuron cross-activation (from injured neurons to uninjured neurons) are not fully understood. Colonic and bladder afferent neurons reside in the same spinal segments and are separated by satellite glial cells (SGCs) and extracellular matrix in dorsal root ganglia (DRG). SGCs communicate with sensory neurons in a bidirectional fashion. This review summarizes the differentially regulated genes/proteins in the injured and uninjured DRG neurons and explores the role of SGCs in regulation of sensory neuron crosstalk in visceral cross-organ sensitization. The review also highlights the paracrine pathways in mediating neuron-SGC and SGC-neuron coupling with an emphasis on the neurotrophins and purinergic systems. Finally, I discuss the results from recent RNAseq profiling of SGCs to reveal useful molecular markers for characterization, functional study, and therapeutic targets of SGCs. SIGNIFICANCE STATEMENT: Satellite glial cells (SGCs) are the largest glial subtypes in sensory ganglia and play a critical role in mediating sensory neuron crosstalk, an underlying mechanism in colon-bladder cross-sensitization. Identification of novel and unique molecular markers of SGCs can advance the discovery of therapeutic targets in treatment of chronic pain including visceral pain comorbidity.
Collapse
Affiliation(s)
- Liya Y Qiao
- Department of Physiology and Biophysics, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| |
Collapse
|
6
|
Shin SM, Itson-Zoske B, Fan F, Xiao Y, Qiu C, Cummins TR, Hogan QH, Yu H. Peripherally targeted analgesia via AAV-mediated sensory neuron-specific inhibition of multiple pronociceptive sodium channels. J Clin Invest 2024; 134:e170813. [PMID: 38722683 PMCID: PMC11213509 DOI: 10.1172/jci170813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/07/2024] [Indexed: 06/30/2024] Open
Abstract
This study reports that targeting intrinsically disordered regions of the voltage-gated sodium channel 1.7 (NaV1.7) protein facilitates discovery of sodium channel inhibitory peptide aptamers (NaViPA) for adeno-associated virus-mediated (AAV-mediated), sensory neuron-specific analgesia. A multipronged inhibition of INa1.7, INa1.6, INa1.3, and INa1.1 - but not INa1.5 and INa1.8 - was found for a prototype and named NaViPA1, which was derived from the NaV1.7 intracellular loop 1, and is conserved among the TTXs NaV subtypes. NaViPA1 expression in primary sensory neurons (PSNs) of dorsal root ganglia (DRG) produced significant inhibition of TTXs INa but not TTXr INa. DRG injection of AAV6-encoded NaViPA1 significantly attenuated evoked and spontaneous pain behaviors in both male and female rats with neuropathic pain induced by tibial nerve injury (TNI). Whole-cell current clamp of the PSNs showed that NaViPA1 expression normalized PSN excitability in TNI rats, suggesting that NaViPA1 attenuated pain by reversal of injury-induced neuronal hypersensitivity. IHC revealed efficient NaViPA1 expression restricted in PSNs and their central and peripheral terminals, indicating PSN-restricted AAV biodistribution. Inhibition of sodium channels by NaViPA1 was replicated in the human iPSC-derived sensory neurons. These results summate that NaViPA1 is a promising analgesic lead that, combined with AAV-mediated PSN-specific block of multiple TTXs NaVs, has potential as a peripheral nerve-restricted analgesic therapeutic.
Collapse
Affiliation(s)
- Seung Min Shin
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Brandon Itson-Zoske
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Fan Fan
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Yucheng Xiao
- Department of Biology, School of Science, Indiana University-Purdue University, Indianapolis, Indiana, USA
| | - Chensheng Qiu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao, China
| | - Theodore R. Cummins
- Department of Biology, School of Science, Indiana University-Purdue University, Indianapolis, Indiana, USA
| | - Quinn H. Hogan
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Hongwei Yu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
7
|
Kim H, Roh D, Oh SB. EGFR Tyrosine Kinase Inhibitor Lazertinib Activates a Subset of Mouse Sensory Neurons Via TRPA1. THE JOURNAL OF PAIN 2024; 25:104435. [PMID: 38008390 DOI: 10.1016/j.jpain.2023.11.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/21/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023]
Abstract
Lazertinib (JNJ-73841937, YH25448) is a mutant-selective irreversible epidermal growth factor receptor tyrosine kinase inhibitor targeting both the T790M and activating mutation while sparing wild-type epidermal growth factor receptor. Paresthesia is one of the most common adverse events seen with lazertinib treatment, suggesting that lazertinib could affect the sensory nervous system. However, the mechanism of action for this paresthesia remains unclear. In this study, we investigated whether and how lazertinib affects peripheral sensory neurons. Through Fura-2-based calcium imaging and whole-cell patch clamp recording in primary-cultured dorsal root ganglion (DRG) neurons from adult mice, we found that application of lazertinib elicits spontaneous calcium responses in a subset of small-to-medium-sized neurons. Moreover, lazertinib induced spontaneous firings and hyperexcitability in a subset of transient receptor potential vanilloid 1-lineage DRG neurons and sensitized transient receptor potential ankyrin 1 (TRPA1) response, while sparing transient receptor potential vanilloid 1 response. Lazertinib-responsive neurons were also responsive to capsaicin, further supporting that lazertinib selectively activates nociceptive neurons. Lazertinib-induced calcium responses were pharmacologically blocked with HC-030031 (TRPA1 antagonist) and MDL-12330A (adenylyl cyclase inhibitor), suggesting that lazertinib activates sensory neurons through indirect activation of TRPA1. However, unlike vincristine which produces peripheral neuropathy by axonal degeneration, lazertinib did not cause neurite fragmentation in cultured DRG neurons. Finally, intraplantar injection of lazertinib induced TRPA1-dependent pain-like behaviors in vivo. Collectively, our data suggest a direct effect of lazertinib on nociceptive sensory neurons via TRPA1 selective mechanisms, which could be a putative mechanism of lazertinib-induced sensory abnormalities in clinical patients. PERSPECTIVE: This article presents a TRPA1-dependent, lazertinib-induced activation of mouse sensory neurons in vitro and lazertinib-induced pain-like behaviors in vivo. The same mechanisms may underlie the clinical condition, suggesting that TRPA1 could be a potential therapeutic target to manage lazertinib-induced paresthesia.
Collapse
Affiliation(s)
- Hayun Kim
- Interdisciplinary Program in Neuroscience, Seoul National University, Seoul 08826, Republic of Korea
| | - Dahee Roh
- Department of Neurobiology and Physiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 03080, Republic of Korea
| | - Seog Bae Oh
- Interdisciplinary Program in Neuroscience, Seoul National University, Seoul 08826, Republic of Korea; Department of Neurobiology and Physiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 03080, Republic of Korea
| |
Collapse
|
8
|
Itson-Zoske B, Gani U, Mikesell A, Qiu C, Fan F, Stucky C, Hogan Q, Shin SM, Yu H. Selective RNAi-silencing of Schwann cell Piezo1 alleviates mechanical hypersensitization following peripheral nerve injury. RESEARCH SQUARE 2023:rs.3.rs-3405016. [PMID: 37886453 PMCID: PMC10602140 DOI: 10.21203/rs.3.rs-3405016/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
We previously reported functional Piezo1 expression in Schwann cells of the peripheral nervous system. This study is designed to further investigate the role of Schwann cell Piezo1 in peripheral nociception. We first developed an adeno-associated viral (AAV) vector that has primary Schwann cell tropism after delivery into the sciatic nerve. This was achieved by packing AAV-GFP transcribed by a hybrid CMV enhancer/chicken β-actin (CBA) promoter using a capsid AAVolig001 to generate AAVolig001-CBA-GFP. Five weeks after intrasciatic injection of AAVolig001-CBA-GFP in naïve rats, GFP expression was detected selectively in the Schwann cells of the sciatic nerve. A short hairpin RNA against rat Piezo1 (PZ1shRNA) was designed that showed efficient physical and functional knockdown of Piezo1 in NG108 neuronal cells. A dual promoter and bidirectional AAV encoding a U6-driven PZ1shRNA and CBA-transcribed GFP was packed with capsid olig001 (AAVolig001-PZ1shRNA), and AAV was injected into unilateral sciatic nerve immediately after induction of common peroneal nerve injury (CPNI). Results showed that the development of mechanical hypersensitivity in the CPNI rats injected with AAVolig001-PZ1shRNA was mitigated, compared to rats subjected with AAVolig001-scramble. Selective in vivo Schwann cell transduction and functional block of Piezo1 channel activity of primary cultured Schwann cells was confirmed. Together, our data demonstrate that 1) AAVolig001 has unique and selective primary tropism to Schwann cells via intrasciatic delivery and 2) Schwann cell Piezo1 contributes to mechanical hypersensitivity following nerve injury.
Collapse
|
9
|
Modification of the TRP Channel TRPA1 as a Relevant Factor in Migraine-Related Intracranial Hypersensitivity. Int J Mol Sci 2023; 24:ijms24065375. [PMID: 36982450 PMCID: PMC10049246 DOI: 10.3390/ijms24065375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Recently, the transient receptor potential ankyrin 1 (TRPA1) has gained more attention in migraine-related research. The involvement of the TRPA1 receptor in migraine headaches is proposed by the fact that TRPA1 may be a target of some migraine-triggering factors. Although it is doubtful that activation of TRPA1 alone is sufficient to induce pain, behavioral studies have demonstrated that TRPA1 is involved in injury- and inflammation-induced hypersensitivity. Here, we review the functional relevance of TRPA1 in headaches and its therapeutic potential, mainly focusing on its role in the development of hypersensitivity, referring to its altered expression in pathological conditions, and its functional interaction with other TRP channels.
Collapse
|
10
|
Niu M, Zhao F, Chen R, Li P, Bi L. The transient receptor potential channels in rheumatoid arthritis: Need to pay more attention. Front Immunol 2023; 14:1127277. [PMID: 36926330 PMCID: PMC10013686 DOI: 10.3389/fimmu.2023.1127277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/06/2023] [Indexed: 03/06/2023] Open
Abstract
Rheumatoid arthritis (RA) is characterized by the augment of vascular permeability, increased inflammatory cells infiltration, dysregulated immune cells activation, pannus formation and unbearable pain hyperalgesia. Ca2+ affect almost every aspect of cellular functions, involving cell migration, signal transduction, proliferation, and apoptosis. Transient receptor potential channels (TRPs) as a type of non-selective permeable cation channels, can regulate Ca2+ entry and intracellular Ca2+ signal in cells including immune cells and neurons. Researches have demonstrated that TRPs in the mechanisms of inflammatory diseases have achieved rapid progress, while the roles of TRPs in RA pathogenesis and pain hyperalgesia are still not well understood. To solve this problem, this review presents the evidence of TRPs on vascular endothelial cells in joint swelling, neutrophils activation and their trans-endothelial migration, as well as their bridging role in the reactive oxygen species/TRPs/Ca2+/peptidyl arginine deiminases networks in accelerating citrullinated proteins formation. It also points out the distinct functions of TRPs subfamilies expressed in the nervous systems of joints in cold hyperalgesia and neuro-inflammation mutually influenced inflammatory pain in RA. Thus, more attention could be paid on the impact of TRPs in RA and TRPs are useful in researches on the molecular mechanisms of anti-inflammation and analgesic therapeutic strategies.
Collapse
Affiliation(s)
- Mengwen Niu
- Department of Rheumatology and Immunology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Feng Zhao
- Department of Rheumatology and Immunology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Rui Chen
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Ping Li
- Department of Rheumatology and Immunology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Liqi Bi
- Department of Rheumatology and Immunology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
11
|
Shin SM, Itson-Zoske B, Fan F, Gani U, Rahman M, Hogan QH, Yu H. Peripheral sensory neurons and non-neuronal cells express functional Piezo1 channels. Mol Pain 2023; 19:17448069231174315. [PMID: 37247618 PMCID: PMC10240879 DOI: 10.1177/17448069231174315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/10/2023] [Accepted: 04/19/2023] [Indexed: 05/31/2023] Open
Abstract
Here, we present evidence showing Piezo1 protein expression in the primary sensory neurons (PSNs) and non-neuronal cells of rat peripheral nervous system. Using a knockdown/knockout validated antibody, we detected Piezo1 immunoreactivity (IR) in ∼60% of PSNs of rat dorsal root ganglia (DRG) with higher IR density in the small- and medium-sized neurons. Piezo1-IR was clearly identified in DRG perineuronal glia, including satellite glial cells (SGCs) and Schwann cells; in sciatic nerve Schwann cells surrounding the axons and cutaneous afferent endings; and in skin epidermal Merkel cells and melanocytes. Neuronal and non-neuronal Piezo1 channels were functional since various cells (dissociated PSNs and SGCs from DRGs, isolated Schwann cells, and primary human melanocytes) exhibited a robust response to Piezo1 agonist Yoda1 by an increase of intracellular Ca2+ concentration ([Ca2+]i). These responses were abolished by non-specific Piezo1 antagonist GsMTx4. Immunoblots showed elevated Piezo1 protein in DRG proximal to peripheral nerve injury-induced painful neuropathy, while PSNs and SGCs from rats with neuropathic pain showed greater Yoda1-evoked elevation of [Ca2+]i and an increased frequency of cells responding to Yoda1, compared to controls. Sciatic nerve application of GsMTx4 alleviated mechanical hypersensitivity induced by Yoda1. Overall, our data show that Piezo1 is widely expressed by the neuronal and non-neuronal cells in the peripheral sensory pathways and that painful nerve injury appeared associated with activation of Piezo1 in PSNs and peripheral glial cells.
Collapse
Affiliation(s)
- Seung Min Shin
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Brandon Itson-Zoske
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Fan Fan
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Uarda Gani
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Mahmudur Rahman
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Quinn H. Hogan
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Hongwei Yu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
12
|
Shin SM, Lauzadis J, Itson-Zoske B, Cai Y, Fan F, Natarajan GK, Kwok WM, Puopolo M, Hogan QH, Yu H. Targeting intrinsically disordered regions facilitates discovery of calcium channels 3.2 inhibitory peptides for adeno-associated virus-mediated peripheral analgesia. Pain 2022; 163:2466-2484. [PMID: 35420557 PMCID: PMC9562599 DOI: 10.1097/j.pain.0000000000002650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 11/27/2022]
Abstract
ABSTRACT Ample data support a prominent role of peripheral T-type calcium channels 3.2 (Ca V 3.2) in generating pain states. Development of primary sensory neuron-specific inhibitors of Ca V 3.2 channels is an opportunity for achieving effective analgesic therapeutics, but success has been elusive. Small peptides, especially those derived from natural proteins as inhibitory peptide aptamers (iPAs), can produce highly effective and selective blockade of specific nociceptive molecular pathways to reduce pain with minimal off-target effects. In this study, we report the engineering of the potent and selective iPAs of Ca V 3.2 from the intrinsically disordered regions (IDRs) of Ca V 3.2 intracellular segments. Using established prediction algorithms, we localized the IDRs in Ca V 3.2 protein and identified several Ca V 3.2iPA candidates that significantly reduced Ca V 3.2 current in HEK293 cells stably expressing human wide-type Ca V 3.2. Two prototype Ca V 3.2iPAs (iPA1 and iPA2) derived from the IDRs of Ca V 3.2 intracellular loops 2 and 3, respectively, were expressed selectively in the primary sensory neurons of dorsal root ganglia in vivo using recombinant adeno-associated virus (AAV), which produced sustained inhibition of calcium current conducted by Ca V 3.2/T-type channels and significantly attenuated both evoked and spontaneous pain behavior in rats with neuropathic pain after tibial nerve injury. Recordings from dissociated sensory neurons showed that AAV-mediated Ca V 3.2iPA expression suppressed neuronal excitability, suggesting that Ca V 3.2iPA treatment attenuated pain by reversal of injury-induced neuronal hypersensitivity. Collectively, our results indicate that Ca V 3.2iPAs are promising analgesic leads that, combined with AAV-mediated delivery in anatomically targeted sensory ganglia, have the potential to be a selective peripheral Ca V 3.2-targeting strategy for clinical treatment of pain.
Collapse
Affiliation(s)
- Seung Min Shin
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Justas Lauzadis
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY, United States
| | - Brandon Itson-Zoske
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Yongsong Cai
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
- Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Fan Fan
- Department of Pharmacology and Toxicology, The University of Mississippi Medical Center, Jackson, MS, United States
| | - Gayathri K. Natarajan
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Wai-Meng Kwok
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Michelino Puopolo
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY, United States
| | - Quinn H. Hogan
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Hongwei Yu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
13
|
Modulation of Glia Activation by TRPA1 Antagonism in Preclinical Models of Migraine. Int J Mol Sci 2022; 23:ijms232214085. [PMID: 36430567 PMCID: PMC9697613 DOI: 10.3390/ijms232214085] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/09/2022] [Accepted: 11/13/2022] [Indexed: 11/17/2022] Open
Abstract
Preclinical data point to the contribution of transient receptor potential ankyrin 1 (TRPA1) channels to the complex mechanisms underlying migraine pain. TRPA1 channels are expressed in primary sensory neurons, as well as in glial cells, and they can be activated/sensitized by inflammatory mediators. The aim of this study was to investigate the relationship between TRPA1 channels and glial activation in the modulation of trigeminal hyperalgesia in preclinical models of migraine based on acute and chronic nitroglycerin challenges. Rats were treated with ADM_12 (TRPA1 antagonist) and then underwent an orofacial formalin test to assess trigeminal hyperalgesia. mRNA levels of pro- and anti-inflammatory cytokines, calcitonin gene-related peptide (CGRP) and glia cell activation were evaluated in the Medulla oblongata and in the trigeminal ganglia. In the nitroglycerin-treated rats, ADM_12 showed an antihyperalgesic effect in both acute and chronic models, and it counteracted the changes in CGRP and cytokine gene expression. In the acute nitroglycerin model, ADM_12 reduced nitroglycerin-induced increase in microglial and astroglial activation in trigeminal nucleus caudalis area. In the chronic model, we detected a nitroglycerin-induced activation of satellite glial cells in the trigeminal ganglia that was inhibited by ADM_12. These findings show that TRPA1 antagonism reverts experimentally induced hyperalgesia in acute and chronic models of migraine and prevents multiple changes in inflammatory pathways by modulating glial activation.
Collapse
|
14
|
Pricope CV, Tamba BI, Stanciu GD, Cuciureanu M, Neagu AN, Creanga-Murariu I, Dobrovat BI, Uritu CM, Filipiuc SI, Pricope BM, Alexa-Stratulat T. The Roles of Imaging Biomarkers in the Management of Chronic Neuropathic Pain. Int J Mol Sci 2022; 23:13038. [PMID: 36361821 PMCID: PMC9657736 DOI: 10.3390/ijms232113038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 08/04/2023] Open
Abstract
Chronic neuropathic pain (CNP) affects around 10% of the general population and has a significant social, emotional, and economic impact. Current diagnosis techniques rely mainly on patient-reported outcomes and symptoms, which leads to significant diagnostic heterogeneity and subsequent challenges in management and assessment of outcomes. As such, it is necessary to review the approach to a pathology that occurs so frequently, with such burdensome and complex implications. Recent research has shown that imaging methods can detect subtle neuroplastic changes in the central and peripheral nervous system, which can be correlated with neuropathic symptoms and may serve as potential markers. The aim of this paper is to review available imaging methods used for diagnosing and assessing therapeutic efficacy in CNP for both the preclinical and clinical setting. Of course, further research is required to standardize and improve detection accuracy, but available data indicate that imaging is a valuable tool that can impact the management of CNP.
Collapse
Affiliation(s)
- Cosmin Vasilica Pricope
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
- Department of Pharmacology, Clinical Pharmacology and Algesiology, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Bogdan Ionel Tamba
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
- Department of Pharmacology, Clinical Pharmacology and Algesiology, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Gabriela Dumitrita Stanciu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Magdalena Cuciureanu
- Department of Pharmacology, Clinical Pharmacology and Algesiology, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Anca Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Carol I bvd. No. 22, 700505 Iasi, Romania
| | - Ioana Creanga-Murariu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Bogdan-Ionut Dobrovat
- Department of Radiology, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 University Street, 700115 Iasi, Romania
| | - Cristina Mariana Uritu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Silviu Iulian Filipiuc
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Bianca-Mariana Pricope
- Department of Preventive Medicine and Interdisciplinarity, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Teodora Alexa-Stratulat
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
- Medical Oncology-Radiotherapy Department, Grigore T. Popa University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| |
Collapse
|
15
|
Zdora I, Jubran L, Allnoch L, Hansmann F, Baumgärtner W, Leitzen E. Morphological and phenotypical characteristics of porcine satellite glial cells of the dorsal root ganglia. Front Neuroanat 2022; 16:1015281. [PMID: 36337140 PMCID: PMC9626980 DOI: 10.3389/fnana.2022.1015281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/04/2022] [Indexed: 10/23/2023] Open
Abstract
Satellite glial cells (SGCs) of the dorsal root ganglia (DRG) ensure homeostasis and proportional excitability of sensory neurons and gained interest in the field of development and maintenance of neuropathic pain. Pigs represent a suitable species for translational medicine with a more similar anatomy and physiology to humans compared to rodents, and are used in research regarding treatment of neuropathic pain. Knowledge of anatomical and physiological features of porcine SGCs is prerequisite for interpreting potential alterations. However, state of knowledge is still limited. In the present study, light microscopy, ultrastructural analysis and immunofluorescence staining was performed. SGCs tightly surround DRG neurons with little vascularized connective tissue between SGC-neuron units, containing, among others, axons and Schwann cells. DRG were mainly composed of large sized neurons (∼59%), accompanied by fewer medium sized (∼36%) and small sized sensory neurons (∼6%). An increase of neuronal body size was concomitant with an increased number of surrounding SGCs. The majority of porcine SGCs expressed glutamine synthetase and inwardly rectifying potassium channel Kir 4.1, known as SGC-specific markers in other species. Similar to canine SGCs, marked numbers of porcine SGCs were immunopositive for glial fibrillary acidic protein, 2',3'-cyclic-nucleotide 3'-phosphodiesterase and the transcription factor Sox2. Low to moderate numbers of SGCs showed aquaporin 4-immunoreactivity (AQP4) as described for murine SGCs. AQP4-immunoreactivity was primarily found in SGCs ensheathing small and medium sized neuronal somata. Low numbers of SGCs were immunopositive for ionized calcium-binding adapter molecule 1, indicating a potential immune cell character. No immunoreactivity for common leukocyte antigen CD45 nor neural/glial antigen 2 was detected. The present study provides essential insights into the characteristic features of non-activated porcine SGCs, contributing to a better understanding of this cell population and its functional aspects. This will help to interpret possible changes that might occur under activating conditions such as pain.
Collapse
Affiliation(s)
- Isabel Zdora
- Department of Pathology, University of Veterinary Medicine, Hanover, Germany
- Center of Systems Neuroscience, Hanover Graduate School for Neurosciences, Infection Medicine, and Veterinary Sciences (HGNI), Hanover, Germany
| | - Lorna Jubran
- Department of Pathology, University of Veterinary Medicine, Hanover, Germany
- Center of Systems Neuroscience, Hanover Graduate School for Neurosciences, Infection Medicine, and Veterinary Sciences (HGNI), Hanover, Germany
| | - Lisa Allnoch
- Department of Pathology, University of Veterinary Medicine, Hanover, Germany
| | - Florian Hansmann
- Department of Pathology, University of Veterinary Medicine, Hanover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine, Hanover, Germany
- Center of Systems Neuroscience, Hanover Graduate School for Neurosciences, Infection Medicine, and Veterinary Sciences (HGNI), Hanover, Germany
| | - Eva Leitzen
- Department of Pathology, University of Veterinary Medicine, Hanover, Germany
| |
Collapse
|
16
|
Andreeva D, Murashova L, Burzak N, Dyachuk V. Satellite Glial Cells: Morphology, functional heterogeneity, and role in pain. Front Cell Neurosci 2022; 16:1019449. [PMID: 36274990 PMCID: PMC9583829 DOI: 10.3389/fncel.2022.1019449] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Neurons in the somatic, sympathetic, and parasympathetic ganglia are surrounded by envelopes consisting of satellite glial cells (SGCs). Recently, it has become clear that SGCs are highly altered after nerve injury, which influences neuronal excitability and, consequently, the development and maintenance of pain in different animal models of chronic pain. However, the exact mechanism underlying chronic pain is not fully understood yet because it is assumed that SGCs in different ganglia share many common peculiarities, making the process complex. Here, we review recent data on morphological and functional heterogeneity and changes in SGCs in various pain conditions and their role in response to injury. More research is required to decipher the role of SGCs in diseases, such as chronic pain, neuropathology, and neurodegenerative diseases.
Collapse
|
17
|
Sex-related differences in oxaliplatin-induced changes in the expression of transient receptor potential channels and their contribution to cold hypersensitivity. Neurosci Lett 2022; 788:136863. [PMID: 36067900 DOI: 10.1016/j.neulet.2022.136863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/23/2022]
Abstract
Transient receptor potential (TRP) channels are involved in the development of oxaliplatin-induced neuropathic pain, a frequent and debilitating side effect of cancer therapy. Here we explored whether oxaliplatin-induced changes in the expression of TRP channels, as well as the development of pain-related behaviours, differed between male and female animals. Adult rats were injected with oxaliplatin or saline and mechanical and cold allodynia were evaluated using Von Frey and Choi Tests. The mRNA levels of TRPV1, TRPM8 and TRPA1 were assessed in lumbar ganglia and spinal cord by using real time RT-PCR. Oxaliplatin administration induced mechanical and cold hypersensitivity and allodynia in both sexes, with more severe responses to cold stimulation detected in females. Oxaliplatin also induced a significant increase in the expression of TRPV1, TRPM8 and TRPA1 in lumbar dorsal root ganglia. Interestingly, while TRPV1 and TRPA1 upregulation showed no sex difference, the increase in TRPM8 mRNA levels was more pronounced in female ganglia, correlating with the increased sensitivity to innocuous cold stimuli observed in females. TRPV1 and TRPM8 were also found to be upregulated in the spinal cord of animals of both sexes. Our results reveal previously undescribed changes in the expression of TRP channels occurring in peripheral ganglia and spinal cord of both male and female oxaliplatin-treated animals, with some of these changes exhibiting sex-related differences that could underlie the development of sex-specific patterns of pain-related behaviours.
Collapse
|
18
|
Jawaid S, Herring AI, Getsy PM, Lewis SJ, Watanabe M, Kolesova H. Differential immunostaining patterns of transient receptor potential (TRP) ion channels in the rat nodose ganglion. J Anat 2022; 241:230-244. [PMID: 35396708 PMCID: PMC9296033 DOI: 10.1111/joa.13656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 01/26/2022] [Accepted: 03/07/2022] [Indexed: 11/27/2022] Open
Abstract
Vagal afferents regulate numerous physiological functions including arterial blood pressure, heart rate, breathing, and nociception. Cell bodies of vagal afferents reside in the inferior vagal (nodose) ganglia and their stimulation by various means is being considered as a way to regulate cardiorespiratory responses and control pain sensations. Stimulation of the nodose by exposure to infrared light is recently being considered as a precise way to elicit responses. These responses would likely involve the activity of temperature-sensitive membrane-bound channels. While papers have been published to track the expression of these transient receptor potential ion channels (TRPs), further studies are warranted to determine the in situ expression of the endogenous TRP proteins in the nodose ganglia to fully understand their pattern of expression, subcellular locations, and functions in this animal model. TRP ion channels are a superfamily of Na+ /Ca2+ -channels whose members are temperature- and/or mechano-sensitive and therefore represent a potential set of proteins that will be activated directly or indirectly by infrared light. Here, we report the spatial localization of six TRP channels, TRPV1, TRPV4, TRPM3, TRPM8, TRPA1, and TRPC1, from nodose ganglia taken from juvenile male Sprague-Dawley rats. The channels were detected using immunohistology with fluorescent tags on cryosections and imaged using confocal microscopy. All six TRP channels were detected with different levels of intensity in neuronal cell bodies and some were also detected in axonal fibers and blood vessels. The TRP receptors differed in their prevalence, in their patterns of expression, and in subcellular expression/localization. More specifically, TRPV1, TRPV4, TRPA1, TRPM8, TRPC1, and TRPM3 were found in vagal afferent cell bodies with a wide range of immunostaining intensity from neuron to neuron. Immunostaining for TRPV1, TRPV4, and TRPA1 appeared as fine particles scattered throughout the cytoplasm of the cell body. Intense TRPV1 immunostaining was also evident in a subset of axonal fibers. TRPM8 and TRPC1 were expressed in courser particles suggesting different subcellular compartments than for TRPV1. The localization of TRPM3 differed markedly from the other TRP channels with an immunostaining pattern that was localized to the periphery of a subset of cell bodies, whereas a scattering or no immunostaining was detected within the bulk of the cytoplasm. TRPV4 and TRPC1 were also expressed on the walls of blood vessels. The finding that all six TRP channels (representing four subfamilies) were present in the nodose ganglia provides the basis for studies designed to understand the roles of these channels in sensory transmission within vagal afferent fibers and in the responses elicited by exposure of nodose ganglia to infrared light and other stimuli. Depending on the location and functionality of the TRP channels, they may regulate the flux of Na+ /Ca2+ -across the membranes of cell bodies and axons of sensory afferents, efferent (motor) fibers coursing through the ganglia, and in vascular smooth muscle.
Collapse
Affiliation(s)
- Safdar Jawaid
- Divisions of Pediatric CardiologyCase Western Reserve University School of MedicineClevelandOHUSA
| | - Amanda I. Herring
- Divisions of Pediatric CardiologyCase Western Reserve University School of MedicineClevelandOHUSA
| | - Paulina M. Getsy
- Pediatric Pulmonology, Department of PediatricsCase Western Reserve University School of MedicineClevelandOHUSA
| | - Stephen J. Lewis
- Pediatric Pulmonology, Department of PediatricsCase Western Reserve University School of MedicineClevelandOHUSA
| | - Michiko Watanabe
- Divisions of Pediatric CardiologyCase Western Reserve University School of MedicineClevelandOHUSA
| | - Hana Kolesova
- Department of Anatomy, First Faculty of MedicineCharles UniversityPragueCzech Republic
| |
Collapse
|
19
|
Itson-Zoske B, Shin SM, Xu H, Qiu C, Fan F, Hogan QH, Yu H. Selective block of sensory neuronal T-type/Cav3.2 activity mitigates neuropathic pain behavior in a rat model of osteoarthritis pain. Arthritis Res Ther 2022; 24:168. [PMID: 35842727 PMCID: PMC9287929 DOI: 10.1186/s13075-022-02856-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Peripheral and central nociceptive sensitization is a critical pathogenetic component in osteoarthritis (OA) chronic pain. T-type calcium channel 3.2 (CaV3.2) regulates neuronal excitability and plays important roles in pain processing. We previously identified that enhanced T-type/CaV3.2 activity in the primary sensory neurons (PSNs) of dorsal root ganglia (DRG) is associated with neuropathic pain behavior in a rat model of monosodium iodoacetate (MIA)-induced knee OA. PSN-specific T-type/CaV3.2 may therefore represent an important mediator in OA painful neuropathy. Here, we test the hypothesis that the T-type/CaV3.2 channels in PSNs can be rationally targeted for pain relief in MIA-OA. METHODS MIA model of knee OA was induced in male and female rats by a single injection of 2 mg MIA into intra-knee articular cavity. Two weeks after induction of knee MIA-OA pain, recombinant adeno-associated viruses (AAV)-encoding potent CaV3.2 inhibitory peptide aptamer 2 (CaV3.2iPA2) that have been characterized in our previous study were delivered into the ipsilateral lumbar 4/5 DRG. Effectiveness of DRG-CaV3.2iPA2 treatment on evoked (mechanical and thermal) and spontaneous (conditioned place preference) pain behavior, as well as weight-bearing asymmetry measured by Incapacitance tester, in the arthritic limbs of MIA rats were evaluated. AAV-mediated transgene expression in DRG was determined by immunohistochemistry. RESULTS AAV-mediated expression of CaV3.2iPA2 selective in the DRG-PSNs produced significant and comparable mitigations of evoked and spontaneous pain behavior, as well as normalization of weight-bearing asymmetry in both male and female MIA-OA rats. Analgesia of DRG-AAV-CaV3.2iPA1, another potent CaV3.2 inhibitory peptide, was also observed. Whole-cell current-clamp recordings showed that AAV-mediated CaV3.2iPA2 expression normalized hyperexcitability of the PSNs dissociated from the DRG of MIA animals, suggesting that CaV3.2iPA2 attenuated pain behavior by reversing MIA-induced neuronal hyperexcitability. CONCLUSIONS Together, our results add therapeutic support that T-type/CaV3.2 in primary sensory pathways contributes to MIA-OA pain pathogenesis and that CaV3.2iPAs are promising analgesic leads that, combined with AAV-targeted delivery in anatomically segmental sensory ganglia, have the potential for further development as a peripheral selective T-type/CaV3.2-targeting strategy in mitigating chronic MIA-OA pain behavior. Validation of the therapeutic potential of this strategy in other OA models may be valuable in future study.
Collapse
Affiliation(s)
- Brandon Itson-Zoske
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Seung Min Shin
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Hao Xu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Department of Orthopedic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chensheng Qiu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Department of Orthopedic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Fan Fan
- Department of Pharmacology and Toxicology, Mississippi University Medical Center, Jackson, MS, 39216, USA
| | - Quinn H Hogan
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Hongwei Yu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
20
|
Dysregulation of Immune Response Mediators and Pain-Related Ion Channels Is Associated with Pain-like Behavior in the GLA KO Mouse Model of Fabry Disease. Cells 2022; 11:cells11111730. [PMID: 35681422 PMCID: PMC9179379 DOI: 10.3390/cells11111730] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/19/2022] [Accepted: 05/21/2022] [Indexed: 12/28/2022] Open
Abstract
Fabry disease (FD) is a rare life-threatening disorder caused by deficiency of the alpha-galactosidase A (GLA) enzyme with a characteristic pain phenotype. Impaired GLA production or function leads to the accumulation of the cell membrane compound globotriaosylceramide (Gb3) in the neurons of the dorsal root ganglia (DRG) of FD patients. Applying immunohistochemistry (IHC) and quantitative real-time polymerase chain reaction (qRT PCR) analysis on DRG tissue of the GLA knockout (KO) mouse model of FD, we address the question of how Gb3 accumulation may contribute to FD pain and focus on the immune system and pain-associated ion channel gene expression. We show a higher Gb3 load in the DRG of young (<6 months) (p < 0.01) and old (≥12 months) (p < 0.001) GLA KO mice compared to old wildtype (WT) littermates, and an overall suppressed immune response in the DRG of old GLA KO mice, represented by a reduced number of CD206+ macrophages (p < 0.01) and lower gene expression levels of the inflammation-associated targets interleukin(IL)1b (p < 0.05), IL10 (p < 0.001), glial fibrillary acidic protein (GFAP) (p < 0.05), and leucine rich alpha-2-glycoprotein 1 (LRG1) (p < 0.01) in the DRG of old GLA KO mice compared to old WT. Dysregulation of immune-related genes may be linked to lower gene expression levels of the pain-associated ion channels calcium-activated potassium channel 3.1 (KCa3.1) and transient receptor potential ankyrin 1 channel (TRPA1). Ion channel expression might further be disturbed by impaired sphingolipid recruitment mediated via the lipid raft marker flotillin-1 (FLOT1). This impairment is represented by an increased number of FLOT1+ DRG neurons with a membranous expression pattern in old GLA KO mice compared to young GLA KO, young WT, and old WT mice (p < 0.001 each). Further, we provide evidence for aberrant behavior of GLA KO mice, which might be linked to dysregulated ion channel gene expression levels and disturbed FLOT1 distribution patterns. Behavioral testing revealed mechanical hypersensitivity in young (p < 0.01) and old (p < 0.001) GLA KO mice compared to WT, heat hypersensitivity in young GLA KO mice (p < 0.001) compared to WT, age-dependent heat hyposensitivity in old GLA KO mice (p < 0.001) compared to young GLA KO mice, and cold hyposensitivity in young (p < 0.001) and old (p < 0.001) GLA KO mice compared to WT, which well reflects the clinical phenotype observed in FD patients.
Collapse
|
21
|
KC E, Islam J, Kim S, Kim HK, Park YS. Pain Relief in a Trigeminal Neuralgia Model via Optogenetic Inhibition on Trigeminal Ganglion Itself With Flexible Optic Fiber Cannula. Front Cell Neurosci 2022; 16:880369. [PMID: 35573830 PMCID: PMC9096083 DOI: 10.3389/fncel.2022.880369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/22/2022] [Indexed: 11/29/2022] Open
Abstract
The trigeminal ganglion (TG) is the primary site of aberration in trigeminal neuralgia (TN), and hence a crucial site where afferent input can be modulated. Here, we postulated that inhibiting TG via optogenetics using flexible optic cannula would diminish brainstem trigeminal nucleus caudalis (TNC) neuronal activity and pain behavior in TN rat model. Infraorbital nerve constriction was employed to induce TN in female Sprague-Dawley rats, while naive and sham rats served as controls. TG-directed microinjections of AAV virus containing either the optogenetic or null vector were delivered to rats in each group. In vivo electrophysiological responses were obtained from the ventral posteromedial nucleus (VPm) of the thalamus with simultaneous TG optogenetic stimulation using flexible optic cannula as well the effects on behavioral responses were investigated. Recordings in TN rats revealed a decrease in burst firing activity during yellow laser driven inhibition on TG, as well as considerably improved behavioral responses. In contrast, we noticed persistent hypersensitivity and increased tonic firing with blue laser stimulation which indicates that TG inhibition can synchronize trigeminal pain signal transmission in a TN animal model. The potential of an optogenetic approach in TG itself with flexible optic fiber to directly disrupt the trigeminal pain circuitry delivers fundamental underpinnings toward its prospective as a trigeminal neuralgia management.
Collapse
Affiliation(s)
- Elina KC
- Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju, South Korea
| | - Jaisan Islam
- Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju, South Korea
| | - Soochong Kim
- Department of Veterinary Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea
| | - Hyong Kyu Kim
- Department of Medicine and Microbiology, College of Medicine, Chungbuk National University, Cheongju, South Korea
| | - Young Seok Park
- Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju, South Korea
- Department of Neurosurgery, Chungbuk National University Hospital, Cheongju, South Korea
| |
Collapse
|
22
|
Sinegubov A, Andreeva D, Burzak N, Vasyutina M, Murashova L, Dyachuk V. Heterogeneity and Potency of Peripheral Glial Cells in Embryonic Development and Adults. Front Mol Neurosci 2022; 15:737949. [PMID: 35401107 PMCID: PMC8990813 DOI: 10.3389/fnmol.2022.737949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
This review describes the heterogeneity of peripheral glial cell populations, from the emergence of Schwann cells (SCs) in early development, to their involvement, and that of their derivatives in adult glial populations. We focus on the origin of the first glial precursors from neural crest cells (NCCs), and their ability to differentiate into several cell types during development. We also discuss the heterogeneity of embryonic glia in light of the latest data from genetic tracing and transcriptome analysis. Special attention has been paid to the biology of glial populations in adult animals, by highlighting common features of different glial cell types and molecular differences that modulate their functions. Finally, we consider the communication of glial cells with axons of neurons in normal and pathological conditions. In conclusion, the present review details how information available on glial cell types and their functions in normal and pathological conditions may be utilized in the development of novel therapeutic strategies for the treatment of patients with neurodiseases.
Collapse
|
23
|
Quan J, Lee JY, Choi H, Kim YC, Yang S, Jeong J, Park HJ. Effect of Pregabalin Combined with Duloxetine and Tramadol on Allodynia in Chronic Postischemic Pain and Spinal Nerve Ligation Mouse Models. Pharmaceutics 2022; 14:pharmaceutics14030670. [PMID: 35336044 PMCID: PMC8955203 DOI: 10.3390/pharmaceutics14030670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 11/16/2022] Open
Abstract
Although there are various drugs for Neuropathic pain (NP), the effects of single drugs are often not very satisfactory. The analgesic effects of different combinations of pregabalin, duloxetine, and tramadol or the combination of all three are still unclear. Mixtures of two or three drugs at low and high concentrations (7.5, 10, 15, and 20 mg/kg pregabalin; 7.5, 10, 15, and 30 mg/kg duloxetine; 5 and 10 mg/kg tramadol) were administered to chronic postischemic pain (CPIP) and spinal nerve ligation (SNL) model mice. The effects of these combinations of drugs on mechanical allodynia were investigated. The expression of the glial fibrillary acidic protein (GFAP) in the spinal cord and dorsal root ganglia (DRGs) was measured. The combination of pregabalin, duloxetine, and tramadol significantly alleviated mechanical hyperalgesia in mice with CPIP and SNL. After the administration of this drug combination, the expression of GFAP in the spinal cord and DRGs was lower in the CPIP and SNL model mice than in control mice. This result suggests that the combination of these three drugs may be advantageous for the treatment of NP because it can reduce side effects by preventing the overuse of a single drug class and exert increased analgesic effects via synergism.
Collapse
Affiliation(s)
- Jie Quan
- Department of Anesthesiology and Pain Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (J.Q.); (H.C.); (Y.C.K.); (S.Y.); (J.J.)
| | - Jin Young Lee
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul 06351, Korea;
| | - Hoon Choi
- Department of Anesthesiology and Pain Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (J.Q.); (H.C.); (Y.C.K.); (S.Y.); (J.J.)
| | - Young Chan Kim
- Department of Anesthesiology and Pain Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (J.Q.); (H.C.); (Y.C.K.); (S.Y.); (J.J.)
| | - Sungwon Yang
- Department of Anesthesiology and Pain Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (J.Q.); (H.C.); (Y.C.K.); (S.Y.); (J.J.)
| | - Jongmin Jeong
- Department of Anesthesiology and Pain Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (J.Q.); (H.C.); (Y.C.K.); (S.Y.); (J.J.)
| | - Hue Jung Park
- Department of Anesthesiology and Pain Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (J.Q.); (H.C.); (Y.C.K.); (S.Y.); (J.J.)
- Correspondence:
| |
Collapse
|
24
|
Kalpachidou T, Malsch P, Qi Y, Mair N, Geley S, Quarta S, Kummer KK, Kress M. Genetic and functional evidence for gp130/IL6ST-induced transient receptor potential ankyrin 1 upregulation in uninjured but not injured neurons in a mouse model of neuropathic pain. Pain 2022; 163:579-589. [PMID: 34252913 PMCID: PMC8832546 DOI: 10.1097/j.pain.0000000000002402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/27/2021] [Accepted: 06/30/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Peripheral nerve injuries result in pronounced alterations in dorsal root ganglia, which can lead to the development of neuropathic pain. Although the polymodal mechanosensitive transient receptor potential ankyrin 1 (TRPA1) ion channel is emerging as a relevant target for potential analgesic therapies, preclinical studies do not provide unequivocal mechanistic insight into its relevance for neuropathic pain pathogenesis. By using a transgenic mouse model with a conditional depletion of the interleukin-6 (IL-6) signal transducer gp130 in Nav1.8 expressing neurons (SNS-gp130-/-), we provide a mechanistic regulatory link between IL-6/gp130 and TRPA1 in the spared nerve injury (SNI) model. Spared nerve injury mice developed profound mechanical hypersensitivity as indicated by decreased withdrawal thresholds in the von Frey behavioral test in vivo, as well as a significant increase in mechanosensitivity of unmyelinated nociceptive primary afferents in ex vivo skin-nerve recordings. In contrast to wild type and control gp130fl/fl animals, SNS-gp130-/- mice did not develop mechanical hypersensitivity after SNI and exhibited low levels of Trpa1 mRNA in sensory neurons, which were partially restored by adenoviral gp130 re-expression in vitro. Importantly, uninjured but not injured neurons developed increased responsiveness to the TRPA1 agonist cinnamaldehyde, and neurons derived from SNS-gp130-/- mice after SNI were significantly less responsive to cinnamaldehyde. Our study shows for the first time that TRPA1 upregulation is attributed specifically to uninjured neurons in the SNI model, and this depended on the IL-6 signal transducer gp130. We provide a solution to the enigma of TRPA1 regulation after nerve injury and stress its significance as an important target for neuropathic pain disorders.
Collapse
Affiliation(s)
- Theodora Kalpachidou
- Institute of Physiology, DPMP, Medical University of Innsbruck, Innsbruck, Austria
| | - Philipp Malsch
- Institute of Physiology, DPMP, Medical University of Innsbruck, Innsbruck, Austria
| | - Yanmei Qi
- Institute of Physiology, DPMP, Medical University of Innsbruck, Innsbruck, Austria
| | - Norbert Mair
- Institute of Physiology, DPMP, Medical University of Innsbruck, Innsbruck, Austria
| | - Stephan Geley
- Institute of Pathophysiology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Serena Quarta
- Institute of Physiology, DPMP, Medical University of Innsbruck, Innsbruck, Austria
| | - Kai K. Kummer
- Institute of Physiology, DPMP, Medical University of Innsbruck, Innsbruck, Austria
| | - Michaela Kress
- Institute of Physiology, DPMP, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
25
|
Abstract
Inflammatory pain is the perception of noxious stimuli that occurs during inflammation or an immune response. Glial cells are widespread in the central and peripheral nervous systems, supporting and guiding the migration of neurons, participating in the immune response, forming the myelin sheath and blood-brain barrier, and maintaining the concentration of potassium ions outside nerve cells. Recent studies have shown that glial cells have a significant connection with the production and development of inflammatory pain. This article reviews the relationship, mechanisms, therapeutic targets between five types of glial cells and inflammatory pain, and the medicine composition that can effectively inhibit inflammatory pain. It expands the study on the mechanism of glial cells regulating pain and provides new ideas for the therapy of inflammatory pain.
Collapse
Affiliation(s)
- Hongji Wang
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang 330006, P.R. China
| | - Changshui Xu
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang 330006, P.R. China
- The Clinical Medical School, Jiangxi Medical College, Shangrao 334000, P.R. China
| |
Collapse
|
26
|
Xie AX, Iguchi N, Clarkson TC, Malykhina AP. Pharmacogenetic inhibition of lumbosacral sensory neurons alleviates visceral hypersensitivity in a mouse model of chronic pelvic pain. PLoS One 2022; 17:e0262769. [PMID: 35077502 PMCID: PMC8789164 DOI: 10.1371/journal.pone.0262769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
The study investigated the cellular and molecular mechanisms in the peripheral nervous system (PNS) underlying the symptoms of urologic chronic pelvic pain syndrome (UCPPS) in mice. This work also aimed to test the feasibility of reversing peripheral sensitization in vivo in alleviating UCPPS symptoms. Intravesical instillation of vascular endothelial growth factor A (VEGFA) was used to induce UCPPS-like symptoms in mice. Spontaneous voiding spot assays and manual Von Frey tests were used to evaluate the severity of lower urinary tract symptoms (LUTS) and visceral hypersensitivity in VEGFA-instilled mice. Bladder smooth muscle strip contractility recordings (BSMSC) were used to identify the potential changes in myogenic and neurogenic detrusor muscle contractility at the tissue-level. Quantitative real-time PCR (qPCR) and fluorescent immunohistochemistry were performed to compare the expression levels of VEGF receptors and nociceptors in lumbosacral dorsal root ganglia (DRG) between VEGFA-instilled mice and saline-instilled controls. To manipulate primary afferent activity, Gi-coupled Designer Receptors Exclusively Activated by Designer Drugs (Gi-DREADD) were expressed in lumbosacral DRG neurons of TRPV1-Cre-ZGreen mice via targeted adeno-associated viral vector (AAVs) injections. A small molecule agonist of Gi-DREADD, clozapine-N-oxide (CNO), was injected into the peritoneum (i. p.) in awake animals to silence TRPV1 expressing sensory neurons in vivo during physiological and behavioral recordings of bladder function. Intravesical instillation of VEGFA in the urinary bladders increased visceral mechanical sensitivity and enhanced RTX-sensitive detrusor contractility. Sex differences were identified in the baseline detrusor contractility responses and VEGF-induced visceral hypersensitivity. VEGFA instillations in the urinary bladder led to significant increases in the mRNA and protein expression of transient receptor potential cation channel subfamily A member 1 (TRPA1) in lumbosacral DRG, whereas the expression levels of transient receptor potential cation channel subfamily V member 1 (TRPV1) and VEGF receptors (VEGFR1 and VEGFR2) remained unchanged when compared to saline-instilled animals. Importantly, the VEGFA-induced visceral hypersensitivity was reversed by Gi-DREADD-mediated neuronal silencing in lumbosacral sensory neurons. Activation of bladder VEGF signaling causes sensory neural plasticity and visceral hypersensitivity in mice, confirming its role of an UCPPS biomarker as identified by the Multidisciplinary Approach to the Study of Chronic Pelvic Pain (MAPP) research studies. Pharmacogenetic inhibition of lumbosacral sensory neurons in vivo completely reversed VEGFA-induced pelvic hypersensitivity in mice, suggesting the strong therapeutic potential for decreasing primary afferent activity in the treatment of pain severity in UCPPS patients.
Collapse
Affiliation(s)
- Alison Xiaoqiao Xie
- Department of Surgery, School of Medicine, Anschutz Medical Campus, University of Colorado, Denver, Colorado, United States of America
| | - Nao Iguchi
- Department of Surgery, School of Medicine, Anschutz Medical Campus, University of Colorado, Denver, Colorado, United States of America
| | - Taylor C. Clarkson
- Department of Surgery, School of Medicine, Anschutz Medical Campus, University of Colorado, Denver, Colorado, United States of America
| | - Anna P. Malykhina
- Department of Surgery, School of Medicine, Anschutz Medical Campus, University of Colorado, Denver, Colorado, United States of America
| |
Collapse
|
27
|
Huang B, Zdora I, de Buhr N, Eikelberg D, Baumgärtner W, Leitzen E. Phenotypical changes of satellite glial cells in a murine model of G M1 -gangliosidosis. J Cell Mol Med 2021; 26:527-539. [PMID: 34877779 PMCID: PMC8743646 DOI: 10.1111/jcmm.17113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/12/2021] [Accepted: 11/25/2021] [Indexed: 12/14/2022] Open
Abstract
Satellite glial cells (SGCs) of dorsal root ganglia (DRG) react in response to various injuries in the nervous system. This study investigates reactive changes within SGCs in a murine model for GM1‐gangliosidosis (GM1). DRG of homozygous β‐galactosidase‐knockout mice and homozygous C57BL/6 wild‐type mice were investigated performing immunostaining on formalin‐fixed, paraffin‐embedded tissue. A marked upregulation of glial fibrillary acidic protein (GFAP), the progenitor marker nestin and Ki67 within SGCs of diseased mice, starting after 4 months at the earliest GFAP, along with intracytoplasmic accumulation of ganglioside within neurons and deterioration of clinical signs was identified. Interestingly, nestin‐positive SGCs were detected after 8 months only. No changes regarding inwardly rectifying potassium channel 4.1, 2, 3‐cyclic nucleotide 3‐phosphodiesterase, Sox2, doublecortin, periaxin and caspase3 were observed in SGCs. Iba1 was only detected in close vicinity of SGCs indicating infiltrating or tissue‐resident macrophages. These results indicate that SGCs of DRG show phenotypical changes during the course of GM1, characterized by GFAP upregulation, proliferation and expression of a neural progenitor marker at a late time point. This points towards an important role of SGCs during neurodegenerative disorders and supports that SGCs represent a multipotent glial precursor cell line with high plasticity and functionality.
Collapse
Affiliation(s)
- Bei Huang
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,Center of Systems Neuroscience, Hannover, Germany
| | - Isabel Zdora
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,Center of Systems Neuroscience, Hannover, Germany
| | - Nicole de Buhr
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany.,Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Deborah Eikelberg
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,Center of Systems Neuroscience, Hannover, Germany
| | - Eva Leitzen
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
28
|
Shin SM, Moehring F, Itson-Zoske B, Fan F, Stucky CL, Hogan QH, Yu H. Piezo2 mechanosensitive ion channel is located to sensory neurons and nonneuronal cells in rat peripheral sensory pathway: implications in pain. Pain 2021; 162:2750-2768. [PMID: 34285153 PMCID: PMC8526381 DOI: 10.1097/j.pain.0000000000002356] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/18/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Piezo2 mechanotransduction channel is a crucial mediator of sensory neurons for sensing and transducing touch, vibration, and proprioception. We here characterized Piezo2 expression and cell specificity in rat peripheral sensory pathway using a validated Piezo2 antibody. Immunohistochemistry using this antibody revealed Piezo2 expression in pan primary sensory neurons of dorsal root ganglia in naïve rats, which was actively transported along afferent axons to both central presynaptic terminals innervating the spinal dorsal horn (DH) and peripheral afferent terminals in the skin. Piezo2 immunoreactivity (IR) was also detected in the postsynaptic neurons of the DH and in the motor neurons of the ventral horn, but not in spinal glial fibrillary acidic protein-positive and Iba1-positive glia. Notably, Piezo2-IR was clearly identified in peripheral nonneuronal cells, including perineuronal glia, Schwann cells in the sciatic nerve and surrounding cutaneous afferent endings, as well as in skin epidermal Merkel cells and melanocytes. Immunoblots showed increased Piezo2 in dorsal root ganglia ipsilateral to plantar injection of complete Freund's adjuvant, and immunostaining revealed increased Piezo2-IR intensity in the DH ipsilateral to complete Freund's adjuvant injection. This elevation of DH Piezo2-IR was also evident in various neuropathic pain models and monosodium iodoacetate knee osteoarthritis pain model, compared with controls. We conclude that (1) the pan neuronal profile of Piezo2 expression suggests that Piezo2 may function extend beyond simply touch or proprioception mediated by large-sized low-threshold mechanosensitive primary sensory neurons; (2) Piezo2 may have functional roles involving sensory processing in the spinal cord, Schwann cells, and skin melanocytes; and (3) aberrant Piezo2 expression may contribute pain pathogenesis.
Collapse
Affiliation(s)
- Seung Min Shin
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Francie Moehring
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Brandon Itson-Zoske
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Fan Fan
- Department of Pharmacology and Toxicology, Mississippi University Medical Center, Jackson, Mississippi 39216
| | - Cheryl L. Stucky
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Quinn H. Hogan
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226
- Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin 53295
| | - Hongwei Yu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226
- Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin 53295
| |
Collapse
|
29
|
Rawat A, Morrison BM. Metabolic Transporters in the Peripheral Nerve-What, Where, and Why? Neurotherapeutics 2021; 18:2185-2199. [PMID: 34773210 PMCID: PMC8804006 DOI: 10.1007/s13311-021-01150-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2021] [Indexed: 12/18/2022] Open
Abstract
Cellular metabolism is critical not only for cell survival, but also for cell fate, function, and intercellular communication. There are several different metabolic transporters expressed in the peripheral nervous system, and they each play important roles in maintaining cellular energy. The major source of energy in the peripheral nervous system is glucose, and glucose transporters 1 and 3 are expressed and allow blood glucose to be imported and utilized by peripheral nerves. There is also increasing evidence that other sources of energy, particularly monocarboxylates such as lactate that are transported primarily by monocarboxylate transporters 1 and 2 in peripheral nerves, can be efficiently utilized by peripheral nerves. Finally, emerging evidence supports an important role for connexins and possibly pannexins in the supply and regulation of metabolic energy. In this review, we will first define these critical metabolic transporter subtypes and then examine their localization in the peripheral nervous system. We will subsequently discuss the evidence, which comes both from experiments in animal models and observations from human diseases, supporting critical roles played by these metabolic transporters in the peripheral nervous system. Despite progress made in understanding the function of these transporters, many questions and some discrepancies remain, and these will also be addressed throughout this review. Peripheral nerve metabolism is fundamentally important and renewed interest in these pathways should help to answer many of these questions and potentially provide new treatments for neurologic diseases that are partly, or completely, caused by disruption of metabolism.
Collapse
Affiliation(s)
- Atul Rawat
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Brett M Morrison
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
30
|
Discrepancy in the Usage of GFAP as a Marker of Satellite Glial Cell Reactivity. Biomedicines 2021; 9:biomedicines9081022. [PMID: 34440226 PMCID: PMC8391720 DOI: 10.3390/biomedicines9081022] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/04/2021] [Accepted: 08/11/2021] [Indexed: 12/13/2022] Open
Abstract
Satellite glial cells (SGCs) surrounding the neuronal somas in peripheral sensory ganglia are sensitive to neuronal stressors, which induce their reactive state. It is believed that such induced gliosis affects the signaling properties of the primary sensory neurons and is an important component of the neuropathic phenotype leading to pain and other sensory disturbances. Efforts to understand and manipulate such gliosis relies on reliable markers to confirm induced SGC reactivity and ultimately the efficacy of targeted intervention. Glial fibrillary acidic protein (GFAP) is currently the only widely used marker for such analyses. However, we have previously described the lack of SGC upregulation of GFAP in a mouse model of sciatic nerve injury, suggesting that GFAP may not be a universally suitable marker of SGC gliosis across species and experimental models. To further explore this, we here investigate the regulation of GFAP in two different experimental models in both rats and mice. We found that whereas GFAP was upregulated in both rodent species in the applied inflammation model, only the rat demonstrated increased GFAP in SGCs following sciatic nerve injury; we did not observe any such GFAP upregulation in the mouse model at either protein or mRNA levels. Our results demonstrate an important discrepancy between species and experimental models that prevents the usage of GFAP as a universal marker for SGC reactivity.
Collapse
|
31
|
Yamamoto T, Mulpuri Y, Izraylev M, Li Q, Simonian M, Kramme C, Schmidt BL, Seltzman HH, Spigelman I. Selective targeting of peripheral cannabinoid receptors prevents behavioral symptoms and sensitization of trigeminal neurons in mouse models of migraine and medication overuse headache. Pain 2021; 162:2246-2262. [PMID: 33534356 PMCID: PMC8277668 DOI: 10.1097/j.pain.0000000000002214] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/19/2021] [Indexed: 01/03/2023]
Abstract
ABSTRACT Migraine affects ∼15% of the world's population greatly diminishing their quality of life. Current preventative treatments are effective in only a subset of migraine patients, and although cannabinoids seem beneficial in alleviating migraine symptoms, central nervous system side effects limit their widespread use. We developed peripherally restricted cannabinoids (PRCBs) that relieve chronic pain symptoms of cancer and neuropathies, without appreciable central nervous system side effects or tolerance development. Here, we determined PRCB effectiveness in alleviating hypersensitivity symptoms in mouse models of migraine and medication overuse headache. Long-term glyceryl trinitrate (GTN, 10 mg/kg) administration led to increased sensitivity to mechanical stimuli and increased expression of phosphorylated protein kinase A, neuronal nitric oxide synthase, and transient receptor potential ankyrin 1 proteins in trigeminal ganglia. Peripherally restricted cannabinoid pretreatment, but not posttreatment, prevented behavioral and biochemical correlates of GTN-induced sensitization. Low pH-activated and allyl isothiocyanate-activated currents in acutely isolated trigeminal neurons were reversibly attenuated by PRCB application. Long-term GTN treatment significantly enhanced these currents. Long-term sumatriptan treatment also led to the development of allodynia to mechanical and cold stimuli that was slowly reversible after sumatriptan discontinuation. Subsequent challenge with a previously ineffective low-dose GTN (0.1-0.3 mg/kg) revealed latent behavioral sensitization and increased expression of phosphorylated protein kinase A, neuronal nitric oxide synthase, and transient receptor potential ankyrin 1 proteins in trigeminal ganglia. Peripherally restricted cannabinoid pretreatment prevented all behavioral and biochemical correlates of allodynia and latent sensitization. Importantly, long-term PRCB treatment alone did not produce any behavioral or biochemical signs of sensitization. These data validate peripheral cannabinoid receptors as potential therapeutic targets in migraine and medication overuse headache.
Collapse
Affiliation(s)
- Toru Yamamoto
- Division of Oral Biology & Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA
| | - Yatendra Mulpuri
- Division of Oral Biology & Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA
| | - Mikhail Izraylev
- Division of Oral Biology & Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA
| | - Qianyi Li
- Division of Oral Biology & Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA
| | - Menooa Simonian
- Division of Oral Biology & Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA
| | - Christian Kramme
- Division of Oral Biology & Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA
| | - Brian L. Schmidt
- Department of Oral & Maxillofacial Surgery and Bluestone Center for Clinical Research, New York University College of Dentistry, New York, NY
| | - Herbert H. Seltzman
- Organic and Medicinal Chemistry, Research Triangle Institute, Research Triangle Park, NC
| | - Igor Spigelman
- Division of Oral Biology & Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA
- Brain Research Institute, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
32
|
Fernández-Carvajal A, González-Muñiz R, Fernández-Ballester G, Ferrer-Montiel A. Investigational drugs in early phase clinical trials targeting thermotransient receptor potential (thermoTRP) channels. Expert Opin Investig Drugs 2020; 29:1209-1222. [PMID: 32941080 DOI: 10.1080/13543784.2020.1825680] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Thermo transient receptor potential (thermoTRP) channels are some of the most intensely pursued therapeutic targets of the past decade. They are considered promising targets of numerous diseases including chronic pain and cancer. Modulators of these proteins, in particular TRPV1-4, TRPM8 and TRPA1, have reached clinical development, but none has been approved for clinical practice yet. AREAS COVERED The therapeutic potential of targeting thermoTRP channels is discussed. The discussion is centered on our experience and on available data found in SciFinder, PubMed, and ClinicalTrials.gov database from the past decade. This review focuses on the therapeutic progress concerning this family of channels, including strategies to improve their therapeutic index for overcoming adverse effects. EXPERT OPINION Although thermoTRPs are pivotal drug targets, translation to the clinic has faced two key problems, (i) unforeseen side effects in Phase I trials and, (ii) poor clinical efficacy in Phase II trials. Thus, there is a need for (i) an enhanced understanding of the physiological role of these channels in tissues and organs and (ii) the development of human-based pre-clinical models with higher clinical translation. Furthermore, progress in nanotechnology-based delivery strategies will positively impact thermoTRP human pharmacology.
Collapse
Affiliation(s)
- Asia Fernández-Carvajal
- Instituto De Investigación, Desarrollo E Innovación En Biotecnología Sanitaria De Elche (Idibe), Universitas Miguel Hernández , Alicante, Spain
| | | | - Gregorio Fernández-Ballester
- Instituto De Investigación, Desarrollo E Innovación En Biotecnología Sanitaria De Elche (Idibe), Universitas Miguel Hernández , Alicante, Spain
| | - Antonio Ferrer-Montiel
- Instituto De Investigación, Desarrollo E Innovación En Biotecnología Sanitaria De Elche (Idibe), Universitas Miguel Hernández , Alicante, Spain
| |
Collapse
|
33
|
Mulier M, Van Ranst N, Corthout N, Munck S, Vanden Berghe P, Vriens J, Voets T, Moilanen L. Upregulation of TRPM3 in nociceptors innervating inflamed tissue. eLife 2020; 9:61103. [PMID: 32880575 PMCID: PMC7470828 DOI: 10.7554/elife.61103] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/20/2020] [Indexed: 12/14/2022] Open
Abstract
Genetic ablation or pharmacological inhibition of the heat-activated cation channel TRPM3 alleviates inflammatory heat hyperalgesia, but the underlying mechanisms are unknown. We induced unilateral inflammation of the hind paw in mice, and directly compared expression and function of TRPM3 and two other heat-activated TRP channels (TRPV1 and TRPA1) in sensory neurons innervating the ipsilateral and contralateral paw. We detected increased Trpm3 mRNA levels in dorsal root ganglion neurons innervating the inflamed paw, and augmented TRP channel-mediated calcium responses, both in the cell bodies and the intact peripheral endings of nociceptors. In particular, inflammation provoked a pronounced increase in nociceptors with functional co-expression of TRPM3, TRPV1 and TRPA1. Finally, pharmacological inhibition of TRPM3 dampened TRPV1- and TRPA1-mediated responses in nociceptors innervating the inflamed paw, but not in those innervating healthy tissue. These insights into the mechanisms underlying inflammatory heat hypersensitivity provide a rationale for developing TRPM3 antagonists to treat pathological pain.
Collapse
Affiliation(s)
- Marie Mulier
- Laboratory of Ion Channel Research (LICR), VIB-KU Leuven Centre for Brain & Disease Research, Leuven, Belgium.,Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Nele Van Ranst
- Laboratory of Ion Channel Research (LICR), VIB-KU Leuven Centre for Brain & Disease Research, Leuven, Belgium.,Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Nikky Corthout
- VIB Bio Imaging Core and VIB-KU Leuven Centre for Brain & Disease Research, Leuven, Belgium.,Department of Neuroscience, KU Leuven, Leuven, Belgium
| | - Sebastian Munck
- VIB Bio Imaging Core and VIB-KU Leuven Centre for Brain & Disease Research, Leuven, Belgium.,Department of Neuroscience, KU Leuven, Leuven, Belgium
| | - Pieter Vanden Berghe
- Laboratory for Enteric NeuroScience (LENS), TARGID, Department of Chronic Diseases Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Joris Vriens
- Laboratory of Endometrium, Endometriosis and Reproductive Medicine, G-PURE, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Thomas Voets
- Laboratory of Ion Channel Research (LICR), VIB-KU Leuven Centre for Brain & Disease Research, Leuven, Belgium.,Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Lauri Moilanen
- Laboratory of Ion Channel Research (LICR), VIB-KU Leuven Centre for Brain & Disease Research, Leuven, Belgium.,Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|