1
|
Andersen KN, Yao S, White BR, Jacobwitz M, Breimann J, Jahnavi J, Schmidt A, Baker WB, Ko TS, Gaynor JW, Vossough A, Xiao R, Licht DJ, Shih EK. Cerebral Microhemorrhages in Children With Congenital Heart Disease: Prevalence, Risk Factors, and Association With Neurodevelopmental Outcomes. J Am Heart Assoc 2025; 14:e035359. [PMID: 39895549 DOI: 10.1161/jaha.123.035359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/14/2024] [Indexed: 02/04/2025]
Abstract
BACKGROUND Infants with congenital heart disease require early lifesaving heart surgery, which increases risk for brain injury and neurodevelopmental delay. Cerebral microhemorrhages (CMH) are frequently seen after surgery, but whether they are benign or constitute injury is unknown. METHODS AND RESULTS One hundred ninety-two infants with congenital heart disease undergoing cardiac surgery with cardiopulmonary bypass were evaluated with pre- (n=183) and/or postoperative (n=162) magnetic resonance imaging. Perioperative risk factors for CMH and neurodevelopmental outcomes were analyzed using linear regression. Eighteen-month neurodevelopmental outcomes were assessed in a subset of patients (n=82). The most common congenital heart disease subtypes were hypoplastic left heart syndrome (37%) and transposition of the great arteries (33%). Forty-two infants (23%) had CMH present on magnetic resonance imaging presurgery and 137 infants (85%) postsurgery. We found no significant risk factors for preoperative CMH. In multivariable analysis, neurodevelopmental duration (P<0.0001), use of extracorporeal membrane oxygenation support (P<0.0005), postoperative seizure(s) (P=0.02), and lower birth weight (P=0.03) were associated with new or worsened CMH postoperatively. A higher CMH number was associated with lower motor scores (P=0.01) at 18 months. CONCLUSIONS CMH are common imaging findings in infants with congenital heart disease, particularly after cardiopulmonary bypass conferring adverse impact on neurodevelopmental outcomes at 18 months. Longer duration of cardiopulmonary bypass and extracorporeal membrane oxygenation use demonstrated greatest risk for developing CMH. However, the presence of CMH on preoperative scans indicates yet unidentified nonperioperative risk factors. Neuroprotective strategies to mitigate CMH risk may improve neurodevelopmental outcomes in this vulnerable population.
Collapse
Affiliation(s)
- Kristen N Andersen
- Department of Pediatrics, Division of Neurology Children's Hospital of Philadelphia Philadelphia PA USA
| | - Sicong Yao
- Department of Pediatrics, Division of Biostatistics Children's Hospital of Philadelphia Philadelphia PA USA
| | - Brian R White
- Department of Pediatrics, Division of Cardiology Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania Philadelphia PA USA
| | - Marin Jacobwitz
- Department of Pediatrics, Division of Neurology Children's Hospital of Philadelphia Philadelphia PA USA
| | - Jake Breimann
- Department of Pediatrics, Division of Neurology Children's Hospital of Philadelphia Philadelphia PA USA
| | - Jharna Jahnavi
- Department of Pediatrics, Division of Neurology Children's Hospital of Philadelphia Philadelphia PA USA
| | - Alexander Schmidt
- Department of Pediatrics, Division of Neurology Children's Hospital of Philadelphia Philadelphia PA USA
| | - Wesley B Baker
- Department of Pediatrics, Division of Neurology Children's Hospital of Philadelphia Philadelphia PA USA
| | - Tiffany S Ko
- Department of Anesthesiology and Critical Care Medicine Children's Hospital of Philadelphia Philadelphia PA USA
| | - J William Gaynor
- Department of Surgery, Division of Cardiothoracic Surgery Children's Hospital of Philadelphia Philadelphia PA USA
| | - Arastoo Vossough
- Department of Radiology Children's Hospital of Philadelphia Philadelphia PA USA
| | - Rui Xiao
- Department of Pediatrics, Division of Biostatistics Children's Hospital of Philadelphia Philadelphia PA USA
| | - Daniel J Licht
- Department of Pediatrics, Division of Neurology Children's Hospital of Philadelphia Philadelphia PA USA
- Perinatal Pediatrics Institute Children's National Hospital Washington DC USA
- Department of Neurology University of Pennsylvania Perelman School of Medicine Philadelphia PA USA
| | - Evelyn K Shih
- Department of Pediatrics, Division of Neurology Children's Hospital of Philadelphia Philadelphia PA USA
- Department of Neurology University of Pennsylvania Perelman School of Medicine Philadelphia PA USA
| |
Collapse
|
2
|
Puy L, Barus R, Pasi M, Pétrault M, Deramecourt V, Cordonnier C, Bérézowski V. Distinct neuroinflammatory patterns between cerebral microbleeds and microinfarcts in cerebral amyloid angiopathy. Ann Clin Transl Neurol 2024; 11:3328-3332. [PMID: 39497506 DOI: 10.1002/acn3.52226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/01/2024] [Accepted: 09/22/2024] [Indexed: 12/18/2024] Open
Abstract
In this neuropathological study, we investigated neuroinflammation surrounding recent and old cerebral microbleeds (CMBs) and cerebral microinfarcts (CMIs) in 18 cases of cerebral amyloid angiopathy (CAA). We used several serial stainings and immunolabellings to identify microvascular lesions, define their recent or old stage, and characterize neuroinflammatory response (scavenging activity and astrogliosis). We found that both CMBs and CMIs induce a neuroinflammatory response, which was more pronounced in old lesion than recent. Astrogliosis and scavenging activity were differentially prominent according to the ischemic/hemorrhagic nature of the lesion. Our findings provide insights into the pathophysiology of microvascular injuries in CAA.
Collapse
Affiliation(s)
- Laurent Puy
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000, Lille, France
| | - Romain Barus
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000, Lille, France
- Department of Medical and Clinical Pharmacology, Centre of PharmacoVigilance and Pharmacoepidemiology, Toulouse University Hospital, Toulouse, France
| | - Marco Pasi
- Department of Neurology, Tours Regional University Hospital, Hospital Trousseau, Tours, France
| | - Maud Pétrault
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000, Lille, France
| | - Vincent Deramecourt
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000, Lille, France
- Univ Lille, Lille Neuroscience & Cognition (Inserm UMRS1172), Development and Plasticity of the Neuroendocrine Brain, Lille, France
- Department of Neuropathology, CHU Lille, Lille, France
| | - Charlotte Cordonnier
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000, Lille, France
| | - Vincent Bérézowski
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000, Lille, France
- UArtois, F-62300, Lens, France
| |
Collapse
|
3
|
Wang Y, Hu Y, Zhao R, Wang Q, Xu J, Yuan J, Dong S, Liu M, Wu C, Jiang R. Cerebral microbleeds in patients with COVID-19: is there an inevitable connection? Brain Commun 2024; 6:fcae236. [PMID: 39229491 PMCID: PMC11369825 DOI: 10.1093/braincomms/fcae236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/11/2024] [Accepted: 07/18/2024] [Indexed: 09/05/2024] Open
Abstract
The COVID-19 pandemic has underscored the critical interplay between systemic infections and neurological complications, notably cerebral microbleeds. This comprehensive review meticulously aggregates and analyses current evidence on cerebral microbleeds' prevalence, pathophysiological underpinnings and clinical implications within COVID-19 cohorts. Our findings reveal a pronounced correlation between cerebral microbleeds and increased severity of COVID-19, emphasizing the role of direct viral effects, inflammatory responses and coagulation disturbances. The documented association between cerebral microbleeds and elevated risks of morbidity and mortality necessitates enhanced neurological surveillance in managing COVID-19 patients. Although variability in study methodologies presents challenges, the cumulative evidence substantiates cerebral microbleeds as a critical illness manifestation rather than mere coincidence. This review calls for harmonization in research methodologies to refine our understanding and guide targeted interventions. Prioritizing the detection and study of neurological outcomes, such as cerebral microbleeds, is imperative for bolstering pandemic response strategies and mitigating the long-term neurological impact on survivors.
Collapse
Affiliation(s)
- Yuchang Wang
- Department of Neurosurgery, Tianjin Neurological Institute, State Key Laboratory of Experimental Hematology, Key Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yuetao Hu
- Department of Neurosurgery, Tianjin Neurological Institute, State Key Laboratory of Experimental Hematology, Key Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ruichen Zhao
- Department of Neurosurgery, Tianjin Neurological Institute, State Key Laboratory of Experimental Hematology, Key Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Qi Wang
- Department of Neurosurgery, Tianjin Neurological Institute, State Key Laboratory of Experimental Hematology, Key Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jiarui Xu
- Department of Neurosurgery, Tianjin Neurological Institute, State Key Laboratory of Experimental Hematology, Key Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jiangyuan Yuan
- Department of Neurosurgery, Tianjin Neurological Institute, State Key Laboratory of Experimental Hematology, Key Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Shiying Dong
- Department of Neurosurgery, Tianjin Neurological Institute, State Key Laboratory of Experimental Hematology, Key Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Mingqi Liu
- Department of Neurosurgery, Tianjin Neurological Institute, State Key Laboratory of Experimental Hematology, Key Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Chenrui Wu
- Department of Neurosurgery, Tianjin Neurological Institute, State Key Laboratory of Experimental Hematology, Key Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Rongcai Jiang
- Department of Neurosurgery, Tianjin Neurological Institute, State Key Laboratory of Experimental Hematology, Key Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
4
|
Andersen KN, Yao S, White BR, Jacobwitz M, Breimann J, Jahnavi J, Schmidt A, Baker WB, Ko TS, Gaynor JW, Vossough A, Xiao R, Licht DJ, Shih EK. Cerebral microhemorrhages in children with congenital heart disease: Prevalence, risk factors, and impact on neurodevelopmental outcomes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.05.23299539. [PMID: 38105980 PMCID: PMC10723520 DOI: 10.1101/2023.12.05.23299539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Background Infants with complex congenital heart disease (CHD) require life-saving corrective/palliative heart surgery in the first weeks of life. These infants are at risk for brain injury and poor neurodevelopmental outcomes. Cerebral microhemorrhages (CMH) are frequently seen after neonatal bypass heart surgery, but it remains unknown if CMH are a benign finding or constitute injury. Herein, we investigate the risk factors for developing CMH and their clinical significance. Methods 192 infants with CHD undergoing corrective cardiac surgery with cardiopulmonary bypass (CPB) at a single institution were prospectively evaluated with pre-(n = 183) and/or postoperative (n = 162) brain magnetic resonance imaging (MRI). CMH severity was scored based on total number of microhemorrhages. Antenatal, perioperative, and postoperative candidate risk factors for CMH and neurodevelopmental (ND) outcomes were analyzed. Eighteen-month neurodevelopmental outcomes were assessed using the Bayley-III Scales of Infants and Toddler Development in a subset of patients (n = 82). Linear regression was used to analyze associations between risk factors or ND outcomes and presence/number of CMH. Results The most common CHD subtypes were hypoplastic left heart syndrome (HLHS) (37%) and transposition of the great arteries (TGA) (33%). Forty-two infants (23%) had CMH present on MRI before surgery and 137 infants (85%) post-surgery. No parameters evaluated were significant risk factors for preoperative CMH. In multivariate analysis, cardiopulmonary bypass (CPB) duration (p < 0.0001), use of extracorporeal membrane oxygenation (ECMO) support (p < 0.0005), postoperative seizure(s) (p < 0.03), and lower birth weight (p < 0.03) were associated with new or worsened CMH postoperatively. Higher CMH number was associated with lower scores on motor (p < 0.03) testing at 18 months. Conclusion CMH is a common imaging finding in infants with CHD with increased prevalence and severity after CPB and adverse impact on neurodevelopmental outcomes starting at a young age. Longer duration of CPB and need for postoperative ECMO were the most significant risk factors for developing CMH. However, presence of CMH on preoperative scans indicates non-surgical risk factors that are yet to be identified. Neuroprotective strategies to mitigate risk factors for CMH may improve neurodevelopmental outcomes in this vulnerable population.
Collapse
|
5
|
Perosa V, Auger CA, Zanon Zotin MC, Oltmer J, Frosch MP, Viswanathan A, Greenberg SM, van Veluw SJ. Histopathological Correlates of Lobar Microbleeds in False-Positive Cerebral Amyloid Angiopathy Cases. Ann Neurol 2023; 94:856-870. [PMID: 37548609 PMCID: PMC11573502 DOI: 10.1002/ana.26761] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/05/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
OBJECTIVE A definite diagnosis of cerebral amyloid angiopathy (CAA), characterized by the accumulation of amyloid β in walls of cerebral small vessels, can only be obtained through pathological examination. A diagnosis of probable CAA during life relies on the presence of hemorrhagic markers, including lobar cerebral microbleeds (CMBs). The aim of this project was to study the histopathological correlates of lobar CMBs in false-positive CAA cases. METHODS In 3 patients who met criteria for probable CAA during life, but showed no CAA upon neuropathological examination, lobar CMBs were counted on ex vivo 3T magnetic resonance imaging (MRI) and on ex vivo 7T MRI. Areas with lobar CMBs were next sampled and cut into serial sections, on which the CMBs were then identified. RESULTS Collectively, there were 25 lobar CMBs on in vivo MRI and 22 on ex vivo 3T MRI of the analyzed hemispheres. On ex vivo MRI, we targeted 12 CMBs for sampling, and definite histopathological correlates were retrieved for 9 of them, of which 7 were true CMBs. No CAA was found on any of the serial sections. The "culprit vessels" associated with the true CMBs instead showed moderate to severe arteriolosclerosis. Furthermore, CMBs in false-positive CAA cases tended to be located more often in the juxtacortical or subcortical white matter than in the cortical ribbon. INTERPRETATION These findings suggest that arteriolosclerosis can generate lobar CMBs and that more detailed investigations into the exact localization of CMBs with respect to the cortical ribbon could potentially aid the diagnosis of CAA during life. ANN NEUROL 2023;94:856-870.
Collapse
Affiliation(s)
- Valentina Perosa
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Corinne A Auger
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Maria Clara Zanon Zotin
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Imaging Sciences and Medical Physics, Department of Medical Imaging, Hematology, and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Jan Oltmer
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Matthew P Frosch
- Department of Neuropathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Anand Viswanathan
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Steven M Greenberg
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Susanne J van Veluw
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
6
|
Ikeda S, Saito S, Hosoki S, Tonomura S, Yamamoto Y, Ikenouchi H, Ishiyama H, Tanaka T, Hattori Y, Friedland RP, Carare RO, Kuriyama N, Yakushiji Y, Hara H, Koga M, Toyoda K, Nomura R, Takegami M, Nakano K, Ihara M. Harboring Cnm-expressing Streptococcus mutans in the oral cavity relates to both deep and lobar cerebral microbleeds. Eur J Neurol 2023; 30:3487-3496. [PMID: 36708081 DOI: 10.1111/ene.15720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 10/03/2022] [Accepted: 01/26/2023] [Indexed: 01/29/2023]
Abstract
BACKGROUND Cerebral microbleeds (CMBs) influence long-term prognoses of stroke patients. Streptococcus mutans expressing the collagen-binding protein Cnm induces cerebrovascular inflammation, impairing blood brain barrier integrity and causing cerebral bleeding. Here, we examine the association of Cnm-positive S. mutans with CMBs. METHODS Acute stroke patients were selected from a single-center registry database. Oral carriage of Cnm-positive or Cnm-negative S. mutans was determined using polymerase chain reaction assays. The associations of Cnm-positive S. mutans with CMB number and specifically the presence of >10 CMBs were examined using quasi-Poisson and logistic regression models, respectively. RESULTS This study included 3154 stroke patients, of which 428 patients (median [interquartile range] age, 73.0 [63.0-81.0] years; 269 men [62.9%]) underwent oral bacterial examinations. In total, 326 patients harbored S. mutans. After excluding four patients without imaging data, we compared patients with Cnm-positive (n = 72) and Cnm-negative (n = 250) S. mutans. Harboring Cnm-positive S. mutans was independently associated with the presence of >10 CMBs (adjusted odds ratio 2.20 [1.18-4.10]) and higher numbers of deep and lobar CMBs (adjusted risk ratio 1.61 [1.14-2.27] for deep; 5.14 [2.78-9.51] for lobar), but not infratentorial CMBs, after adjusting for age, sex, hypertension, stroke type, National Institutes of Health Stroke Scale score, and cerebral amyloid angiopathy. CONCLUSIONS Harboring Cnm-positive S. mutans was independently associated with a higher number of CMBs in deep and lobar locations. Reducing Cnm-positive S. mutans in the oral cavity may serve as a novel therapeutic approach for stroke.
Collapse
Affiliation(s)
- Shuhei Ikeda
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
- Department of Cerebrovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Japan
- Division of Neurology, Department of Internal Medicine, Saga University Faculty of Medicine, Saga, Japan
| | - Satoshi Saito
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita, Japan
- Clinical and Experimental Sciences, University of Southampton, Southampton, UK
| | - Satoshi Hosoki
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Shuichi Tonomura
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yumi Yamamoto
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Hajime Ikenouchi
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Hiroyuki Ishiyama
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Tomotaka Tanaka
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Yorito Hattori
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Robert P Friedland
- Department of Neurology, University of Louisville, Louisville, Kentucky, USA
| | - Roxana O Carare
- Clinical and Experimental Sciences, University of Southampton, Southampton, UK
| | - Nagato Kuriyama
- Shizuoka Graduate University of Public Health, Shizuoka, Japan
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yusuke Yakushiji
- Division of Neurology, Department of Internal Medicine, Saga University Faculty of Medicine, Saga, Japan
- Department of Neurology, Kansai Medical University Medical Center, Hirakata, Japan
| | - Hideo Hara
- Division of Neurology, Department of Internal Medicine, Saga University Faculty of Medicine, Saga, Japan
| | - Masatoshi Koga
- Department of Cerebrovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Kazunori Toyoda
- Department of Cerebrovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Ryota Nomura
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita, Japan
- Department of Pediatric Dentistry, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Misa Takegami
- Department of Preventive Medicine and Epidemiology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Kazuhiko Nakano
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
| |
Collapse
|
7
|
Faakye J, Nyúl-Tóth Á, Gulej R, Csik B, Tarantini S, Shanmugarama S, Prodan C, Mukli P, Yabluchanskiy A, Conley S, Toth P, Csiszar A, Ungvari Z. Imaging the time course, morphology, neuronal tissue compression, and resolution of cerebral microhemorrhages in mice using intravital two-photon microscopy: insights into arteriolar, capillary, and venular origin. GeroScience 2023; 45:2851-2872. [PMID: 37338779 PMCID: PMC10643488 DOI: 10.1007/s11357-023-00839-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/24/2023] [Indexed: 06/21/2023] Open
Abstract
Cerebral microhemorrhages (CMHs, microbleeds), a manifestation of age-related cerebral small vessel disease, contribute to the pathogenesis of cognitive decline and dementia in older adults. Histological studies have revealed that CMHs exhibit distinct morphologies, which may be attributed to differences in intravascular pressure and the size of the vessels of origin. Our study aimed to establish a direct relationship between the size/morphology of CMHs and the size/anatomy of the microvessel of origin. To achieve this goal, we adapted and optimized intravital two-photon microscopy-based imaging methods to monitor the development of CMHs in mice equipped with a chronic cranial window upon high-energy laser light-induced photodisruption of a targeted cortical arteriole, capillary, or venule. We assessed the time course of extravasation of fluorescently labeled blood and determined the morphology and size/volume of the induced CMHs. Our findings reveal striking similarities between the bleed morphologies observed in hypertension-induced CMHs in models of aging and those originating from different targeted vessels via multiphoton laser ablation. Arteriolar bleeds, which are larger (> 100 μm) and more widely dispersed, are distinguished from venular bleeds, which are smaller and exhibit a distinct diffuse morphology. Capillary bleeds are circular and smaller (< 10 μm) in size. Our study supports the concept that CMHs can occur at any location in the vascular tree, and that each type of vessel produces microbleeds with a distinct morphology. Development of CMHs resulted in immediate constriction of capillaries, likely due to pericyte activation and constriction of precapillary arterioles. Additionally, tissue displacement observed in association with arteriolar CMHs suggests that they can affect an area with a radius of ~ 50 μm to ~ 100 μm, creating an area at risk for ischemia. Longitudinal imaging of CMHs allowed us to visualize reactive astrocytosis and bleed resolution during a 30-day period. Our study provides new insights into the development and morphology of CMHs, highlighting the potential clinical implications of differentiating between the types of vessels involved in the pathogenesis of CMHs. This information may help in the development of targeted interventions aimed at reducing the risk of cerebral small vessel disease-related cognitive decline and dementia in older adults.
Collapse
Affiliation(s)
- Janet Faakye
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Ádám Nyúl-Tóth
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary.
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Boglarka Csik
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
| | - Santny Shanmugarama
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Calin Prodan
- Veterans Affairs Medical Center, Oklahoma City, OK, USA
- Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Peter Mukli
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Shannon Conley
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Peter Toth
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Neurosurgery, Medical School, University of Pecs, Pecs, Hungary
| | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary.
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA.
| |
Collapse
|
8
|
Gao Y, Wang S, Xin H, Feng M, Zhang Q, Sui C, Guo L, Liang C, Wen H. Disrupted Gray Matter Networks Associated with Cognitive Dysfunction in Cerebral Small Vessel Disease. Brain Sci 2023; 13:1359. [PMID: 37891728 PMCID: PMC10605932 DOI: 10.3390/brainsci13101359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
This study aims to investigate the disrupted topological organization of gray matter (GM) structural networks in cerebral small vessel disease (CSVD) patients with cerebral microbleeds (CMBs). Subject-wise structural networks were constructed from GM volumetric features of 49 CSVD patients with CMBs (CSVD-c), 121 CSVD patients without CMBs (CSVD-n), and 74 healthy controls. The study used graph theory to analyze the global and regional properties of the network and their correlation with cognitive performance. We found that both the control and CSVD groups exhibited efficient small-world organization in GM networks. However, compared to controls, CSVD-c and CSVD-n patients exhibited increased global and local efficiency (Eglob/Eloc) and decreased shortest path lengths (Lp), indicating increased global integration and local specialization in structural networks. Although there was no significant global topology change, partially reorganized hub distributions were found between CSVD-c and CSVD-n patients. Importantly, regional topology in nonhub regions was significantly altered between CSVD-c and CSVD-n patients, including the bilateral anterior cingulate gyrus, left superior parietal gyrus, dorsolateral superior frontal gyrus, and right MTG, which are involved in the default mode network (DMN) and sensorimotor functional modules. Intriguingly, the global metrics (Eglob, Eloc, and Lp) were significantly correlated with MoCA, AVLT, and SCWT scores in the control group but not in the CSVD-c and CSVD-n groups. In contrast, the global metrics were significantly correlated with the SDMT score in the CSVD-s and CSVD-n groups but not in the control group. Patients with CSVD show a disrupted balance between local specialization and global integration in their GM structural networks. The altered regional topology between CSVD-c and CSVD-n patients may be due to different etiological contributions, which may offer a novel understanding of the neurobiological processes involved in CSVD with CMBs.
Collapse
Affiliation(s)
- Yian Gao
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China; (Y.G.); (C.S.)
| | - Shengpei Wang
- Research Center for Brain-Inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, Beijing 100040, China;
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Haotian Xin
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, No. 45 Chang-Chun St., Xicheng District, Beijing 100054, China; (H.X.); (M.F.)
| | - Mengmeng Feng
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, No. 45 Chang-Chun St., Xicheng District, Beijing 100054, China; (H.X.); (M.F.)
| | - Qihao Zhang
- Department of Radiology, Weill Cornell Medical College, New York. 407 East 61st Street, New York, NY 10044, USA;
| | - Chaofan Sui
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China; (Y.G.); (C.S.)
| | - Lingfei Guo
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China; (Y.G.); (C.S.)
| | - Changhu Liang
- Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jing-Wu Road No. 324, Jinan 250021, China
| | - Hongwei Wen
- Key Laboratory of Cognition and Personality (Ministry of Education), Faculty of Psychology, Southwest University, Chongqing 400715, China
| |
Collapse
|
9
|
Lee K, Ellison B, Selim M, Long NH, Filippidis A, Thomas AJ, Spincemaille P, Wang Y, Soman S. Quantitative susceptibility mapping improves cerebral microbleed detection relative to susceptibility-weighted images. J Neuroimaging 2023; 33:138-146. [PMID: 36168880 DOI: 10.1111/jon.13054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND AND PURPOSE Cerebral microbleed (CMB) detection impacts disease diagnosis and management. Susceptibility-weighted imaging (SWI) MRI depictions of CMBs are used with phase images (SWIP) to distinguish blood from calcification, via qualitative intensity evaluation (bright/dark). However, the intensities depicted for a single lesion can vary within and across consecutive SWIP image planes, impairing the classification of findings as a CMB. We hypothesize that quantitative susceptibility mapping (QSM) MRI, which maps tissue susceptibility, demonstrates less in- and through-plane intensity variation, improving the clinician's ability to categorize a finding as a CMB. METHODS Forty-eight patients with acute intracranial hemorrhage who received multi-echo gradient echo MRI used to generate both SWI/SWIP and morphology-enabled dipole inversion QSM images were enrolled. Five hundred and sixty lesions were visually classified as having homogeneous or heterogeneous in-plane and through-plane intensity by a neuroradiologist and two diagnostic radiology residents using published rating criteria. When available, brain CT scans were analyzed for calcification or acute hemorrhage. Relative risk (RR) ratios and confidence intervals (CIs) were calculated using a generalized linear model with log link and binary error. RESULTS QSM showed unambiguous lesion signal intensity three times more frequently than SWIP (RR = 0.3235, 95% CI 0.2386-0.4386, p<.0001). The probability of QSM depicting homogeneous lesion intensity was three times greater than SWIP for small (RR = 0.3172, 95% CI 0.2382-0.4225, p<.0001), large (RR = 0.3431, 95% CI 0.2045-0.5758, p<.0001), lobar (RR = 0.3215, 95% CI 0.2151-0.4805, p<.0001), cerebellar (RR = 0.3215, 95% CI 0.2151-0.4805, p<.0001), brainstem (RR = 0.3100, 95% CI 0.1192-0.8061, p = .0163), and basal ganglia (RR = 0.3380, 95% CI 0.1980-0.5769, p<.0001) lesions. CONCLUSIONS QSM more consistently demonstrates interpretable lesion intensity compared to SWIP as used for distinguishing CMBs from calcification.
Collapse
Affiliation(s)
- Kyuwon Lee
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Brian Ellison
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Magdy Selim
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Ngo H Long
- Department of General Medicine/Primary Care, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Aristotelis Filippidis
- Department of Neurosurgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Ajith J Thomas
- Department of Neurological Surgery, Cooper University Health Care, Cooper Medical School of Rowan University, Camden, New Jersey, USA
| | | | - Yi Wang
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Salil Soman
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
10
|
Irimia A, Ngo V, Chaudhari NN, Zhang F, Joshi SH, Penkova AN, O'Donnell LJ, Sheikh-Bahaei N, Zheng X, Chui HC. White matter degradation near cerebral microbleeds is associated with cognitive change after mild traumatic brain injury. Neurobiol Aging 2022; 120:68-80. [PMID: 36116396 PMCID: PMC9759713 DOI: 10.1016/j.neurobiolaging.2022.08.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 11/28/2022]
Abstract
To explore how cerebral microbleeds (CMBs) accompanying mild traumatic brain injury (mTBI) reflect white matter (WM) degradation and cognitive decline, magnetic resonance images were acquired from 62 mTBI adults (imaged ∼7 days and ∼6 months post-injury) and 203 matched healthy controls. On average, mTBI participants had a count of 2.7 ± 2.6 traumatic CMBs in WM, located 6.1 ± 4.4 mm from cortex. At ∼6-month follow-up, 97% of CMBs were associated with significant reductions (34% ± 11%, q < 0.05) in the fractional anisotropy of WM streamlines within ∼1 cm of CMB locations. Male sex and older age were significant risk factors for larger reductions (q < 0.05). For CMBs in the corpus callosum, cingulum bundle, inferior and middle longitudinal fasciculi, fractional anisotropy changes were significantly and positively associated with changes in cognitive functions mediated by these structures (q < 0.05). Our findings distinguish traumatic from non-traumatic CMBs by virtue of surrounding WM alterations and challenge the assumption that traumatic CMBs are neurocognitively silent. Thus, mTBI with CMB findings can be described as a clinical endophenotype warranting longitudinal cognitive assessment.
Collapse
Affiliation(s)
- Andrei Irimia
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA; Denney Research Center, Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA.
| | - Van Ngo
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Nikhil N Chaudhari
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Fan Zhang
- Laboratory of Mathematics in Imaging, Department of Radiology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shantanu H Joshi
- Ahmanson Lovelace Brain Mapping Center, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Anita N Penkova
- Department of Aerospace and Mechanical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Lauren J O'Donnell
- Laboratory of Mathematics in Imaging, Department of Radiology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nasim Sheikh-Bahaei
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Xiaoyu Zheng
- Department of Materials Science & Engineering, University of California, Berkeley, CA, USA
| | - Helena C Chui
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
11
|
Zhou M, Wang S, Jing J, Yang Y, Cai X, Meng X, Mei L, Lin J, Li S, Li H, Wei T, Wang Y, Pan Y, Wang Y. Insulin resistance based on postglucose load measure is associated with prevalence and burden of cerebral small vessel disease. BMJ Open Diabetes Res Care 2022; 10:10/5/e002897. [PMID: 36220196 PMCID: PMC9557259 DOI: 10.1136/bmjdrc-2022-002897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 09/25/2022] [Indexed: 11/05/2022] Open
Abstract
INTRODUCTION Cerebral small vessel disease (cSVD) is highly prevalent and results in irreversible cognitive impairment and reduced quality of life. Previous studies reported controversial associations between insulin resistance and cSVD. Here, we estimated the association between insulin resistance and cSVD in non-diabetic communities in southeastern China. RESEARCH DESIGN AND METHODS The Polyvascular Evaluation for Cognitive Impairment and Vascular Events study (NCT03178448) recruited 3670 community-dwelling adults. We estimated the association of insulin resistance, assessed by the insulin sensitivity index (ISI0,120) and the homeostatic model assessment for insulin resistance (HOMA-IR) based on the standard oral glucose tolerance test, with cSVD in those without a history of diabetes mellitus. cSVD was measured for both main neuroimaging manifestations of cSVD and total SVD burden scores. RESULTS A total of 2752 subjects were enrolled. In the multivariable logistic regression analysis, the first quartile of ISI0,120 was found to be potentially associated with an increased risk of lacunes (OR 1.96, 95% CI 1.15 to 3.36), severe age-related white matter changes (OR 1.97, 95% CI 1.15 to 3.38), and higher total SVD burden (4-point scale: common OR (cOR) 1.34, 95% CI 1.04 to 1.72; 6-point scale: cOR 1.43, 95% CI 1.14 to 1.79). The associations between HOMA-IR and lacunes (OR 1.90, 95% CI 1.11 to 3.25) and the 4-point scale of total SVD burden (cOR 1.33, 95% CI 1.04 to 1.70) were also significant after adjustment for age, gender, medical history, and medications. However, the associations were not statistically significant after further adjustment for blood pressure/hypertension and body mass index (BMI). CONCLUSIONS A potential association was found between insulin resistance and cSVD, and the ISI0,120 index presented a greater association with increased risk of cSVD as compared with the HOMA-IR. However, these associations were greatly influenced by blood pressure and BMI.
Collapse
Affiliation(s)
- Mengyuan Zhou
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Suying Wang
- Cerebrovascular Research Lab, Lishui Hospital, Zhejiang University School of Medicine, Lishui, China
| | - Jing Jing
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yingying Yang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xueli Cai
- Department of Neurology, Lishui Hospital, Zhejiang University School of Medicine, Lishui, China
| | - Xia Meng
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Lerong Mei
- Cerebrovascular Research Lab, Lishui Hospital, Zhejiang University School of Medicine, Lishui, China
| | - Jinxi Lin
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Shan Li
- Cerebrovascular Research Lab, Lishui Hospital, Zhejiang University School of Medicine, Lishui, China
| | - Hao Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Tiemin Wei
- Department of Cardiology, Lishui Hospital, Zhejiang University School of Medicine, Lishui, China
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yuesong Pan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yilong Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- National Center for Neurological Diseases, Beijing, China
| |
Collapse
|
12
|
Mitra J, Kodavati M, Provasek VE, Rao KS, Mitra S, Hamilton DJ, Horner PJ, Vahidy FS, Britz GW, Kent TA, Hegde ML. SARS-CoV-2 and the central nervous system: Emerging insights into hemorrhage-associated neurological consequences and therapeutic considerations. Ageing Res Rev 2022; 80:101687. [PMID: 35843590 PMCID: PMC9288264 DOI: 10.1016/j.arr.2022.101687] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/20/2022] [Accepted: 07/07/2022] [Indexed: 01/27/2023]
Abstract
Coronavirus disease 2019 (COVID-19), caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) continues to impact our lives by causing widespread illness and death and poses a threat due to the possibility of emerging strains. SARS-CoV-2 targets angiotensin-converting enzyme 2 (ACE2) before entering vital organs of the body, including the brain. Studies have shown systemic inflammation, cellular senescence, and viral toxicity-mediated multi-organ failure occur during infectious periods. However, prognostic investigations suggest that both acute and long-term neurological complications, including predisposition to irreversible neurodegenerative diseases, can be a serious concern for COVID-19 survivors, especially the elderly population. As emerging studies reveal sites of SARS-CoV-2 infection in different parts of the brain, potential causes of chronic lesions including cerebral and deep-brain microbleeds and the likelihood of developing stroke-like pathologies increases, with critical long-term consequences, particularly for individuals with neuropathological and/or age-associated comorbid conditions. Our recent studies linking the blood degradation products to genome instability, leading to cellular senescence and ferroptosis, raise the possibility of similar neurovascular events as a result of SARS-CoV-2 infection. In this review, we discuss the neuropathological consequences of SARS-CoV-2 infection in COVID survivors, focusing on possible hemorrhagic damage in brain cells, its association to aging, and the future directions in developing mechanism-guided therapeutic strategies.
Collapse
Affiliation(s)
- Joy Mitra
- Division of DNA Repair Research, Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA.
| | - Manohar Kodavati
- Division of DNA Repair Research, Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Vincent E Provasek
- Division of DNA Repair Research, Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA; College of Medicine, Texas A&M University, College Station, TX, USA
| | - K S Rao
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation Deemed to be University, Green Fields, Vaddeswaram, Andhra Pradesh 522502, India
| | - Sankar Mitra
- Division of DNA Repair Research, Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Dale J Hamilton
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, TX 77030, USA; Weill Cornell Medical College, New York, USA
| | - Philip J Horner
- Division of DNA Repair Research, Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA; Weill Cornell Medical College, New York, USA
| | - Farhaan S Vahidy
- Center for Outcomes Research, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Gavin W Britz
- Division of DNA Repair Research, Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA; Weill Cornell Medical College, New York, USA
| | - Thomas A Kent
- Center for Genomics and Precision Medicine, Department of Translational Medical Sciences, Institute of Biosciences and Technology, College of Medicine, Texas A&M Health Science Center, Houston, TX, USA
| | - Muralidhar L Hegde
- Division of DNA Repair Research, Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA; Weill Cornell Medical College, New York, USA.
| |
Collapse
|
13
|
Van Belle E, Debry N, Vincent F, Kuchcinski G, Cordonnier C, Rauch A, Robin E, Lassalle F, Pontana F, Delhaye C, Schurtz G, JeanPierre E, Rousse N, Casari C, Spillemaeker H, Porouchani S, Pamart T, Denimal T, Neiger X, Verdier B, Puy L, Cosenza A, Juthier F, Richardson M, Bretzner M, Dallongeville J, Labreuche J, Mazighi M, Dupont-Prado A, Staels B, Lenting PJ, Susen S. Cerebral Microbleeds During Transcatheter Aortic Valve Replacement: A Prospective Magnetic Resonance Imaging Cohort. Circulation 2022; 146:383-397. [PMID: 35722876 PMCID: PMC9345525 DOI: 10.1161/circulationaha.121.057145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Cerebral microbleeds (CMBs) have been observed in healthy elderly people undergoing systematic brain magnetic resonance imaging. The potential role of acute triggers on the appearance of CMBs remains unknown. We aimed to describe the incidence of new CMBs after transcatheter aortic valve replacement (TAVR) and to identify clinical and procedural factors associated with new CMBs including hemostatic measures and anticoagulation management. METHODS We evaluated a prospective cohort of patients with symptomatic aortic stenosis referred for TAVR for CMBs (METHYSTROKE [Identification of Epigenetic Risk Factors for Ischemic Complication During the TAVR Procedure in the Elderly]). Standardized neurologic assessment, brain magnetic resonance imaging, and analysis of hemostatic measures including von Willebrand factor were performed before and after TAVR. Numbers and location of microbleeds on preprocedural magnetic resonance imaging and of new microbleeds on postprocedural magnetic resonance imaging were reported by 2 independent neuroradiologists blinded to clinical data. Measures associated with new microbleeds and postprocedural outcome including neurologic functional outcome at 6 months were also examined. RESULTS A total of 84 patients (47% men, 80.9±5.7 years of age) were included. On preprocedural magnetic resonance imaging, 22 patients (26% [95% CI, 17%-37%]) had at least 1 microbleed. After TAVR, new microbleeds were observed in 19 (23% [95% CI, 14%-33%]) patients. The occurrence of new microbleeds was independent of the presence of microbleeds at baseline and of diffusion-weighted imaging hypersignals. In univariable analysis, a previous history of bleeding (P=0.01), a higher total dose of heparin (P=0.02), a prolonged procedure (P=0.03), absence of protamine reversion (P=0.04), higher final activated partial thromboplastin time (P=0.05), lower final von Willebrand factor high-molecular-weight:multimer ratio (P=0.007), and lower final closure time with adenosine-diphosphate (P=0.02) were associated with the occurrence of new postprocedural microbleeds. In multivariable analysis, a prolonged procedure (odds ratio, 1.22 [95% CI, 1.03-1.73] for every 5 minutes of fluoroscopy time; P=0.02) and postprocedural acquired von Willebrand factor defect (odds ratio, 1.42 [95% CI, 1.08-1.89] for every lower 0.1 unit of high-molecular-weight:multimer ratio; P=0.004) were independently associated with the occurrence of new postprocedural microbleeds. New CMBs were not associated with changes in neurologic functional outcome or quality of life at 6 months. CONCLUSIONS One out of 4 patients undergoing TAVR has CMBs before the procedure and 1 out of 4 patients develops new CMBs. Procedural or antithrombotic management and persistence of acquired von Willebrand factor defect were associated with the occurrence of new CMBs. REGISTRATION URL: https://www. CLINICALTRIALS gov; Unique identifier: NCT02972008.
Collapse
Affiliation(s)
- Eric Van Belle
- Cardiology Department (E.V.B., N.D., F.V., C.D., G.S., H.S., S.P., T.P., T.D., X.N., B.V., M.R.), France.,INSERM Unité 1011 (E.V.B., N.D., F.V., A.R., E.J., A.D.-P., B.S., S.S.), Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France
| | - Nicolas Debry
- Cardiology Department (E.V.B., N.D., F.V., C.D., G.S., H.S., S.P., T.P., T.D., X.N., B.V., M.R.), France.,INSERM Unité 1011 (E.V.B., N.D., F.V., A.R., E.J., A.D.-P., B.S., S.S.), Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France
| | - Flavien Vincent
- Cardiology Department (E.V.B., N.D., F.V., C.D., G.S., H.S., S.P., T.P., T.D., X.N., B.V., M.R.), France.,INSERM Unité 1011 (E.V.B., N.D., F.V., A.R., E.J., A.D.-P., B.S., S.S.), Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France
| | | | - Charlotte Cordonnier
- Degenerative and Vascular Cognitive Disorders, Department of Neurology (C. Cordonnier, L.P.), France.,(C. Cordonnier, L.P.), Université Lille, France
| | - Antoine Rauch
- Hematology and Transfusion Department (A.R., F.L., E.J., A.D.-P., S.S.), France.,INSERM Unité 1011 (E.V.B., N.D., F.V., A.R., E.J., A.D.-P., B.S., S.S.), Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France
| | | | - Fanny Lassalle
- Hematology and Transfusion Department (A.R., F.L., E.J., A.D.-P., S.S.), France
| | | | - Cédric Delhaye
- Cardiology Department (E.V.B., N.D., F.V., C.D., G.S., H.S., S.P., T.P., T.D., X.N., B.V., M.R.), France
| | - Guillaume Schurtz
- Cardiology Department (E.V.B., N.D., F.V., C.D., G.S., H.S., S.P., T.P., T.D., X.N., B.V., M.R.), France
| | - Emmanuelle JeanPierre
- Hematology and Transfusion Department (A.R., F.L., E.J., A.D.-P., S.S.), France.,INSERM Unité 1011 (E.V.B., N.D., F.V., A.R., E.J., A.D.-P., B.S., S.S.), Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France
| | | | - Caterina Casari
- INSERM UMR_S 1176 (C. Casari, P.J.L.), Université Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Hugues Spillemaeker
- Cardiology Department (E.V.B., N.D., F.V., C.D., G.S., H.S., S.P., T.P., T.D., X.N., B.V., M.R.), France
| | - Sina Porouchani
- Cardiology Department (E.V.B., N.D., F.V., C.D., G.S., H.S., S.P., T.P., T.D., X.N., B.V., M.R.), France
| | - Thibault Pamart
- Cardiology Department (E.V.B., N.D., F.V., C.D., G.S., H.S., S.P., T.P., T.D., X.N., B.V., M.R.), France
| | - Tom Denimal
- Cardiology Department (E.V.B., N.D., F.V., C.D., G.S., H.S., S.P., T.P., T.D., X.N., B.V., M.R.), France
| | - Xavier Neiger
- Cardiology Department (E.V.B., N.D., F.V., C.D., G.S., H.S., S.P., T.P., T.D., X.N., B.V., M.R.), France
| | - Basile Verdier
- Cardiology Department (E.V.B., N.D., F.V., C.D., G.S., H.S., S.P., T.P., T.D., X.N., B.V., M.R.), France
| | - Laurent Puy
- Degenerative and Vascular Cognitive Disorders, Department of Neurology (C. Cordonnier, L.P.), France.,(C. Cordonnier, L.P.), Université Lille, France
| | - Alessandro Cosenza
- Cardiology Department (E.V.B., N.D., F.V., C.D., G.S., H.S., S.P., T.P., T.D., X.N., B.V., M.R.), France
| | | | - Marjorie Richardson
- Cardiology Department (E.V.B., N.D., F.V., C.D., G.S., H.S., S.P., T.P., T.D., X.N., B.V., M.R.), France
| | | | | | - Julien Labreuche
- CHU Lille (J.L.), France.,EA 2694–Santé Publique: Épidémiologie et Qualité des Soins (J.L.), Université Lille, France
| | - Mikael Mazighi
- Department of Neurology, Hôpital Laribosière, APHP-NORD (M.M.), Université de Paris, France.,Department of Interventional Neuroradiology, Fondation Adolphe de Rothschild, FHU NeuroVasc, INSERM U 1148 (M.M.), Université de Paris, France
| | - Annabelle Dupont-Prado
- Hematology and Transfusion Department (A.R., F.L., E.J., A.D.-P., S.S.), France.,INSERM Unité 1011 (E.V.B., N.D., F.V., A.R., E.J., A.D.-P., B.S., S.S.), Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France
| | - Bart Staels
- INSERM Unité 1011 (E.V.B., N.D., F.V., A.R., E.J., A.D.-P., B.S., S.S.), Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France
| | - Peter J. Lenting
- INSERM UMR_S 1176 (C. Casari, P.J.L.), Université Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Sophie Susen
- Hematology and Transfusion Department (A.R., F.L., E.J., A.D.-P., S.S.), France.,INSERM Unité 1011 (E.V.B., N.D., F.V., A.R., E.J., A.D.-P., B.S., S.S.), Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France
| |
Collapse
|
14
|
Craniocerebral Magnetic Resonance Imaging Features of Benign Paroxysmal Positional Vertigo under Artificial Intelligence Algorithm and the Correlation with Cerebrovascular Disease. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:8952355. [PMID: 35582236 PMCID: PMC9071938 DOI: 10.1155/2022/8952355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/25/2022] [Accepted: 04/04/2022] [Indexed: 11/17/2022]
Abstract
This research aimed to discuss the characteristics of benign paroxysmal positional vertigo (BPPV) and the correlation with cerebrovascular disease. An artificial intelligence algorithm under a parallel dual-domain concatenated convolutional neural network (PDDC-CNN) was proposed to process the images of magnetic resonance imaging (MRI). MRI, magnetic resonance angiography (MRA), and susceptibility weighted imaging (SWI) were performed on all 60 research objects with a 3.0 MRI scanner. The number of cases with cerebral microbleeds (CMBs), SWI image display of small veins, the number of lacunar infarctions, vertebral artery dominance, and vertebrobasilar morphology were observed in the two groups. The number of lacunar infarctions was 2.400 ± 3.358 and 0.672 ± 0.251, respectively, in the BBPV group with 30 cases and the control group with the other 30 cases. The positive rates of CMBs on SWI images were 48% and 27% in the BBPV group and the control group, respectively, and the average CMBs were counted as 1.670 ± 2.326 and 0.487 ± 0.865. CMBs were shown as round or oval lesions of conventional sequence deletion in the images with a diameter of less than 1.5 cm. SWI images of the BBPV group showed a significant increase in intracerebral small veins compared to those of the control group. The curvature of the vertebrobasilar artery in the BBPV group was significantly higher than that in the control group, and the curvature of the basilar artery was slightly higher than that in the control group. In conclusion, the MRI features of BPPV patients were related to their own microvascular lesions closely, and it was speculated that the cerebrovascular factors might play a dominant role in the early onset of BPPV.
Collapse
|
15
|
Fan P, Shan W, Yang H, Zheng Y, Wu Z, Chan SW, Wang Q, Gao P, Liu Y, He K, Sui B. Cerebral Microbleed Automatic Detection System Based on the “Deep Learning”. Front Med (Lausanne) 2022; 9:807443. [PMID: 35402427 PMCID: PMC8988858 DOI: 10.3389/fmed.2022.807443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/22/2022] [Indexed: 11/18/2022] Open
Abstract
Objective To validate the reliability and efficiency of clinical diagnosis in practice based on a well-established system for the automatic segmentation of cerebral microbleeds (CMBs). Method This is a retrospective study based on Magnetic Resonance Imaging-Susceptibility Weighted Imaging (MRI-SWI) datasets from 1,615 patients (median age, 56 years; 1,115 males, 500 females) obtained between September 2018 and September 2019. All patients had been diagnosed with cerebral small vessel disease (CSVD) with clear cerebral microbleeds (CMBs) on MRI-SWI. The patients were divided into training and validation cohorts of 1,285 and 330 patients, respectively, and another 30 patients were used for internal testing. The model training and validation data were labeled layer by layer and rechecked by two neuroradiologists with 15 years of work experience. Afterward, a three-dimensional convolutional neural network (CNN) was applied to the MRI data from the training and validation cohorts to construct a deep learning system (DLS) that was tested with the 72 patients, independent of the aforementioned MRI cohort. The DLS tool was used as a segmentation program for these 72 patients. These results were evaluated and revised by five neuroradiologists and subjected to an output analysis divided into the missed label, incorrect label, and correct label. The interneuroradiologists DLS agreement rate, which was assessed using the interrater agreement kappas test, was used for the quality analysis. Results In the detection and segmentation of the CMBs, the DLS achieved a Dice coefficient of 0.72. In the evaluation of the independent clinical data, the neuroradiologists reported that more than 90% of the lesions were directly detected and less than 10% of lesions were incorrectly labeled or the label was missed by our DLS. The kappa value for interneuroradiologist DLS agreement reached 0.79 on average. Conclusion Based on the results, the automatic detection and segmentation of CMBs are feasible. The proposed well-trained DLS system might represent a trusted tool for the segmentation and detection of CMB lesions.
Collapse
Affiliation(s)
- Pingping Fan
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Beijing, China
- Tiantan Neuroimaging Center of Excellence, Beijing, China
| | - Wei Shan
- National Clinical Research Center for Neurological Diseases, Beijing, China
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Institute for Brain Disorders, Beijing, China
- *Correspondence: Wei Shan,
| | - Huajun Yang
- National Clinical Research Center for Neurological Diseases, Beijing, China
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yu Zheng
- National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Zhenzhou Wu
- National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Shang Wei Chan
- National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Qun Wang
- National Clinical Research Center for Neurological Diseases, Beijing, China
- Tiantan Neuroimaging Center of Excellence, Beijing, China
- Beijing Institute for Brain Disorders, Beijing, China
| | - Peiyi Gao
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yaou Liu
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Beijing, China
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Yaou Liu,
| | - Kunlun He
- Laboratory of Translational Medicine, Chinese PLA General Hospital, Beijing, China
- Key Laboratory of Ministry of Biomedical Engineering and Translational Medicine, People’s Liberation Army General Hospital, Beijing, China
- Kunlun He,
| | - Binbin Sui
- National Clinical Research Center for Neurological Diseases, Beijing, China
- Tiantan Neuroimaging Center of Excellence, Beijing, China
- Binbin Sui,
| |
Collapse
|
16
|
Zhang DD, Cao Y, Mu JY, Liu YM, Gao F, Han F, Zhai FF, Zhou LX, Ni J, Yao M, Li ML, Jin ZY, Zhang SY, Cui LY, Shen Y, Zhu YC. Inflammatory biomarkers and cerebral small vessel disease: a community-based cohort study. Stroke Vasc Neurol 2022; 7:302-309. [PMID: 35260438 PMCID: PMC9453831 DOI: 10.1136/svn-2021-001102] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 01/20/2022] [Indexed: 11/08/2022] Open
Abstract
Background and purpose Although inflammation has been proposed to be a candidate risk factor for cerebral small vessel disease (CSVD), previous findings remain largely inconclusive and vary according to disease status and study designs. The present study aimed to investigate possible associations between inflammatory biomarkers and MRI markers of CSVD. Methods A group of 15 serum inflammatory biomarkers representing a variety of those putatively involved in the inflammatory cascade was grouped and assessed in a cross-sectional study involving 960 stroke-free subjects. The biomarker panel was grouped as follows: systemic inflammation (high-sensitivity C reactive protein (hsCRP), interleukin 6 and tumour necrosis factor α), endothelial-related inflammation (E-selectin, P-selectin, intercellular adhesion molecule 1, vascular cell adhesion molecule 1 (VCAM-1), CD40 ligand, lipoprotein-associated phospholipase A2, chitinase-3-like-1 protein and total homocysteine (tHCY)) and media-related inflammation (matrix metalloproteinases 2, 3 and 9, and osteopontin). The association(s) between different inflammatory groups and white matter hyperintensity (WMH), lacunes, cerebral microbleeds (CMBs), enlarged perivascular space (PVS) and the number of deep medullary veins (DMVs) were investigated. Results High levels of serum endothelial-related inflammatory biomarkers were associated with both increased WMH volume (R2=0.435, p=0.015) and the presence of lacunes (R2=0.254, p=0.027). Backward stepwise elimination of individual inflammatory biomarkers for endothelial-related biomarkers revealed that VCAM-1 was significant for WMH (β=0.063, p=0.005) and tHCY was significant for lacunes (β=0.069, p<0.001). There was no association between any group of inflammatory biomarkers and CMBs or PVS. Systemic inflammatory biomarkers were associated with fewer DMVs (R2=0.032, p=0.006), and backward stepwise elimination of individual systemic-related inflammatory biomarkers revealed that hsCRP (β=−0.162, p=0.007) was significant. Conclusion WMH and lacunes were associated with endothelial-related inflammatory biomarkers, and fewer DMVs were associated with systemic inflammation, thus suggesting different underlying inflammatory processes and mechanisms.
Collapse
Affiliation(s)
- Ding-Ding Zhang
- Central Research Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Cao
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing-Yu Mu
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi-Ming Liu
- Division of Life Sciences and Medicine, Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Feng Gao
- Division of Life Sciences and Medicine, Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Fei Han
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fei-Fei Zhai
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li-Xin Zhou
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Ni
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming Yao
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming-Li Li
- Department of Radiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zheng-Yu Jin
- Department of Radiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shu-Yang Zhang
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li-Ying Cui
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yong Shen
- Division of Life Sciences and Medicine, Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Yi-Cheng Zhu
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
17
|
The Association between Low Levels of Low Density Lipoprotein Cholesterol and Intracerebral Hemorrhage: Cause for Concern? J Clin Med 2022; 11:jcm11030536. [PMID: 35159988 PMCID: PMC8836670 DOI: 10.3390/jcm11030536] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/27/2021] [Accepted: 01/18/2022] [Indexed: 12/24/2022] Open
Abstract
Excessive levels of low-density lipoprotein cholesterol (LDL-C) in the blood are a known risk factor for atherosclerosis, and a common target of treatment for primary and secondary prevention of cerebrocardiovascular disease. As lipid lowering agents including statins, ezetimibe and anti-proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors have shown good therapeutic results, the guidelines are constantly lowering the "optimal" LDL-C goals. However, old and new data point towards an association between low LDL-C and total cholesterol and intracerebral hemorrhage (ICH). In this review we aimed to shed light on this troubling association and identify the potential risk factors of such a potential adverse reaction. With respect to the data presented, we concluded that in patients with high risk of ICH, a cautious approach and individualized therapy strategy are advised when considering aggressive LDL reduction.
Collapse
|
18
|
Kulesh AA. Difficult issues in the management of patients with atrial fibrillation: a neurologist's point of view. NEUROLOGY, NEUROPSYCHIATRY, PSYCHOSOMATICS 2021. [DOI: 10.14412/2074-2711-2021-5-4-13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The article evaluates recent perspectives about the role of oral anticoagulants in the secondary prevention of cardioembolic stroke. The timing of prescribing drugs for ischemic stroke and transient ischemic attack is discussed in accordance with current clinical guidelines and the results of clinical trials. The issues of prescribing oral anticoagulants in some problematic situations, such as the elderly and senile age, reperfusion therapy, presence of hemorrhagic transformation, combined atherosclerosis of major head and neck arteries, cerebral microangiopathy, history of intracerebral hemorrhage, cryptogenic stroke, and low patient compliance are considered. Finally, an anticoagulant therapy algorithm in the acute period of cardioembolic stroke is presented.
Collapse
Affiliation(s)
- A. A. Kulesh
- Acad. E.A. Vagner Perm State Medical University, Ministry of Health of Russia
| |
Collapse
|
19
|
Schmid F, Conti G, Jenny P, Weber B. The severity of microstrokes depends on local vascular topology and baseline perfusion. eLife 2021; 10:60208. [PMID: 34003107 PMCID: PMC8421069 DOI: 10.7554/elife.60208] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 05/17/2021] [Indexed: 01/26/2023] Open
Abstract
Cortical microinfarcts are linked to pathologies like cerebral amyloid angiopathy and dementia. Despite their relevance for disease progression, microinfarcts often remain undetected and the smallest scale of blood flow disturbance has not yet been identified. We employed blood flow simulations in realistic microvascular networks from the mouse cortex to quantify the impact of single-capillary occlusions. Our simulations reveal that the severity of a microstroke is strongly affected by the local vascular topology and the baseline flow rate in the occluded capillary. The largest changes in perfusion are observed in capillaries with two inflows and two outflows. This specific topological configuration only occurs with a frequency of 8%. The majority of capillaries have one inflow and one outflow and is likely designed to efficiently supply oxygen and nutrients. Taken together, microstrokes bear potential to induce a cascade of local disturbances in the surrounding tissue, which might accumulate and impair energy supply locally.
Collapse
Affiliation(s)
- Franca Schmid
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.,Institute of Fluid Dynamics, ETH Zurich, Zurich, Switzerland
| | - Giulia Conti
- Institute of Fluid Dynamics, ETH Zurich, Zurich, Switzerland
| | - Patrick Jenny
- Institute of Fluid Dynamics, ETH Zurich, Zurich, Switzerland
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
20
|
Zhang J, You Q, Shu J, Gang Q, Jin H, Yu M, Sun W, Zhang W, Huang Y. GJA1 Gene Polymorphisms and Topographic Distribution of Cranial MRI Lesions in Cerebral Small Vessel Disease. Front Neurol 2020; 11:583974. [PMID: 33324328 PMCID: PMC7723976 DOI: 10.3389/fneur.2020.583974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/02/2020] [Indexed: 01/10/2023] Open
Abstract
Vascular endothelial cell (EC) and blood–brain barrier (BBB) dysfunction is the core pathogenesis of cerebral small vessel disease (CSVD). Moreover, animal experiments have shown the importance of connexin (Cx)-43 in EC and BBB function. In this study, we recruited 200 patients diagnosed with sporadic CSVD. Initially, we examined imaging scores of white matter hyperintensities (WMH), lacunar infarction (LI), and cerebral microbleeds (CMB). Additionally, we performed next-generation sequencing of the GJA1 gene (Cx43 coding gene) to examine correlation between these single-nucleotide polymorphisms and the burden and distribution of CSVD. Fourteen target loci were chosen. Of these, 13 loci (92.9%) contributed toward risk for cerebellar LI, one locus (7.1%) was shown to be a protective factor for lobar CMB after FDR adjustment. In conclusion, single-nucleotide polymorphisms in the GJA1 gene appear to affect the distribution but not severity of CSVD.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Qian You
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Junlong Shu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Qiang Gang
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Haiqiang Jin
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Meng Yu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Wei Sun
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Wei Zhang
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Yining Huang
- Department of Neurology, Peking University First Hospital, Beijing, China
| |
Collapse
|
21
|
Hosoki S, Saito S, Tonomura S, Ishiyama H, Yoshimoto T, Ikeda S, Ikenouchi H, Yamamoto Y, Hattori Y, Miwa K, Friedland RP, Carare RO, Nakahara J, Suzuki N, Koga M, Toyoda K, Nomura R, Nakano K, Takegami M, Ihara M. Oral Carriage of Streptococcus mutans Harboring the cnm Gene Relates to an Increased Incidence of Cerebral Microbleeds. Stroke 2020; 51:3632-3639. [PMID: 33148146 PMCID: PMC7678651 DOI: 10.1161/strokeaha.120.029607] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Supplemental Digital Content is available in the text. Cerebral microbleeds (CMB) are associated with stroke and cognitive impairment. We previously reported a high prevalence of CMB in people with Streptococcus mutans expressing Cnm, a collagen-binding protein in the oral cavity. S.mutans is a major pathogen responsible for dental caries. Repeated challenge with S.mutans harboring the cnm gene encoding Cnm induced cerebral bleeding in stroke-prone spontaneously hypertensive rats. The purpose of this longitudinal study is to examine the relationship of cnm-positive S.mutans to the development of CMB.
Collapse
Affiliation(s)
- Satoshi Hosoki
- Department of Neurology (S.H., S.S., S.T., H. Ishiyama, T.Y., S.I., H. Ikenouchi, Y.H., M.I.), National Cerebral and Cardiovascular Center, Suita, Japan.,Department of Neurology, Keio University School of Medicine, Tokyo, Japan (S.H., J.N., N.S., K.T.)
| | - Satoshi Saito
- Department of Neurology (S.H., S.S., S.T., H. Ishiyama, T.Y., S.I., H. Ikenouchi, Y.H., M.I.), National Cerebral and Cardiovascular Center, Suita, Japan.,Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita, Japan (S.S., R.N., K.N.).,Faculty of Medicine, University of Southampton, United Kingdom (S.S., R.O.C.)
| | - Shuichi Tonomura
- Department of Neurology (S.H., S.S., S.T., H. Ishiyama, T.Y., S.I., H. Ikenouchi, Y.H., M.I.), National Cerebral and Cardiovascular Center, Suita, Japan.,Department of Neurology, Graduate School of Medicine, Kyoto University, Japan (S.T.)
| | - Hiroyuki Ishiyama
- Department of Neurology (S.H., S.S., S.T., H. Ishiyama, T.Y., S.I., H. Ikenouchi, Y.H., M.I.), National Cerebral and Cardiovascular Center, Suita, Japan
| | - Takeshi Yoshimoto
- Department of Neurology (S.H., S.S., S.T., H. Ishiyama, T.Y., S.I., H. Ikenouchi, Y.H., M.I.), National Cerebral and Cardiovascular Center, Suita, Japan
| | - Shuhei Ikeda
- Department of Neurology (S.H., S.S., S.T., H. Ishiyama, T.Y., S.I., H. Ikenouchi, Y.H., M.I.), National Cerebral and Cardiovascular Center, Suita, Japan
| | - Hajime Ikenouchi
- Department of Neurology (S.H., S.S., S.T., H. Ishiyama, T.Y., S.I., H. Ikenouchi, Y.H., M.I.), National Cerebral and Cardiovascular Center, Suita, Japan
| | - Yumi Yamamoto
- Department of Molecular Innovation in Lipidemiology (Y.Y.), National Cerebral and Cardiovascular Center, Suita, Japan
| | - Yorito Hattori
- Department of Neurology (S.H., S.S., S.T., H. Ishiyama, T.Y., S.I., H. Ikenouchi, Y.H., M.I.), National Cerebral and Cardiovascular Center, Suita, Japan
| | - Kaori Miwa
- Department of Cerebrovascular Medicine (K.M., M.K., K.T.), National Cerebral and Cardiovascular Center, Suita, Japan
| | | | - Roxana O Carare
- Faculty of Medicine, University of Southampton, United Kingdom (S.S., R.O.C.)
| | - Jin Nakahara
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan (S.H., J.N., N.S., K.T.)
| | - Norihiro Suzuki
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan (S.H., J.N., N.S., K.T.)
| | - Masatoshi Koga
- Department of Cerebrovascular Medicine (K.M., M.K., K.T.), National Cerebral and Cardiovascular Center, Suita, Japan
| | - Kazunori Toyoda
- Department of Cerebrovascular Medicine (K.M., M.K., K.T.), National Cerebral and Cardiovascular Center, Suita, Japan.,Department of Neurology, Keio University School of Medicine, Tokyo, Japan (S.H., J.N., N.S., K.T.)
| | - Ryota Nomura
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita, Japan (S.S., R.N., K.N.)
| | - Kazuhiko Nakano
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita, Japan (S.S., R.N., K.N.)
| | - Misa Takegami
- Department of Preventive Medicine and Epidemiology (M.T.), National Cerebral and Cardiovascular Center, Suita, Japan
| | - Masafumi Ihara
- Department of Neurology (S.H., S.S., S.T., H. Ishiyama, T.Y., S.I., H. Ikenouchi, Y.H., M.I.), National Cerebral and Cardiovascular Center, Suita, Japan
| |
Collapse
|
22
|
Ding Y, Gu Z, Zhai T, Wang W, Zhang Y, Wei C, Liu Y, Niu J. Effect of butylphthalide on new cerebral microbleeds in patients with acute ischemic stroke. Medicine (Baltimore) 2020; 99:e21594. [PMID: 32769914 PMCID: PMC7593026 DOI: 10.1097/md.0000000000021594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND To evaluate the effect of dl-3-N-butylphthalide (NBP) on new cerebral microbleeds (CMBs) in patients with acute ischemic stroke (AIS). METHODS We will prospectively enroll patients with AIS admitted to the stroke center of Jingjiang People's Hospital. Qualified participants will be randomly assigned to either the NBP group (NBP injection) or the control group (NBP injection placebo) in a ratio of 1:1. Patients will complete the brain magnetic resonance imaging within 48 hours and 14 days after stroke onset to observe the CMBs through susceptibility weighted imaging, and evaluate whether the use of NBP will affect the new CMBs in AIS patients. SPSS 20.0 will be used for statistical analyses. RESULT We will provide practical and targeted results assessing the safety of NBP for AIS patients, to provide reference for clinical use of NBP. CONCLUSION The stronger evidence about the effect of NBP on new CMBs in AIS patients will be provided for clinicians.
Collapse
Affiliation(s)
- Yunlong Ding
- Department of Neurology, Jingjiang People's Hospital, the Seventh Affiliated Hospital of Yangzhou University, Jiangsu, China
| | - Zhiqun Gu
- Department of Neurology, Jingjiang People's Hospital, the Seventh Affiliated Hospital of Yangzhou University, Jiangsu, China
| | - Tingting Zhai
- Department of Neurology, Jingjiang People's Hospital, the Seventh Affiliated Hospital of Yangzhou University, Jiangsu, China
| | - Wenjuan Wang
- Department of Neurology, Jingjiang People's Hospital, the Seventh Affiliated Hospital of Yangzhou University, Jiangsu, China
| | - Yanrong Zhang
- Department of Neurology, Jingjiang People's Hospital, the Seventh Affiliated Hospital of Yangzhou University, Jiangsu, China
| | - Can Wei
- Department of Neurology, Jingjiang People's Hospital, the Seventh Affiliated Hospital of Yangzhou University, Jiangsu, China
| | - Yan Liu
- Department of Neurology, Jingjiang People's Hospital, the Seventh Affiliated Hospital of Yangzhou University, Jiangsu, China
| | - Jiali Niu
- Department of Clinical Pharmacy, Jingjiang People's Hospital, the Seventh Affiliated Hospital of Yangzhou University, Jiangsu, China
| |
Collapse
|
23
|
Kulesh AA, Syromyatnikova LI. Oral anticoagulant therapy in patients after intracerebral hemorrhage. NEUROLOGY, NEUROPSYCHIATRY, PSYCHOSOMATICS 2020. [DOI: 10.14412/2074-2711-2020-3-4-10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- A. A. Kulesh
- Acad. E.A. Vagner Perm State Medical University, Ministry of Health of Russia
| | | |
Collapse
|