1
|
Zhang L, Wang C, Zhang C, Zhang L, Yang C, Zhang X. Investigating the landscape of immune-related genes and immunophenotypes in atherosclerosis: A bioinformatics Mendelian randomization study. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167649. [PMID: 39740383 DOI: 10.1016/j.bbadis.2024.167649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/11/2024] [Accepted: 12/27/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND Atherosclerosis, a leading cause of cardiovascular disease, is characterized by intricate interactions among lipid metabolism, inflammation, and immune response. Investigating immune-related genetic factors and immune cell infiltration in atherosclerotic tissues may provide insights into potential therapeutic targets. METHODS We analyzed transcriptomic data from atherosclerotic and normal tissues to identify differentially expressed genes (DEGs). Functional enrichment was performed using KEGG and GO pathway analyses, and immune-related DEGs were identified by intersecting DEGs with immune-related gene sets. Mendelian randomization (MR) was utilized to examine the causal relationship between immune-related DEGs and atherosclerosis. Immune cell infiltration was evaluated using Cibersort, MCP-counter, and xCell. Again, MR was performed to assess the causal effects of 731 immunophenotypes on atherosclerosis. RESULTS A total of 428 DEGs were identified between atherosclerotic and normal tissues, of which 112 were immune-related. Immune cell infiltration analysis highlighted significant differences, particularly in CD8 T cells and B cells. MR analysis demonstrated a significant causal relationship between HLA-DR on dendritic cells (OR [95%CI] =1.04[1.02-1.06], p = 1.03e-5) and coronary atherosclerosis. Furthermore, HLA-DR on myeloid dendritic cells (OR [95%CI] =1.12[1.07-1.17], p = 3.13e-06) and CD8 on CD8+ T cells (OR [95%CI] =1.12[1.05-1.18], p = 2.00e-04) were causally linked to atherosclerosis (excluding cerebral, coronary, and PAD). CONCLUSION Our findings highlight the crucial involvement of immune-related DEGs and specific immune cell types in the development of atherosclerosis. These results suggest that targeting immune pathways, particularly HLA DR on dendritic cells and CD8 on CD8+ T cells, may offer promising therapeutic strategies for atherosclerosis.
Collapse
Affiliation(s)
- Li Zhang
- Health Management Center, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Chaochao Wang
- Department of Emergency Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Ce Zhang
- Department of Emergency Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Liyun Zhang
- Health Management Center, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Chunmei Yang
- Health Management Center, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xuefei Zhang
- Health Management Center, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| |
Collapse
|
2
|
Liu J, Luo S, Wang G, Hu X, Chen G, Xu Q. Molecular Cloning, Tissue Distribution and Antiviral Immune Response of Duck Src. Genes (Basel) 2024; 15:1044. [PMID: 39202404 PMCID: PMC11353579 DOI: 10.3390/genes15081044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
As a founding member of the Src family of kinases, Src has been confirmed to participate in the regulation of immune responses, integrin signaling, and motility. Ducks are usually asymptomatic carriers of RNA viruses such as Newcastle disease virus and avian influenza virus, which can be deadly to chickens. The beneficial role of Src in modulating the immune response remains largely unknown in ducks. Here, we characterized the duck Src and found that it contains a 192-base-pair 5' untranslated region, a 1602-base-pair coding region, and a 2541-base-pair 3' untranslated region, encoding 533 amino acid residues. Additionally, duSrc transcripts were significantly activated in duck tissues infected by Newcastle disease virus compared to controls. The duSrc transcripts were notably widespread in all tissues examined, and the expression level was higher in liver, blood, lung, pancreas, and thymus. Moreover, we found the expression levels of IFN-β, NF-κB, IRF3, and Src were significantly increased in DEFs after infection with 5'ppp dsRNA, but there was no significant difference before and after treatment in DF1 cells. Furthermore, overexpression of duSrc followed by stimulation with 5'ppp dsRNA led to an elevation of IFN-β levels. The SH3 and PTKc domains of duSrc contributed to promoting the activity of IFN-β and NF-κB in DEFs stimulated by 5'ppp dsRNA.
Collapse
Affiliation(s)
| | | | | | | | | | - Qi Xu
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (J.L.); (S.L.); (X.H.); (G.C.)
| |
Collapse
|
3
|
Tornillo G, Warrington L, Kendrick H, Higgins AT, Hay T, Beck S, Smalley MJ. Conditional in vivo deletion of LYN kinase has little effect on a BRCA1 loss-of-function-associated mammary tumour model. Dis Model Mech 2024; 17:dmm050211. [PMID: 38149669 PMCID: PMC10846530 DOI: 10.1242/dmm.050211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 12/15/2023] [Indexed: 12/28/2023] Open
Abstract
LYN kinase is expressed in BRCA1 loss-of-function-dependent mouse mammary tumours, in the cells of origin of such tumours, and in human breast cancer. Suppressing LYN kinase activity in BRCA1-defective cell lines as well as in in vitro cultures of Brca1-null mouse mammary tumours is deleterious to their growth. Here, we examined the interaction between LYN kinase and BRCA1 loss-of-function in an in vivo mouse mammary tumour model, using conditional knockout Brca1 and Lyn alleles. Comparison of Brca1 tumour cohorts showed little difference in mammary tumour formation between animals that were wild type, heterozygous or homozygous for the conditional Lyn allele, although this was confounded by factors including incomplete Lyn recombination in some tumours. RNA-sequencing analysis demonstrated that tumours with high levels of Lyn gene expression had a slower doubling time, but this was not correlated with levels of LYN staining in tumour cells themselves. Rather, high Lyn expression and slower tumour growth were likely a result of B-cell infiltration. The multifaceted role of LYN indicates that it is likely to present difficulties as a therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Giusy Tornillo
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Lauren Warrington
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Howard Kendrick
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Adam T. Higgins
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Trevor Hay
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Sam Beck
- Independent Anatomic Pathology Ltd, Calyx House, South Road, Taunton TA1 3DU, UK
| | - Matthew J. Smalley
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| |
Collapse
|
4
|
Dasatinib attenuates airway inflammation of asthma exacerbation in mice induced by house dust mites and dsRNA. Biochem Biophys Rep 2023; 33:101402. [DOI: 10.1016/j.bbrep.2022.101402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
|
5
|
Nishimoto Y, Kimura G, Ito K, Kizawa Y. [Anti-inflammatory Effects of a Src Inhibitor on the Murine Model of Asthma Exacerbation Induced by Ovalbumin and Lipopolysaccharide]. YAKUGAKU ZASSHI 2023; 143:191-197. [PMID: 36724932 DOI: 10.1248/yakushi.22-00190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Asthma is often exacerbated by airway infection, and some patients with severe asthma may be unresponsive to conventional corticosteroid treatment. Src family kinases (SFKs) were recently implicated in the inflammatory responses of mice induced by allergen and bacterial toxin lipopolysaccharide (LPS). Therefore, we examined the effects of dasatinib (DAS), a Src inhibitor, on airway inflammation in mice induced by ovalbumin (OVA) and LPS. Male A/J mice were sensitized to OVA Day -14 and -7, challenged with intranasal OVA on Day 0, 2, 4, 6 and 8, and on Day 10, mice were also challenged with OVA via inhalation. Mice were treated intranasally with DAS or fluticasone propionate (FP), a glucocorticoid, twice daily for 3 d starting 1 d after OVA inhalation. Moreover, some mice were also administrated LPS 2 h after DAS or FP treatment to model of asthma exacerbation. One day after the last intervention, lung tissue and bronchoalveolar lavage fluid (BALF) were collected. DAS attenuated the accumulation of inflammatory cells and cytokines/chemokines in BALF induced by both OVA and OVA+LPS, while FP did not reduce accumulations induced by OVA+LPS. Therefore, targeting SFKs may be a superior therapeutic approach for asthma exacerbation by infection.
Collapse
Affiliation(s)
- Yuki Nishimoto
- Laboratory of Physiology and Anatomy, School of pharmacy, Nihon University
| | - Genki Kimura
- Laboratory of Physiology and Anatomy, School of pharmacy, Nihon University
| | - Kazuhiro Ito
- National Heart and Lung Institute, Imperial College London
| | - Yasuo Kizawa
- Laboratory of Physiology and Anatomy, School of pharmacy, Nihon University
| |
Collapse
|
6
|
Seven Shades of Grey: A Follow-Up Study on the Molecular Basis of Coat Colour in Indicine Grey Cattle Using Genome-Wide SNP Data. Genes (Basel) 2022; 13:genes13091601. [PMID: 36140768 PMCID: PMC9498432 DOI: 10.3390/genes13091601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/31/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Shades of grey and brown are a dominant component in mammal coat colours, representing a fundamental trait involved in a great number of processes including cryptism, sexual selection and signalling. The genetic mechanisms of the grey colouration in mammals are very complex and controlled by hundreds of genes whose effects and interactions are still largely unclear. In this study, we adopted a robust multi-cohort Fst outlier approach based on pairwise contrasts between seven grey indicine cattle breeds and both taurine and indicine non-grey cattle breeds in order to find genomic regions potentially related to the grey colouration. On the basis of three main drawn settings, built in order to control both the effect of the sample size and the genetic structure, we have identified some signals common to those obtained in a previous work employing only taurine cattle. In particular, using the top 1% Fst approach, we detected a candidate region (22.6–23.8 megabases) on chromosome 14 in which genes related to pigmentation have been already documented. In addition, when we constructed a phylogenetic tree using the significant markers identified in this study and including also the genotyping data at these loci of both the grey taurine and the extinct wild auroch, we found a topological repartition consistent with breed colour pattern rather than with the known bovine evolutionary history. Thus, on the basis of this evidence, together with the geographical distribution of the current taurine grey cattle, an ancestral indicine origin for the grey phenotype would seem to be a conceivable interpretation. In this context, a higher thermo-tolerance and less UV-induced damage of the grey phenotype might have favoured the retention of advantageous genes into the taurine genome during the post-Neolithic human-mediated cattle expansions.
Collapse
|
7
|
Upregulation of B3GNT3 is associated with immune infiltration and activation of NF-κB pathway in gynecologic cancers. J Reprod Immunol 2022; 152:103658. [DOI: 10.1016/j.jri.2022.103658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 11/21/2022]
|
8
|
Amini-Farsani Z, Yadollahi-Farsani M, Arab S, Forouzanfar F, Yadollahi M, Asgharzade S. Prediction and analysis of microRNAs involved in COVID-19 inflammatory processes associated with the NF-kB and JAK/STAT signaling pathways. Int Immunopharmacol 2021; 100:108071. [PMID: 34482267 PMCID: PMC8378592 DOI: 10.1016/j.intimp.2021.108071] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023]
Abstract
COVID-19 is the cause of a pandemic associated with substantial morbidity and mortality. As yet, there is no available approved drug to eradicate the virus. In this review article, we present an alternative study area that may contribute to the development of therapeutic targets for COVID-19. Growing evidence is revealing further pathophysiological mechanisms of COVID-19 related to the disregulation of inflammation pathways that seem to play a critical role toward COVID-19 complications. The NF-kB and JAK/STAT signaling pathways are highly activated in acute inflammation, and the excessive activity of these pathways in COVID-19 patients likely exacerbates the inflammatory responses of the host. A group of non-coding RNAs (miRNAs) manage certain features of the inflammatory process. In this study, we discuss recent advances in our understanding of miRNAs and their connection to inflammatory responses. Additionally, we consider the link between perturbations in miRNA levels and the onset of COVID-19 disease. Furthermore, previous studies published in the online databases, namely web of science, MEDLINE (PubMed), and Scopus, were reviewed for the potential role of miRNAs in the inflammatory manifestations of COVID-19. Moreover, we disclosed the interactions of inflammatory genes using STRING DB and designed interactions between miRNAs and target genes using Cityscape software. Several miRNAs, particularly miR-9, miR-98, miR-223, and miR-214, play crucial roles in the regulation of NF-kB and JAK-STAT signaling pathways as inflammatory regulators. Therefore, this group of miRNAs that mitigate inflammatory pathways can be further regarded as potential targets for far-reaching-therapeutic strategies in COVID-19 diseases.
Collapse
Affiliation(s)
- Zeinab Amini-Farsani
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran; Department of Biology, University of Sistan and Baluchestan, Zahedan, Iran
| | - Mahtab Yadollahi-Farsani
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Samaneh Arab
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mitra Yadollahi
- Department of Operative Dentistry, School of Dentistry, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Samira Asgharzade
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
9
|
Shen HR, Xu X, Li XL. Berberine exerts a protective effect on rats with polycystic ovary syndrome by inhibiting the inflammatory response and cell apoptosis. Reprod Biol Endocrinol 2021; 19:3. [PMID: 33407557 PMCID: PMC7789273 DOI: 10.1186/s12958-020-00684-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 12/17/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a common endocrine disease of the female reproductive system that seriously affects women's health. Berberine (BBR) has many pharmacological properties and is used as an insulin sensitizer. This study aimed to investigate the effect of BBR on PCOS and explore its related mechanisms. METHODS Forty-two rats were randomly divided into the following six groups (n = 7 per group): control, control + BBR, PCOS-normal diet (ND), PCOS-ND + BBR, PCOS-high-fat diet (HFD), and PCOS-HFD + BBR. The PCOS rat models were established by injecting rats with dehydroepiandrosterone. Further, the rats were gavaged with BBR (150 mg/kg/d) for 6 weeks. Then, the body weight, HOMA-IR, and testosterone levels of all rats were determined. Cell apoptosis of ovary granulosa cells was determined by a TUNEL assay kit. Real-time quantification PCR (RT-qPCR) and western blotting were utilized to evaluate the expression of TLR4, LYN, PI3K, Akt, NF-kB, TNF-α, IL-1, IL-6, and caspase-3. RESULTS BBR reduced the levels of insulin resistance and testosterone in PCOS rats. Additionally, the cell apoptosis rate increased significantly in PCOS rats (P < 0.05) and decreased after BBR treatment (P < 0.05). The results of RT-qPCR and western blotting showed that the expression levels of TLR4, LYN, PI3K, Akt, NF-kB, TNF-α, IL-1, IL-6, and caspase-3 significantly increased in PCOS rats, while BBR suppressed their expression levels. CONCLUSIONS BBR may relieve PCOS pathology and IR values by inhibiting cell apoptosis and by regulating the expression levels of TLR4, LYN, PI3K, Akt, NF-kB, TNF-α, IL-1, IL-6, and caspase-3.
Collapse
Affiliation(s)
- Hao-Ran Shen
- Department of Gynecology, Obstetrics & Gynecology Hospital of Fudan University, No. 419 Fangxie Road, Shanghai, 200011, P.R. China
| | - Xiao Xu
- Department of Gynecology, Obstetrics & Gynecology Hospital of Fudan University, No. 419 Fangxie Road, Shanghai, 200011, P.R. China
| | - Xue-Lian Li
- Department of Gynecology, Obstetrics & Gynecology Hospital of Fudan University, No. 419 Fangxie Road, Shanghai, 200011, P.R. China.
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, No. 419 Fangxie Road, Shanghai, 200011, P.R. China.
| |
Collapse
|
10
|
STAT3 Differentially Regulates TLR4-Mediated Inflammatory Responses in Early or Late Phases. Int J Mol Sci 2020; 21:ijms21207675. [PMID: 33081347 PMCID: PMC7589049 DOI: 10.3390/ijms21207675] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/02/2020] [Accepted: 10/14/2020] [Indexed: 12/17/2022] Open
Abstract
Toll-like receptor 4 (TLR4) signaling is an important therapeutic target to manage lipopolysaccharide (LPS)-induced inflammation. The transcription factor signal transducer and activator of transcription 3 (STAT3) has been identified as an important regulator of various immune-related diseases and has generated interest as a therapeutic target. Here, we investigated the time-dependent roles of STAT3 in LPS-stimulated RAW264.7 macrophages. STAT3 inhibition induced expression of the pro-inflammatory genes iNOS and COX-2 at early time points. STAT3 depletion resulted in regulation of nuclear translocation of nuclear factor (NF)-κB subunits p50 and p65 and IκBα/Akt/PI3K signaling. Moreover, we found that one Src family kinase, Lyn kinase, was phosphorylated in STAT3 knockout macrophages. In addition to using pharmacological inhibition of NF-κB, we found out that STAT3KO activation of NF-κB subunit p50 and p65 and expression of iNOS was significantly inhibited; furthermore, Akt tyrosine kinase inhibitors also inhibited iNOS and COX-2 gene expression during early time points of LPS stimulation, demonstrating an NF-κB- Akt-dependent mechanism. On the other hand, iNOS expression was downregulated after prolonged treatment with LPS. Activation of NF-κB signaling was also suppressed, and consequently, nitric oxide (NO) production and cell invasion were repressed. Overall, our data indicate that STAT3 differentially regulates early- and late-phase TLR4-mediated inflammatory responses.
Collapse
|
11
|
Ramos-Tovar E, Muriel P. Free radicals, antioxidants, nuclear factor-E2-related factor-2 and liver damage. J Appl Toxicol 2019; 40:151-168. [PMID: 31389060 DOI: 10.1002/jat.3880] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 12/11/2022]
Abstract
Oxidative/nitrosative stress is proposed to be a critical factor in various diseases, including liver pathologies. Antioxidants derived from medicinal plants have been studied extensively and are relevant to many illnesses, including liver diseases. Several hepatic disorders, such as viral hepatitis and alcoholic or nonalcoholic steatohepatitis, involve free radicals/oxidative stress as agents that cause or at least exacerbate liver injury, which can result in chronic liver diseases, such as liver fibrosis, cirrhosis and end-stage hepatocellular carcinoma. In this scenario, nuclear factor-E2-related factor-2 (Nrf2) appears to be an essential factor to counteract or attenuate oxidative or nitrosative stress in hepatic cells. In fact, a growing body of evidence indicates that Nrf2 plays complex and multicellular roles in hepatic inflammation, fibrosis, hepatocarcinogenesis and regeneration via the induction of its target genes. Inflammation is the most common feature of chronic liver diseases, triggering fibrosis, cirrhosis and hepatocellular carcinoma. Increasing evidence indicates that Nrf2 counteracts the proinflammatory process by modulating the recruitment of inflammatory cells and inducing the endogenous antioxidant response of the cell. In this review, the interactions between antioxidant and inflammatory molecular pathways are analyzed.
Collapse
Affiliation(s)
- Erika Ramos-Tovar
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Mexico City, Mexico
| | - Pablo Muriel
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Mexico City, Mexico
| |
Collapse
|
12
|
Nishimoto Y, Yasuda H, Masuko K, Usui Y, Ueda K, Kimura G, Ito K, Kizawa Y. [The Involvement of Src in Airway Inflammation Induced by Repeated Exposure to Lipopolysaccharide in Mice]. YAKUGAKU ZASSHI 2019; 139:1211-1217. [PMID: 31189750 DOI: 10.1248/yakushi.19-00086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Corticosteroid insensitive airway inflammation is one of major barrier to effective managements of chronic airway diseases, such as chronic obstructive pulmonary disease (COPD) and severe asthma. The role of nonreceptor tyrosine kinase Src is important in airway inflammation in mice models of atopic asthma and COPD. Thus, in this study, we determined the effects of Src inhibitor, dasatinib, on airway inflammation induced by repeated intranasal exposure to lipopolysaccharide (LPS). Male mice (A/J strain, 5 weeks old) were intranasally exposed to LPS twice daily for 3 d, and dasatinib was intranasally treated 2 h prior to each LPS exposure. A day after the last stimulation, lungs and bronchoalveolar lavage fluid (BALF) were collected. Dasatinib attenuated the accumulation of inflammatory cells in lungs, and the increase in the numbers of inflammatory cells and the accumulation of cytokines/chemokines in BALF in a dose dependent manner. Therefore, this study suggested that targeting the Src can provide a new therapeutic approach for corticosteroid insensitive pulmonary diseases.
Collapse
Affiliation(s)
- Yuki Nishimoto
- Laboratory of Physiology and Anatomy, School of Pharmacy, Nihon University
| | - Hironobu Yasuda
- Laboratory of Physiology and Anatomy, School of Pharmacy, Nihon University
| | - Keita Masuko
- Laboratory of Physiology and Anatomy, School of Pharmacy, Nihon University
| | - Yoshito Usui
- Laboratory of Physiology and Anatomy, School of Pharmacy, Nihon University
| | - Keitaro Ueda
- Laboratory of Physiology and Anatomy, School of Pharmacy, Nihon University
| | - Genki Kimura
- Laboratory of Physiology and Anatomy, School of Pharmacy, Nihon University
| | - Kazuhiro Ito
- Airway Disease Section, National Heart and Lung Institute, Imperial College London
| | - Yasuo Kizawa
- Laboratory of Physiology and Anatomy, School of Pharmacy, Nihon University
| |
Collapse
|
13
|
Berndt S, Gurevich VV, Iverson TM. Crystal structure of the SH3 domain of human Lyn non-receptor tyrosine kinase. PLoS One 2019; 14:e0215140. [PMID: 30969999 PMCID: PMC6457566 DOI: 10.1371/journal.pone.0215140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/27/2019] [Indexed: 01/07/2023] Open
Abstract
Lyn kinase (Lck/Yes related novel protein tyrosine kinase) belongs to the family of Src-related non-receptor tyrosine kinases. Consistent with physiological roles in cell growth and proliferation, aberrant function of Lyn is associated with various forms of cancer, including leukemia, breast cancer and melanoma. Here, we determine a 1.3 Å resolution crystal structure of the polyproline-binding SH3 regulatory domain of human Lyn kinase, which adopts a five-stranded β-barrel fold. Mapping of cancer-associated point mutations onto this structure reveals that these amino acid substitutions are distributed throughout the SH3 domain and may affect Lyn kinase function distinctly.
Collapse
Affiliation(s)
- Sandra Berndt
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States of America
| | - Vsevolod V. Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States of America
| | - T. M. Iverson
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States of America
- Department of Biochemistry, Vanderbilt University, Nashville, TN, United States of America
- Vanderbilt Institute of Chemical Biology, Nashville, TN, United States of America
- Center for Structural Biology, Nashville, TN, United States of America
| |
Collapse
|
14
|
Swartwout B, Luo XM. Implications of Probiotics on the Maternal-Neonatal Interface: Gut Microbiota, Immunomodulation, and Autoimmunity. Front Immunol 2018; 9:2840. [PMID: 30559747 PMCID: PMC6286978 DOI: 10.3389/fimmu.2018.02840] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/19/2018] [Indexed: 12/18/2022] Open
Abstract
Probiotics are being investigated for the treatment of autoimmune disease by re-balancing dysbiosis induced changes in the immune system. Pregnancy is a health concern surrounding autoimmune disease, both for the mother and her child. Probiotics for maternity are emerging on the market and have gained significant momentum in the literature. Thus far, evidence supports that probiotics alter the structure of the normal microbiota and the microbiota changes significantly during pregnancy. The interaction between probiotics-induced changes and normal changes during pregnancy is poorly understood. Furthermore, there is emerging evidence that the maternal gut microbiota influences the microbiota of offspring, leading to questions on how maternal probiotics may influence the health of neonates. Underpinning the development and balance of the immune system, the microbiota, especially that of the gut, is significantly important, and dysbiosis is an agent of immune dysregulation and autoimmunity. However, few studies exist on the implications of maternal probiotics for the outcome of pregnancy in autoimmune disease. Is it helpful or harmful for mother with autoimmune disease to take probiotics, and would this be protective or pathogenic for her child? Controversy surrounds whether probiotics administered maternally or during infancy are healthful for allergic disease, and their use for autoimmunity is relatively unexplored. This review aims to discuss the use of maternal probiotics in health and autoimmune disease and to investigate their immunomodulatory properties.
Collapse
Affiliation(s)
- Brianna Swartwout
- Translational Biology, Medicine, and Health Graduate Program, Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, VA, United States
| | - Xin M. Luo
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
15
|
Davis S, Cirone AM, Menzie J, Russell F, Dorey CK, Shibata Y, Wei J, Nan C. Phagocytosis-mediated M1 activation by chitin but not by chitosan. Am J Physiol Cell Physiol 2018; 315:C62-C72. [PMID: 29719169 PMCID: PMC6087726 DOI: 10.1152/ajpcell.00268.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 04/16/2018] [Accepted: 04/16/2018] [Indexed: 02/06/2023]
Abstract
Chitin particles have been used to understand host response to chitin-containing pathogens and allergens and are known to induce a wide range of polarized macrophage activations, depending, at least in part, on particle size. Nonphagocytosable particles larger than a macrophage induce tissue repair M2 activation. In contrast, phagocytosable chitin microparticles (CMPs, 1-10 μm diameters) induce M1 macrophages that kill intracellular microbes and damage tissues. However, chitosan (deacetylated) microparticles (de-CMPs, 1-10 µm) induce poor M1 activation. Toll-like receptor 2 (TLR2) and associated coreceptors in macrophages appear to be required for the M1 activation. To understand the exact mechanism of phagocytosis-mediated M1 activation by chitin, we isolated macrophage proteins that bind to CMPs during early phagocytosis and determined that TLR1, TLR2, CD14, late endosomal/lysosomal adaptor MAPK and mechanistic target of rapamycin activator 1 (LAMTOR1), Lck/Yes novel tyrosine kinase (Lyn), and β-actin formed phagosomal CMP-TLR2 clusters. These proteins were also detected in TLR2 phagosomal clusters in macrophages phagocytosing de-CMPs, but at relatively lower levels than in the CMP-TLR2 clusters. Importantly, CMP-TLR2 clusters further recruited myeloid differentiation primary response gene 88 (MyD88) and Toll-IL-1 receptor-containing adaptor protein (TIRAP) and phosphorylated Lyn, whereas neither the adaptors nor phosphorylated Lyn was detected in the de-CMP clusters. The results indicate that the acetyl group played an obligatory, phagocytosis-dependent role in the initiation of an integrated signal for TLR2-mediated M1 activation.
Collapse
Affiliation(s)
- Spring Davis
- Florida Atlantic University , Boca Raton, Florida
| | | | - Janet Menzie
- Florida Atlantic University , Boca Raton, Florida
| | | | - C Kathleen Dorey
- Virginia Tech Carilion School of Medicine and Research Institute , Roanoke, Virginia
| | | | - Jianning Wei
- Florida Atlantic University , Boca Raton, Florida
| | | |
Collapse
|
16
|
Tulli L, Cattaneo F, Vinot J, Baldari CT, D'Oro U. Src Family Kinases Regulate Interferon Regulatory Factor 1 K63 Ubiquitination following Activation by TLR7/8 Vaccine Adjuvant in Human Monocytes and B Cells. Front Immunol 2018; 9:330. [PMID: 29545793 PMCID: PMC5837968 DOI: 10.3389/fimmu.2018.00330] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 02/06/2018] [Indexed: 12/27/2022] Open
Abstract
Toll-like receptors (TLRs) play a key role in the activation of innate immune cells, in which their engagement leads to production of cytokines and co-stimulatory molecules. TLRs signaling requires recruitment of toll/IL-1R (TIR) domain-containing adaptors, such as MyD88 and/or TRIF, and leads to activation of several transcription factors, such as NF-κB, the AP1 complex, and various members of the interferon regulatory factor (IRF) family, which in turn results in triggering of several cellular functions associated with these receptors. A role for Src family kinases (SFKs) in this signaling pathway has also been established. Our work and that of others have shown that this type of kinases is activated following engagement of several TLRs, and that this event is essential for the initiation of specific downstream cellular response. In particular, we have previously demonstrated that activation of SFKs is required for balanced production of pro-inflammatory cytokines by monocyte-derived dendritic cells after stimulation with R848, an agonist of human TLRs 7/8. We also showed that TLR7/8 triggering leads to an increase in interferon regulatory factor 1 (IRF-1) protein levels and that this effect is abolished by inhibition of SFKs, suggesting a critical role of these kinases in IRF-1 regulation. In this study, we first confirmed the key role of SFKs in TLR7/8 signaling for cytokine production and accumulation of IRF-1 protein in monocytes and in B lymphocytes, two other type of antigen-presenting cells. Then, we demonstrate that TLR7 triggering leads to an increase of K63-linked ubiquitination of IRF-1, which is prevented by SFKs inhibition, suggesting a key role of these kinases in posttranslational regulation of IRF-1 in the immune cells. In order to understand the mechanism that links SFKs activation to IRF-1 K63-linked ubiquitination, we examined SFKs and IRF-1 possible interactors and proved that activation of SFKs is necessary for their interaction with TNFR-associated factor 6 (TRAF6) and promotes the recruitment of both cIAP2 and IRF-1 by TRAF6. Collectively, our data demonstrate that TLR7/8 engagement leads to the formation of a complex that allows the interaction of cIAP2 and IRF-1 resulting in IRF-1 K63-linked ubiquitination, and that active SFKs are required for this process.
Collapse
|
17
|
Shen H, Liang Z, Zheng S, Li X. Pathway and network-based analysis of genome-wide association studies and RT-PCR validation in polycystic ovary syndrome. Int J Mol Med 2017; 40:1385-1396. [PMID: 28949383 PMCID: PMC5627882 DOI: 10.3892/ijmm.2017.3146] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 09/07/2017] [Indexed: 01/25/2023] Open
Abstract
The purpose of this study was to identify promising candidate genes and pathways in polycystic ovary syndrome (PCOS). Microarray dataset GSE345269 obtained from the Gene Expression Omnibus database includes 7 granulosa cell samples from PCOS patients, and 3 normal granulosa cell samples. Differentially expressed genes (DEGs) were screened between PCOS and normal samples. Pathway enrichment analysis was conducted for DEGs using ClueGO and CluePedia plugin of Cytoscape. A Reactome functional interaction (FI) network of the DEGs was built using ReactomeFIViz, and then network modules were extracted, followed by pathway enrichment analysis for the modules. Expression of DEGs in granulosa cell samples was measured using quantitative RT-PCR. A total of 674 DEGs were retained, which were significantly enriched with inflammation and immune-related pathways. Eight modules were extracted from the Reactome FI network. Pathway enrichment analysis revealed significant pathways of each module: module 0, Regulation of RhoA activity and Signaling by Rho GTPases pathways shared ARHGAP4 and ARHGAP9; module 2, GlycoProtein VI-mediated activation cascade pathway was enriched with RHOG; module 3, Thromboxane A2 receptor signaling, Chemokine signaling pathway, CXCR4-mediated signaling events pathways were enriched with LYN, the hub gene of module 3. Results of RT-PCR confirmed the finding of the bioinformatic analysis that ARHGAP4, ARHGAP9, RHOG and LYN were significantly upregulated in PCOS. RhoA-related pathways, GlycoProtein VI-mediated activation cascade pathway, ARHGAP4, ARHGAP9, RHOG and LYN may be involved in the pathogenesis of PCOS.
Collapse
Affiliation(s)
- Haoran Shen
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, P.R. China
| | - Zhou Liang
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Saihua Zheng
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, P.R. China
| | - Xuelian Li
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, P.R. China
| |
Collapse
|
18
|
Phagocytic Receptors Activate Syk and Src Signaling during Borrelia burgdorferi Phagocytosis. Infect Immun 2017; 85:IAI.00004-17. [PMID: 28717031 DOI: 10.1128/iai.00004-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 07/10/2017] [Indexed: 11/20/2022] Open
Abstract
Phagocytosis of the Lyme disease-causing pathogen Borrelia burgdorferi has been shown to be important for generating an inflammatory response to the pathogen. As a result, understanding the mechanisms of phagocytosis has been an area of great interest in the field of Lyme disease. Several cell surface receptors that participate in B. burgdorferi phagocytosis have been reported, including the scavenger receptor MARCO and integrin α3β1. We sought to define the mechanisms by which these receptors mediate phagocytosis and to identify signaling pathways activated downstream of these receptors upon contact with B. burgdorferi We identified both Syk and Src signaling pathways as ones that participate in B. burgdorferi phagocytosis and the resulting cytokine activation. In our studies, we found that both MARCO and integrin β1 play a role in the activation of the Src kinase pathway. However, only integrin β1 participates in the activation of Syk. Interestingly, the integrin activates Syk without the help of the signaling adaptor Dap12 or FcRγ. Thus, we report that multiple pathways participate in B. burgdorferi internalization and that different cell surface receptors act simultaneously in cooperation and independently to mediate phagocytosis.
Collapse
|
19
|
Ascensión AM, Arrospide-Elgarresta M, Izeta A, Araúzo-Bravo MJ. NaviSE: superenhancer navigator integrating epigenomics signal algebra. BMC Bioinformatics 2017; 18:296. [PMID: 28587674 PMCID: PMC5461685 DOI: 10.1186/s12859-017-1698-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 05/18/2017] [Indexed: 01/23/2023] Open
Abstract
Background Superenhancers are crucial structural genomic elements determining cell fate, and they are also involved in the determination of several diseases, such as cancer or neurodegeneration. Although there are pipelines which use independent pieces of software to predict the presence of superenhancers from genome-wide chromatin marks or DNA-interaction protein binding sites, there is not yet an integrated software tool that processes automatically algebra combinations of raw data sequencing into a comprehensive final annotated report of predicted superenhancers. Results We have developed NaviSE, a user-friendly streamlined tool which performs a fully-automated parallel processing of genome-wide epigenomics data from sequencing files into a final report, built with a comprehensive set of annotated files that are navigated through a graphic user interface dynamically generated by NaviSE. NaviSE also implements an ‘epigenomics signal algebra’ that allows the combination of multiple activation and repression epigenomics signals. NaviSE provides an interactive chromosomal landscaping of the locations of superenhancers, which can be navigated to obtain annotated information about superenhancer signal profile, associated genes, gene ontology enrichment analysis, motifs of transcription factor binding sites enriched in superenhancers, graphs of the metrics evaluating the superenhancers quality, protein-protein interaction networks and enriched metabolic pathways among other features. We have parallelised the most time-consuming tasks achieving a reduction up to 30% for a 15 CPUs machine. We have optimized the default parameters of NaviSE to facilitate its use. NaviSE allows different entry levels of data processing, from sra-fastq files to bed files; and unifies the processing of multiple replicates. NaviSE outperforms the more time-consuming processes required in a non-integrated pipeline. Alongside its high performance, NaviSE is able to provide biological insights, predicting cell type specific markers, such as SOX2 and ZIC3 in embryonic stem cells, CDK5R1 and REST in neurons and CD86 and TLR2 in monocytes. Conclusions NaviSE is a user-friendly streamlined solution for superenhancer analysis, annotation and navigation, requiring only basic computer and next generation sequencing knowledge. NaviSE binaries and documentation are available at: https://sourceforge.net/projects/navise-superenhancer/. Electronic supplementary material The online version of this article (doi:10.1186/s12859-017-1698-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alex M Ascensión
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, San Sebastián, 20014, Spain.,Tissue Engineering Laboratory, Bioengineering Area, Biodonostia Health Research Institute, San Sebastián, 20014, Spain.,Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, 48940, Spain
| | - Mikel Arrospide-Elgarresta
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, San Sebastián, 20014, Spain
| | - Ander Izeta
- Tissue Engineering Laboratory, Bioengineering Area, Biodonostia Health Research Institute, San Sebastián, 20014, Spain.
| | - Marcos J Araúzo-Bravo
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, San Sebastián, 20014, Spain. .,IKERBASQUE, Basque Foundation for Science, Bilbao, 48013, Spain.
| |
Collapse
|
20
|
Wu Y, Hannigan M, Zhan L, Madri JA, Huang CK. -NOD Mice Having a Lyn Tyrosine Kinase Mutation Exhibit Abnormal Neutrophil Chemotaxis. J Cell Physiol 2017; 232:1689-1695. [PMID: 27591397 DOI: 10.1002/jcp.25583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/01/2016] [Indexed: 12/14/2022]
Abstract
Neutrophils from NOD (Non-Obese Diabetic) mice exhibited reduced migration speed, decreased frequency of directional changes, and loss of directionality during chemotaxis (compared to wild-type [WT] C57BL/6 mice). Additionally, F-actin of chemotaxing NOD neutrophils failed to orient toward the chemoattractant gradient and NOD neutrophil adhesion was impaired. A point mutation near the autophosphorylation site of Lyn in NOD mice was identified. Point mutations of G to A (G1412 in LynA and G1199 in LynB) cause a change of amino acid E393 (glutamic acid) to K (lysine) in LynA (E393 →K) (E372 of LynB), affecting fMLP-induced tyrosine phosphorylation. These data indicate that the Lyn mutation in NOD neutrophils is likely responsible for dysregulation of neutrophil adhesion and directed migration, implying the role of Lyn in modulating diabetic patient's susceptibility to bacterial and fungal infections. J. Cell. Physiol. 232: 1689-1695, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yue Wu
- Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut.,Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Michael Hannigan
- Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut
| | - Lijun Zhan
- Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut
| | - Joseph A Madri
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Chi-Kuang Huang
- Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut
| |
Collapse
|
21
|
Uncovering Clinical Features of De Novo Philadelphia Positive Myelodysplasia. Case Rep Hematol 2017; 2017:5404131. [PMID: 28321349 PMCID: PMC5339529 DOI: 10.1155/2017/5404131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/24/2017] [Indexed: 11/25/2022] Open
Abstract
Myelodysplastic syndrome (MDS) is cytogenetically heterogeneous and retains variable risk for acute myeloid leukemia transformation. Though not yet fully understood, there is an association between genetic abnormalities and defects in gene expression. The functional role for infrequent cytogenetic alteration remains unclear. An uncommon chromosomic abnormality is the presence of the Philadelphia (Ph) chromosome. Here, we report a patient with Ph+ MDS treated with low dose Dasatinib who achieved hematologic response for 7 months. In addition, we also examined the English literature on all de novo Ph + MDS cases between 1996 and 2015 to gain insight into clinical features and outcome.
Collapse
|
22
|
Wang G, Kuai D, Yang Y, Yang G, Wei Z, Zhao W. Screening of potential gene markers for predicting carotid atheroma plaque formation using bioinformatics approaches. Mol Med Rep 2017; 15:2039-2048. [PMID: 28260035 PMCID: PMC5365012 DOI: 10.3892/mmr.2017.6273] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 01/12/2017] [Indexed: 11/25/2022] Open
Abstract
The present study aimed to investigate potential gene markers for predicting the formation of carotid atheroma plaques using high-throughput bioinformatics methods. The GSE43292 gene expression profile was downloaded from the Gene Expression Omnibus database. Following data processing, differentially expressed genes (DEGs) were screened using a paired t-test in the Linear Models for Microarray Data package with the criteria of a false discovery rate of P<0.05 and |log2 fold-change| ≥0.58, followed by functional enrichment, protein-protein interaction (PPI) network construction, key node and module analysis, and prediction of transcription factors (TFs) targeting genes in the significant modules. The results revealed that the gene expression profiles from 32 paired samples of carotid atheroma plaque tissue and macroscopically intact tissue were obtained, based on which 886 DEGs, including 513 upregulated genes and 373 downregulated genes, were identified. The upregulated and downregulated gene sets were enriched in 24 and 13 pathways, respectively. The PPI network constructed with these DEGs comprised 35 key nodes with degrees ≥20, among which spleen tyrosine kinase (SYK), LYN and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit γ (PIK3CG) were the three highest. A significant module was mined in the PPI network, which consisted of 29 DEGs targeted by 11 TFs. The DEGs between the carotid atheroma plaque and macroscopically intact tissue samples may be involved in carotid atherogenesis. Key nodes in the PPI network constructed from these DEGs and the genes involved in the significant module, including SYK, LYN and PIK3CG, are promising for the prediction of carotid plaque formation.
Collapse
Affiliation(s)
- Guiming Wang
- Department of Surgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Dong Kuai
- Department of Neurosurgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Yudong Yang
- Department of Surgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Gaochao Yang
- Department of Surgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Zhigang Wei
- Department of Surgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Wenbo Zhao
- Department of Surgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
23
|
Barreca MM, Spinello W, Cavalieri V, Turturici G, Sconzo G, Kaur P, Tinnirello R, Asea AAA, Geraci F. Extracellular Hsp70 Enhances Mesoangioblast Migration via an Autocrine Signaling Pathway. J Cell Physiol 2017; 232:1845-1861. [PMID: 27925208 DOI: 10.1002/jcp.25722] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 11/29/2016] [Indexed: 12/20/2022]
Abstract
Mouse mesoangioblasts are vessel-associated progenitor stem cells endowed with the ability of multipotent mesoderm differentiation. Therefore, they represent a promising tool in the regeneration of injured tissues. Several studies have demonstrated that homing of mesoangioblasts into blood and injured tissues are mainly controlled by cytokines/chemokines and other inflammatory factors. However, little is known about the molecular mechanisms regulating their ability to traverse the extracellular matrix (ECM). Here, we demonstrate that membrane vesicles released by mesoangioblasts contain Hsp70, and that the released Hsp70 is able to interact by an autocrine mechanism with Toll-like receptor 4 (TLR4) and CD91 to stimulate migration. We further demonstrate that Hsp70 has a positive role in regulating matrix metalloproteinase 2 (MMP2) and MMP9 expression and that MMP2 has a more pronounced effect on cell migration, as compared to MMP9. In addition, the analysis of the intracellular pathways implicated in Hsp70 regulated signal transduction showed the involvement of both PI3K/AKT and NF-κB. Taken together, our findings present a paradigm shift in our understanding of the molecular mechanisms that regulate mesoangioblast stem cells ability to traverse the extracellular matrix (ECM). J. Cell. Physiol. 232: 1845-1861, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Maria M Barreca
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Walter Spinello
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Vincenzo Cavalieri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Giuseppina Turturici
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Gabriella Sconzo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Punit Kaur
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, Georgia
| | - Rosaria Tinnirello
- Biomedicine and Molecular Immunology Institute, National Center of Research, Palermo, Italy
| | - Alexzander A A Asea
- Department of Neurology and the Deanship for Scientific Research, University of Dammam, Dammam, Saudi Arabia
| | - Fabiana Geraci
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy.,Euro-Mediterranean Institute of Science and Technology, Palermo, Italy
| |
Collapse
|
24
|
Jing Y, Cai X, Xu Y, Zhu C, Wang L, Wang S, Zhu X, Gao P, Zhang Y, Jiang Q, Shu G. α-Lipoic Acids Promote the Protein Synthesis of C2C12 Myotubes by the TLR2/PI3K Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:1720-1729. [PMID: 26855124 DOI: 10.1021/acs.jafc.5b05952] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Skeletal muscle protein turnover is regulated by endocrine hormones, nutrients, and inflammation. α-Lipoic acid (ALA) plays an important role in energy homeostasis. Therefore, the aim of this study was to investigate the effects of ALA on protein synthesis in skeletal muscles and reveal the underlying mechanism. ALA (25 μM) significantly increased the protein synthesis and phosphorylation of Akt, mTOR, and S6 in C2C12 myotubes with attenuated phosphorylation of AMPK, Ikkα/β, and eIF2α. Intraperitoneal injection of 50 mg/kg ALA also produced the same results in mouse gastrocnemius. Both the PI3K (LY294002) and mTOR (rapamycin) inhibitors abolished the effects of ALA on protein synthesis in the C2C12 myotubes. However, AICAR (AMPK agonist) failed to block the activation of mTOR and S6 by ALA. ALA increased TLR2 and MyD88 mRNA expression in the C2C12 myotubes. TLR2 knockdown by siRNA almost eliminated the effects of ALA on protein synthesis and the Akt/mTOR pathway in the C2C12 myotubes. Immunoprecipitation data showed that ALA enhanced the p85 subunit of PI3K binding to MyD88. These findings indicate that ALA induces protein synthesis and the PI3K/Akt signaling pathway by TLR2.
Collapse
Affiliation(s)
- Yuanyuan Jing
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou 510640, Guangdong, China
| | - Xingcai Cai
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou 510640, Guangdong, China
| | - Yaqiong Xu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou 510640, Guangdong, China
| | - Canjun Zhu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou 510640, Guangdong, China
| | - Lina Wang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou 510640, Guangdong, China
| | - Songbo Wang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou 510640, Guangdong, China
| | - Xiaotong Zhu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou 510640, Guangdong, China
| | - Ping Gao
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou 510640, Guangdong, China
| | - Yongliang Zhang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou 510640, Guangdong, China
| | - Qingyan Jiang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou 510640, Guangdong, China
| | - Gang Shu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou 510640, Guangdong, China
| |
Collapse
|
25
|
Prakhar P, Holla S, Ghorpade DS, Gilleron M, Puzo G, Udupa V, Balaji KN. Ac2PIM-responsive miR-150 and miR-143 target receptor-interacting protein kinase 2 and transforming growth factor beta-activated kinase 1 to suppress NOD2-induced immunomodulators. J Biol Chem 2015; 290:26576-86. [PMID: 26391398 PMCID: PMC4646315 DOI: 10.1074/jbc.m115.662817] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 09/15/2015] [Indexed: 11/06/2022] Open
Abstract
Specific and coordinated regulation of innate immune receptor-driven signaling networks often determines the net outcome of the immune responses. Here, we investigated the cross-regulation of toll-like receptor (TLR)2 and nucleotide-binding oligomerization domain (NOD)2 pathways mediated by Ac2PIM, a tetra-acylated form of mycobacterial cell wall component and muramyl dipeptide (MDP), a peptidoglycan derivative respectively. While Ac2PIM treatment of macrophages compromised their ability to induce NOD2-dependent immunomodulators like cyclooxygenase (COX)-2, suppressor of cytokine signaling (SOCS)-3, and matrix metalloproteinase (MMP)-9, no change in the NOD2-responsive NO, TNF-α, VEGF-A, and IL-12 levels was observed. Further, genome-wide microRNA expression profiling identified Ac2PIM-responsive miR-150 and miR-143 to target NOD2 signaling adaptors, RIP2 and TAK1, respectively. Interestingly, Ac2PIM was found to activate the SRC-FAK-PYK2-CREB cascade via TLR2 to recruit CBP/P300 at the promoters of miR-150 and miR-143 and epigenetically induce their expression. Loss-of-function studies utilizing specific miRNA inhibitors establish that Ac2PIM, via the miRNAs, abrogate NOD2-induced PI3K-PKCδ-MAPK pathway to suppress β-catenin-mediated expression of COX-2, SOCS-3, and MMP-9. Our investigation has thus underscored the negative regulatory role of Ac2PIM-TLR2 signaling on NOD2 pathway which could broaden our understanding on vaccine potential or adjuvant utilities of Ac2PIM and/or MDP.
Collapse
Affiliation(s)
- Praveen Prakhar
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, Karnataka, India and
| | - Sahana Holla
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, Karnataka, India and
| | - Devram Sampat Ghorpade
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, Karnataka, India and
| | - Martine Gilleron
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS and Université de Toulouse, 31077 Toulouse, France
| | - Germain Puzo
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS and Université de Toulouse, 31077 Toulouse, France
| | - Vibha Udupa
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, Karnataka, India and
| | | |
Collapse
|