1
|
Gao X, Lu C, Wang K, Zheng C, Li L, Zhang X, Sun B. Ceramide Complex Ameliorates Metabolically Driven Neutrophil Senescence by Regulating Apoptosis via the cGAS-STING Pathway. Int J Med Sci 2025; 22:1124-1137. [PMID: 40027178 PMCID: PMC11866534 DOI: 10.7150/ijms.104801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/17/2024] [Indexed: 03/05/2025] Open
Abstract
Background: Population aging is increasingly recognized as a major global challenge. Researchers have identified a correlation between aging and immunosenescence, leading to dysfunction of the immune system. As a crucial component of the innate immune system, age-related changes in neutrophils have garnered significant attention from researchers, but the underlying mechanisms remain unclear. This study aims to comprehensively evaluate the senescence status and potential mechanisms of neutrophils, and to identify targets for delaying or even reversing senescence. Methods: Blood routine tests and Luminex Multiplex Cytokine Analysis were employed to assess inflammation levels in mice. Flow cytometry and an agarose chemotaxis model were used to evaluate baseline biological functions and stress responses of neutrophils. Transmission electron microscopy and flow cytometry were utilized to compare mitochondrial ultrastructure and function. Metabolomic analysis was performed to examine metabolic patterns. qPCR, Western blotting, and flow cytometry were used to investigate the potential mechanisms of ceramide intervention on neutrophils. Results: Our findings indicate that aged mice exhibit considerable variability in delayed apoptosis among bone marrow neutrophils, alongside a notable reduction in baseline functionality and stress response capabilities. Metabolomic analysis revealed a marked decrease in ceramide levels within aged neutrophils. In vitro ceramide intervention revitalized neutrophil functionality and partially inhibited delayed apoptosis, facilitating the efficient elimination of senescent neutrophils. The underlying mechanism behind these effects might be attributed to ceramide's modulation of mitochondrial permeability, which in turn influences the activation of the cGAS-STING pathway, as well as its regulatory role in maintaining the equilibrium of pro-apoptotic Bcl-2 protein levels. Conclusions: This investigation proficiently assessed neutrophil senescence in terms of both biological functionalities and intrinsic diversity, while concurrently exploring the feasibility and primary mechanisms through which ceramide intervention impacts neutrophil senescence at the levels of signaling pathways, protein expression, and cellular microarchitecture. These findings provide novel insights into evaluating and potentially intervening in immune senescence, with implications for organismal aging.
Collapse
Affiliation(s)
- Xi Gao
- Research Center for Neutrophil Engineering Technology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, Jiangsu Province, China
| | - Cheng Lu
- Research Center for Neutrophil Engineering Technology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, Jiangsu Province, China
| | - Kaixuan Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116000, Liaoning Province, China
| | - Chunfang Zheng
- Research Center for Neutrophil Engineering Technology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, Jiangsu Province, China
| | - Linbin Li
- Research Center for Neutrophil Engineering Technology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, Jiangsu Province, China
| | - Xin Zhang
- Research Center for Neutrophil Engineering Technology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, Jiangsu Province, China
| | - Bingwei Sun
- Research Center for Neutrophil Engineering Technology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, Jiangsu Province, China
| |
Collapse
|
2
|
Khuu L, Pillay A, Prichard A, Allen LAH. Effects of the pan-caspase inhibitor Q-VD-OPh on human neutrophil lifespan and function. PLoS One 2025; 20:e0316912. [PMID: 39775346 PMCID: PMC11706505 DOI: 10.1371/journal.pone.0316912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/18/2024] [Indexed: 01/30/2025] Open
Abstract
Human neutrophils are abundant, short-lived leukocytes that turn over at a rate of approximately 1011 cells/day via a constitutive apoptosis program. Certain growth factors, inflammatory mediators and infectious agents can delay apoptosis or induce neutrophils to die by other mechanisms. Nonetheless, a large body of data demonstrates that apoptosis of untreated neutrophils typically ensues within 24 hours of cell isolation and in vitro culture. At the molecular level apoptosis is driven by executioner caspase-3, and during this process cell proinflammatory capacity and host defense functions are downregulated. We undertook the current study to determine the extent to which human neutrophil viability and function could be prolonged by treatment with the non-toxic, irreversible, pan-caspase inhibitor Q-VD-OPh. Our data demonstrate that a single 10 μM dose of this drug was sufficient to markedly prolong cell lifespan. Specifically, we show that apoptosis was prevented for at least 5 days as indicated by analysis of nuclear morphology, DNA fragmentation, and phosphatidylserine externalization together with measurements of procaspase-3 processing and caspase activity. Conversely, mitochondrial depolarization declined despite abundant Myeloid Cell Leukemia 1 (MCL-1). At the same time, glutathione levels were maintained and Q-VD-OPh prevented age-associated increases mitochondrial oxidative stress. Regarding functional capacity, we show that phagocytosis, NADPH oxidase activity, chemotaxis, and degranulation were maintained following Q-VD-OPh treatment, albeit to somewhat different extents. Thus, a single 10 μM dose of Q-VD-OPh can sustain human neutrophil viability and function for at least 5 days.
Collapse
Affiliation(s)
- Lisa Khuu
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, United States of America
| | - Alisha Pillay
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, United States of America
| | - Allan Prichard
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, United States of America
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Lee-Ann H. Allen
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, United States of America
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| |
Collapse
|
3
|
Chakraborty S, Tabrizi Z, Bhatt NN, Franciosa SA, Bracko O. A Brief Overview of Neutrophils in Neurological Diseases. Biomolecules 2023; 13:biom13050743. [PMID: 37238612 DOI: 10.3390/biom13050743] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
Neutrophils are the most abundant leukocyte in circulation and are the first line of defense after an infection or injury. Neutrophils have a broad spectrum of functions, including phagocytosis of microorganisms, the release of pro-inflammatory cytokines and chemokines, oxidative burst, and the formation of neutrophil extracellular traps. Traditionally, neutrophils were thought to be most important for acute inflammatory responses, with a short half-life and a more static response to infections and injury. However, this view has changed in recent years showing neutrophil heterogeneity and dynamics, indicating a much more regulated and flexible response. Here we will discuss the role of neutrophils in aging and neurological disorders; specifically, we focus on recent data indicating the impact of neutrophils in chronic inflammatory processes and their contribution to neurological diseases. Lastly, we aim to conclude that reactive neutrophils directly contribute to increased vascular inflammation and age-related diseases.
Collapse
Affiliation(s)
| | - Zeynab Tabrizi
- Department of Biology, University of Miami, Coral Gables, FL 33146, USA
| | | | | | - Oliver Bracko
- Department of Biology, University of Miami, Coral Gables, FL 33146, USA
- Department of Neurology, University of Miami-Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
4
|
Morrison T, Watts ER, Sadiku P, Walmsley SR. The emerging role for metabolism in fueling neutrophilic inflammation. Immunol Rev 2023; 314:427-441. [PMID: 36326284 PMCID: PMC10953397 DOI: 10.1111/imr.13157] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Neutrophils are a critical element of host defense and are rapidly recruited to inflammatory sites. Such sites are frequently limited in oxygen and/or nutrient availability, presenting a metabolic challenge for infiltrating cells. Long believed to be uniquely dependent on glycolysis, it is now clear that neutrophils possess far greater metabolic plasticity than previously thought, with the capacity to generate energy stores and utilize extracellular proteins to fuel central carbon metabolism and biosynthetic activity. Out-with cellular energetics, metabolic programs have also been implicated in the production of neutrophils and their progenitors in the bone marrow compartment, activation of neutrophil antimicrobial responses, inflammatory and cell survival signaling cascades, and training of the innate immune response. Thus, understanding the mechanisms by which metabolic processes sustain changes in neutrophil effector functions and how these are subverted in disease states provides exciting new avenues for the treatment of dysfunctional neutrophilic inflammation which are lacking in clinical practice to date.
Collapse
Affiliation(s)
- Tyler Morrison
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, University of EdinburghEdinburghUK
| | - Emily R. Watts
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, University of EdinburghEdinburghUK
| | - Pranvera Sadiku
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, University of EdinburghEdinburghUK
| | - Sarah R. Walmsley
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, University of EdinburghEdinburghUK
| |
Collapse
|
5
|
Zhang S, Sun Z, Jiang X, Lu Z, Ding L, Li C, Tian X, Wang Q. Ferroptosis increases obesity: Crosstalk between adipocytes and the neuroimmune system. Front Immunol 2022; 13:1049936. [PMID: 36479119 PMCID: PMC9720262 DOI: 10.3389/fimmu.2022.1049936] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/07/2022] [Indexed: 11/22/2022] Open
Abstract
Ferroptosis requires not only the accumulation of iron ions, but also changes in many ferroptosis-related regulators, including a decrease in GPX4 and inhibition of SLC7A11 for classical ferroptosis, a deletion of FSP1 or GCH1. Surprisingly, adipose tissue (AT) in the obesity conditions is also accompanied by iron buildup, decreased GSH, and increased ROS. On the neurological side, the pro-inflammatory factor released by AT may have first caused ferroptosis in the vagus nerve by inhibiting of the NRF2-GPX4 pathway, resulting in disorders of the autonomic nervous system. On the immune side, obesity may cause M2 macrophages ferroptosis due to damage to iron-rich ATMs (MFehi) and antioxidant ATMs (Mox), and lead to Treg cells ferroptosis through reductions in NRF2, GPX4, and GCH1 levels. At the same time, the reduction in GPX4 may also trigger the ferroptosis of B1 cells. In addition, some studies have also found the role of GPX4 in neutrophil autophagy, which is also worth pondering whether there is a connection with ferroptosis. In conclusion, this review summarizes the associations between neuroimmune regulation associated with obesity and ferroptosis, and on the basis of this, highlights their potential molecular mechanisms, proposing that ferroptosis in one or more cells in a multicellular tissue changes the fate of that tissue.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xuewen Tian
- *Correspondence: Xuewen Tian, ; Qinglu Wang,
| | - Qinglu Wang
- *Correspondence: Xuewen Tian, ; Qinglu Wang,
| |
Collapse
|
6
|
Wang X, Tang M, Zhang Y, Li Y, Mao J, Deng Q, Li S, Jia Z, Du L. Dexamethasone enhances glucose uptake by SGLT1 and GLUT1 and boosts ATP generation through the PPP-TCA cycle in bovine neutrophils. J Vet Sci 2022; 23:e76. [PMID: 36174980 PMCID: PMC9523333 DOI: 10.4142/jvs.22112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 11/20/2022] Open
Abstract
Background Clinical dexamethasone (DEX) treatment or stress in bovines results in extensive physiological changes with prominent hyperglycemia and neutrophils dysfunction. Objectives To elucidate the effects of DEX treatment in vivo on cellular energy status and the underlying mechanism in circulating neutrophils. Methods We selected eight-month-old male bovines and injected DEX for 3 consecutive days (1 time/d). The levels of glucose, total protein (TP), total cholesterol (TC), and the proinflammatory cytokines interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α in blood were examined, and we then detected glycogen and adenosine triphosphate (ATP) content, phosphofructosekinase-1 (PFK1) and glucose-6-phosphate dehydrogenase (G6PDH) activity, glucose transporter (GLUT)1, GLUT4, sodium/glucose cotransporter (SGLT)1 and citrate synthase (CS) protein expression and autophagy levels in circulating neutrophils. Results DEX injection markedly increased blood glucose, TP and TC levels, the Ca2+/P5+ ratio and the neutrophil/lymphocyte ratio and significantly decreased blood IL-1β, IL-6 and TNF-α levels. Particularly in neutrophils, DEX injection inhibited p65-NFκB activation and elevated glycogen and ATP contents and SGLT1, GLUT1 and GR expression while inhibiting PFK1 activity, enhancing G6PDH activity and CS expression and lowering cell autophagy levels. Conclusions DEX induced neutrophils glucose uptake by enhancing SGLT1 and GLUT1 expression and the transformation of energy metabolism from glycolysis to pentose phosphate pathway (PPP)-tricarboxylic acid (TCA) cycle. This finding gives us a new perspective on deeper understanding of clinical anti-inflammatory effects of DEX on bovine.
Collapse
Affiliation(s)
- Xinbo Wang
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Mingyu Tang
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Yuming Zhang
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China.,Key Laboratory for Prevention and Control of Herbivorous Livestock Perinatal Diseases, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Yansong Li
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Jingdong Mao
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Qinghua Deng
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China.,Key Laboratory for Prevention and Control of Herbivorous Livestock Perinatal Diseases, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Shusen Li
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Zhenwei Jia
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Liyin Du
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China.,Key Laboratory for Prevention and Control of Herbivorous Livestock Perinatal Diseases, Inner Mongolia Minzu University, Tongliao 028000, China.
| |
Collapse
|
7
|
Chokesuwattanaskul S, Fresneda Alarcon M, Mangalakumaran S, Grosman R, Cross AL, Chapman EA, Mason D, Moots RJ, Phelan MM, Wright HL. Metabolic Profiling of Rheumatoid Arthritis Neutrophils Reveals Altered Energy Metabolism That Is Not Affected by JAK Inhibition. Metabolites 2022; 12:650. [PMID: 35888774 PMCID: PMC9321732 DOI: 10.3390/metabo12070650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 02/05/2023] Open
Abstract
Neutrophils play a key role in the pathophysiology of rheumatoid arthritis (RA) where release of ROS and proteases directly causes damage to joints and tissues. Neutrophil function can be modulated by Janus Kinase (JAK) inhibitor drugs, including tofacitinib and baricitinib, which are clinically effective treatments for RA. However, clinical trials have reported increased infection rates and transient neutropenia during therapy. The subtle differences in the mode of action, efficacy and safety of JAK inhibitors have been the primary research topic of many clinical trials and systematic reviews, to provide a more precise and targeted treatment to patients. The aim of this study was to determine both the differences in the metabolome of neutrophils from healthy controls and people with RA, and the effect of different JAK inhibitors on the metabolome of healthy and RA neutrophils. Isolated neutrophils from healthy controls (HC) (n = 6) and people with RA (n = 7) were incubated with baricitinib, tofacitinib or a pan-JAK inhibitor (all 200 ng/mL) for 2 h. Metabolites were extracted, and 1H nuclear magnetic resonance (NMR) was applied to study the metabolic changes. Multivariate analyses and machine learning models showed a divergent metabolic pattern in RA neutrophils compared to HC at 0 h (F1 score = 86.7%) driven by energy metabolites (ATP, ADP, GTP and glucose). No difference was observed in the neutrophil metabolome when treated with JAK inhibitors. However, JAK inhibitors significantly inhibited ROS production and baricitinib decreased NET production (p < 0.05). Bacterial killing was not impaired by JAK inhibitors, indicating that the effect of JAK inhibitors on neutrophils can inhibit joint damage in RA without impairing host defence. This study highlights altered energy metabolism in RA neutrophils which may explain the cause of their dysregulation in inflammatory disease.
Collapse
Affiliation(s)
| | - Michele Fresneda Alarcon
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK; (M.F.A.); (A.L.C.); (E.A.C.)
| | | | - Rudi Grosman
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7BE, UK; (R.G.); (M.M.P.)
- High Field NMR Facility, Liverpool Shared Research Facilities University of Liverpool, Liverpool L69 7TX, UK
| | - Andrew L. Cross
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK; (M.F.A.); (A.L.C.); (E.A.C.)
| | - Elinor A. Chapman
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK; (M.F.A.); (A.L.C.); (E.A.C.)
| | - David Mason
- Centre for Cell Imaging, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7TX, UK;
| | - Robert J. Moots
- Department of Rheumatology, Aintree University Hospital, Liverpool L9 7AL, UK;
- Faculty of Health, Social Care and Medicine, Edge Hill University, Ormskirk L39 4QP, UK
| | - Marie M. Phelan
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7BE, UK; (R.G.); (M.M.P.)
- High Field NMR Facility, Liverpool Shared Research Facilities University of Liverpool, Liverpool L69 7TX, UK
| | - Helen L. Wright
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK; (M.F.A.); (A.L.C.); (E.A.C.)
| |
Collapse
|
8
|
Chen JJ, Thiyagarajah M, Song J, Chen C, Herrmann N, Gallagher D, Rapoport MJ, Black SE, Ramirez J, Andreazza AC, Oh P, Marzolini S, Graham SJ, Lanctôt KL. Altered central and blood glutathione in Alzheimer's disease and mild cognitive impairment: a meta-analysis. Alzheimers Res Ther 2022; 14:23. [PMID: 35123548 PMCID: PMC8818133 DOI: 10.1186/s13195-022-00961-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 01/06/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND Increasing evidence implicates oxidative stress (OS) in Alzheimer disease (AD) and mild cognitive impairment (MCI). Depletion of the brain antioxidant glutathione (GSH) may be important in OS-mediated neurodegeneration, though studies of post-mortem brain GSH changes in AD have been inconclusive. Recent in vivo measurements of the brain and blood GSH may shed light on GSH changes earlier in the disease. AIM To quantitatively review in vivo GSH in AD and MCI compared to healthy controls (HC) using meta-analyses. METHOD Studies with in vivo brain or blood GSH levels in MCI or AD with a HC group were identified using MEDLINE, PsychInfo, and Embase (1947-June 2020). Standardized mean differences (SMD) and 95% confidence intervals (CI) were calculated for outcomes using random effects models. Outcome measures included brain GSH (Meshcher-Garwood Point Resolved Spectroscopy (MEGA-PRESS) versus non-MEGA-PRESS) and blood GSH (intracellular versus extracellular) in AD and MCI. The Q statistic and Egger's test were used to assess heterogeneity and risk of publication bias, respectively. RESULTS For brain GSH, 4 AD (AD=135, HC=223) and 4 MCI (MCI=213, HC=211) studies were included. For blood GSH, 26 AD (AD=1203, HC=1135) and 7 MCI (MCI=434, HC=408) studies were included. Brain GSH overall did not differ in AD or MCI compared to HC; however, the subgroup of studies using MEGA-PRESS reported lower brain GSH in AD (SMD [95%CI] -1.45 [-1.83, -1.06], p<0.001) and MCI (-1.15 [-1.71, -0.59], z=4.0, p<0.001). AD had lower intracellular and extracellular blood GSH overall (-0.87 [-1. 30, -0.44], z=3.96, p<0.001). In a subgroup analysis, intracellular GSH was lower in MCI (-0.66 [-1.11, -0.21], p=0.025). Heterogeneity was observed throughout (I2 >85%) and not fully accounted by subgroup analysis. Egger's test indicated risk of publication bias. CONCLUSION Blood intracellular GSH decrease is seen in MCI, while both intra- and extracellular decreases were seen in AD. Brain GSH is decreased in AD and MCI in subgroup analysis. Potential bias and heterogeneity suggest the need for measurement standardization and additional studies to explore sources of heterogeneity.
Collapse
Affiliation(s)
- Jinghan Jenny Chen
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Room FG52, Toronto, ON, M4N 3M5, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Mathura Thiyagarajah
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Room FG52, Toronto, ON, M4N 3M5, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Jianmeng Song
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Room FG52, Toronto, ON, M4N 3M5, Canada
| | - Clara Chen
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Room FG52, Toronto, ON, M4N 3M5, Canada
| | - Nathan Herrmann
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Room FG52, Toronto, ON, M4N 3M5, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Geriatric Psychiatry, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Damien Gallagher
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Geriatric Psychiatry, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Mark J Rapoport
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Geriatric Psychiatry, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Sandra E Black
- Evaluative Clinical Sciences, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- KITE-Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada
| | - Joel Ramirez
- Evaluative Clinical Sciences, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Ana C Andreazza
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Paul Oh
- KITE-Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada
| | - Susan Marzolini
- KITE-Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada
| | - Simon J Graham
- Physical Sciences, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Krista L Lanctôt
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Room FG52, Toronto, ON, M4N 3M5, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
- Geriatric Psychiatry, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.
- Evaluative Clinical Sciences, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada.
| |
Collapse
|
9
|
Wang X, Zhang Y, Li Y, Tang M, Deng Q, Mao J, Du L. Estrogen Regulates Glucose Metabolism in Cattle Neutrophils Through Autophagy. Front Vet Sci 2021; 8:773514. [PMID: 34912878 PMCID: PMC8666889 DOI: 10.3389/fvets.2021.773514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/09/2021] [Indexed: 11/17/2022] Open
Abstract
Hypoglycemia resulting from a negative energy balance (NEB) in periparturient cattle is the major reason for a reduced glycogen content in polymorphonuclear neutrophils (PMNs). The lack of glycogen induces PMNs dysfunction and is responsible for the high incidence of perinatal diseases. The perinatal period is accompanied by dramatic changes in sex hormones levels of which estrogen (17β-estradiol, E2) has been shown to be closely associated with PMNs function. However, the precise regulatory mechanism of E2 on glucose metabolism in cattle PMNs has not been elucidated. Cattle PMNs were cultured in RPMI 1640 with 2.5 (LG), 5.5 (NG) and 25 (HG) mM glucose and E2 at 20 (EL), 200 (EM) and 450 (EH) pg/mL. We found that E2 maintained PMNs viability in different glucose conditions, and promoted glycogen synthesis by inhibiting PFK1, G6PDH and GSK-3β activity in LG while enhancing PFK1 and G6PDH activity and inhibiting GSK-3β activity in HG. E2 increased the ATP content in LG but decreased it in HG. This indicated that the E2-induced increase/decrease of ATP content may be independent of glycolysis and the pentose phosphate pathway (PPP). Further analysis showed that E2 promoted the activity of hexokinase (HK) and GLUT1, GLUT4 and SGLT1 expression in LG, while inhibiting GLUT1, GLUT4 and SGLT1 expression in HG. Finally, we found that E2 increased LC3, ATG5 and Beclin1 expression, inhibited p62 expression, promoting AMPK-dependent autophagy in LG, but with the opposite effect in HG. Moreover, E2 increased the Bcl-2/Bax ratio and decreased the apoptosis rate of PMNs in LG but had the opposite effect in HG. These results showed that E2 could promote AMPK-dependent autophagy and inhibit apoptosis in response to glucose-deficient environments. This study elucidated the detailed mechanism by which E2 promotes glycogen storage through enhancing glucose uptake and retarding glycolysis and the PPP in LG. Autophagy is essential for providing ATP to maintain the survival and immune potential of PMNs. These results provided significant evidence for further understanding the effects of E2 on PMNs immune potential during the hypoglycemia accompanying perinatal NEB in cattle.
Collapse
Affiliation(s)
- Xinbo Wang
- Clinical Veterinary Laboratory, College of Animal Science and Technology, Inner Mongolia MINZU University, Tongliao, China
| | - Yuming Zhang
- Clinical Veterinary Laboratory, College of Animal Science and Technology, Inner Mongolia MINZU University, Tongliao, China
| | - Yansong Li
- Clinical Veterinary Laboratory, College of Animal Science and Technology, Inner Mongolia MINZU University, Tongliao, China
| | - Mingyu Tang
- Clinical Veterinary Laboratory, College of Animal Science and Technology, Inner Mongolia MINZU University, Tongliao, China
| | - Qinghua Deng
- Clinical Veterinary Laboratory, College of Animal Science and Technology, Inner Mongolia MINZU University, Tongliao, China
| | - Jingdong Mao
- Clinical Veterinary Laboratory, College of Animal Science and Technology, Inner Mongolia MINZU University, Tongliao, China
| | - Liyin Du
- Clinical Veterinary Laboratory, College of Animal Science and Technology, Inner Mongolia MINZU University, Tongliao, China
| |
Collapse
|