1
|
Kuriakose AE, Pandey N, Shan D, Banerjee S, Yang J, Nguyen KT. Characterization of Photoluminescent Polylactone-Based Nanoparticles for Their Applications in Cardiovascular Diseases. Front Bioeng Biotechnol 2019; 7:353. [PMID: 31824940 PMCID: PMC6886382 DOI: 10.3389/fbioe.2019.00353] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 11/06/2019] [Indexed: 01/18/2023] Open
Abstract
Cardiovascular diseases (CVD) affect a large number of the population across the globe and are the leading cause of death worldwide. Nanotechnology-based drug delivery has currently offered novel therapeutic options to treat these diseases, yet combination of both diagnostic and therapeutic abilities is further needed to understand factors and/or mechanisms that affect the treatment in order to design better therapies to challenge CVD. Biodegradable photoluminescent polylactones (BPLPLs) enable to bridge this gap as these materials exhibit a stable, long-term intrinsic fluorescence as well as offers excellent cytocompatibility and biodegradability properties. Herein, we formulated three different BPLPL based nanoparticles (NPs), including BPLP-co-poly (L-lactic acid) (BPLPL-PLLA), BPLP-co-poly (lactic-co-glycolic acid) copolymers with lactic acid and glycolic acid ratios of 75:25 (BPLPL-PLGA75:25) and 50:50 (BPLPL-PLGA50:50), and extensively evaluated their suitability as theranostic nanocarriers for CVD applications. All BPLPL based NPs were <160 nm in size and had photoluminescence characteristics and tunable release kinetics of encapsulated protein model depending on polylactones copolymerized with BPLP materials. Compared to BPLPL-PLLA NPs, BPLPL-PLGA NPs demonstrated excellent stability in various formulations including deionized water, serum, saline, and simulated body fluid over 2 days. In vitro cell studies with human umbilical vein derived endothelial cells showed dose-dependent accumulation of BPLPL-based NPs, and BPLPL-PLGA NPs presented superior compatibility with endothelial cells in terms of viability with minimal effects on cellular functions such as nitric oxide production. Furthermore, all BPLPL NPs displayed hemocompatibility with no effect on whole blood kinetic profiles, were non-hemolytic, and consisted of comparable platelet responses such as platelet adhesion and activation to those of PLGA, an FDA approved material. Overall, our results demonstrated that BPLPL-PLGA based NPs have better physical and biological properties than BPLPL-PLLA; hence they have potential to be utilized as functional nanocarriers for therapy and diagnosis of CVD.
Collapse
Affiliation(s)
- Aneetta E Kuriakose
- Bioengineering Department, The University of Texas at Arlington, Arlington, TX, United States
| | - Nikhil Pandey
- Bioengineering Department, The University of Texas at Arlington, Arlington, TX, United States
| | - Dingying Shan
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, United States
| | - Subhash Banerjee
- Division of Cardiology, VA North Texas Medical Center, Dallas, TX, United States.,Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Jian Yang
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, United States
| | - Kytai T Nguyen
- Bioengineering Department, The University of Texas at Arlington, Arlington, TX, United States
| |
Collapse
|
2
|
Huuskes BM, DeBuque RJ, Kerr PG, Samuel CS, Ricardo SD. The Use of Live Cell Imaging and Automated Image Analysis to Assist With Determining Optimal Parameters for Angiogenic Assay in vitro. Front Cell Dev Biol 2019; 7:45. [PMID: 31024908 PMCID: PMC6468051 DOI: 10.3389/fcell.2019.00045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/15/2019] [Indexed: 11/16/2022] Open
Abstract
Testing angiogenic potential and function of cells in culture is important for the understanding of the mechanisms that can modulate angiogenesis, especially when discovering novel anti- or pro-angiogenic therapeutics. Commonly used angiogenic assays include tube formation, proliferation, migration, and wound healing, and although well-characterized, it is important that methodology is standardized and reproducible. Human endothelial progenitor cells (EPCs) are critical for post-natal vascular homeostasis and can be isolated from human peripheral blood. Endothelial colony forming cells (ECFCs) are a subset of EPCs and are of interest as a possible therapeutic target for hypoxic diseases such as kidney disease, as they have a high angiogenic potential. However, once ECFCs are identified in culture, the exact timing of passaging has not been well-described and the optimal conditions to perform angiogenic assays such as seeding density, growth media (GM) concentrations and end-points of these assays is widely varied in the literature. Here, we describe the process of isolating, culturing and passaging ECFCs from patients with end-stage renal disease (ESRD), aided by image analysis. We further describe optimal conditions, for human bladder endothelial cells (hBECs), challenged in angiogenic assays and confirm that cell density is a limiting factor in accurately detecting angiogenic parameters. Furthermore, we show that GM along is enough to alter the angiogenic potential of cells, seeded at the same density. Lastly, we report on the success of human ECFCs in angiogenic assays and describe the benefits of live-cell imaging combined with time-lapse microscopy for this type of investigation.
Collapse
Affiliation(s)
- Brooke M Huuskes
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Ryan J DeBuque
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Peter G Kerr
- Department of Nephrology, Monash Medical Centre, Monash University, Melbourne, VIC, Australia
| | - Chrishan S Samuel
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Sharon D Ricardo
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
3
|
Ozkok A, Yildiz A. Endothelial Progenitor Cells and Kidney Diseases. Kidney Blood Press Res 2018; 43:701-718. [PMID: 29763891 DOI: 10.1159/000489745] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/03/2018] [Indexed: 01/12/2023] Open
Abstract
Endothelial progenitor cells (EPC) are bone marrow derived or tissue-resident cells that play major roles in the maintenance of vascular integrity and repair of endothelial damage. Although EPCs may be capable of directly engrafting and regenerating the endothelium, the most important effects of EPCs seem to be depended on paracrine effects. In recent studies, specific microvesicles and mRNAs have been found to mediate the pro-angiogenic and regenerative effects of EPCs on endothelium. EPC counts have important prognostic implications in cardiovascular diseases (CVD). Uremia and inflammation are associated with lower EPC counts which probably contribute to increased CVD risks in patients with chronic kidney disease. Beneficial effects of the EPC therapies have been shown in studies performed on different models of CVD and kidney diseases such as acute and chronic kidney diseases and glomerulonephritis. However, lack of a clear definition and specific marker of EPCs is the most important problem causing difficulties in interpretation of the results of the studies investigating EPCs.
Collapse
Affiliation(s)
- Abdullah Ozkok
- University of Health Sciences, Umraniye Training and Research Hospital, Department of Nephrology, Istanbul, Turkey,
| | - Alaattin Yildiz
- Istanbul University, Istanbul Faculty of Medicine, Department of Nephrology, Istanbul, Turkey
| |
Collapse
|
4
|
Gui J, Potthast A, Rohrbach A, Borns K, Das AM, von Versen-Höynck F. Gestational diabetes induces alterations of sirtuins in fetal endothelial cells. Pediatr Res 2016; 79:788-98. [PMID: 26717002 DOI: 10.1038/pr.2015.269] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 10/16/2015] [Indexed: 01/01/2023]
Abstract
BACKGROUND Gestational diabetes (GDM) has long-term consequences for the offspring. Sirtuins (SIRTs) are associated with vascular and metabolic functions. We studied the impact of GDM on SIRT activity and expression in fetal endothelial colony-forming cells (ECFCs) and human umbilical vein endothelial cells (HUVECs) from pregnancies complicated by GDM. METHODS ECFCs and HUVECs were isolated from cord and cord blood of 10 uncomplicated pregnancies (NPs) and 10 GDM pregnancies. Nicotinamidadenindinukleotid (NAD(+)) concentration, SIRT1 and SIRT3 activity, transcription levels of SIRT1, SIRT3, and SIRT4, and protein levels of SIRT1, SIRT3, and SIRT4 were determined in vitro with or without SIRT activators resveratrol (RSV) and paeonol. RESULTS Fetal ECFCs from GDM pregnancies showed a decreased NAD(+) concentration, reduced SIRT1 and SIRT3 activity, and lower transcription levels of SIRT1, SIRT3, and SIRT4. HUVECs from GDM pregnancies had decreased NAD(+) concentrations and transcription levels of SIRT1 and SIRT4. RSV markedly enhanced the expression and activity of SIRTs in ECFCs and HUVECs, while paeonol was active only in ECFCs. CONCLUSION A reduction of SIRT activity and expression in fetal endothelial cells provides potential mechanistic insights into the pathophysiology of long-term cardiovascular complications observed in the offspring of GDM pregnancies. SIRT activators can increase SIRT activity in ECFCs, which opens perspectives for new therapeutic targets.
Collapse
Affiliation(s)
- Juan Gui
- Department of Obstetrics and Gynecology, Hannover Medical School, Hannover, Germany.,Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Arne Potthast
- Department of Pediatrics, Hannover Medical School, Hannover, Germany
| | - Anne Rohrbach
- Department of Obstetrics and Gynecology, Hannover Medical School, Hannover, Germany
| | - Katja Borns
- Department of Obstetrics and Gynecology, Hannover Medical School, Hannover, Germany
| | - Anibh M Das
- Department of Pediatrics, Hannover Medical School, Hannover, Germany
| | | |
Collapse
|
5
|
Lan H, Wang Y, Yin T, Wang Y, Liu W, Zhang X, Yu Q, Wang Z, Wang G. Progress and prospects of endothelial progenitor cell therapy in coronary stent implantation. J Biomed Mater Res B Appl Biomater 2015; 104:1237-47. [PMID: 26059710 DOI: 10.1002/jbm.b.33398] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 12/20/2014] [Accepted: 02/16/2015] [Indexed: 01/04/2023]
Abstract
Drug-eluting stents (DES) have been widely used to treat coronary artery disease (CAD) since their clinical use has significantly reduced the occurrence of in-stent restenosis (ISR) as compared with the initially applied bare-metal stents (BMS). However, analyses of long-term clinical outcome have raised concerns about the serious safety problem of DES, such as ISR caused by late or very late thrombosis. Various studies showed that those complications were associated with vascular endothelial injury/dysfunction or endothelialization delaying. Recently, through biological characterization of endothelial progenitor cells (EPCs), mechanistic understanding of rapid re-endothelialization of the vascular injury sites after coronary stenting has become possible and is a new research hotspot in the prevention of ISR and late/very late stent thrombosis. It has been well recognized that the formation of a functional endothelial layer from EPCs requires a coordinated sequence of multistep and signaling events, which includes cell mobilization, adhesion, migration and finally the differentiation to vascular endothelial cells (VECs). In this review, we summarize and discuss the currently relevant information about EPCs, the mechanism of DES interfering with the natural vascular healing process in preventing or delaying the formation of a functional endothelial layer, and EPCs-mediated acceleration of re-endothelialization at vascular injury sites. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1237-1247, 2016.
Collapse
Affiliation(s)
- Hualin Lan
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering of Chongqing University, Chongqing, China
| | - Yi Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering of Chongqing University, Chongqing, China
| | - Tieyin Yin
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering of Chongqing University, Chongqing, China
| | - Yazhou Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering of Chongqing University, Chongqing, China
| | - Wanqian Liu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering of Chongqing University, Chongqing, China
| | - Xiaojuan Zhang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering of Chongqing University, Chongqing, China
| | - Qinsong Yu
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, Missouri
| | - Zhaoxu Wang
- Laboratory of Biomaterials and Tissue Engineering, National Institutes for Food and Drug Control, Beijing, China
| | - Guixue Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering of Chongqing University, Chongqing, China
| |
Collapse
|
6
|
Chang E, Paterno J, Duscher D, Maan ZN, Chen JS, Januszyk M, Rodrigues M, Rennert RC, Bishop S, Whitmore AJ, Whittam AJ, Longaker MT, Gurtner GC. Exercise induces stromal cell-derived factor-1α-mediated release of endothelial progenitor cells with increased vasculogenic function. Plast Reconstr Surg 2015; 135:340e-350e. [PMID: 25626819 PMCID: PMC4311572 DOI: 10.1097/prs.0000000000000917] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Endothelial progenitor cells have been shown to traffic to and incorporate into ischemic tissues, where they participate in new blood vessel formation, a process termed vasculogenesis. Previous investigation has demonstrated that endothelial progenitor cells appear to mobilize from bone marrow to the peripheral circulation after exercise. In this study, the authors investigate potential etiologic factors driving this mobilization and investigate whether the mobilized endothelial progenitor cells are the same as those present at baseline. METHODS Healthy volunteers (n = 5) performed a monitored 30-minute run to maintain a heart rate greater than 140 beats/min. Venous blood samples were collected before, 10 minutes after, and 24 hours after exercise. Endothelial progenitor cells were isolated and evaluated. RESULTS Plasma levels of stromal cell-derived factor-1α significantly increased nearly two-fold immediately after exercise, with a nearly four-fold increase in circulating endothelial progenitor cells 24 hours later. The endothelial progenitor cells isolated following exercise demonstrated increased colony formation, proliferation, differentiation, and secretion of angiogenic cytokines. Postexercise endothelial progenitor cells also exhibited a more robust response to hypoxic stimulation. CONCLUSIONS Exercise appears to mobilize endothelial progenitor cells and augment their function by means of stromal cell-derived factor 1α-dependent signaling. The population of endothelial progenitor cells mobilized following exercise is primed for vasculogenesis with increased capacity for proliferation, differentiation, secretion of cytokines, and responsiveness to hypoxia. Given the evidence demonstrating positive regenerative effects of exercise, this may be one possible mechanism for its benefits.
Collapse
Affiliation(s)
- Edwin Chang
- Hagey Laboratory for Pediatric Regenerative Medicine; Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA
| | - Josemaria Paterno
- Hagey Laboratory for Pediatric Regenerative Medicine; Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA
| | - Dominik Duscher
- Hagey Laboratory for Pediatric Regenerative Medicine; Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA
| | - Zeshaan N. Maan
- Hagey Laboratory for Pediatric Regenerative Medicine; Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA
| | - Jerry S. Chen
- Hagey Laboratory for Pediatric Regenerative Medicine; Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA
| | - Michael Januszyk
- Hagey Laboratory for Pediatric Regenerative Medicine; Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA
| | - Melanie Rodrigues
- Hagey Laboratory for Pediatric Regenerative Medicine; Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA
| | - Robert C. Rennert
- Hagey Laboratory for Pediatric Regenerative Medicine; Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA
| | - Sarah Bishop
- Hagey Laboratory for Pediatric Regenerative Medicine; Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA
| | - Arnetha J. Whitmore
- Hagey Laboratory for Pediatric Regenerative Medicine; Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA
| | - Alexander J. Whittam
- Hagey Laboratory for Pediatric Regenerative Medicine; Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA
| | - Michael T. Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine; Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA
| | - Geoffrey C. Gurtner
- Hagey Laboratory for Pediatric Regenerative Medicine; Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
7
|
Liberda EN, Cuevas AK, Qu Q, Chen LC. The acute exposure effects of inhaled nickel nanoparticles on murine endothelial progenitor cells. Inhal Toxicol 2014; 26:588-97. [PMID: 25144474 PMCID: PMC4212263 DOI: 10.3109/08958378.2014.937882] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
INTRODUCTION The discovery of endothelial progenitor cells (EPCs) may help to explain observed cardiovascular effects associated with inhaled nickel nanoparticle exposures, such as increases in vascular inflammation, generation of reactive oxygen species, altered vasomotor tone and potentiated atherosclerosis in murine species. METHODS Following an acute whole body inhalation exposure to 500 µg/m(3) of nickel nanoparticles for 5 h, bone marrow EPCs from C57BL/6 mice were isolated. EPCs were harvested for their RNA or used in a variety of assays including chemotaxis, tube formation and proliferation. Gene expression was assessed for important receptors involved in EPC mobilization and homing using RT-PCR methods. EPCs, circulating endothelial progenitor cells (CEPCs), circulating endothelial cells (CECs) and endothelial microparticles (EMPs) were quantified on a BD FACSCalibur to examine endothelial damage and repair associated with the exposure. RESULTS AND CONCLUSIONS Acute exposure to inhaled nickel nanoparticles significantly increased both bone marrow EPCs as well as their levels in circulation (CEPCs). CECs were significantly elevated indicating that endothelial damage occurred due to the exposure. There was no significant difference in EMPs between the two groups. Tube formation and chemotaxis, but not proliferation, of bone marrow EPCs was impaired in the nickel nanoparticle exposed group. These results coincided with a decrease in the mRNA of receptors involved in EPC mobilization and homing. These data provide new insight into how an acute nickel nanoparticle exposure to half of the current Occupational Safety & Health Administration (OSHA) permissible exposure limit may adversely affect EPCs and exacerbate cardiovascular disease states.
Collapse
Affiliation(s)
- Eric N Liberda
- New York University School of Medicine, Department of Environmental Medicine, Tuxedo, NY
- School of Occupational and Public Health, Ryerson University, Ontario, Canada
| | - Azita K Cuevas
- New York University School of Medicine, Department of Environmental Medicine, Tuxedo, NY
| | - Qingshan Qu
- New York University School of Medicine, Department of Environmental Medicine, Tuxedo, NY
| | - Lung Chi Chen
- New York University School of Medicine, Department of Environmental Medicine, Tuxedo, NY
| |
Collapse
|
8
|
Abstract
Discovered more than 15 years ago, endothelial progenitor cells attract both basic and translational researchers. It has become clear that they represent a heterogeneous population of endothelial colony-forming cells, early or late outgrowth endothelial cells, or blood outgrowth endothelial cells, each characterized by differing proliferative and regenerative capacity. Scattered within the vascular wall, these cells participate in angiogenesis and vasculogenesis and support regeneration of epithelial cells. There is growing evidence that this cell population is impaired during the course of chronic cardiovascular and kidney disease when it undergoes premature senescence and loss of specialized functions. Senescence-associated secretory products released by such cells can affect the neighboring cells and further exacerbate their regenerative capacity. For these reasons, adoptive transfer of endothelial progenitor cells is being used in more than 150 ongoing clinical trials of diverse cardiovascular diseases. Attempts to rejuvenate this cell population either ex vivo or in situ are emerging. The progress in this field is paramount to regenerate the injured kidney.
Collapse
Affiliation(s)
- Michael S Goligorsky
- Department of Medicine, Department of Pharmacology, and Department of Physiology, Renal Research Institute, New York Medical College, Valhalla, NY.
| |
Collapse
|
9
|
von Versen-Höynck F, Brodowski L, Dechend R, Myerski AC, Hubel CA. Vitamin D antagonizes negative effects of preeclampsia on fetal endothelial colony forming cell number and function. PLoS One 2014; 9:e98990. [PMID: 24892558 PMCID: PMC4044051 DOI: 10.1371/journal.pone.0098990] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 05/08/2014] [Indexed: 12/22/2022] Open
Abstract
CONTEXT Endothelial dysfunction is a primary feature of preeclampsia, a pregnancy complication associated with an increased future cardiovascular risk for mother and offspring. Endothelial colony forming cells (ECFC) are endothelial progenitor cells that participate in vasculogenesis and endothelial repair. OBJECTIVE We hypothesized that the number and functional properties of fetal cord blood-derived ECFCs are reduced in preeclampsia compared to uncomplicated pregnancy (controls), and asked if adverse effects of preeclampsia on ECFC function are reversed by 1,25 (OH)2 vitamin D3. DESIGN, SETTING, PATIENTS This was a nested, case-control study. Forty women with uncomplicated pregnancy and 33 women with PE were recruited at Magee-Womens Hospital (USA) or at Hannover Medical School (Germany). MAIN OUTCOME MEASURES Time to ECFC colony appearance in culture, and number of colonies formed, were determined. Functional abilities of ECFCs were assessed in vitro by tubule formation in Matrigel assay, migration, and proliferation. ECFC function was tested in the presence or absence of 1,25 (OH)2 vitamin D3, and after vitamin D receptor (VDR) or VEGF signaling blockade. RESULTS The number of cord ECFC colonies was lower (P = 0.04) in preeclampsia compared to controls. ECFCs from preeclampsia showed reduced proliferation (P<0.0001), formed fewer tubules (P = 0.02), and migrated less (P = 0.049) than control. Vitamin D3 significantly improved preeclampsia ECFC functional properties. VDR- or VEGF blockade reduced tubule formation, partially restorable by vitamin D3. CONCLUSION Fetal ECFCs from preeclamptic pregnancies are reduced in number and dysfunctional. Vitamin D3 had rescuing effects. This may have implications for the increased cardiovascular risk associated with preeclampsia.
Collapse
Affiliation(s)
- Frauke von Versen-Höynck
- Department of Obstetrics and Gynecology, Gynecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Lars Brodowski
- Department of Obstetrics and Gynecology, Gynecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Ralf Dechend
- Experimental and Clinical Research Center (Max-Delbrück Center for Molecular Medicine and Medical Faculty of the Charité and Franz-Volhard Clinic), Helios Klinikum Berlin-Buch, Berlin, Germany
| | - Ashley C. Myerski
- Magee-Womens Research Institute and Department of Obstetrics, Gynecology & Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Carl A. Hubel
- Magee-Womens Research Institute and Department of Obstetrics, Gynecology & Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
10
|
Niu J, Liberda EN, Qu S, Guo X, Li X, Zhang J, Meng J, Yan B, Li N, Zhong M, Ito K, Wildman R, Liu H, Chen LC, Qu Q. The role of metal components in the cardiovascular effects of PM2.5. PLoS One 2013; 8:e83782. [PMID: 24386277 PMCID: PMC3873977 DOI: 10.1371/journal.pone.0083782] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 11/08/2013] [Indexed: 12/20/2022] Open
Abstract
Exposure to ambient fine particulate matter (PM2.5) increases risks for cardiovascular disorders (CVD). However, the mechanisms and components responsible for the effects are poorly understood. Based on our previous murine exposure studies, a translational pilot study was conducted in female residents of Jinchang and Zhangye, China, to test the hypothesis that specific chemical component of PM2.5 is responsible for PM2.5 associated CVD. Daily ambient and personal exposures to PM2.5 and 35 elements were measured in the two cities. A total of 60 healthy nonsmoking adult women residents were recruited for measurements of inflammation biomarkers. In addition, circulating endothelial progenitor cells (CEPCs) were also measured in 20 subjects. The ambient levels of PM2.5 were comparable between Jinchang and Zhangye (47.4 and 54.5µg/m3, respectively). However, the levels of nickel, copper, arsenic, and selenium in Jinchang were 82, 26, 12, and 6 fold higher than Zhangye, respectively. The levels of C-reactive protein (3.44±3.46 vs. 1.55±1.13), interleukin-6 (1.65±1.17 vs. 1.09±0.60), and vascular endothelial growth factor (117.6±217.0 vs. 22.7±21.3) were significantly higher in Jinchang. Furthermore, all phenotypes of CEPCs were significantly lower in subjects recruited from Jinchang than those from Zhangye. These results suggest that specific metals may be important components responsible for PM2.5-induced cardiovascular effects and that the reduced capacity of endothelial repair may play a critical role.
Collapse
Affiliation(s)
- Jingping Niu
- Lanzhou University School of Public Health, Lanzhou, China
| | - Eric N Liberda
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, United States of America
| | - Song Qu
- New York University College of Arts and Sciences, New York City, New York, United States of America
| | - Xinbiao Guo
- Peking University School of Public Health, Beijing, China
| | - Xiaomei Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, United States of America
| | - Jingjing Zhang
- Lanzhou University School of Public Health, Lanzhou, China
| | - Junliang Meng
- Lanzhou University School of Public Health, Lanzhou, China
| | - Bing Yan
- Lanzhou University School of Public Health, Lanzhou, China
| | - Nairong Li
- Lanzhou University School of Public Health, Lanzhou, China
| | - Mianhua Zhong
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, United States of America
| | - Kazuhiko Ito
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, United States of America
| | - Rachel Wildman
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Hong Liu
- Peking University School of Public Health, Beijing, China
| | - Lung Chi Chen
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, United States of America
| | - Qingshan Qu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, United States of America
| |
Collapse
|
11
|
Herrera M, Mirotsou M. Stem cells: potential and challenges for kidney repair. Am J Physiol Renal Physiol 2013; 306:F12-23. [PMID: 24197069 DOI: 10.1152/ajprenal.00238.2013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Renal damage resulting from acute and chronic kidney injury poses an important problem to public health. Currently, patients with end-stage renal disease rely solely on kidney transplantation or dialysis for survival. Emerging therapies aiming to prevent and reverse kidney damage are thus in urgent need. Although the kidney was initially thought to lack the capacity for self-repair, several studies have indicated that this might not be the case; progenitor and stem cells appear to play important roles in kidney repair under various pathological conditions. In this review, we summarize recent findings on the role of progenitor/stem cells on kidney repair as well as discuss their potential as a therapeutic approach for kidney diseases.
Collapse
Affiliation(s)
- Marcela Herrera
- Division of Cardiology, Genome Research Bldg. II, Rm. 4022, 210 Research Drive, Duke Univ. Medical Center, Durham, NC 27710.
| | | |
Collapse
|
12
|
Brook RD, Bard RL, Kaplan MJ, Yalavarthi S, Morishita M, Dvonch JT, Wang L, Yang HY, Spino C, Mukherjee B, Oral EA, Sun Q, Brook JR, Harkema J, Rajagopalan S. The effect of acute exposure to coarse particulate matter air pollution in a rural location on circulating endothelial progenitor cells: results from a randomized controlled study. Inhal Toxicol 2013; 25:587-92. [PMID: 23919441 DOI: 10.3109/08958378.2013.814733] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
CONTEXT Fine particulate matter (PM) air pollution has been associated with alterations in circulating endothelial progenitor cell (EPC) levels, which may be one mechanism whereby exposures promote cardiovascular diseases. However, the impact of coarse PM on EPCs is unknown. OBJECTIVE We aimed to determine the effect of acute exposure to coarse concentrated ambient particles (CAP) on circulating EPC levels. METHODS Thirty-two adults (25.9 ± 6.6 years) were exposed to coarse CAP (76.2 ± 51.5 μg m(-3)) in a rural location and filtered air (FA) for 2 h in a randomized double-blind crossover study. Peripheral venous blood was collected 2 and 20 h post-exposures for circulating EPC (n = 21), white blood cell (n = 24) and vascular endothelial growth factor (VEGF) (n = 16-19) levels. The changes between exposures were compared by matched Wilcoxon signed-rank tests. RESULTS Circulating EPC levels were elevated 2 [108.29 (6.24-249.71) EPC mL(-1); median (25th-75th percentiles), p = 0.052] and 20 h [106.86 (52.91-278.35) EPC mL(-1), p = 0.008] post-CAP exposure compared to the same time points following FA [38.47 (0.00-84.83) and 50.16 (0.00-104.79) EPC mL(-1)]. VEGF and white blood cell (WBC) levels did not differ between exposures. CONCLUSIONS Brief inhalation of coarse PM from a rural location elicited an increase in EPCs that persisted for at least 20 h. The underlying mechanism responsible may reflect a systemic reaction to an acute "endothelial injury" and/or a circulating EPC response to sympathetic nervous system activation.
Collapse
Affiliation(s)
- Robert D Brook
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48106, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Goligorsky MS, Salven P. Concise review: endothelial stem and progenitor cells and their habitats. Stem Cells Transl Med 2013; 2:499-504. [PMID: 23761107 PMCID: PMC3697817 DOI: 10.5966/sctm.2013-0005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 03/13/2013] [Indexed: 12/16/2022] Open
Abstract
Recent studies on the stem cell origins of regenerating tissues have provided solid evidence in support of the role of the resident cells, rather than bone marrow-derived or transplanted stem cells, in restoring tissue architecture after an injury. This is also true for endothelial stem and progenitor cells: local pools exist in the vascular wall, and those cells are the primary drivers of vascular regeneration. This paradigm shift offers an opportunity to rethink and refine our understanding of the multiple therapeutic effects of transplanted endothelial progenitor cells, focusing on their secretome, sheddome, intercellular communicational routes, and other potential ways to rejuvenate and replenish the pool of resident cells. The dynamics of vascular wall resident cells, at least in the adipose tissue, may shed light on the origins of other cells present in the vascular wall-pericytes and mesenchymal stem cells. The fate of these cells in aging and disease awaits elucidation.
Collapse
Affiliation(s)
- Michael S. Goligorsky
- Departments of Medicine
- Pharmacology, and
- Physiology, New York Medical College, Valhalla, New York, USA
| | - Petri Salven
- Department of Pathology, Haartman Institute, University of Helsinki, Helsinki, Finland
| |
Collapse
|
14
|
Roan JN, Fang SY, Chang SW, Hsu CH, Huang CC, Chiou MH, Tsai YC, Lam CF. Rosuvastatin improves vascular function of arteriovenous fistula in a diabetic rat model. J Vasc Surg 2012; 56:1381-9.e1. [DOI: 10.1016/j.jvs.2012.03.243] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/14/2012] [Accepted: 03/15/2012] [Indexed: 12/28/2022]
|
15
|
Current pathophysiological concepts and management of pulmonary hypertension. Int J Cardiol 2012; 155:350-61. [PMID: 21641060 DOI: 10.1016/j.ijcard.2011.05.066] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 02/14/2011] [Accepted: 05/13/2011] [Indexed: 01/23/2023]
Abstract
Pulmonary hypertension (PH), increasingly recognized as a major health burden, remains underdiagnosed due mainly to the unspecific symptoms. Pulmonary arterial hypertension (PAH) has been extensively investigated. Pathophysiological knowledge derives mostly from experimental models. Paradoxically, common non-PAH PH forms remain largely unexplored. Drugs targeting lung vascular tonus became available during the last two decades, notwithstanding the disease progresses in many patients. The aim of this review is to summarize recent advances in epidemiology, pathophysiology and management with particular focus on associated myocardial and systemic compromise and experimental therapeutic possibilities. PAH, currently viewed as a panvasculopathy, is due to a crosstalk between endothelial and smooth muscle cells, inflammatory activation and altered subcellular pathways. Cardiac cachexia and right ventricular compromise are fundamental determinants of PH prognosis. Combined vasodilator therapy is already mainstay for refractory cases, but drugs directed at these new pathophysiological pathways may constitute a significant advance.
Collapse
|
16
|
Felice F, Zambito Y, Di Colo G, D'Onofrio C, Fausto C, Balbarini A, Di Stefano R. Red grape skin and seeds polyphenols: Evidence of their protective effects on endothelial progenitor cells and improvement of their intestinal absorption. Eur J Pharm Biopharm 2011; 80:176-84. [PMID: 21971368 DOI: 10.1016/j.ejpb.2011.09.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Revised: 07/24/2011] [Accepted: 09/07/2011] [Indexed: 12/15/2022]
Abstract
SCOPE To evaluate the ability of grape skin and seeds to protect endothelial progenitor cells (EPC) from oxidative stress induced by hyperglycemia (HG) compared to red wine (RW) and prepare innovative pharmaceutical systems for the oral administration of red grape extract allowing the overcoming of its poor intestinal absorption. METHODS AND RESULTS Human EPC were characterized by expression of cell surface markers. Cells were incubated with different concentrations of total polyphenols from grape components or RW in the presence or absence of HG. Cell viability, migration, adhesion, and reactive oxygen species (ROS) production were assayed. Intestinal permeation of polyphenols was studied in the absence or presence of a quaternary ammonium-chitosan conjugate (N⁺(60)-Ch). Grape components and RW increased EPC viability, adhesion and migration, and prevented the HG effect (P < 0.01). ROS production induced by HG was significantly reduced only by grape seed extract and RW (P < 0.01). N⁺(60)-Ch acted as an effective enhancer of polyphenol permeability across the excised rat intestine. CONCLUSIONS Red grape components are a source of antioxidant compounds that ameliorate EPC viability and function, while preventing endothelial dysfunction. The use of polycationic chitosan derivatives can promote the absorption of polyphenols across intestinal epithelium, thus increasing their bioavailability and potential therapeutic value in atherosclerosis.
Collapse
Affiliation(s)
- Francesca Felice
- Cardiothoracic and Vascular Department, University of Pisa, Pisa, Italy
| | | | | | | | | | | | | |
Collapse
|
17
|
Patschan D, Patschan S, Müller GA. Endothelial progenitor cells in acute ischemic kidney injury: strategies for increasing the cells' renoprotective competence. Int J Nephrol 2011; 2011:828369. [PMID: 21603112 PMCID: PMC3097069 DOI: 10.4061/2011/828369] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 03/01/2011] [Indexed: 01/28/2023] Open
Abstract
Acute ischemic kidney injury is the most frequent cause of acute renal failure in daily clinical practice. It has become increasingly recognized that microvascular endothelial cell dysfunction (ED) in peritubular capillaries inhibits the process of postischemic renal reperfusion. ED can serve as therapeutic target in the management of acute ischemic kidney injury. Postischemic reflow can be restored by systemic administration of either mature endothelial cells or of endothelial progenitor cells. Endothelial progenitor cells EPCs can be cultured from the peripheral circulation of humans and different animals. The cells act vasoprotectively by direct and indirect mechanisms. The protective effects of EPCs in acute ischemic kidney injury can be stimulated by preincubating the cells with different agonistic mediators. This paper summarizes the currently available data on strategies to improve the renoprotective activity of EPCs in acute ischemic kidney injury.
Collapse
Affiliation(s)
- D Patschan
- Department of Nephrology and Rheumatology, University Medical Center, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | | | | |
Collapse
|
18
|
Tan Z, Zhou LJ, Li Y, Cui YH, Xiang QL, Lin GP, Wang TH. E₂-BSA activates caveolin-1 via PI₃K/ERK1/2 and lysosomal degradation pathway and contributes to EPC proliferation. Int J Cardiol 2011; 158:46-53. [PMID: 21255851 DOI: 10.1016/j.ijcard.2010.12.106] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 11/03/2010] [Accepted: 12/30/2010] [Indexed: 01/18/2023]
Abstract
BACKGROUND The mechanism that estrogen (E(2)) increases the number of endothelial progenitor cells (EPC) is largely unknown. Here we used E(2)-conjugated bovine serum albumin (E(2)-BSA, membrane impermeable) to investigate whether the membrane estrogen receptor (mER) and its related protein caveolin-1 (CAV-1) are involved in these processes. METHODS AND RESULTS E(2)-BSA promoted [(3)H]-thymidine incorporation of EPC through increasing CAV-1 expression via mER (ERα, but not ERβ or GPR30). Both cholesterol depletion and CAV-1 knockdown with use of CAV-1 siRNA significantly attenuated E(2)-BSA-induced [(3)H]-thymidine incorporation. Western blot showed that E(2)-BSA increased membrane CAV-1 protein expression 12h after treatment, whereas mRNA levels of CAV-1 were augmented until 24h after E(2)-BSA treatment. Furthermore, pre-incubated EPC with ICI 182780 (a specific ER antagonist), LY 294002 (a selective PI(3)K inhibitor) or PD 98059 (a specific ERK1/2 inhibitor) before E(2)-BSA inhibited the late-stage effect of E(2)-BSA (≥24 h) on up-regulation of CAV-1 mRNA and protein expression. Pulse chase results demonstrated that E(2)-BSA inhibited lysosome-mediated degradation of CAV-1 protein at the early stage (≤12 h), and then resulted in the increased CAV-1 protein. CONCLUSION In the present work we demonstrated that E(2)-BSA promotes EPC proliferation through mER (ERα) in CAV-1-dependent manner: prolonging the stability of CAV-1 protein through quick inhibition of the lysosomal degradation pathway at the early stage (≤12 h) and up-regulating CAV-1 at transcription levels through PI(3)K/ERK1/2 signaling pathway at the late stage (≥24 h). These data indicated that a there is a novel mechanism of E(2)-BSA in the regulation of EPC proliferation through CAV-1.
Collapse
Affiliation(s)
- Zhi Tan
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, PR China.
| | | | | | | | | | | | | |
Collapse
|
19
|
Chilton R, Wyatt J, Nandish S, Oliveros R, Lujan M. Cardiovascular comorbidities of type 2 diabetes mellitus: defining the potential of glucagonlike peptide-1-based therapies. Am J Med 2011; 124:S35-53. [PMID: 21194579 DOI: 10.1016/j.amjmed.2010.11.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The global epidemic of diabetes mellitus (~95% type 2 diabetes) has been fueled by a parallel increase in obesity and overweight. Together, these metabolic disease epidemics have contributed to the increasing incidence and prevalence of cardiovascular disease. The accumulation of metabolic and cardiovascular risk factors in patients with type 2 diabetes--risk factors that may exacerbate one another--complicates treatment. Inadequate treatment, treatment that fails to achieve goals, increases the risk for cardiovascular morbidity and mortality. From a clinical perspective, type 2 diabetes is a cardiovascular disease, an observation that is supported by a range of epidemiologic, postmortem, and cardiovascular imaging studies. Vascular wall dysfunction, and particularly endothelial dysfunction, has been posited as a "common soil" linking dysglycemic and cardiovascular diseases. Vascular wall dysfunction promoted by environmental triggers (e.g., sedentary lifestyle) and metabolic triggers (chronic hyperglycemia, obesity) has been associated with the upregulation of reactive oxygen species and chronic inflammatory and hypercoagulable states, and as such with the pathogenesis of type 2 diabetes, atherosclerosis, and cardiovascular disease. Glucagon-like peptide-1 (GLP)-1, an incretin hormone, and synthetic GLP-1 receptor agonists represent promising new areas of research and therapeutics in the struggle not only against type 2 diabetes but also against the cardiovascular morbidity and mortality associated with type 2 diabetes. In a number of small trials in humans, as well as in preclinical and in vitro studies, both native GLP-1 and GLP-1 receptor agonists have demonstrated positive effects on a range of cardiovascular disease pathologies and clinical targets, including such markers of vascular inflammation as high-sensitivity C-reactive protein, plasminogen activator inhibitor-1, and brain natriuretic peptide. Reductions in markers of dyslipidemia such as elevated levels of triglycerides and free fatty acids have also been observed, as have cardioprotective functions. Larger trials of longer duration will be required to confirm preliminary findings. In large human trials, GLP-1 receptor agonists have been associated with significant reductions in both blood pressure and weight.
Collapse
Affiliation(s)
- Robert Chilton
- Catheterization Laboratory, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229-3900, USA.
| | | | | | | | | |
Collapse
|
20
|
Li H, Liu Q, Wang N, Xu J. Correlation of different NADPH oxidase homologues with late endothelial progenitor cell senescence induced by angiotensin II: effect of telmisartan. Intern Med 2011; 50:1631-42. [PMID: 21841319 DOI: 10.2169/internalmedicine.50.5250] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVE Involvement of different NADPH oxidase (NOX) homologues in late endothelial progenitor cell (EPC) senescence induced by angiotensin II (Ang II) remains rarely studied systemically. The goal of our study was to determine NOX homologues which are correlated with late EPCs senescence induced by Ang II. The inhibitory effect of telmisartan was also studied. METHODS AND MATERIALS Late EPCs were obtained from mononuclear cells isolated from peripheral venous blood. Stimulated by Ang II with telmisartan (Tel) or VAS2870 pretreatment or siRNA prior silencing, NOX was detected by RT-PCR and Western blot. Cell senescence was measured by the acidic β-galactosidase activity assay and cell cycle analysis. Intracellular reactive oxygen species (ROS) were analyzed by flow cytometer based on DCFH-DA. RESULTS A bi-phasic change existed in NOX level after Ang II stimulation. Translocated NOX5 was correlated with early and rapid ROS production, but it contributed little to EPCs senescence. NOX2 and NOX4 were correlated with the late and slow phase and contributed greatly to EPCs senescence. There were no significant changes in NOX1 or NOX3. Telmisartan effectively depressed NOX change and delayed late EPCs senescence. CONCLUSION Ang II accelerates late EPCs senescence mainly via increased ROS originating from NOX2 and NOX4 up-regulation or translocated NOX5. Telmisartan effectively inhibited that cascade reaction and delayed EPCs senescence.
Collapse
Affiliation(s)
- Hong Li
- Department of Cardiology, the Affiliated Hangzhou Hospital, Nanjing Medical University, China
| | | | | | | |
Collapse
|
21
|
Liberda EN, Cuevas AK, Gillespie PA, Grunig G, Qu Q, Chen LC. Exposure to inhaled nickel nanoparticles causes a reduction in number and function of bone marrow endothelial progenitor cells. Inhal Toxicol 2010; 22 Suppl 2:95-9. [PMID: 20936915 DOI: 10.3109/08958378.2010.515269] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
INTRODUCTION Particulate matter (PM), specifically nickel (Ni) found on or in PM, has been associated with an increased risk of mortality in human population studies and significant increases in vascular inflammation, generation of reactive oxygen species, altered vasomotor tone, and potentiated atherosclerosis in murine exposures. Recently, murine inhalation of Ni nanoparticles have been shown to cause pulmonary inflammation that affects cardiovascular tissue and potentiates atherosclerosis. These adverse cardiovascular outcomes may be due to the effects of Ni on endothelial progenitor cells (EPCs), endogenous semi-pluripotent stem cells that aid in endothelial repair. Thus, we hypothesize that Ni nanoparticle exposures decrease cell count and cause impairments in function that may ultimately have significant effects on various cardiovascular diseases, such as, atherosclerosis. METHODS Experiments involving inhaled Ni nanoparticle exposures (2 days/5 h/day at ∼1200 µg/m(3), 3 days/5 h/day at ∼700 µg/m(3), and 5 days/5 h/day at ∼100 µg/m(3)), were performed in order to quantify bone marrow resident EPCs using flow cytometry in C57BL/6 mice. Plasma levels of human stromal cell-derived factor 1α (SDF-1α) and vascular endothelial growth factor (VEGF) were assessed by enzyme-linked immunosorbent assay and in vitro functional assessments of cultured EPCs were conducted. RESULTS AND CONCLUSIONS Significant EPC count differences between exposure and control groups for Ni nanoparticle exposures were observed. Differences in EPC tube formation and chemotaxis were also observed for the Ni nanoparticle exposed group. Plasma VEGF and SDF-1α differences were not statistically significant. In conclusion, this study shows that inhalation of Ni nanoparticles results in functionally impaired EPCs and reduced number in the bone marrow, which may lead to enhanced progression of atherosclerosis.
Collapse
Affiliation(s)
- Eric N Liberda
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, USA
| | | | | | | | | | | |
Collapse
|
22
|
Ratliff BB, Ghaly T, Brudnicki P, Yasuda K, Rajdev M, Bank M, Mares J, Hatzopoulos AK, Goligorsky MS. Endothelial progenitors encapsulated in bioartificial niches are insulated from systemic cytotoxicity and are angiogenesis competent. Am J Physiol Renal Physiol 2010; 299:F178-86. [PMID: 20410213 DOI: 10.1152/ajprenal.00102.2010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Intrinsic stem cells (SC) participate in tissue remodeling and regeneration in various diseases and following toxic insults. Failure of tissue regeneration is in part attributed to lack of SC protection from toxic stress of noxious stimuli, thus prompting intense research efforts to develop strategies for SC protection and functional preservation for in vivo delivery. One strategy is creation of artificial SC niches in an attempt to mimic the requirements of endogenous SC niches by generating scaffolds with properties of extracellular matrix. Here, we investigated the use of hyaluronic acid (HA) hydrogels as an artificial SC niche and examined regenerative capabilities of encapsulated embryonic endothelial progenitor cells (eEPC) in three different in vivo models. Hydrogel-encapsulated eEPC demonstrated improved resistance to toxic insult (adriamycin) in vitro, thus prompting in vivo studies. Implantation of HA hydrogels containing eEPC to mice with adriamycin nephropathy or renal ischemia resulted in eEPC mobilization to injured kidneys (and to a lesser extent to the spleen) and improvement of renal function, which was equal or superior to adoptively transferred EPC by intravenous infusion. In mice with hindlimb ischemia, EPC encapsulated in HA hydrogels dramatically accelerated the recovery of collateral circulation with the efficacy superior to intravenous infusion of EPC. In conclusion, HA hydrogels protect eEPC against adriamycin cytotoxicity and implantation of eEPC encapsulated in HA hydrogels supports renal regeneration in ischemic and cytotoxic (adriamycin) nephropathy and neovascularization of ischemic hindlimb, thus establishing their functional competence and superior capabilities to deliver stem cells stored in and released from this bioartificial niche.
Collapse
Affiliation(s)
- B B Ratliff
- Department of Medicine, New York Medical College, Valhalla, New York 10595, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Goligorsky MS, Yasuda K, Ratliff B. Dysfunctional endothelial progenitor cells in chronic kidney disease. J Am Soc Nephrol 2010; 21:911-9. [PMID: 20395371 DOI: 10.1681/asn.2009111119] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Putative endothelial progenitor cells play a role in organ regeneration, and their incompetence may be important in the development of chronic kidney disease. The mechanisms of this incompetence are broad and range from poor mobilization, viability, and engraftment to impaired differentiation into mature endothelial cells. By contrasting the role of endothelial progenitor cells in tissue regeneration with their developing incompetence in chronic kidney disease, we emphasize the importance of designing rational pharmacologic strategies to tackle such incompetence in the broader search for therapies to attenuate chronic disease.
Collapse
Affiliation(s)
- Michael S Goligorsky
- Renal Research Institute, Department of Medicine, New York Medical College, Valhalla, NY 10595, USA.
| | | | | |
Collapse
|
24
|
Helle KB. Regulatory peptides from chromogranin A and secretogranin II: putative modulators of cells and tissues involved in inflammatory conditions. ACTA ACUST UNITED AC 2009; 165:45-51. [PMID: 19800929 DOI: 10.1016/j.regpep.2009.09.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 09/16/2009] [Accepted: 09/24/2009] [Indexed: 11/16/2022]
Abstract
Chromogranin A (CgA) and secretogranin II (SgII) of the granin family of uniquely acidic proteins secreted from elements of the diffuse neuroendocrine system are also produced by cells involved in inflammation. CgA and the CgA-derived peptides vasostatin-I and catestatin are products of polymorphonuclear neutrophils accumulating at sites of injury or infections while SgII and the Sg II-derived secretoneurin may contribute to neurogenic inflammation when released from sensory nerve terminals. This review is directed towards vasostatin-I, catestatin and secretoneurin as modulators of cells and tissues associated with inflammatory conditions. The accumulated literature indicates that concerted effects of vasostatin-I and catestatin may be relevant for the first-line host-defence against invading microorganisms, contrasting the apparent lack of antibacterial potencies in secretoneurin. Oppositely directed effects of vasostatin-I and secretoneurin on endothelial permeability and transendothelial extravasation are particularly striking. While vasostatin-I protects the integrity of the endothelial barrier against the disruptive effects of proinflammatory agents, secretoneurin activates transendothelial extravasation, chemotaxis and migration of leukocytes. Oppositely directed effects of vasostatin-I and secretoneurin on formation of blood vessels are also indicated, vasostatin-I inhibiting angiogenetic parameters while secretoneurin activates not only angiogenesis but also vascularization.
Collapse
Affiliation(s)
- Karen B Helle
- Department of Biomedicine, University of Bergen, Jonas Lies Vei 91, 5009 Bergen, Norway.
| |
Collapse
|
25
|
Silvestre JS, Levy BI. Circulating progenitor cells and cardiovascular outcomes: latest evidence on angiotensin-converting enzyme inhibitors. Eur Heart J Suppl 2009. [DOI: 10.1093/eurheartj/sup020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
26
|
Relationship between stem cell factor/c-kit expression in peripheral blood and blood pressure. J Hum Hypertens 2009; 24:220-5. [DOI: 10.1038/jhh.2009.62] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
Moreno PR, Sanz J, Fuster V. Promoting mechanisms of vascular health: circulating progenitor cells, angiogenesis, and reverse cholesterol transport. J Am Coll Cardiol 2009; 53:2315-23. [PMID: 19539140 DOI: 10.1016/j.jacc.2009.02.057] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Revised: 01/27/2009] [Accepted: 02/06/2009] [Indexed: 12/20/2022]
Abstract
To understand and promote vascular health, we must reduce the aggression to the vessel wall and enhance the physiologic mechanisms leading to restoration of vessel wall function. Three main defense mechanisms are responsible for maintaining cardiovascular homeostasis: the regenerative production of endothelial progenitor cells, vessel wall angiogenesis, and macrophage-mediated reverse cholesterol transport. Endothelial progenitor cells can restore vessel wall function and reduce atherosclerosis. In patients with risk factors, high levels of circulating progenitor cells increase event-free survival from cardiovascular events. Mobilization of progenitor cells includes physical and pharmacological approaches, of which exercise and statin therapy have great potential. Angiogenesis is a pivotal defense mechanism to counteract hypoxia and is needed for plaque regression. However, neovessels are susceptible for intraplaque hemorrhage, particularly in diabetes mellitus. In these patients, the haptoglobin 2-2 genotype is the more affected, and may benefit from an antioxidant approach. Finally, the reverse cholesterol transport system is the main mechanism for plaque regression. In addition to high-density lipoprotein cholesterol, apolipoprotein A-I therapies and the promotion of cholesterol efflux from macrophages by the ABCA1 and ABCG1 transporter systems hold great promise and may be available for therapeutic application in the near future.
Collapse
Affiliation(s)
- Pedro R Moreno
- Zena and Michael A. Wiener Cardiovascular Institute, Marie-Josee and Henry R. Kravis Cardiovascular Health Center, The Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | |
Collapse
|