1
|
Justyna K, Patrycja Ś, Krzysztof M, Rafał W. Dissolving microneedles fabricated from 3D-printed master molds for application in veterinary medicine. Sci Rep 2025; 15:14102. [PMID: 40269064 PMCID: PMC12019400 DOI: 10.1038/s41598-025-98984-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 04/16/2025] [Indexed: 04/25/2025] Open
Abstract
Microneedle (MN) technology is gaining popularity as it offers many benefits and advantages over the conventional drug delivery methods. The transdermal drug delivery system (TDDS) with MNs offers painless, precise, and easy-to-use solutions that can be obtained using cost-effective technologies such as 3D printing. Numerous examples of microneedle applications have been reported for human use, especially given the context of the recent pandemic and the development of vaccination technologies. However, there is limited exploration of microneedles in veterinary medicine. In the following work, we presented a proposal for the efficient production of quickly dissolving microneedle patches from PVP (polyvinylpyrrolidone) and PVA (polyvinyl alcohol) polymers based on a model microneedle array printed using DLP (Digital Light Processing) technology. We have developed a repeatable process in which the obtained microneedles can easily penetrate the outer layers of skin and quickly deliver the model drug. Such a versatile platform can be used, among others, in the treatment of animal gingival diseases, which affect a significant amount of the cat and dog population. An important advantage of the presented solution is the possibility of implementing the whole technological process in a veterinary office in a short time and the possibility of easy adjusting the size of the patches to a specific animal.
Collapse
Affiliation(s)
- Kornicka Justyna
- Division of Microsystems, Faculty of Electronics, Photonics and Microsystems, Wroclaw University of Science and Technology, 27 Wybrzeze Wyspianskiego Street, 50-370, Wrocław, Poland.
| | - Śniadek Patrycja
- Division of Microsystems, Faculty of Electronics, Photonics and Microsystems, Wroclaw University of Science and Technology, 27 Wybrzeze Wyspianskiego Street, 50-370, Wrocław, Poland
| | - Marycz Krzysztof
- International Institute of Translational Medicine, Jesionowa 11, 55-114, Malin, Poland
| | - Walczak Rafał
- Division of Microsystems, Faculty of Electronics, Photonics and Microsystems, Wroclaw University of Science and Technology, 27 Wybrzeze Wyspianskiego Street, 50-370, Wrocław, Poland
| |
Collapse
|
2
|
Abdelhay RM, Ali MS, Gad LZ, Mahran NM. Microneedling With Topical Insulin Versus Microneedling With Placebo in the Treatment of Postacne Atrophic Scars: A Randomized Control Trial. Dermatol Surg 2025; 51:251-256. [PMID: 39442178 DOI: 10.1097/dss.0000000000004462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
BACKGROUND Among the treatment modalities for post-acne scars, microneedling is considered a safe and effective method. OBJECTIVE To compare the efficacy and safety of combined microneedling with topical insulin versus microneedling with placebo (topical saline) in treating atrophic acne scars. METHODS AND MATERIALS Twenty-one patients with atrophic post-acne scars were randomized and treated in a split face manner with 4 sessions at 3-week intervals of microneedling using dermapen, followed by application of insulin on one side of the face and saline (placebo) on the other side. Evaluation of response was done before the sessions and after 1 month of the last session using the Global Scarring Grading System of Goodman & Baron and Lipper & Perez scores, Patient reported acne scar improvement using a 4-point scale, patient satisfaction, and the facial acne scar quality of life tools. RESULTS Both therapeutic modalities yielded a statistically significant improvement of atrophic acne scars. By comparing both modalities, there was no statistical significance regarding clinical improvement and side effects. CONCLUSION Using topical insulin combined with microneedling may have a value in improving atrophic acne scars, suggesting further evaluation using different delivery systems, insulin formulations, and assessment modalities.
Collapse
Affiliation(s)
- Rania Mounir Abdelhay
- All authors are affiliated with the Department of Dermatology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | | | | |
Collapse
|
3
|
Zhao C, Wu Z, Pan B, Zhang R, Golestani A, Feng Z, Ge Y, Yang H. Functional biomacromolecules-based microneedle patch for the treatment of diabetic wound. Int J Biol Macromol 2024; 267:131650. [PMID: 38636756 DOI: 10.1016/j.ijbiomac.2024.131650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/13/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
Diabetic wounds are a common complication of diabetes. The prolonged exposure to high glucose and oxidative stress in the wound environment increases the risk of bacterial infection and abnormal angiogenesis, leading to amputation. Microneedle patches have shown promise in promoting the healing of diabetic wounds through transdermal drug delivery. These patches target the four main aspects of diabetic wound treatment: hypoglycemia, antibacterial action, inflammatory regulation, and tissue regeneration. By overcoming the limitations of traditional administration methods, microneedle patches enable targeted therapy for deteriorated tissues. The design of these patches extends beyond the selection of needle tip material and biomacromolecule encapsulated drugs; it can also incorporate near-infrared rays to facilitate cascade reactions and treat diabetic wounds. In this review, we comprehensively summarize the advantages of microneedle patches compared to traditional treatment methods. We focus on the design and mechanism of these patches based on existing experimental articles in the field and discuss the potential for future research on microneedle patches.
Collapse
Affiliation(s)
- Chenyu Zhao
- School of Intelligent Medicine, China Medical University, Shenyang 110122, China; Department of China Medical University, The Queen's University of Belfast Joint College, School of Pharmacy, China Medical University, Shenyang 110122, China; School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Zhaoqi Wu
- Department of China Medical University, The Queen's University of Belfast Joint College, School of Pharmacy, China Medical University, Shenyang 110122, China; School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Boyue Pan
- Department of China Medical University, The Queen's University of Belfast Joint College, School of Pharmacy, China Medical University, Shenyang 110122, China; School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Ruihan Zhang
- Department of China Medical University, The Queen's University of Belfast Joint College, School of Pharmacy, China Medical University, Shenyang 110122, China; School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Avin Golestani
- Faculty of Life Science and Medicine, King's College London, London SE1 1UL, UK
| | - Ziyi Feng
- School of Intelligent Medicine, China Medical University, Shenyang 110122, China; Department of Plastic Surgery, The First Hospital of China Medical University, No.155, Nanjing North Street, Heping District, Shenyang 110002, China
| | - Yi Ge
- Department of China Medical University, The Queen's University of Belfast Joint College, School of Pharmacy, China Medical University, Shenyang 110122, China; School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Huazhe Yang
- School of Intelligent Medicine, China Medical University, Shenyang 110122, China.
| |
Collapse
|
4
|
Abbasi M, Fan Z, Dawson JA, Wang S. Anti-obesity and metabolic benefits of metformin: Comparison of different delivery routes. J Drug Deliv Sci Technol 2024; 91:105110. [PMID: 38188941 PMCID: PMC10768944 DOI: 10.1016/j.jddst.2023.105110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Obesity is a severe public health problem. Healthy lifestyle interventions are commonly recommended for fighting obesity. But they are hard to follow and have low efficacy. Pharmacotherapy and surgery are of high efficacy but are beset with side effects. Browning subcutaneous white adipose tissue (WAT) is a practical and efficient approach for combating obesity. Metformin, a commonly used FDA-approved antidiabetic drug, is potent to induce browning of WAT through phosphorylation and activation of AMP-activated protein kinase. However, oral administration of metformin has low oral bioavailability, fast renal clearance, and low target specificity that limit metformin's application in browning WAT. Local and transdermal delivery of metformin directly to subcutaneous WAT using injection or microneedle (MN) in combination with iontophoresis (INT) may solve these problems. In this paper, we administered metformin to C57BL/6J obese mice using the following three routes: transdermal delivery (MN and INT), local injection into inguinal WAT (IgWAT, a type of subcutaneous WAT in mice), and oral gavage. The anti-obesity and metabolic effects of metformin via these delivery routes were determined and compared. As compared to local IgWAT injection and oral gavage delivery, transdermal delivery of metformin using MN and INT resulted in 9% lower body weight and 7% decrease in body fat% accompanied by improved energy metabolism and decreased inflammation through browning IgWAT in obese C57BL/6J mice. Transdermal delivery of metformin using MN and INT is an effective approach in browning subcutaneous WAT for combating obesity and improving metabolic health.
Collapse
Affiliation(s)
- Mehrnaz Abbasi
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas 79409, USA
- College of Human Sciences, Auburn University, Auburn, AL, 36830, USA
| | - Zhaoyang Fan
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas 79409, USA
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85281, USA
| | - John A. Dawson
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas 79409, USA
- Department of Economics, Applied Statistics, and International, New Mexico State University, Las Cruces, New Mexico 88003, USA
| | - Shu Wang
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas 79409, USA
- College of Health Solutions, Arizona State University, Phoenix, Arizona, 85004, USA
| |
Collapse
|
5
|
Iqbal T, Elahi A, Wijns W, Shahzad A. Cortisol detection methods for stress monitoring in connected health. HEALTH SCIENCES REVIEW 2023; 6:100079. [DOI: 10.1016/j.hsr.2023.100079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
6
|
Sargioti N, Levingstone TJ, O’Cearbhaill ED, McCarthy HO, Dunne NJ. Metallic Microneedles for Transdermal Drug Delivery: Applications, Fabrication Techniques and the Effect of Geometrical Characteristics. Bioengineering (Basel) 2022; 10:24. [PMID: 36671595 PMCID: PMC9855189 DOI: 10.3390/bioengineering10010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/17/2022] [Accepted: 12/15/2022] [Indexed: 12/28/2022] Open
Abstract
Current procedures for transdermal drug delivery (TDD) have associated limitations including poor administration of nucleic acid, small or large drug molecules, pain and stress for needle phobic people. A painless micro-sized device capable of delivering drugs easily and efficiently, eliminating the disadvantages of traditional systems, has yet to be developed. While polymeric-based microneedle (MN) arrays have been used successfully and clinically as TDD systems, these devices lack mechanical integrity, piercing capacity and the ability to achieve tailored drug release into the systemic circulation. Recent advances in micro/nano fabrication techniques using Additive Manufacturing (AM), also known as 3D printing, have enabled the fabrication of metallic MN arrays, which offer the potential to overcome the limitations of existing systems. This review summarizes the different types of MNs used in TDD and their mode of drug delivery. The application of MNs in the treatment of a range of diseases including diabetes and cancer is discussed. The potential role of solid metallic MNs in TDD, the various techniques used for their fabrication, and the influence of their geometrical characteristics (e.g., shape, size, base diameter, thickness, and tip sharpness) on effective TDD are explored. Finally, the potential and the future directions relating to the optimization of metallic MN arrays for TDD are highlighted.
Collapse
Affiliation(s)
- Nikoletta Sargioti
- School of Mechanical and Manufacturing Engineering, Dublin City University, Collins Avenue, D09 Y074 Dublin, Ireland
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Stokes Building, Collins Avenue, D09 Y074 Dublin, Ireland
- UCD Centre for Biomedical Engineering, School of Mechanical and Materials Engineering, University College Dublin, D04 R7R0 Dublin, Ireland
- Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, D09 Y074 Dublin, Ireland
| | - Tanya J. Levingstone
- School of Mechanical and Manufacturing Engineering, Dublin City University, Collins Avenue, D09 Y074 Dublin, Ireland
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Stokes Building, Collins Avenue, D09 Y074 Dublin, Ireland
- Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, D09 Y074 Dublin, Ireland
- Advanced Processing Technology Research Centre, Dublin City University, D09 Y074 Dublin, Ireland
- Biodesign Europe, Dublin City University, D09 Y074 Dublin, Ireland
| | - Eoin D. O’Cearbhaill
- UCD Centre for Biomedical Engineering, School of Mechanical and Materials Engineering, University College Dublin, D04 R7R0 Dublin, Ireland
- Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, D09 Y074 Dublin, Ireland
| | - Helen O. McCarthy
- Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, D09 Y074 Dublin, Ireland
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK
- School of Chemical Science, Dublin City University, D09 Y074 Dublin, Ireland
| | - Nicholas J. Dunne
- School of Mechanical and Manufacturing Engineering, Dublin City University, Collins Avenue, D09 Y074 Dublin, Ireland
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Stokes Building, Collins Avenue, D09 Y074 Dublin, Ireland
- Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, D09 Y074 Dublin, Ireland
- Advanced Processing Technology Research Centre, Dublin City University, D09 Y074 Dublin, Ireland
- Biodesign Europe, Dublin City University, D09 Y074 Dublin, Ireland
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK
- School of Chemical Science, Dublin City University, D09 Y074 Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin, D02 PN40 Dublin, Ireland
| |
Collapse
|
7
|
Najmi A, Saidi MS, Kazemzadeh Hannani S. Design of the micropump and mass-transfer compartment of a microfluidic system for regular nonenzymatic glucose measurement. BIOTECHNOLOGY REPORTS 2022; 34:e00723. [PMID: 35685999 PMCID: PMC9171448 DOI: 10.1016/j.btre.2022.e00723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/06/2022] [Accepted: 03/22/2022] [Indexed: 11/22/2022]
Abstract
An implantable integrated microfluidic device is designed for regular glucose measurement in diabetic patients. The designed device has a sufficiently small size and enjoys the benefits of microdialysis method and nonenzymatic glucose measurement. The mass-transfer compartment has the Recovery Factor of 72%, utilizing an array of 24 × 12 hollow microneedles. The designed micropump is a piezoelectrically activated diaphragm-type pump which uses two passive flapper valves. With a 2 Hz frequency and a 7.5 V input voltage, the micropump provides the flow rate of 1 μL/min.
The aim of this paper is to design and numerically simulate the mass-transfer compartment and piezoelectric micropump of an implantable integrated microfluidic device for regular microdialysis-based nonenzymatic measurement of glucose level in diabetic patients. The device function is based on the process that the piezoelectric micropump pumps the dialysis fluid into the mass-transfer compartment microchannels, where the interstitial fluid (ISF) glucose diffusion into this dialysis fluid gives it a glucose content, then detected and measured in the sensor section. This diffusion takes place through the semipermeable membranes located in the microchannels at the base of the hollow microneedles entering the body skin painlessly. The value of dialysis fluid flow rate (1 μL/min) was chosen so that the best achievable recovery factor can be obtained while the size and time delay of system were being kept at the best minimum possible. In the mass-transfer compartment, the number of microneedles, the dimensions of microchannels and the thickness of membranes were selected so as to achieve the best appropriate recovery factor, minimum possible size as well as considering the fabrication feasibility. Furthermore, in the different parts of micropump, the materials and dimensions were chosen so as to provide the needed flow rate with the best minimum voltage, sufficiently small size and fabrication feasibility.
Collapse
|
8
|
Li WX, Zhang XP, Chen BZ, Fei WM, Cui Y, Zhang CY, Guo XD. An update on microneedle-based systems for diabetes. Drug Deliv Transl Res 2022; 12:2275-2286. [PMID: 35112330 DOI: 10.1007/s13346-021-01113-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2021] [Indexed: 12/13/2022]
Abstract
Diabetes is one of the most serious chronic diseases today. Patients with diabetes need frequent insulin injections or blood sampling to monitor blood glucose levels. The microneedles are a painless transdermal drug delivery system, which has great advantages in achieving self-management. There have been a lot of researches on microneedles used in diabetes treatment. Microneedle-based treatment of diabetes has also changed from a simple and reliable system to a complex and efficient system. This review introduces microfluidic, glucose response, and other contents based on microneedles, and some challenges in the development of microneedles.
Collapse
Affiliation(s)
- Wen Xuan Li
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Xiao Peng Zhang
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Bo Zhi Chen
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Wen Min Fei
- Department of Dermatology, China-Japan Friendship Hospital, East Street Cherry Park, Chaoyang District, Beijing, 100029, People's Republic of China.,Graduate School, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China
| | - Yong Cui
- Department of Dermatology, China-Japan Friendship Hospital, East Street Cherry Park, Chaoyang District, Beijing, 100029, People's Republic of China. .,Graduate School, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China.
| | - Can Yang Zhang
- Biopharmaceutical and Health Engineering Division, Tsinghua Shenzhen International Graduate School, Shenzhen, People's Republic of China.
| | - Xin Dong Guo
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| |
Collapse
|
9
|
Zahoor I, Singh S, Behl T, Sharma N, Naved T, Subramaniyan V, Fuloria S, Fuloria NK, Bhatia S, Al-Harrasi A, Aleya L, Wani SN, Vargas-De-La-Cruz C, Bungau S. Emergence of microneedles as a potential therapeutics in diabetes mellitus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:3302-3322. [PMID: 34755300 DOI: 10.1007/s11356-021-17346-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Diabetes mellitus is a severe condition in which the pancreas produces inadequate insulin or the insulin generated is ineffective for utilisation by the body; as a result, insulin therapy is required for control blood sugar levels in patients having type 1 diabetes and is widely recommended in advanced type 2 diabetes patients with uncontrolled diabetes despite dual oral therapy, while subcutaneous insulin administration using hypodermic injection or pump-mediated infusion is the traditional route of insulin delivery and causes discomfort, needle phobia, reduced adherence, and risk of infection. Therefore, transdermal insulin delivery has been extensively explored as an appealing alternative to subcutaneous approaches for diabetes management which not only is non-invasive and easy, but also avoids first-pass metabolism and prevents gastrointestinal degradation. Microneedles have been commonly investigated in human subjects for transdermal insulin administration because they are minimally invasive and painless. The different types of microneedles developed for the transdermal delivery of anti-diabetic drugs are discussed in this review, including solid, dissolving, hydrogel, coated, and hollow microneedles. Numerous microneedle products have entered the market in recent years. But, before the microneedles can be effectively launched into the market, a significant amount of investigation is required to address the numerous challenges. In conclusion, the use of microneedles in the transdermal system is an area worth investigating because of its significant benefits over the oral route in the delivery of anti-diabetic medications and biosensing of blood sugar levels to assure improved clinical outcomes in diabetes management.
Collapse
Affiliation(s)
- Ishrat Zahoor
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tanveer Naved
- Amity Institute of Pharmacy, Amity University, Noida, India
| | | | | | | | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
- School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| | | | - Celia Vargas-De-La-Cruz
- Faculty of Pharmacy and Biochemistry, Academic Department of Pharmacology, Bromatology and Toxicology, Centro Latinoamericano de Ensenanza E Investigacion en Bacteriologia Alimentaria, Universidad Nacinol Mayor de San Marcos, Lima, Peru
- E-Health Research Center, Universidad de Ciencias Y Humanidades, Lima, Peru
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
10
|
Xenikakis I, Tsongas K, Tzimtzimis EK, Katsamenis OL, Demiri E, Zacharis CK, Georgiou D, Kalogianni EP, Tzetzis D, Fatouros DG. Transdermal delivery of insulin across human skin in vitro with 3D printed hollow microneedles. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102891] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
11
|
Nadia Ahmad NF, Nik Ghazali NN, Wong YH. Wearable patch delivery system for artificial pancreas health diagnostic-therapeutic application: A review. Biosens Bioelectron 2021; 189:113384. [PMID: 34090154 DOI: 10.1016/j.bios.2021.113384] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 12/13/2022]
Abstract
The advanced stimuli-responsive approaches for on-demand drug delivery systems have received tremendous attention as they have great potential to be integrated with sensing and multi-functional electronics on a flexible and stretchable single platform (all-in-one concept) in order to develop skin-integration with close-loop sensation for personalized diagnostic and therapeutic application. The wearable patch pumps have evolved from reservoir-based to matrix patch and drug-in-adhesive (single-layer or multi-layer) type. In this review, we presented the basic requirements of an artificial pancreas, surveyed the design and technologies used in commercial patch pumps available on the market and provided general information about the latest wearable patch pump. We summarized the various advanced delivery strategies with their mechanisms that have been developed to date and representative examples. Mechanical, electrical, light, thermal, acoustic and glucose-responsive approaches on patch form have been successfully utilized in the controllable transdermal drug delivery manner. We highlighted key challenges associated with wearable transdermal delivery systems, their research direction and future development trends.
Collapse
Affiliation(s)
- Nur Farrahain Nadia Ahmad
- Department of Mechanical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia; School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Nik Nazri Nik Ghazali
- Department of Mechanical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Yew Hoong Wong
- Department of Mechanical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
12
|
Gupta J, Gupta R, Vanshita. Microneedle Technology: An Insight into Recent Advancements and Future Trends in Drug and Vaccine Delivery. Assay Drug Dev Technol 2020; 19:97-114. [PMID: 33297823 DOI: 10.1089/adt.2020.1022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Over the last decade, microneedle (MN) induced microporation multifunctional approaches to enhance the delivery of drugs through the skin. MN technology included micron-sized needles to create microchannels into the Stratum corneum of skin, the most significant protective layer. Delivery of drugs and vaccines through the transdermal route is an alternative route for hypodermic and oral. It overcomes the problems associated with gastrointestinal along with drug deterioration. It is affordable, noninvasive, painless, simple, and self-administered techniques that provide prolonged release of drugs to enhance patient compliance. The MN delivery focused on biopharmaceuticals like proteins or peptides. The novel concepts have drawn interest in using these techniques in tandem with other enhancement approaches. This review article discussed the latest advancements in MN technology. It emphasized types of MNs, methodology, mechanisms, strategies for delivery of several drugs and vaccines, and significant challenges in the marketing of biopharmaceuticals. Furthermore, relevant U.S. patents and clinical trials based on MNs are also accentuated. Therefore, MN techniques will play a pivotal role in promoting clinical applications and innovative research for scientists and researchers working in the pharmaceutical field.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | | | - Vanshita
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| |
Collapse
|
13
|
Madden J, O'Mahony C, Thompson M, O'Riordan A, Galvin P. Biosensing in dermal interstitial fluid using microneedle based electrochemical devices. SENSING AND BIO-SENSING RESEARCH 2020. [DOI: 10.1016/j.sbsr.2020.100348] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
14
|
Jana BA, Wadhwani AD. Microneedle - Future prospect for efficient drug delivery in diabetes management. Indian J Pharmacol 2019; 51:4-10. [PMID: 31031461 PMCID: PMC6444834 DOI: 10.4103/ijp.ijp_16_18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
This review aims at focusing on the use of microneedles (MNs) as an emerging novel drug delivery carrier for an effective treatment in diabetic patients. There are many limitations in various modes of delivery such as oral, subcutaneous, nasal, and other modes which cause pain and have many other side effects. Hence, this drug delivery research has found to have tremendous potential in combining both the diagnostic and therapeutic elements, thus treating diabetes in a better way. Most glucose-sensing techniques and conventional insulin therapies are engaged in the transfer of physical entities through the skin. MN- based drug delivery system can accomplish in an noninvasive or minimally invasive manner which can be an add on advantage towards pain-free administration, easy handling, discrete, continuous as well as providing a controlled release system. Hence, the review addresses on the current advancement of this bioengineered system like MNs, constituting a “smart” system specifically for autonomous diabetes therapy.
Collapse
Affiliation(s)
- Baishali A Jana
- Department of Pharmaceutical Biotechnology, JSS Academy of Higher Education and Research, JSS College of Pharmacy, Ooty, Tamil Nadu, India
| | - Ashish D Wadhwani
- Department of Pharmaceutical Biotechnology, JSS Academy of Higher Education and Research, JSS College of Pharmacy, Ooty, Tamil Nadu, India
| |
Collapse
|
15
|
Yadav KS, Kapse-Mistry S, Peters GJ, Mayur YC. E-drug delivery: a futuristic approach. Drug Discov Today 2019; 24:1023-1030. [PMID: 30794860 DOI: 10.1016/j.drudis.2019.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/31/2019] [Accepted: 02/14/2019] [Indexed: 11/28/2022]
Abstract
Drug delivery systems are undergoing technology changes to enhance patient comfort and compliance. Electronic drug delivery (E-drug delivery) systems are being developed to regulate drug dose delivery by easy monitoring of doses, especially in chronic and age-related diseases. E-drug delivery can monitor the correct dose of anesthesia, could be used in GI tracking by E-capsules, in epilepsy, insulin drug delivery, cardiac ailments and cancer therapy. Wearable E-drug delivery systems and Smartphone apps are the new additions. In this review, the authors attempt to highlight how technology is changing for improved patient comfort and treatment. Personalized drug delivery systems will be the future treatment process in healthcare.
Collapse
Affiliation(s)
- Khushwant S Yadav
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS Deemed to be University, Vile-Parle (W), Mumbai 400056, India
| | | | - G J Peters
- Department of Medical Oncology, VU University Medical Centre, Amsterdam, The Netherlands
| | - Y C Mayur
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS Deemed to be University, Vile-Parle (W), Mumbai 400056, India.
| |
Collapse
|
16
|
Babity S, Roohnikan M, Brambilla D. Advances in the Design of Transdermal Microneedles for Diagnostic and Monitoring Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1803186. [PMID: 30353663 DOI: 10.1002/smll.201803186] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/28/2018] [Indexed: 06/08/2023]
Abstract
Due to their intrinsic advantages over classical hypodermic needles, microneedles have received much attention over the last two decades and will likely soon appear in clinics. Although the vast majority of research is focused on designing microneedles for the painless delivery of drugs, their applications for diagnostic purposes have also provided promising results. In this paper, the main advances in the field of microneedles for diagnostic and patient monitoring purposes are introduced and critically discussed.
Collapse
Affiliation(s)
- Samuel Babity
- Faculty of Pharmacy, University of Montreal, Montreal, QC, H3T 1J4, Canada
| | - Mahdi Roohnikan
- Faculty of Pharmacy, University of Montreal, Montreal, QC, H3T 1J4, Canada
| | - Davide Brambilla
- Faculty of Pharmacy, University of Montreal, Montreal, QC, H3T 1J4, Canada
| |
Collapse
|
17
|
Brown S, Zambrana PN, Ge X, Bagdure D, Stinchcomb AL, Rao G, Tolosa L. Minimally invasive technique for measuring transdermal glucose with a fluorescent biosensor. Anal Bioanal Chem 2018; 410:7249-7260. [PMID: 30171282 DOI: 10.1007/s00216-018-1336-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/15/2018] [Accepted: 08/17/2018] [Indexed: 11/24/2022]
Abstract
There is a need for blood glucose monitoring techniques that eliminate the painful and invasive nature of current methods, while maintaining the reliability and accuracy of established medical technology. This research aims to ultimately address these shortcomings in critically ill pediatric patients. Presented in this work is an alternative, minimally invasive technique that uses microneedles (MN) for the collection of transdermal glucose (TG). Due to their comparable skin properties, diffusion studies were performed on full thickness Yucatan miniature pig skin mounted to an in-line diffusion flow cell and on different skin sites of human subjects. Collected TG samples were measured with a L255C mutant of the E. coli glucose-binding protein (GBP) with an attached fluorescent probe. The binding constant (Kd = 0.67 μM) revealed the micromolar sensitivity and high selectivity of the his-tagged GBP biosensor for glucose, making it suitable for TG measurements. In both the animal and human models, skin permeability and TG diffusion across the skin increased with MN application. For intact and MN-treated human skin, a significant positive linear correlation (r > 0.95, p < 0.01) existed between TG and BG. The micromolar sensitivity of GBP minimized the volume required for interstitial fluid glucose analysis allowing MN application time (30 s) to be shortened compared to other studies. This time reduction can help in eliminating skin irritation issues and improving practical use of the technique by caregivers in the hospital. In addition, the his-tagged optical biosensor used in this work can be immobilized and used with a portable sensing fluorometer device at the point of care (POC) making this minimally invasive technology more ideal for use in the pediatric intensive care unit. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Sheniqua Brown
- Center for Advanced Sensor Technology Research (CAST), Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| | - Paige N Zambrana
- Department of Pharmaceutical Sciences, University of Maryland, 20 North Pine Street, Baltimore, MD, 21201, USA
| | - Xudong Ge
- Center for Advanced Sensor Technology Research (CAST), Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| | - Dayanand Bagdure
- Department of Pediatrics, University of Maryland Medical Center, 110 S Paca Street, Baltimore, MD, 21201, USA
| | - Audra L Stinchcomb
- Department of Pharmaceutical Sciences, University of Maryland, 20 North Pine Street, Baltimore, MD, 21201, USA
| | - Govind Rao
- Center for Advanced Sensor Technology Research (CAST), Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| | - Leah Tolosa
- Center for Advanced Sensor Technology Research (CAST), Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD, 21250, USA.
| |
Collapse
|
18
|
Sachan R, Jaipan P, Zhang JY, Degan S, Erdmann D, Tedesco J, Vanderwal L, Stafslien SJ, Negut I, Visan A, Dorcioman G, Socol G, Cristescu R, Chrisey DB, Narayan RJ. Printing amphotericin B on microneedles using matrix-assisted pulsed laser evaporation. Int J Bioprint 2017; 3:004. [PMID: 33094188 PMCID: PMC7575625 DOI: 10.18063/ijb.2017.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 07/03/2017] [Indexed: 11/23/2022] Open
Abstract
Transdermal delivery of amphotericin B, a pharmacological agent with activity against fungi and parasitic protozoa, is a challenge since amphotericin B exhibits poor solubility in aqueous solutions at physiologic pH values. In this study, we have used a laser-based printing approach known as matrix-assisted pulsed laser evaporation to print amphotericin B on the surfaces of polyglycolic acid microneedles that were prepared using a combination of injection molding and drawing lithography. In a modified agar disk diffusion assay, the amphotericin B-loaded microneedles showed concentration-dependent activity against the yeast Candida albicans. The results of this study suggest that matrix-assisted pulsed laser evaporation may be used to print amphotericin B and other drugs that have complex solubility issues on the surfaces of microneedles.
Collapse
Affiliation(s)
- Roger Sachan
- Wake Early College of Health and Sciences, Raleigh, North Carolina, USA
| | - Panupong Jaipan
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Raleigh, North Carolina, USA
| | - Jennifer Y Zhang
- Department of Dermatology, Duke University Medical Center, Durham, North Carolina, USA
| | - Simone Degan
- Department of Dermatology, Duke University Medical Center, Durham, North Carolina, USA
| | - Detlev Erdmann
- Department of Surgery, Division of Plastic, Reconstructive, Maxillofacial and Oral Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | | | - Lyndsi Vanderwal
- Office of Research and Creativity Activity, North Dakota State University, 1715 Research Park Drive, Fargo ND, USA
| | - Shane J Stafslien
- Office of Research and Creativity Activity, North Dakota State University, 1715 Research Park Drive, Fargo ND, USA
| | - Irina Negut
- National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, P.O. Box MG-36, Bucharest-Magurele, Romania
| | - Anita Visan
- National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, P.O. Box MG-36, Bucharest-Magurele, Romania
| | - Gabriela Dorcioman
- National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, P.O. Box MG-36, Bucharest-Magurele, Romania
| | - Gabriel Socol
- National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, P.O. Box MG-36, Bucharest-Magurele, Romania
| | - Rodica Cristescu
- National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, P.O. Box MG-36, Bucharest-Magurele, Romania
| | - Douglas B Chrisey
- Department of Physics and Engineering Physics, Tulane University, New Orleans, LA, USA
| | - Roger J Narayan
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
19
|
Microneedle characterisation: the need for universal acceptance criteria and GMP specifications when moving towards commercialisation. Drug Deliv Transl Res 2016; 5:313-31. [PMID: 26022578 DOI: 10.1007/s13346-015-0237-z] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
With interest in microneedles as a novel drug transdermal delivery system increasing rapidly since the late 1990s (Margetts and Sawyer Contin Educ Anaesthesia Crit Care Pain. 7(5):171-76, 2007), a diverse range of microneedle systems have been fabricated with varying designs and dimensions. However, there are still very few commercially available microneedle products. One major issue regarding microneedle manufacture on an industrial scale is the lack of specific quality standards for this novel dosage form in the context of Good Manufacturing Practice (GMP). A range of mechanical characterisation tests and microneedle insertion analysis techniques are used by researchers working on microneedle systems to assess the safety and performance profiles of their various designs. The lack of standardised tests and equipment used to demonstrate microneedle mechanical properties and insertion capability makes it difficult to directly compare the in use performance of candidate systems. This review highlights the mechanical tests and insertion analytical techniques used by various groups to characterise microneedles. This in turn exposes the urgent need for consistency across the range of microneedle systems in order to promote innovation and the successful commercialisation of microneedle products.
Collapse
|
20
|
ZHANG JENNIFER, WANG YAN, JIN JANEY, DEGAN SIMONE, HALL RUSSELLP, BOEHM RYAND, JAIPAN PANUPONG, NARAYAN ROGERJ. Use of Drawing Lithography-Fabricated Polyglycolic Acid Microneedles for Transdermal Delivery of Itraconazole to a Human Basal Cell Carcinoma Model Regenerated on Mice. JOM (WARRENDALE, PA. : 1989) 2016; 68:1128-1133. [PMID: 33597793 PMCID: PMC7886388 DOI: 10.1007/s11837-016-1841-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Itraconazole is a triazole agent that is routinely used for treatment of nail infections and other fungal infections. Recent studies indicate that itraconazole can also inhibit the growth of basal cell carcinoma (BCC) through suppression of the Sonic Hedgehog (SHH) signaling pathway. In this study, polyglycolic acid microneedle arrays and stainless steel microneedle arrays were used for transdermal delivery of itraconazole to a human BCC model which was regenerated on mice. One-by-four arrays of 642-μm-long polyglycolic acid microneedles with sharp tips were prepared using injection molding and drawing lithography. Arrays of 85 stainless steel 800-μm-tall microneedles attached to syringes were obtained for comparison purposes. Skin grafts containing devitalized split-thickness human dermis that had been seeded with human keratinocytes transduced to express human SHH protein were sutured to the skin of immunodeficient mice. Mice with this human BCC model were treated daily for 2 weeks with itraconazole dissolved in 60% dimethylsulfoxane and 40% polyethylene glycol-400 solution; transdermal administration of the itraconazole solution was facilitated by either four 1 × 4 polyglycolic acid microneedle arrays or stainless steel microneedle arrays. The epidermal tissues treated with polyglycolic acid microneedles or stainless steel microneedles were markedly thinner than that of the control (untreated) graft tissue. These preliminary results indicate that microneedles may be used to facilitate transdermal delivery of itraconazole for localized treatment of BCC.
Collapse
Affiliation(s)
- JENNIFER ZHANG
- Department of Dermatology, Duke University Medical Center, DUMC 3135, Durham, NC 27710, USA
| | - YAN WANG
- Department of Dermatology, Duke University Medical Center, DUMC 3135, Durham, NC 27710, USA
| | - JANE Y. JIN
- Department of Dermatology, Duke University Medical Center, DUMC 3135, Durham, NC 27710, USA
| | - SIMONE DEGAN
- Department of Dermatology, Duke University Medical Center, DUMC 3135, Durham, NC 27710, USA
- Department of Chemistry, Duke University, 124 Science Drive, Box 90354, Durham, NC 27708-0354, USA
| | - RUSSELL P. HALL
- Department of Dermatology, Duke University Medical Center, DUMC 3135, Durham, NC 27710, USA
| | - RYAN D. BOEHM
- UNC/NCSU Joint Department of Biomedical Engineering, Box 7115, Raleigh, NC 27695-7115, USA
| | - PANUPONG JAIPAN
- UNC/NCSU Joint Department of Biomedical Engineering, Box 7115, Raleigh, NC 27695-7115, USA
| | - ROGER J. NARAYAN
- UNC/NCSU Joint Department of Biomedical Engineering, Box 7115, Raleigh, NC 27695-7115, USA
| |
Collapse
|
21
|
Comina G, Suska A, Filippini D. Towards autonomous lab-on-a-chip devices for cell phone biosensing. Biosens Bioelectron 2016; 77:1153-67. [DOI: 10.1016/j.bios.2015.10.092] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 10/29/2015] [Accepted: 10/30/2015] [Indexed: 01/20/2023]
|
22
|
Song S, Roy S. Progress and challenges in macroencapsulation approaches for type 1 diabetes (T1D) treatment: Cells, biomaterials, and devices. Biotechnol Bioeng 2016; 113:1381-402. [PMID: 26615050 DOI: 10.1002/bit.25895] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/30/2015] [Accepted: 11/24/2015] [Indexed: 12/15/2022]
Abstract
Macroencapsulation technology has been an attractive topic in the field of treatment for Type 1 diabetes due to mechanical stability, versatility, and retrievability of the macro-capsule design. Macro-capsules can be categorized into extravascular and intravascular devices, in which solute transport relies either on diffusion or convection, respectively. Failure of macroencapsulation strategies can be due to limited regenerative capacity of the encased insulin-producing cells, sub-optimal performance of encapsulation biomaterials, insufficient immunoisolation, excessive blood thrombosis for vascular perfusion devices, and inadequate modes of mass transfer to support cell viability and function. However, significant technical advancements have been achieved in macroencapsulation technology, namely reducing diffusion distance for oxygen and nutrients, using pro-angiogenic factors to increase vascularization for islet engraftment, and optimizing membrane permeability and selectivity to prevent immune attacks from host's body. This review presents an overview of existing macroencapsulation devices and discusses the advances based on tissue-engineering approaches that will stimulate future research and development of macroencapsulation technology. Biotechnol. Bioeng. 2016;113: 1381-1402. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Shang Song
- Department of Bioengineering and Therapeutic Sciences, University of California-San Francisco, San Francisco, California 94158
| | - Shuvo Roy
- Department of Bioengineering and Therapeutic Sciences, University of California-San Francisco, San Francisco, California 94158.
| |
Collapse
|
23
|
Ventrelli L, Marsilio Strambini L, Barillaro G. Microneedles for Transdermal Biosensing: Current Picture and Future Direction. Adv Healthc Mater 2015; 4:2606-40. [PMID: 26439100 DOI: 10.1002/adhm.201500450] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Indexed: 01/01/2023]
Abstract
A novel trend is rapidly emerging in the use of microneedles, which are a miniaturized replica of hypodermic needles with length-scales of hundreds of micrometers, aimed at the transdermal biosensing of analytes of clinical interest, e.g., glucose, biomarkers, and others. Transdermal biosensing via microneedles offers remarkable opportunities for moving biosensing technologies and biochips from research laboratories to real-field applications, and envisages easy-to-use point-of-care microdevices with pain-free, minimally invasive, and minimal-training features that are very attractive for both developed and emerging countries. In addition to this, microneedles for transdermal biosensing offer a unique possibility for the development of biochips provided with end-effectors for their interaction with the biological system under investigation. Direct and efficient collection of the biological sample to be analyzed will then become feasible in situ at the same length-scale of the other biochip components by minimally trained personnel and in a minimally invasive fashion. This would eliminate the need for blood extraction using hypodermic needles and reduce, in turn, related problems, such as patient infections, sample contaminations, analysis artifacts, etc. The aim here is to provide a thorough and critical analysis of state-of-the-art developments in this novel research trend, and to bridge the gap between microneedles and biosensors.
Collapse
Affiliation(s)
- Letizia Ventrelli
- Dipartimento di Ingegneria dell'Informazione; Università di Pisa; Via G. Caruso 16 56122 Pisa Italy
| | | | - Giuseppe Barillaro
- Dipartimento di Ingegneria dell'Informazione; Università di Pisa; Via G. Caruso 16 56122 Pisa Italy
- Istituto di Fisiologia Clinica; Consiglio Nazionale delle Ricerche; via G. Moruzzi 1 56124 Pisa Italy
| |
Collapse
|
24
|
Affiliation(s)
- Karmen Cheung
- Department of Chemical Engineering, Loughborough University, Loughborough, Leicestershire, UK
| | - Diganta B. Das
- Department of Chemical Engineering, Loughborough University, Loughborough, Leicestershire, UK
| |
Collapse
|
25
|
Kaushik A, Vasudev A, Arya SK, Pasha SK, Bhansali S. Recent advances in cortisol sensing technologies for point-of-care application. Biosens Bioelectron 2013; 53:499-512. [PMID: 24212052 DOI: 10.1016/j.bios.2013.09.060] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 09/14/2013] [Accepted: 09/17/2013] [Indexed: 10/26/2022]
Abstract
Everyday lifestyle related issues are the main cause of psychological stress, which contributes to health disparities experienced by individuals. Prolonged exposure to stress leads to the activation of signaling pathways from the brain that leads to release of cortisol from the adrenal cortex. Various biomarkers have been affected by psychological stress, but cortisol "a steroid hormone" is known as a potential biomarker for its estimation. Cortisol can also be used as a target analyte marker to determine the effect of exposure such as organophosphates on central nervous system, which alters the endocrine system, leading to imbalance in cortisol secretion. Cortisol secretion of individuals depends on day-night cycle and field environment hence its detection at point-of-care (POC) is deemed essential to provide personalized healthcare. Chromatographic techniques have been traditionally used to detect cortisol. The issues relating to assay formation, system complexity, and multistep extraction/purification limits its application in the field. In order to overcome these issues and to make portable and effective miniaturized platform, various immunoassays sensing strategies are being explored. However, electrochemical immunosensing of cortisol is considered as a recent advancement towards POC application. Highly sensitive, label-free and selective cortisol immunosensor based on microelectrodes are being integrated with the microfluidic system for automated diurnal cortisol monitoring useful for personalized healthcare. Although the reported sensing devices for cortisol detection may have a great scope to improve portability, electronic designing, performance of the integrated sensor, data safety and lifetime for point-of-care applications, This review is an attempt to describe the various cortisol sensing platforms and their potential to be integrated into a wearable system for online and continuous monitoring of cortisol rhythm at POC as a function of one's environment.
Collapse
Affiliation(s)
- Ajeet Kaushik
- Bio-MEMS and Microsystems Laboratory, Department of Electrical and Computer Engineering, Florida International University, Miami, FL 33174, United States.
| | | | | | | | | |
Collapse
|
26
|
El-Laboudi A, Oliver NS, Cass A, Johnston D. Use of microneedle array devices for continuous glucose monitoring: a review. Diabetes Technol Ther 2013; 15:101-15. [PMID: 23234256 DOI: 10.1089/dia.2012.0188] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Microneedle array devices provide the opportunity to overcome the barrier characteristics of the outermost skin layer, the stratum corneum. This novel technology can be used as a therapeutic tool for transdermal drug delivery, including insulin, or as a diagnostic tool providing access to dermal biofluids, with subsequent analysis of its contents. Over the last decade, the use of microneedle array technology has been the focus of extensive research in the field of transdermal drug delivery. More recently, the diagnostic applications of microneedle technology have been developed. This review summarizes the existing evidence for the use of microneedle array technology as biosensors for continuous monitoring of the glucose content of interstitial fluid, focusing also on mechanics of insertion, microchannel characteristics, and safety profile.
Collapse
Affiliation(s)
- Ahmed El-Laboudi
- Diabetes, Endocrinology, and Metabolic Medicine, Imperial College London, London, United Kingdom
| | | | | | | |
Collapse
|
27
|
Kim YC, Park JH, Prausnitz MR. Microneedles for drug and vaccine delivery. Adv Drug Deliv Rev 2012; 64:1547-68. [PMID: 22575858 DOI: 10.1016/j.addr.2012.04.005] [Citation(s) in RCA: 1061] [Impact Index Per Article: 81.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 03/15/2012] [Accepted: 04/23/2012] [Indexed: 12/18/2022]
Abstract
Microneedles were first conceptualized for drug delivery many decades ago, but only became the subject of significant research starting in the mid-1990's when microfabrication technology enabled their manufacture as (i) solid microneedles for skin pretreatment to increase skin permeability, (ii) microneedles coated with drug that dissolves off in the skin, (iii) polymer microneedles that encapsulate drug and fully dissolve in the skin and (iv) hollow microneedles for drug infusion into the skin. As shown in more than 350 papers now published in the field, microneedles have been used to deliver a broad range of different low molecular weight drugs, biotherapeutics and vaccines, including published human studies with a number of small-molecule and protein drugs and vaccines. Influenza vaccination using a hollow microneedle is in widespread clinical use and a number of solid microneedle products are sold for cosmetic purposes. In addition to applications in the skin, microneedles have also been adapted for delivery of bioactives into the eye and into cells. Successful application of microneedles depends on device function that facilitates microneedle insertion and possible infusion into skin, skin recovery after microneedle removal, and drug stability during manufacturing, storage and delivery, and on patient outcomes, including lack of pain, skin irritation and skin infection, in addition to drug efficacy and safety. Building off a strong technology base and multiple demonstrations of successful drug delivery, microneedles are poised to advance further into clinical practice to enable better pharmaceutical therapies, vaccination and other applications.
Collapse
|
28
|
Micro Electromechanical Systems (MEMS) Based Microfluidic Devices for Biomedical Applications. Int J Mol Sci 2011; 12:3648-704. [PMID: 21747700 PMCID: PMC3131584 DOI: 10.3390/ijms12063648] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2011] [Revised: 05/03/2011] [Accepted: 05/19/2011] [Indexed: 01/01/2023] Open
Abstract
Micro Electromechanical Systems (MEMS) based microfluidic devices have gained popularity in biomedicine field over the last few years. In this paper, a comprehensive overview of microfluidic devices such as micropumps and microneedles has been presented for biomedical applications. The aim of this paper is to present the major features and issues related to micropumps and microneedles, e.g., working principles, actuation methods, fabrication techniques, construction, performance parameters, failure analysis, testing, safety issues, applications, commercialization issues and future prospects. Based on the actuation mechanisms, the micropumps are classified into two main types, i.e., mechanical and non-mechanical micropumps. Microneedles can be categorized according to their structure, fabrication process, material, overall shape, tip shape, size, array density and application. The presented literature review on micropumps and microneedles will provide comprehensive information for researchers working on design and development of microfluidic devices for biomedical applications.
Collapse
|
29
|
Sun LL, Jiang BG, Li WT, Zou JJ, Shi YQ, Liu ZM. MicroRNA-15a positively regulates insulin synthesis by inhibiting uncoupling protein-2 expression. Diabetes Res Clin Pract 2011; 91:94-100. [PMID: 21146880 DOI: 10.1016/j.diabres.2010.11.006] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2010] [Revised: 10/23/2010] [Accepted: 11/04/2010] [Indexed: 11/24/2022]
Abstract
MicroRNAs are small noncoding RNAs that have been highly conserved during evolution and have been implicated to play an important role in many diseases, including diabetes. Several reports indicated the function of miRNAs in insulin production. However, the mechanisms by which miRNAs regulate this process remain poorly understood. Here we found that the expression of miR-15a was up-regulated in the presence of high glucose for 1h, whereas prolonged periods of high glucose exposure resulted in depressed expression of miR-15a, and the change in expression levels of miR-15a coincided with insulin biosynthesis. Moreover, ectopic expression of miR-15a promoted insulin biosynthesis in MIN6 cells, whereas its repression was sufficient to inhibit insulin biosynthesis. Further, we verified that miR-15a directly targeted and inhibited uncoupling protein-2 (UCP-2) gene expression. miR-15a mimics inhibited UCP-2 3'UTR luciferase reporter activity. Western blot analysis showed that miR-15a inhibited endogenous UCP-2 protein levels, and resulted in the increase in oxygen consumption and reduced ATP generation. This study suggests miR-15a is a mediator of β cell function and insulin biosynthesis, thus offering a new target for the development of preventive or therapeutic agents against diabetes.
Collapse
Affiliation(s)
- Liang-Liang Sun
- Department of Endocrinology & Metabolism, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai 200003, China
| | | | | | | | | | | |
Collapse
|