1
|
Pavan J, Noaro G, Facchinetti A, Salvagnin D, Sparacino G, Del Favero S. A strategy based on integer programming for optimal dosing and timing of preventive hypoglycemic treatments in type 1 diabetes management. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 250:108179. [PMID: 38642427 DOI: 10.1016/j.cmpb.2024.108179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/29/2024] [Accepted: 04/13/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND AND OBJECTIVES One of the major problems related to type 1 diabetes (T1D) management is hypoglycemia, a condition characterized by low blood glucose levels and responsible for reduced quality of life and increased mortality. Fast-acting carbohydrates, also known as hypoglycemic treatments (HT), can counteract this event. In the literature, dosage and timing of HT are usually based on heuristic rules. In the present work, we propose an algorithm for mitigating hypoglycemia by suggesting preventive HT consumption, with dosages and timing determined by solving an optimization problem. METHODS By leveraging integer programming and linear inequality constraints, the algorithm can bind the amount of suggested carbohydrates to standardized quantities (i.e., those available in "off-the-shelf" HT) and the minimal distance between consecutive suggestions (to reduce the nuisance for patients). RESULTS The proposed method was tested in silico and compared with competitor algorithms using the UVa/Padova T1D simulator. At the cost of a slight increase of HT consumed per day, the proposed algorithm produces the lowest median and interquartile range of the time spent in hypoglycemia, with a statistically significant improvement over most competitor algorithms. Also, the average number of hypoglycemic events per day is reduced to 0 in median. CONCLUSIONS Thanks to its positive performances and reduced computational burden, the proposed algorithm could be a candidate tool for integration in a DSS aimed at improving T1D management.
Collapse
Affiliation(s)
- J Pavan
- Department of Information Engineering, University of Padova, Via Gradenigo 6/A, Padova, 35131, Italy.
| | - G Noaro
- Department of Information Engineering, University of Padova, Via Gradenigo 6/A, Padova, 35131, Italy.
| | - A Facchinetti
- Department of Information Engineering, University of Padova, Via Gradenigo 6/A, Padova, 35131, Italy.
| | - D Salvagnin
- Department of Information Engineering, University of Padova, Via Gradenigo 6/A, Padova, 35131, Italy.
| | - G Sparacino
- Department of Information Engineering, University of Padova, Via Gradenigo 6/A, Padova, 35131, Italy.
| | - S Del Favero
- Department of Information Engineering, University of Padova, Via Gradenigo 6/A, Padova, 35131, Italy.
| |
Collapse
|
2
|
Jacobs PG, Herrero P, Facchinetti A, Vehi J, Kovatchev B, Breton MD, Cinar A, Nikita KS, Doyle FJ, Bondia J, Battelino T, Castle JR, Zarkogianni K, Narayan R, Mosquera-Lopez C. Artificial Intelligence and Machine Learning for Improving Glycemic Control in Diabetes: Best Practices, Pitfalls, and Opportunities. IEEE Rev Biomed Eng 2024; 17:19-41. [PMID: 37943654 DOI: 10.1109/rbme.2023.3331297] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
OBJECTIVE Artificial intelligence and machine learning are transforming many fields including medicine. In diabetes, robust biosensing technologies and automated insulin delivery therapies have created a substantial opportunity to improve health. While the number of manuscripts addressing the topic of applying machine learning to diabetes has grown in recent years, there has been a lack of consistency in the methods, metrics, and data used to train and evaluate these algorithms. This manuscript provides consensus guidelines for machine learning practitioners in the field of diabetes, including best practice recommended approaches and warnings about pitfalls to avoid. METHODS Algorithmic approaches are reviewed and benefits of different algorithms are discussed including importance of clinical accuracy, explainability, interpretability, and personalization. We review the most common features used in machine learning applications in diabetes glucose control and provide an open-source library of functions for calculating features, as well as a framework for specifying data sets using data sheets. A review of current data sets available for training algorithms is provided as well as an online repository of data sources. SIGNIFICANCE These consensus guidelines are designed to improve performance and translatability of new machine learning algorithms developed in the field of diabetes for engineers and data scientists.
Collapse
|
3
|
Faccioli S, Prendin F, Facchinetti A, Sparacino G, Del Favero S. Combined Use of Glucose-Specific Model Identification and Alarm Strategy Based on Prediction-Funnel to Improve Online Forecasting of Hypoglycemic Events. J Diabetes Sci Technol 2023; 17:1295-1303. [PMID: 35611461 PMCID: PMC10563526 DOI: 10.1177/19322968221093665] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Advanced decision support systems for type 1 diabetes (T1D) management often embed prediction modules, which allow T1D people to take preventive actions to avoid critical episodes like hypoglycemia. Real-time prediction of blood glucose (BG) concentration relies on a subject-specific model of glucose-insulin dynamics. Model parameter identification is usually based on the mean square error (MSE) cost function, and the model is usually used to predict BG at a single prediction horizon (PH). Finally, a hypo-alarm is raised if the predicted BG crosses a threshold. This work aims to show that real-time hypoglycemia forecasting can be improved by leveraging: a glucose-specific mean square error (gMSE) cost function in model's parameters identification, and a "prediction-funnel," that is, confidence intervals (CIs) for multiple PHs, within the hypo-alarm-raising strategy. METHODS Autoregressive integrated moving average with exogenous input (ARIMAX) models are selected to illustrate the proposed solution (use of gMSE and prediction-funnel) and its assessment against the conventional approach (MSE and single PH). The gMSE penalizes the model misfit in unsafe BG ranges (e.g., hypoglycemia), and the prediction-funnel allows raising an alarm by monitoring if the CIs cross a suitable threshold. The algorithms were evaluated by measuring precision (P), recall (R), F1-score (F1), false positive per day (FP/day), and time gain (TG) on a real dataset collected in 11 T1D individuals. RESULTS The best performance is achieved exploiting both the gMSE and the prediction-funnel: P = 65%, R = 88%, F1 = 75%, FP/day = 0.29, and mean TG = 15 minutes. CONCLUSIONS The combined use of a glucose-specific metric and an alarm-raising strategy based on the prediction-funnel allows achieving a more effective and reliable hypoglycemia prediction algorithm.
Collapse
Affiliation(s)
- Simone Faccioli
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Francesco Prendin
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Andrea Facchinetti
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Giovanni Sparacino
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Simone Del Favero
- Department of Information Engineering, University of Padova, Padova, Italy
| |
Collapse
|
4
|
Mosquera-Lopez C, Ramsey KL, Roquemen-Echeverri V, Jacobs PG. Modeling risk of hypoglycemia during and following physical activity in people with type 1 diabetes using explainable mixed-effects machine learning. Comput Biol Med 2023; 155:106670. [PMID: 36803791 DOI: 10.1016/j.compbiomed.2023.106670] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/19/2023] [Accepted: 02/10/2023] [Indexed: 02/13/2023]
Abstract
BACKGROUND Physical activity (PA) can cause increased hypoglycemia (glucose <70 mg/dL) risk in people with type 1 diabetes (T1D). We modeled the probability of hypoglycemia during and up to 24 h following PA and identified key factors associated with hypoglycemia risk. METHODS We leveraged a free-living dataset from Tidepool comprised of glucose measurements, insulin doses, and PA data from 50 individuals with T1D (6448 sessions) for training and validating machine learning models. We also used data from the T1Dexi pilot study that contains glucose management and PA data from 20 individuals with T1D (139 session) for assessing the accuracy of the best performing model on an independent test dataset. We used mixed-effects logistic regression (MELR) and mixed-effects random forest (MERF) to model hypoglycemia risk around PA. We identified risk factors associated with hypoglycemia using odds ratio and partial dependence analysis for the MELR and MERF models, respectively. Prediction accuracy was measured using the area under the receiver operating characteristic curve (AUROC). RESULTS The analysis identified risk factors significantly associated with hypoglycemia during and following PA in both MELR and MERF models including glucose and body exposure to insulin at the start of PA, low blood glucose index 24 h prior to PA, and PA intensity and timing. Both models showed overall hypoglycemia risk peaking 1 h after PA and again 5-10 h after PA, which is consistent with the hypoglycemia risk pattern observed in the training dataset. Time following PA impacted hypoglycemia risk differently across different PA types. Accuracy of hypoglycemia prediction using the fixed effects of the MERF model was highest when predicting hypoglycemia during the first hour following the start of PA (AUROCVALIDATION = 0.83 and AUROCTESTING = 0.86) and decreased when predicting hypoglycemia in the 24 h after PA (AUROCVALIDATION = 0.66 and AUROCTESTING = 0.68). CONCLUSION Hypoglycemia risk after the start of PA can be modeled using mixed-effects machine learning to identify key risk factors that may be used within decision support and insulin delivery systems. We published the population-level MERF model online for others to use.
Collapse
Affiliation(s)
- Clara Mosquera-Lopez
- Artificial Intelligence for Medical Systems (AIMS) Lab, Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA.
| | - Katrina L Ramsey
- Biostatistics and Design Program, Oregon Health & Science University, Portland, Oregon, USA
| | - Valentina Roquemen-Echeverri
- Artificial Intelligence for Medical Systems (AIMS) Lab, Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| | - Peter G Jacobs
- Artificial Intelligence for Medical Systems (AIMS) Lab, Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
5
|
Hettiarachchi C, Daskalaki E, Desborough J, Nolan CJ, O'Neal D, Suominen H. Integrating Multiple Inputs Into an Artificial Pancreas System: Narrative Literature Review. JMIR Diabetes 2022; 7:e28861. [PMID: 35200143 PMCID: PMC8914747 DOI: 10.2196/28861] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/07/2021] [Accepted: 01/01/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) is a chronic autoimmune disease in which a deficiency in insulin production impairs the glucose homeostasis of the body. Continuous subcutaneous infusion of insulin is a commonly used treatment method. Artificial pancreas systems (APS) use continuous glucose level monitoring and continuous subcutaneous infusion of insulin in a closed-loop mode incorporating a controller (or control algorithm). However, the operation of APS is challenging because of complexities arising during meals, exercise, stress, sleep, illnesses, glucose sensing and insulin action delays, and the cognitive burden. To overcome these challenges, options to augment APS through integration of additional inputs, creating multi-input APS (MAPS), are being investigated. OBJECTIVE The aim of this survey is to identify and analyze input data, control architectures, and validation methods of MAPS to better understand the complexities and current state of such systems. This is expected to be valuable in developing improved systems to enhance the quality of life of people with T1D. METHODS A literature survey was conducted using the Scopus, PubMed, and IEEE Xplore databases for the period January 1, 2005, to February 10, 2020. On the basis of the search criteria, 1092 articles were initially shortlisted, of which 11 (1.01%) were selected for an in-depth narrative analysis. In addition, 6 clinical studies associated with the selected studies were also analyzed. RESULTS Signals such as heart rate, accelerometer readings, energy expenditure, and galvanic skin response captured by wearable devices were the most frequently used additional inputs. The use of invasive (blood or other body fluid analytes) inputs such as lactate and adrenaline were also simulated. These inputs were incorporated to switch the mode of the controller through activity detection, directly incorporated for decision-making and for the development of intermediate modules for the controller. The validation of the MAPS was carried out through the use of simulators based on different physiological models and clinical trials. CONCLUSIONS The integration of additional physiological signals with continuous glucose level monitoring has the potential to optimize glucose control in people with T1D through addressing the identified limitations of APS. Most of the identified additional inputs are related to wearable devices. The rapid growth in wearable technologies can be seen as a key motivator regarding MAPS. However, it is important to further evaluate the practical complexities and psychosocial aspects associated with such systems in real life.
Collapse
Affiliation(s)
- Chirath Hettiarachchi
- School of Computing, College of Engineering and Computer Science, The Australian National University, Canberra, Australia
| | - Elena Daskalaki
- School of Computing, College of Engineering and Computer Science, The Australian National University, Canberra, Australia
| | - Jane Desborough
- Department of Health Services Research and Policy, Research School of Population Health, College of Health and Medicine, The Australian National University, Canberra, Australia
| | - Christopher J Nolan
- Australian National University Medical School, College of Health and Medicine, The Australian National University, Canberra, Australia
- John Curtin School of Medical Research, College of Health and Medicine, The Australian National University, Canberra, Australia
| | - David O'Neal
- Department of Medicine, University of Melbourne, Melbourne, Australia
- Department of Endocrinology and Diabetes, St Vincent's Hospital Melbourne, Melbourne, Australia
| | - Hanna Suominen
- School of Computing, College of Engineering and Computer Science, The Australian National University, Canberra, Australia
- Data61, Commonwealth Industrial and Scientific Research Organisation, Canberra, Australia
- Department of Computing, University of Turku, Turku, Finland
| |
Collapse
|
6
|
Worth C, Nutter PW, Dunne MJ, Salomon-Estebanez M, Banerjee I, Harper S. HYPO-CHEAT's aggregated weekly visualisations of risk reduce real world hypoglycaemia. Digit Health 2022; 8:20552076221129712. [PMID: 36276186 PMCID: PMC9580093 DOI: 10.1177/20552076221129712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 10/13/2021] [Indexed: 11/05/2022] Open
Abstract
Background Children with congenital hyperinsulinism (CHI) are at constant risk of hypoglycaemia with the attendant risk of brain injury. Current hypoglycaemia prevention methods centre on the prediction of a continuous glucose variable using machine learning (ML) processing of continuous glucose monitoring (CGM). This approach ignores repetitive and predictable behavioural factors and is dependent upon ongoing CGM. Thus, there has been very limited success in reducing real-world hypoglycaemia with a ML approach in any condition. Objectives We describe the development of HYPO-CHEAT (HYpoglycaemia-Prevention-thrOugh-CGM-HEatmap-Technology), which is designed to overcome these limitations by describing weekly hypoglycaemia risk. We tested HYPO-CHEAT in a real-world setting to evaluate change in hypoglycaemia. Methods HYPO-CHEAT aggregates individual CGM data to identify weekly hypoglycaemia patterns. These are visualised via a hypoglycaemia heatmap along with actionable interpretations and targets. The algorithm is iterative and reacts to anticipated changing patterns of hypoglycaemia. HYPO-CHEAT was compared with Dexcom Clarity's pattern identification and Facebook Prophet's forecasting algorithm using data from 10 children with CHI using CGM for 12 weeks. HYPO-CHEAT's efficacy was assessed via change in time below range (TBR). Results HYPO-CHEAT identified hypoglycaemia patterns in all patients. Dexcom Clarity identified no patterns. Predictions from Facebook Prophet were inconsistent and difficult to interpret. Importantly, the patterns identified by HYPO-CHEAT matched the lived experience of all patients, generating new and actionable understanding of the cause of hypos. This facilitated patients to significantly reduce their time in hypoglycaemia from 7.1% to 5.4% even when real-time CGM data was removed. Conclusions HYPO-CHEAT's personalised hypoglycaemia heatmaps reduced total and targeted TBR even when CGM was reblinded. HYPO-CHEAT offers a highly effective and immediately available personalised approach to prevent hypoglycaemia and empower patients to self-care.
Collapse
Affiliation(s)
- Chris Worth
- Department of Computer Science, University of Manchester, Manchester, UK
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester, UK
| | - Paul W Nutter
- Department of Computer Science, University of Manchester, Manchester, UK
| | - Mark J Dunne
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Maria Salomon-Estebanez
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester, UK
| | - Indraneel Banerjee
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Simon Harper
- Department of Computer Science, University of Manchester, Manchester, UK
| |
Collapse
|
7
|
Mosquera-Lopez C, Jacobs PG. Incorporating Glucose Variability into Glucose Forecasting Accuracy Assessment Using the New Glucose Variability Impact Index and the Prediction Consistency Index: An LSTM Case Example. J Diabetes Sci Technol 2022; 16:7-18. [PMID: 34490793 PMCID: PMC8875041 DOI: 10.1177/19322968211042621] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND In this work, we developed glucose forecasting algorithms trained and evaluated on a large dataset of free-living people with type 1 diabetes (T1D) using closed-loop (CL) and sensor-augmented pump (SAP) therapies; and we demonstrate how glucose variability impacts accuracy. We introduce the glucose variability impact index (GVII) and the glucose prediction consistency index (GPCI) to assess the accuracy of prediction algorithms. METHODS A long-short-term-memory (LSTM) neural network was designed to predict glucose up to 60 minutes in the future using continuous glucose measurements and insulin data collected from 175 people with T1D (41,318 days) and evaluated on 75 people (11,333 days) from the Tidepool Big Data Donation Dataset. LSTM was compared with two naïve forecasting algorithms as well as Ridge linear regression and a random forest using root-mean-square error (RMSE). Parkes error grid quantified clinical accuracy. Regression analysis was used to derive the GVII and GPCI. RESULTS The LSTM had highest accuracy and best GVII and GPCI. RMSE for CL was 19.8 ± 3.2 and 33.2 ± 5.4 mg/dL for 30- and 60-minute prediction horizons, respectively. RMSE for SAP was 19.6 ± 3.8 and 33.1 ± 7.3 mg/dL for 30- and 60-minute prediction horizons, respectively; 99.6% and 97.6% of predictions were within zones A+B of the Parkes error grid at 30- and 60-minute prediction horizons, respectively. Glucose variability was strongly correlated with RMSE (R≥0.64, P < 0.001); GVII and GPCI demonstrated a means to compare algorithms across datasets with different glucose variability. CONCLUSIONS The LSTM model was accurate on a large real-world free-living dataset. Glucose variability should be considered when assessing prediction accuracy using indices such as GVII and GPCI.
Collapse
Affiliation(s)
- Clara Mosquera-Lopez
- Artificial Intelligence for Medical Systems (AIMS) Lab, Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
- Clara Mosquera-Lopez, PhD, 3303 SW Bond Avenue, Portland, OR 97239, USA.
| | - Peter G. Jacobs
- Artificial Intelligence for Medical Systems (AIMS) Lab, Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
8
|
Abstract
The advent of insulin pump therapy marked an important milestone in diabetes treatment in the past few decades and has become the tipping point for the development of automated insulin delivery systems (AID). Standalone insulin pump systems have evolved over the course of years and have been replaced by modern high-technology insulin pumps with continuous glucose monitor interface allowing real-time insulin dose adjustment to optimize treatment. This review summarizes evidence from AID studies conducted in children with type 1 diabetes and discusses the outlook for future generation AID systems from a pediatric treatment perspective.
Collapse
Affiliation(s)
- Eda Cengiz
- Yale School of Medicine, 333 Cedar Street, PO Box 208064, New Haven, CT 06520, USA; Bahçeşehir Üniversitesi, Istanbul, Turkey.
| |
Collapse
|
9
|
Liu C, Avari P, Leal Y, Wos M, Sivasithamparam K, Georgiou P, Reddy M, Fernández-Real JM, Martin C, Fernández-Balsells M, Oliver N, Herrero P. A Modular Safety System for an Insulin Dose Recommender: A Feasibility Study. J Diabetes Sci Technol 2020; 14:87-96. [PMID: 31117804 PMCID: PMC7189144 DOI: 10.1177/1932296819851135] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Delivering insulin in type 1 diabetes is a challenging, and potentially risky, activity; hence the importance of including safety measures as part of any insulin dosing or recommender system. This work presents and clinically evaluates a modular safety system that is part of an intelligent insulin dose recommender platform developed within the EU-funded PEPPER project. METHODS The proposed safety system is composed of four modules which use a novel glucose forecasting algorithm. These modules are predictive glucose alerts and alarms; a predictive low-glucose basal insulin suspension module; an advanced rescue carbohydrate recommender for resolving hypoglycemia; and a personalized safety constraint applied to insulin recommendations. The technical feasibility of the proposed safety system was evaluated in a pilot study including eight adult subjects with type 1 diabetes on multiple daily injections over a duration of six weeks. Glycemic control and safety system functioning were compared between the two-weeks run-in period and the end point at eight weeks. A standard insulin bolus calculator was employed to recommend insulin doses. RESULTS Overall, glycemic control improved over the evaluated period. In particular, percentage time in the hypoglycemia range (<3.0 mmol/l) significantly decreased from 0.82% (0.05-4.79) at run-in to 0.33% (0.00-0.93) at endpoint (P = .02). This was associated with a significant increase in percentage time in target range (3.9-10.0 mmol/l) from 52.8% (38.3-61.5) to 61.3% (47.5-71.7) (P = .03). There was also a reduction in number of carbohydrate recommendations. CONCLUSION A safety system for an insulin dose recommender has been proven to be a viable solution to reduce the number of adverse events associated to glucose control in type 1 diabetes.
Collapse
Affiliation(s)
- Chengyuan Liu
- Centre for Bio-Inspired Technology,
Department of Electrical and Electronic Engineering, Imperial College London,
London, UK
| | - Parizad Avari
- Division of Diabetes, Endocrinology and
Metabolism, Department of Medicine, Faculty of Medicine Imperial College, London,
UK
| | - Yenny Leal
- Institut d’Investigació Biomèdica de
Girona Dr Josep Trueta, Girona, Spain
| | - Marzena Wos
- Institut d’Investigació Biomèdica de
Girona Dr Josep Trueta, Girona, Spain
| | - Kumuthine Sivasithamparam
- Division of Diabetes, Endocrinology and
Metabolism, Department of Medicine, Faculty of Medicine Imperial College, London,
UK
| | - Pantelis Georgiou
- Centre for Bio-Inspired Technology,
Department of Electrical and Electronic Engineering, Imperial College London,
London, UK
| | - Monika Reddy
- Division of Diabetes, Endocrinology and
Metabolism, Department of Medicine, Faculty of Medicine Imperial College, London,
UK
| | | | - Clare Martin
- Department of Computing and
Communication Technologies, Oxford Brookes University, Oxford, UK
| | | | - Nick Oliver
- Division of Diabetes, Endocrinology and
Metabolism, Department of Medicine, Faculty of Medicine Imperial College, London,
UK
| | - Pau Herrero
- Centre for Bio-Inspired Technology,
Department of Electrical and Electronic Engineering, Imperial College London,
London, UK
- Pau Herrero, PhD, Centre for Bio-Inspired
Technology, Department of Electrical and Electronic Engineering, Imperial
College London, South Kensington Campus, London SW7 2AZ, UK.
| |
Collapse
|
10
|
Yu X, Rashid M, Feng J, Hobbs N, Hajizadeh I, Samadi S, Sevil M, Lazaro C, Maloney Z, Littlejohn E, Quinn L, Cinar A. Online Glucose Prediction Using Computationally Efficient Sparse Kernel Filtering Algorithms in Type-1 Diabetes. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY : A PUBLICATION OF THE IEEE CONTROL SYSTEMS SOCIETY 2020; 28:3-15. [PMID: 32699492 PMCID: PMC7375403 DOI: 10.1109/tcst.2018.2843785] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Streaming data from continuous glucose monitoring (CGM) systems enable the recursive identification of models to improve estimation accuracy for effective predictive glycemic control in patients with type-1 diabetes. A drawback of conventional recursive identification techniques is the increase in computational requirements, which is a concern for online and real-time applications such as the artificial pancreas systems implemented on handheld devices and smartphones where computational resources and memory are limited. To improve predictions in such computationally constrained hardware settings, efficient adaptive kernel filtering algorithms are developed in this paper to characterize the nonlinear glycemic variability by employing a sparsification criterion based on the information theory to reduce the computation time and complexity of the kernel filters without adversely deteriorating the predictive performance. Furthermore, the adaptive kernel filtering algorithms are designed to be insensitive to abnormal CGM measurements, thus compensating for measurement noise and disturbances. As such, the sparsification-based real-time model update framework can adapt the prediction models to accurately characterize the time-varying and nonlinear dynamics of glycemic measurements. The proposed recursive kernel filtering algorithms leveraging sparsity for improved computational efficiency are applied to both in-silico and clinical subjects, and the results demonstrate the effectiveness of the proposed methods.
Collapse
Affiliation(s)
- Xia Yu
- School of Information Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Mudassir Rashid
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616 USA
| | - Jianyuan Feng
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616 USA
| | - Nicole Hobbs
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616 USA
| | - Iman Hajizadeh
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616 USA
| | - Sediqeh Samadi
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616 USA
| | - Mert Sevil
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616 USA
| | - Caterina Lazaro
- Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, IL 60616 USA
| | - Zacharie Maloney
- Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, IL 60616 USA
| | - Elizabeth Littlejohn
- Kovler Diabetes Center, Department of Pediatrics and Medicine, University of Chicago, Chicago, IL 60637 USA
| | - Laurie Quinn
- Department of Biobehavioral Health Science, College of Nursing, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Ali Cinar
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616 USA, and also with the Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616 USA
| |
Collapse
|
11
|
Camerlingo N, Vettoretti M, Del Favero S, Cappon G, Sparacino G, Facchinetti A. A Real-Time Continuous Glucose Monitoring-Based Algorithm to Trigger Hypotreatments to Prevent/Mitigate Hypoglycemic Events. Diabetes Technol Ther 2019; 21:644-655. [PMID: 31335191 DOI: 10.1089/dia.2019.0139] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background: The standard treatment for hypoglycemia recommended by the American Diabetes Association (ADA) suggests patients with diabetes to take small amounts of carbohydrates, the so-called hypotreatments (HTs), as soon as blood glucose concentration goes below 70 mg/dL. However, prevention, or at least mitigation, of hypoglycemic events could be achieved by triggering HTs ahead of time thanks to the use of the predictive capabilities of suitable real-time algorithms fed by continuous glucose monitoring (CGM) sensor data. Materials and Methods: The algorithm proposed in this article to trigger HTs for preventing forthcoming hypoglycemic events is based on the computation of the "dynamic risk", there is a nonlinear function combining current glycemia with its rate-of-change, both provided by CGM. A comparison of performance of the proposed algorithm against the ADA guidelines is made, in silico, on datasets of 100 virtual patients undergoing a single-meal experiment, with induced postmeal hypoglycemia, generated by the UVA/Padova type 1 diabetes simulator. Results: On noise-free CGM data, the proposed algorithm reduces the time spent in hypoglycemia, on median [25th-75th percentiles] from 36 [29-43] to 0 [0-11] min (P < 0.0001), with a concomitant decrease of the post-treatment rebound (PTR) in glucose concentration, on median [25th-75th percentiles] from 136 [121-148] to 121 [116-127] mg/dL (P < 0.0001). On noisy CGM data, there is still a reduction of both time spent in hypoglycemia from 41 [28-49] min to 25 [0-41] min (P < 0.0001) and PTR from 174 [146-189] mg/dL to 137 [123-151] mg/dL (P < 0.0001). Conclusions: The potentiality of the new algorithm in generating preventive HTs, which can allow significant reduction of hypoglycemia without concomitant increase of hyperglycemia, suggests its further development and test in silico, for example, simulating both insulin pump and multiple-daily-injection therapies.
Collapse
Affiliation(s)
- Nunzio Camerlingo
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Martina Vettoretti
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Simone Del Favero
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Giacomo Cappon
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Giovanni Sparacino
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Andrea Facchinetti
- Department of Information Engineering, University of Padova, Padova, Italy
| |
Collapse
|
12
|
Tagougui S, Taleb N, Molvau J, Nguyen É, Raffray M, Rabasa-Lhoret R. Artificial Pancreas Systems and Physical Activity in Patients with Type 1 Diabetes: Challenges, Adopted Approaches, and Future Perspectives. J Diabetes Sci Technol 2019; 13:1077-1090. [PMID: 31409125 PMCID: PMC6835182 DOI: 10.1177/1932296819869310] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Physical activity is important for patients living with type 1 diabetes (T1D) but limited by the challenges associated with physical activity induced glucose variability. Optimizing glycemic control without increasing the risk of hypoglycemia is still a hurdle despite many advances in insulin formulations, delivery methods, and continuous glucose monitoring systems. In this respect, the artificial pancreas (AP) system is a promising therapeutic option for a safer practice of physical activity in the context of T1D. It is important that healthcare professionals as well as patients acquire the necessary knowledge about how the AP system works, its limits, and how glucose control is regulated during physical activity. This review aims to examine the current state of knowledge on exercise-related glucose variations especially hypoglycemic risk in T1D and to discuss their effects on the use and development of AP systems. Though effective and highly promising, these systems warrant further research for an optimized use around exercise.
Collapse
Affiliation(s)
- Sémah Tagougui
- Montreal Clinical Research Institute, Montreal, Quebec, Canada
- Department of Nutrition, Faculty of Medicine, Montreal, Quebec, Canada
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d’Opale, EA 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Lille, France
| | - Nadine Taleb
- Montreal Clinical Research Institute, Montreal, Quebec, Canada
- Department of Biomedical Sciences, Faculty of Medicine, Édouard-Montpetit, Montreal, Quebec, Canada
| | | | - Élisabeth Nguyen
- Montreal Clinical Research Institute, Montreal, Quebec, Canada
- Department of Nutrition, Faculty of Medicine, Montreal, Quebec, Canada
| | - Marie Raffray
- Montreal Clinical Research Institute, Montreal, Quebec, Canada
| | - Rémi Rabasa-Lhoret
- Montreal Clinical Research Institute, Montreal, Quebec, Canada
- Department of Nutrition, Faculty of Medicine, Montreal, Quebec, Canada
- Division of Endocrinology, Centre Hospitalier de l’université de Montréal, Montreal, Quebec, Canada
- Montreal Diabetes Research Center & Endocrinology division, Quebec, Canada
- Rémi Rabasa-Lhoret, Montreal Clinical Research Institute, 110, avenue des Pins Ouest, Montreal, Quebec, Canada H2W 1R7.
| |
Collapse
|
13
|
Guemes A, Cappon G, Hernandez B, Reddy M, Oliver N, Georgiou P, Herrero P. Predicting Quality of Overnight Glycaemic Control in Type 1 Diabetes Using Binary Classifiers. IEEE J Biomed Health Inform 2019; 24:1439-1446. [PMID: 31536025 DOI: 10.1109/jbhi.2019.2938305] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In type 1 diabetes management, maintaining nocturnal blood glucose within target range can be challenging. Although semi-automatic systems to modulate insulin pump delivery, such as low-glucose insulin suspension and the artificial pancreas, are starting to become a reality, their elevated cost and performance below user expectations is hindering their adoption. Hence, a decision support system that helps people with type 1 diabetes, on multiple daily injections or insulin pump therapy, to avoid undesirable overnight blood glucose fluctuations (hyper- or hypoglycaemic) is an attractive alternative. In this paper, we introduce a novel data-driven approach to predict the quality of overnight glycaemic control in people with type 1 diabetes by analyzing commonly gathered data during the day-time period (continuous glucose monitoring data, meal intake and insulin boluses). The proposed approach is able to predict whether overnight blood glucose concentrations are going to remain within or outside the target range, and therefore allows the user to take the appropriate preventive action (snack or change in basal insulin). For this purpose, a number of popular established machine learning algorithms for binary classification were evaluated and compared on a publicly available clinical dataset (i.e., OhioT1DM). Although there is no clearly superior classification algorithm, this study indicates that, by using commonly gathered data in type 1 diabetes management, it is possible to predict the quality of overnight glycaemic control with reasonable accuracy (AUC-ROC = 0.7).
Collapse
|
14
|
Turksoy K, Hajizadeh I, Hobbs N, Kilkus J, Littlejohn E, Samadi S, Feng J, Sevil M, Lazaro C, Ritthaler J, Hibner B, Devine N, Quinn L, Cinar A. Multivariable Artificial Pancreas for Various Exercise Types and Intensities. Diabetes Technol Ther 2018; 20:662-671. [PMID: 30188192 PMCID: PMC6161329 DOI: 10.1089/dia.2018.0072] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND Exercise challenges people with type 1 diabetes in controlling their glucose concentration (GC). A multivariable adaptive artificial pancreas (MAAP) may lessen the burden. METHODS The MAAP operates without any user input and computes insulin based on continuous glucose monitor and physical activity signals. To analyze performance, 18 60-h closed-loop experiments with 96 exercise sessions with three different protocols were completed. Each day, the subjects completed one resistance and one treadmill exercise (moderate continuous training [MCT] or high-intensity interval training [HIIT]). The primary outcome is time spent in each glycemic range during the exercise + recovery period. Secondary measures include average GC and average change in GC during each exercise modality. RESULTS The GC during exercise + recovery periods were within the euglycemic range (70-180 mg/dL) for 69.9% of the time and within a safe glycemic range for exercise (70-250 mg/dL) for 93.0% of the time. The exercise sessions are defined to begin 30 min before the start of exercise and end 2 h after start of exercise. The GC were within the severe hypoglycemia (<55 mg/dL), moderate hypoglycemia (55-70 mg/dL), moderate hyperglycemia (180-250 mg/dL), and severe hyperglycemia (>250 mg/dL) for 0.9%, 1.3%, 23.1%, and 4.8% of the time, respectively. The average GC decline during exercise differed with exercise type (P = 0.0097) with a significant difference between the MCT and resistance (P = 0.0075). To prevent large GC decreases leading to hypoglycemia, MAAP recommended carbohydrates in 59% of MCT, 50% of HIIT, and 39% of resistance sessions. CONCLUSIONS A consistent GC decline occurred in exercise and recovery periods, which differed with exercise type. The average GC at the start of exercise was above target (185.5 ± 56.6 mg/dL for MCT, 166.9 ± 61.9 mg/dL for resistance training, and 171.7 ± 41.4 mg/dL HIIT), making a small decrease desirable. Hypoglycemic events occurred in 14.6% of exercise sessions and represented only 2.22% of the exercise and recovery period.
Collapse
Affiliation(s)
- Kamuran Turksoy
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois
| | - Iman Hajizadeh
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, Illinois
| | - Nicole Hobbs
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois
| | - Jennifer Kilkus
- Section of Endocrinology, Department of Pediatrics and Medicine, Kovler Diabetes Center, University of Chicago, Chicago, Illinois
| | - Elizabeth Littlejohn
- Section of Endocrinology, Department of Pediatrics and Medicine, Kovler Diabetes Center, University of Chicago, Chicago, Illinois
- Sparrow Medical Group/Michigan State University, Lansing, Michigan
| | - Sediqeh Samadi
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, Illinois
| | - Jianyuan Feng
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, Illinois
| | - Mert Sevil
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois
| | - Caterina Lazaro
- Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, Illinois
| | - Julia Ritthaler
- Division of Biological Sciences, University of Chicago, Chicago, Illinois
| | - Brooks Hibner
- Division of Biological Sciences, University of Chicago, Chicago, Illinois
| | - Nancy Devine
- Section of Endocrinology, Department of Pediatrics and Medicine, Kovler Diabetes Center, University of Chicago, Chicago, Illinois
| | - Laurie Quinn
- College of Nursing, University of Illinois at Chicago, Chicago, Illinois
| | - Ali Cinar
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, Illinois
| |
Collapse
|
15
|
Hajizadeh I, Rashid M, Turksoy K, Samadi S, Feng J, Sevil M, Hobbs N, Lazaro C, Maloney Z, Littlejohn E, Cinar A. Incorporating Unannounced Meals and Exercise in Adaptive Learning of Personalized Models for Multivariable Artificial Pancreas Systems. J Diabetes Sci Technol 2018; 12:953-966. [PMID: 30060699 PMCID: PMC6134614 DOI: 10.1177/1932296818789951] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Despite the recent advancements in the modeling of glycemic dynamics for type 1 diabetes mellitus, automatically considering unannounced meals and exercise without manual user inputs remains challenging. METHOD An adaptive model identification technique that incorporates exercise information and estimates of the effects of unannounced meals obtained automatically without user input is proposed in this work. The effects of the unknown consumed carbohydrates are estimated using an individualized unscented Kalman filtering algorithm employing an augmented glucose-insulin dynamic model, and exercise information is acquired from noninvasive physiological measurements. The additional information on meals and exercise is incorporated with personalized estimates of plasma insulin concentration and glucose measurement data in an adaptive model identification algorithm. RESULTS The efficacy of the proposed personalized and adaptive modeling algorithm is demonstrated using clinical data involving closed-loop experiments of the artificial pancreas system, and the results demonstrate accurate glycemic modeling with the average root-mean-square error (mean absolute error) of 25.50 mg/dL (18.18 mg/dL) for six-step (30 minutes ahead) predictions. CONCLUSIONS The approach presented is able to identify reliable time-varying individualized glucose-insulin models.
Collapse
Affiliation(s)
- Iman Hajizadeh
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Mudassir Rashid
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Kamuran Turksoy
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Sediqeh Samadi
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Jianyuan Feng
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Mert Sevil
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Nicole Hobbs
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Caterina Lazaro
- Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Zacharie Maloney
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Elizabeth Littlejohn
- Department of Pediatrics and Medicine, Section of Endocrinology, Kovler Diabetes Center, University of Chicago, Chicago, IL, USA
| | - Ali Cinar
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL, USA
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
- Ali Cinar, PhD, Illinois Institute of Technology, Department of Chemical and Biological Engineering, 10 W 33rd St, Chicago, IL 60616, USA.
| |
Collapse
|
16
|
Samadi S, Rashid M, Turksoy K, Feng J, Hajizadeh I, Hobbs N, Lazaro C, Sevil M, Littlejohn E, Cinar A. Automatic Detection and Estimation of Unannounced Meals for Multivariable Artificial Pancreas System. Diabetes Technol Ther 2018; 20:235-246. [PMID: 29406789 PMCID: PMC5867514 DOI: 10.1089/dia.2017.0364] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Automatically attenuating the postprandial rise in the blood glucose concentration without manual meal announcement is a significant challenge for artificial pancreas (AP) systems. In this study, a meal module is proposed to detect the consumption of a meal and to estimate the amount of carbohydrate (CHO) intake. METHODS The meals are detected based on qualitative variables describing variation of continuous glucose monitoring (CGM) readings. The CHO content of the meals/snacks is estimated by a fuzzy system using CGM and subcutaneous insulin delivery data. The meal bolus amount is computed according to the patient's insulin to CHO ratio. Integration of the meal module into a multivariable AP system allows revision of estimated CHO based on knowledge about physical activity, sleep, and the risk of hypoglycemia before the final decision for a meal bolus is made. RESULTS The algorithm is evaluated by using 117 meals/snacks in retrospective data from 11 subjects with type 1 diabetes. Sensitivity, defined as the percentage of correctly detected meals and snacks, is 93.5% for meals and 68.0% for snacks. The percentage of false positives, defined as the proportion of false detections relative to the total number of detected meals and snacks, is 20.8%. CONCLUSIONS Integration of a meal detection module in an AP system is a further step toward an automated AP without manual entries. Detection of a consumed meal/snack and infusion of insulin boluses using an estimate of CHO enables the AP system to automatically prevent postprandial hyperglycemia.
Collapse
Affiliation(s)
- Sediqeh Samadi
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, Illinois
| | - Mudassir Rashid
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, Illinois
| | - Kamuran Turksoy
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois
| | - Jianyuan Feng
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, Illinois
| | - Iman Hajizadeh
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, Illinois
| | - Nicole Hobbs
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois
| | - Caterina Lazaro
- Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, Illinois
| | - Mert Sevil
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois
| | - Elizabeth Littlejohn
- Department of Pediatrics and Medicine, Kovler Diabetes Center, University of Chicago, Chicago, Illinois
| | - Ali Cinar
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, Illinois
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois
| |
Collapse
|
17
|
Yu X, Turksoy K, Rashid M, Feng J, Frantz N, Hajizadeh I, Samadi S, Sevil M, Lazaro C, Maloney Z, Littlejohn E, Quinn L, Cinar A. Model-Fusion-Based Online Glucose Concentration Predictions in People with Type 1 Diabetes. CONTROL ENGINEERING PRACTICE 2018; 71:129-141. [PMID: 29276347 PMCID: PMC5736323 DOI: 10.1016/j.conengprac.2017.10.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Accurate predictions of glucose concentrations are necessary to develop an artificial pancreas (AP) system for people with type 1 diabetes (T1D). In this work, a novel glucose forecasting paradigm based on a model fusion strategy is developed to accurately characterize the variability and transient dynamics of glycemic measurements. To this end, four different adaptive filters and a fusion mechanism are proposed for use in the online prediction of future glucose trajectories. The filter fusion mechanism is developed based on various prediction performance indexes to guide the overall output of the forecasting paradigm. The efficiency of the proposed model fusion based forecasting method is evaluated using simulated and clinical datasets, and the results demonstrate the capability and prediction accuracy of the data-based fusion filters, especially in the case of limited data availability. The model fusion framework may be used in the development of an AP system for glucose regulation in patients with T1D.
Collapse
Affiliation(s)
- Xia Yu
- School of Information Science and Engineering, Northeastern University, Shenyang 110819, PR China
| | - Kamuran Turksoy
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Mudassir Rashid
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Jianyuan Feng
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Nicole Frantz
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Iman Hajizadeh
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Sediqeh Samadi
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Mert Sevil
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Caterina Lazaro
- Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Zacharie Maloney
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Elizabeth Littlejohn
- Department of Pediatrics and Medicine, Kovler Diabetes Center, University of Chicago, Chicago, IL 60637, USA
| | - Laurie Quinn
- Department of Biobehavioral Health Science, College of Nursing, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ali Cinar
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW The review summarizes the current state of the artificial pancreas (AP) systems and introduces various new modules that should be included in future AP systems. RECENT FINDINGS A fully automated AP must be able to detect and mitigate the effects of meals, exercise, stress and sleep on blood glucose concentrations. This can only be achieved by using a multivariable approach that leverages information from wearable devices that provide real-time streaming data about various physiological variables that indicate imminent changes in blood glucose concentrations caused by meals, exercise, stress and sleep. The development of a fully automated AP will necessitate the design of multivariable and adaptive systems that use information from wearable devices in addition to glucose sensors and modify the models used in their model-predictive alarm and control systems to adapt to the changes in the metabolic state of the user. These AP systems will also integrate modules for controller performance assessment, fault detection and diagnosis, machine learning and classification to interpret various signals and achieve fault-tolerant control. Advances in wearable devices, computational power, and safe and secure communications are enabling the development of fully automated multivariable AP systems.
Collapse
Affiliation(s)
- Ali Cinar
- Department of Chemical and Biological Engineering and Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA.
| |
Collapse
|