1
|
Guo S, Pan Q, Chen B, Huang Y, Li S, Gou C, Gao Y. Placental trophoblast aging in advanced maternal age is related to increased oxidative damage and decreased YAP. Front Cell Dev Biol 2025; 13:1479960. [PMID: 39906872 PMCID: PMC11790555 DOI: 10.3389/fcell.2025.1479960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 01/03/2025] [Indexed: 02/06/2025] Open
Abstract
Introduction The advanced maternal age (AMA) pregnancies escalate rapidly, which are frequently linked to higher risks of adverse outcomes. Advanced maternal age (AMA) placenta exhibited premature aging, presumably resulting in trophoblast dysfunction, inadequate placentation. However, the precise reasons and mechanisms of trophoblast aging in AMA placenta remain unclear, posing a significant limitation to provide effective guidance for prenatal healthcare in clinical settings. Notably, the organism shows heightened vulnerability to oxidative damage as it ages. YAP (Yes-associated protein) was reported to play a critical role in regulation of aging and resisting oxidative damage, yet these roles had not been elucidated in the placenta. Therefore, this study explored the relationship between trophoblast cell aging and oxidative injury and YAP in AMA pregnancy, which not only provided an insight into the mechanisms of trophoblast cell aging, but also provide valuable directions for healthcare during AMA pregnancy. Methods In this study, human term placentas were collected from AMA and normal pregnancies for the analysis of aging, oxidative damage and YAP level. HTR8/SVneo cells were manipulated with (hydrogen peroxide) H2O2 to explore the effects of oxidative damage on trophoblast cell senescence and YAP levels. YAP expression in HTR8/SVneo cells was manipulated to investigate its role in trophoblastic senescence and oxidative damage. Results Compared with the control group, the AMA placenta exhibits increased aging biomarkers, which is coupled with an elevation in oxidative damage within placental trophoblast cells and a notable decline in YAP levels. Cellular experiments demonstrated that oxidative damage from H2O2 triggered trophoblast cell senescence and resulted in a reduction of YAP levels. Furthermore, employing molecular modification to silence YAP expression in these cells led to an induction of aging. Conversely, overexpressing YAP ameliorated both trophoblast cell aging and the associated DNA oxidative damage that arised from H2O2. Conclusion The decline of YAP in AMA pregnancy should be responsible for the increased oxidative injury and premature placenta aging, indicating that YAP plays a significant role in combating oxidative damage and delaying aging, thereby providing a new guidance for prenatal care in AMA pregnancies. Maintaining YAP levels or implementing anti-oxidative stress interventions could potentially mitigate the incidence of complications involved AMA pregnancy.
Collapse
Affiliation(s)
- Song Guo
- Department of Obstetrics and Gynecology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qihao Pan
- Department of Obstetrics and Gynecology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Baokang Chen
- Department of Obstetrics and Gynecology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yijuan Huang
- Department of Obstetrics and Gynecology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Si Li
- Department of Obstetrics and Gynecology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chenyu Gou
- Department of Obstetrics and Gynecology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yu Gao
- Department of Obstetrics and Gynecology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
2
|
Wu L, Wang S, Li H, Lu H, Zheng Y, Feng T, Sun Y. Human trophoblast invasion and migration are mediated by the YAP1-CCN1 pathway: defective signaling in trophoblasts during early-onset severe preeclampsia†. Biol Reprod 2024; 111:866-878. [PMID: 38874283 DOI: 10.1093/biolre/ioae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/07/2024] [Accepted: 06/13/2024] [Indexed: 06/15/2024] Open
Abstract
The transcription coactivator YAP1 mediates the major effects of the Hippo signaling pathway. The CCN family is a small group of glycoproteins known to be downstream effectors of YAP1 in diverse tissues. However, whether CCN family members mediate the effects of YAP1 in human trophoblasts is unknown. In this study, placental expression of both YAP1 and CCN1 was found to be impaired in pregnancies complicated by early-onset severe preeclampsia. CCN1 was expressed not only in cytotrophoblasts, trophoblast columns, and mesenchymal cells, similar to active YAP1, but also in syncytiotrophoblasts of normal first-trimester placental villi; moreover, decidual staining of active YAP1 and CCN1 was found in both interstitial and endovascular extravillous trophoblasts. In cultured immortalized human trophoblastic HTR-8/SVneo cells, knockdown of YAP1 decreased CCN1 mRNA and protein expression and led to impaired cell invasion and migration. Also, CCN1 knockdown negatively affected HTR-8/SVneo cell invasion and migration but not viability. YAP1 knockdown was further found to impair HTR-8/SVneo cell viability via G0/G1 cell cycle arrest and apoptosis, while CCN1 knockdown had minimal effect on cell cycle arrest and no effect on apoptosis. Accordingly, treatment with recombinant CCN1 partially reversed the YAP1 knockdown-induced impairment in trophoblast invasion and migration but not in viability. Thus, CCN1 mediates the effects of YAP1 on human trophoblast invasion and migration but not apoptosis, and decreased placental expression of YAP1 and CCN1 in pregnancies complicated by early-onset severe preeclampsia might contribute to the pathogenesis of this disease.
Collapse
Affiliation(s)
- Liang Wu
- Reproductive Medical Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shengfu Wang
- Reproductive Medical Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongyue Li
- Reproductive Medical Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Haotian Lu
- Reproductive Medical Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuanke Zheng
- Reproductive Medical Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Tianfei Feng
- Reproductive Medical Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yingpu Sun
- Reproductive Medical Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
3
|
Meruvu S, Ding Z, Choudhury M. Mono-(2-ethylhexyl) phthalate induces trophoblast hypoxia and mitochondrial dysfunction through HIF-1α-miR-210-3p axis in HTR-8/SVneo cell line. Curr Res Toxicol 2024; 7:100188. [PMID: 39175913 PMCID: PMC11338994 DOI: 10.1016/j.crtox.2024.100188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/29/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
The exposure to the ubiquitous phthalate metabolite mono-(2-ethylhexyl) phthalate (MEHP) is connected to dysregulated trophoblast function and placenta health; however, the underlying mechanisms preluding this scenario remain to be elucidated. In this study, we explored the hypoxemic effects of MEHP on a human placental first-trimester trophoblast cell line (HTR-8/Svneo). MEHP-treated trophoblast cells displayed significantly increased levels of oxidative stress and hypoxia-inducible factor-1 alpha (HIF-1α) attributed by the induction of hypoxia. Further, HIF-1α exhibited higher DNA binding activity and upregulated gene expression of its downstream target vascular endothelial growth factor A (VEGFA). The hypoxia-induced microRNA miR-210-3p was also significantly increased upon MEHP treatment followed by disrupted mitochondrial ATP generation and membrane potential. This was identified to possibly be facilitated by lowered mitochondrial DNA copy number and inhibited expression of electron transport chain subunits, such as mitochondrial complex-IV. These results suggest potential adverse effects of MEHP exposure in a trophoblast cell line mediated by HIF-1α and the epigenetic modulator miR-210-3p. Chronic placental hypoxia and oxidative stress have long been implicated in the pathogenesis of pregnancy complications such as preeclampsia. As we've revealed genetic and epigenetic factors underscoring a potential mechanism induced by MEHP, this brings to light another significant implication of phthalate exposure on maternal and fetal health.
Collapse
Affiliation(s)
- Sunitha Meruvu
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, 1114 TAMU, College Station, TX 77843-0000, USA
| | - Zehuan Ding
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, 1114 TAMU, College Station, TX 77843-0000, USA
| | - Mahua Choudhury
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, 1114 TAMU, College Station, TX 77843-0000, USA
| |
Collapse
|
4
|
Lin Q, Cao J, Yu J, Zhu Y, Shen Y, Wang S, Wang Y, Liu Z, Chang Y. YAP-mediated trophoblast dysfunction: the common pathway underlying pregnancy complications. Cell Commun Signal 2023; 21:353. [PMID: 38098027 PMCID: PMC10722737 DOI: 10.1186/s12964-023-01371-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/29/2023] [Indexed: 12/17/2023] Open
Abstract
Yes-associated protein (YAP) is a pivotal regulator in cellular proliferation, survival, differentiation, and migration, with significant roles in embryonic development, tissue repair, and tumorigenesis. At the maternal-fetal interface, emerging evidence underscores the importance of precisely regulated YAP activity in ensuring successful pregnancy initiation and progression. However, despite the established association between YAP dysregulation and adverse pregnancy outcomes, insights into the impact of aberrant YAP levels in fetal-derived, particularly trophoblast cells, and the ensuing dysfunction at the maternal-fetal interface remain limited. This review comprehensively examines YAP expression and its regulatory mechanisms in trophoblast cells throughout pregnancy. We emphasize its integral role in placental development and maternal-fetal interactions and delve into the correlations between YAP dysregulation and pregnancy complications. A nuanced understanding of YAP's functions during pregnancy could illuminate intricate molecular mechanisms and pave the way for innovative prevention and treatment strategies for pregnancy complications. Video Abstract.
Collapse
Affiliation(s)
- Qimei Lin
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University Affiliated Maternity Hospital, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, 300100, China
| | - Jiasong Cao
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University Affiliated Maternity Hospital, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, 300100, China
| | - Jing Yu
- School of Clinical Medicine, Tianjin Medical University, Tianjin, 300070, China
| | - Yu Zhu
- School of Clinical Medicine, Tianjin Medical University, Tianjin, 300070, China
| | - Yongmei Shen
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University Affiliated Maternity Hospital, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, 300100, China
| | - Shuqi Wang
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University Affiliated Maternity Hospital, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, 300100, China
| | - Yixin Wang
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Zhen Liu
- Academy of Clinical Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Ying Chang
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University Affiliated Maternity Hospital, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, 300100, China.
- Academy of Clinical Medicine, Medical College, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
5
|
Vrzić Petronijević S, Vilotić A, Bojić-Trbojević Ž, Kostić S, Petronijević M, Vićovac L, Jovanović Krivokuća M. Trophoblast Cell Function in the Antiphospholipid Syndrome. Biomedicines 2023; 11:2681. [PMID: 37893055 PMCID: PMC10604227 DOI: 10.3390/biomedicines11102681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Antiphospholipid syndrome (APS) is a complex thrombo-inflammatory autoimmune disease characterized by the presence of antiphospholipid antibodies (aPL). Women with APS are at high risk of recurrent early pregnancy loss as well as late obstetrical complications-premature birth due to placental insufficiency or severe preeclampsia. Accumulating evidence implies that vascular thrombosis is not the only pathogenic mechanism in obstetric APS, and that the direct negative effect of aPL on the placental cells, trophoblast, plays a major role. In this review, we summarize the current findings regarding the potential mechanisms involved in aPL-induced trophoblast dysfunction. Introduction on the APS and aPL is followed by an overview of the effects of aPL on trophoblast-survival, cell function and aPL internalization. Finally, the implication of several non-coding RNAs in pathogenesis of obstetric APS is discussed, with special emphasis of their possible role in trophoblast dysfunction and the associated mechanisms.
Collapse
Affiliation(s)
- Svetlana Vrzić Petronijević
- University of Belgrade, Faculty of Medicine, University Clinical Center of Serbia Clinic for Obstetrics and Gynecology, Koste Todorovića 26, 11000 Belgrade, Serbia
| | - Aleksandra Vilotić
- University of Belgrade, Institute for the Application of Nuclear Energy, Department for Biology of Reproduction, Banatska 31b, 11080 Belgrade, Serbia
| | - Žanka Bojić-Trbojević
- University of Belgrade, Institute for the Application of Nuclear Energy, Department for Biology of Reproduction, Banatska 31b, 11080 Belgrade, Serbia
| | - Sanja Kostić
- University of Belgrade, Faculty of Medicine, University Clinical Center of Serbia Clinic for Obstetrics and Gynecology, Koste Todorovića 26, 11000 Belgrade, Serbia
| | - Miloš Petronijević
- University of Belgrade, Faculty of Medicine, University Clinical Center of Serbia Clinic for Obstetrics and Gynecology, Koste Todorovića 26, 11000 Belgrade, Serbia
| | - Ljiljana Vićovac
- University of Belgrade, Institute for the Application of Nuclear Energy, Department for Biology of Reproduction, Banatska 31b, 11080 Belgrade, Serbia
| | - Milica Jovanović Krivokuća
- University of Belgrade, Institute for the Application of Nuclear Energy, Department for Biology of Reproduction, Banatska 31b, 11080 Belgrade, Serbia
| |
Collapse
|
6
|
Zhao H, Jiang R, Zhang C, Feng Z, Wang X. LncRNA H19-rich extracellular vesicles derived from gastric cancer stem cells facilitate tumorigenicity and metastasis via mediating intratumor communication network. J Transl Med 2023; 21:238. [PMID: 37005676 PMCID: PMC10067256 DOI: 10.1186/s12967-023-04055-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/10/2023] [Indexed: 04/04/2023] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) transport biologically active molecules, and represent a recently identified way of intercellular communication. Recent evidence has also reported that EVs shed by cancer stem cells (CSCs) make a significant contribution to carcinogenesis and metastasis. Here, this study aims to explore the possible molecular mechanism of CSCs-EVs in gastric cancer (GC) by mediating intratumor communication network. METHODS CSCs and non-stem cancer cells (NSCCs) were sorted from GC cells, and EVs were isolated from CSCs. H19 was knocked down in CSCs, and CSCs-EVs or CSCs-EVs containing shRNA-H19 (CSCs-EVs-sh-H19) were co-cultured with NSCCs, followed by evaluation of the malignant behaviors and stemness of NSCCs. Mouse models of GC were established and injected with CSCs-EVs from sh-H19-treated NSCCs in vivo. RESULTS CSCs had notable self-renewal and tumorigenic capacity compared with NSCCs. CSCs promoted the malignant behaviors of NSCCs and expression of stemness marker proteins through secretion of EVs. Inhibited secretion of CSCs-EVs curtailed the tumorigenicity and metastasis of NSCCs in vivo. H19 could be delivered by CSCs-EVs into NSCCs. H19 promoted the malignant behaviors of NSCCs and stemness marker protein expression in vitro along with tumorigenicity and liver metastasis in vivo, which was mechanistically associated with activation of the YAP/CDX2 signaling axis. CONCLUSION Taken together, the present study points to the importance of a novel regulatory axis H19/YAP/CDX2 in carcinogenic and metastatic potential of CSCs-EVs in GC, which may be potential targets for anticancer therapy.
Collapse
Affiliation(s)
- Hongying Zhao
- Department of Oncology, Xuzhou City Cancer Hospital, Xuzhou Third People's Hospital, Xuzhou Hospital Affiliated to Jiangsu University, No. 131 Huancheng Road, Gulou District, Xuzhou, 221000, People's Republic of China.
| | - Rongke Jiang
- Department of Oncology, Xuzhou City Cancer Hospital, Xuzhou Third People's Hospital, Xuzhou Hospital Affiliated to Jiangsu University, No. 131 Huancheng Road, Gulou District, Xuzhou, 221000, People's Republic of China
| | - Chunmei Zhang
- Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Zhijing Feng
- Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Xue Wang
- Department of Oncology, Xuzhou City Cancer Hospital, Xuzhou Third People's Hospital, Xuzhou Hospital Affiliated to Jiangsu University, No. 131 Huancheng Road, Gulou District, Xuzhou, 221000, People's Republic of China
| |
Collapse
|
7
|
Atigan A, Karakaya YA, Kiliç D, Guler OT. Microarray expression results of VEGF, YAP1 and PTEN immunostains in preeclampsia cases. J Immunoassay Immunochem 2023; 44:204-212. [PMID: 36815553 DOI: 10.1080/15321819.2023.2182219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
We aimed to evaluate the expression of YAP1, PTEN, VEGF in the placentas of patients with preeclampsia and placentas of healthy pregnant women for trophoblast invasion, which is similar to cancer etiopathogenesis. The placentas of 70 women who gave birth, including 30 preeclampsia and 40 healthy controls, were evaluated. YAP1, PTEN and VEGF immunohistochemical staining were performed using the microarray method on placental tissue. The mean ± standard deviation for YAP1, PTEN and VEGF intensity were; 1.57 ± 0.71,2.59 ± 0.80, 1.61 ± 0.59, respectively. PTEN intensity was statistically significantly lower in the preeclampsia group than in the control group (2.37 ± 0.99 vs 2.75 ± 0.58, p = .049). There was no difference between the groups in terms of YAP1 and VEGF staining (p > .05). The etiopathogenesis of preeclampsia is still unclear. However, since trophoblast invasion and endothelial repair have similar aspects with cancer mechanisms, both preeclampsia and cancer studies are progressing by supporting each other. Our study is a prototype study showing that large-participation studies can be carried out easily by using the microarray method as an economic model.
Collapse
Affiliation(s)
- Ayhan Atigan
- Department of Obstetrics and Gynecology, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| | - Yeliz Arman Karakaya
- Department of Pathology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Derya Kiliç
- Department of Obstetrics and Gynecology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Omer Tolga Guler
- Department of Obstetrics and Gynecology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| |
Collapse
|
8
|
Huang Z, Tang Z, Guan H, Leung W, Wang L, Xia H, Zhang W. Inactivation of Yes-Associated Protein Mediates Trophoblast Dysfunction: A New Mechanism of Pregnancy Loss Associated with Anti-Phospholipid Antibodies? Biomedicines 2022; 10:biomedicines10123296. [PMID: 36552052 PMCID: PMC9776042 DOI: 10.3390/biomedicines10123296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Pregnancy morbidity induced by anti-phospholipid antibodies (aPL+/PM+) is mainly thought to arise from placental abnormalities. We attempted to investigate the effect of aPL on the activity of Yes-associated protein (YAP) in the trophoblast and how YAP regulated human trophoblasts function. Thus, HTR-8 cells were treated with IgG purified from aPL+/PM+ women or normal controls. We found that aPL+/PM+ IgG impacted YAP activity via abrogating YAP expression. Further investigation of the anti-β2GPI-IgG/β2GPI complex showed an inhibition of nuclear YAP level and translocation in a dose-dependent manner, which might be rescued by progesterone in HTR-8 cells. YAP overexpression or knockdown HTR-8 cells were established for the evaluation of cell function and related gene expression in vitro. Loss of YAP arrested cell cycles in the G2/M phase, accelerated cell apoptosis by increasing the ratio of Bax/Bcl2, and disrupted MMP2/9-mediated cell migration and angiogenesis tube formation by VEGF. These findings support a new mechanism of PM associated with aPL through which YAP inactivation induced by aPL perturbs the trophoblast cell cycle, apoptosis, migration, and angiogenesis, finally developing into pregnancy failure.
Collapse
Affiliation(s)
- Zengshu Huang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Zhijing Tang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Haiyun Guan
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Wingting Leung
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Lu Wang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Hexia Xia
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Wei Zhang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
- Correspondence:
| |
Collapse
|
9
|
Qiu Q, Tan J. Long noncoding RNA WT1-AS regulates trophoblast proliferation, migration, and invasion via the microRNA-186-5p/CADM2 axis. Open Med (Wars) 2022; 17:1903-1914. [PMID: 36561840 PMCID: PMC9730544 DOI: 10.1515/med-2022-0595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 12/12/2022] Open
Abstract
This study aimed to determine the role of long noncoding RNA (lncRNA) WT1 antisense RNA (WT1-AS) in the occurrence and progression of preeclampsia (PE) and to determine the underlying molecular mechanisms. The associations between WT1-AS and microRNA (miR)-186-5p, and miR-186-5p and cell adhesion molecule 2 (CADM2) were predicted using StarBase software and verified via dual-luciferase assays. To explore the role of the human chorionic trophoblast line HTR-8/SVneo, gene (WT1-AS/miR-186-5p) gain/loss of function experiments were performed. Qualitative reverse transcription-polymerase chain reaction (RT-PCR) analysis was used to evaluate transfection efficiency. Cell proliferation, apoptosis, cell migration, and invasion were assessed using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT), flow cytometry, and transwell analysis, respectively. Moreover, CADM2 protein expression was measured by western blotting. The results indicated that overexpression of WT1-AS inhibited cell viability, migration, and invasion, and induced apoptosis in HTR-8/SVneo cells. We observed that miR-186a-5p directly targeted WT1-AS, and miR-186a-5p knockdown reversed the effects of WT1-AS knockdown in HTR-8/SVneo cells. Binding sites were found between miR-186-5p and CADM2, and CADM2-overexpression reversed the influence of miR-186-5p mimic on HTR-8/SVneo cells. In summary, our findings demonstrated that lncRNA WT1-AS participates in PE by regulating the proliferation and invasion of placental trophoblasts, through the miR-186-5p/CADM2 axis.
Collapse
Affiliation(s)
- Qun Qiu
- Maternal and Child Health Teaching and Research Section, Lianyungang Branch of Traditional Chinese Medicine, Jiangsu Union Technical Institute, Lianyungang 222000, China
| | - Juan Tan
- Department of Medical Genetics and Prenatal Diagnosis, Lianyungang Maternity and Child Health Hospital, Lianyungang 222000, China
- Lianyungang Maternity and Child Health Hospital, No. 669 Qindongmen Street, Haizhou District, Lianyungang 222000, China
| |
Collapse
|
10
|
Hu J, Zhu Y, Zhang J, Xu Y, Wu J, Zeng W, Lin Y, Liu X. The potential toxicity of polystyrene nanoplastics to human trophoblasts in vitro. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119924. [PMID: 35970350 DOI: 10.1016/j.envpol.2022.119924] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/21/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Nanoplastics (NPs), the emerging contaminants in recent years, widely distributed in the environment and are bioaccumulated and biomagnified in organisms through food chain. A growing number of studies have detected plastic particulates in human placenta and blood. However, few studies have focused on their effects during human pregnancy. Herein, human trophoblast HTR-8/Svneo cells were used to evaluate the effects and the possible mechanism of 100-nm polystyrene NPs on placental trophoblasts at the maternal-fetal interface. The results showed that NPs entered the trophoblastic cytoplasm, decreased cell viability, caused cell cycle arrest, reduced the cell migration and invasion abilities, increased level of intracellular reactive oxygen species and the production of proinflammatory cytokines (TNF-α and IFN-γ) in a dose-dependent manner. Furthermore, global transcriptome sequencing (RNA-Seq) was performed on HTR-8/Svneo cells with or without 100 μg/mL PS-NP exposure for 24 h. A total of 344 differentially expressed genes were detected. The gene functions for regulation of leukocyte differentiation, response to stimulus, cell cycle, apoptotic process, and cell adhesion were enriched. Thyroid hormone, Hippo, TGF-β and FoxO signaling pathways were activated. Collectively, our data provided evidences for the adverse consequences of NPs on the biological functions of trophoblasts, which provided new insights into the potential trophoblast toxicity of NPs in mammals.
Collapse
Affiliation(s)
- Jianing Hu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China; Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yueyue Zhu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China; Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jinwen Zhang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China; Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yichi Xu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China; Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jiayi Wu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China; Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Weihong Zeng
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China; Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yi Lin
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China; Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xiaorui Liu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China; Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China.
| |
Collapse
|
11
|
Golal E, Balci CN, Ustunel I, Acar N. The investigation of hippo signaling pathway in mouse uterus during peri-implantation period. Arch Gynecol Obstet 2022; 307:1795-1809. [PMID: 35708783 DOI: 10.1007/s00404-022-06660-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/01/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE Events in the uterus during the peri-implantation period include embryo development, acquisition of uterine receptivity, implantation and decidualization. Hippo signaling pathway regulates cell proliferation, apoptosis and differentiation. We aimed to determine localization and expressions of pYAP (Phospho Yes-associated protein), YAP (Yes-associated protein), TEAD1 (TEA domain family member 1) and CTGF (Connective tissue growth factor), members of the Hippo signaling pathway, in the mouse uterus during the peri-implantation period. METHODS Pregnant mice were randomly separated into 5 groups: 1st, 4th, 5th, 6th, and 8th days of pregnancy groups. Non-pregnant female mice in estrous phase were included in the estrous group. Uteri and implantation sites were collected. Also, inter-implantation sites were collected from the 5th day of pregnancy group. pYAP, YAP, TEAD-1 and CTGF were detected by immunohistochemistry and Western blotting. RESULTS We observed that the expressions of YAP, TEAD-1 and CTGF were increased in the luminal and glandular epithelium on the 1st and 4th days of pregnancy when epithelial proliferation occurred. pYAP expression was high, and YAP and CTGF expressions were low in the luminal epithelium of the implantation sites on the 5th day of pregnancy, when epithelial differentiation occurred. pYAP expression was low, YAP and CTGF expressions were high at implantation sites on the 6th and 8th days of pregnancy, where decidua was formed. CONCLUSION Our findings suggest that the Hippo signaling pathway might be involved in implantation and decidualization. Our findings will guide further studies and may help to elucidate underlying causes of implantation failure and pregnancy loss.
Collapse
Affiliation(s)
- Ezgi Golal
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Cemre Nur Balci
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Ismail Ustunel
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Nuray Acar
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, Turkey.
| |
Collapse
|
12
|
Basak T, Ain R. Molecular regulation of trophoblast stem cell self-renewal and giant cell differentiation by the Hippo components YAP and LATS1. Stem Cell Res Ther 2022; 13:189. [PMID: 35526072 PMCID: PMC9080189 DOI: 10.1186/s13287-022-02844-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/22/2022] [Indexed: 11/25/2022] Open
Abstract
Background Trophoblast stem cells (TSCs), the precursors of trophoblast cells of placenta, possess the potential to differentiate into various trophoblastic subtypes in vitro. Establishment of extraembryonic trophoblastic lineage is preceded by the “outside versus inside” positional information in preimplantation embryos, critically synchronized by the Hippo components. Abundant expression of Hippo effector YAP in TSCs and differentiated cells with paucity of information on Hippo regulation of TSC proliferation/differentiation led us test the hypothesis that Hippo dynamics is one of the regulators of TSC proliferation/differentiation. Methods Blastocyst-derived murine TSCs were used. Dynamics of Hippo components were analyzed using immunofluorescence, western blotting, immunoprecipitation, qRT-PCR. Interaction studies were performed using full-length and deletion constructs. BrdU incorporation assay, flow cytometry-based polyploidy analysis and confocal microscopy were used to decipher the underlying mechanism. Results YAP translocates to the nucleus in TSCs and utilizes its WW2 domain to interact with the PPQY motif of the stemness factor, CDX2. YAP limits TSC proliferation with associated effect on CDX2 target CyclinD1. Trophoblast giant cells (TGC) differentiation is associated with cytoplasmic retention of YAP, heightened pYAPSer127, decrease in the level of the core Hippo component, LATS1, which thereby impedes LATS1-LIMK2 association. Decreased LATS1-LIMK2 complex formation in TGCs was associated with elevated pLIMK2Thr505 as well as its target pCOFILINSer3. Precocious overexpression of LATS1 during trophoblast differentiation decreased TGC marker, Prl2c2, diminished pLIMK2Thr505 and inactive COFILIN (pCOFILINSer3) while COFILIN-phosphatase, CHRONOPHIN remained unchanged. LATS1 overexpression inhibited trophoblast endoreduplication with smaller-sized TGC-nuclei, lower ploidy level and disintegrated actin filaments. Inhibition of LIMK2 activity recapitulated the effects of LATS1 overexpression in trophoblast cells. Conclusion These results unveil a multilayered regulation of trophoblast self-renewal and differentiation by the Hippo components. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02844-w.
Collapse
Affiliation(s)
- Trishita Basak
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, West Bengal, 700032, India
| | - Rupasri Ain
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, West Bengal, 700032, India.
| |
Collapse
|
13
|
Xing H, Ding Q, Lu H, Li Q. Circ_0007611 stimulates IL-1 receptor accessory protein to inhibit trophoblast cell proliferation and induce cell apoptosis. Biol Reprod 2022; 106:1011-1021. [PMID: 35238896 DOI: 10.1093/biolre/ioac028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/18/2022] [Accepted: 01/28/2022] [Indexed: 11/14/2022] Open
Abstract
Preeclampsia (PE) is a common pregnancy disorder, and mounting evidence has revealed that circular RNA participates in PE development. However, the detailed molecular mechanism of circ_0007611 in PE progression remains unknown. RNA expressions of circ_0007611, microRNA-558 (miR-558), and IL-1 receptor accessory protein (IL1RAP) were detected by quantitative real-time polymerase chain reaction. Cell proliferation was investigated by clonogenicity, 5-Ethynyl-29-deoxyuridine, and DNA content quantitation assays. Cell apoptotic rate and angiogenesis were analyzed by cell apoptosis and tube formation assays, respectively. Protein expression was detected by western blot. The binding relationship between miR-558 and circ_0007611 or IL1RAP was identified by a dual-luciferase reporter or RNA immunoprecipitation assay. Circ_0007611 and IL1RAP expressions were significantly upregulated, while miR-558 was downregulated in the placental tissues of PE women in comparison with normal placental tissues. Functionally, circ_0007611 overexpression inhibited trophoblast cell proliferation and angiogenesis and induced cell apoptosis; however, circ_0007611 downregulation showed the opposite effects. Mechanistically, circ_0007611 acted as a miR-558 sponge, and miR-558 bound to IL1RAP. Besides, miR-558 overexpression or IL1RAP absence relieved circ_0007611-induced trophoblast cell dysfunction. Moreover, miR-558 contributed to cell proliferation and tube formation and inhibited cell apoptosis by reducing IL1RAP expression in trophoblast cells. Circ_0007611 aggravated trophoblast cell disorders by the miR-558/IL1RAP pathway in PE.
Collapse
Affiliation(s)
- Haiyan Xing
- Department of Gynaecology and Obstetrics, Jinan Fourth People's Hospital, Jinan, Shandong, China
| | - Qing Ding
- Department of Gynaecology and Obstetrics, Jinan Fourth People's Hospital, Jinan, Shandong, China
| | - Hong Lu
- Department of Gynaecology and Obstetrics, Jinan Fourth People's Hospital, Jinan, Shandong, China
| | - Qun Li
- Department of Gynaecology and Obstetrics, Jinan Fourth People's Hospital, Jinan, Shandong, China
| |
Collapse
|
14
|
Early Pregnancy Exposure to Ambient Air Pollution among Late-Onset Preeclamptic Cases Is Associated with Placental DNA Hypomethylation of Specific Genes and Slower Placental Maturation. TOXICS 2021; 9:toxics9120338. [PMID: 34941772 PMCID: PMC8708250 DOI: 10.3390/toxics9120338] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 01/19/2023]
Abstract
Exposure to ambient air pollution during pregnancy has been associated with an increased risk of preeclampsia (PE). Some suggested mechanisms behind this association are changes in placental DNA methylation and gene expression. The objective of this study was to identify how early pregnancy exposure to ambient nitrogen oxides (NOx) among PE cases and normotensive controls influence DNA methylation (EPIC array) and gene expression (RNA-seq). The study included placentas from 111 women (29 PE cases/82 controls) in Scania, Sweden. First-trimester NOx exposure was assessed at the participants’ residence using a dispersion model and categorized via median split into high or low NOx. Placental gestational epigenetic age was derived from the DNA methylation data. We identified six differentially methylated positions (DMPs, q < 0.05) comparing controls with low NOx vs. cases with high NOx and 14 DMPs comparing cases and controls with high NOx. Placentas with female fetuses showed more DMPs (N = 309) than male-derived placentas (N = 1). Placentas from PE cases with high NOx demonstrated gestational age deceleration compared to controls with low NOx (p = 0.034). No differentially expressed genes (DEGs, q < 0.05) were found. In conclusion, early pregnancy exposure to NOx affected placental DNA methylation in PE, resulting in placental immaturity and showing sexual dimorphism.
Collapse
|
15
|
Gao C, Yang H, Xia F. Increased LINC00922 in preeclampsia regulates the proliferation, invasion, and migration of placental trophoblast cells. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1553. [PMID: 34790759 PMCID: PMC8576713 DOI: 10.21037/atm-21-4923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/21/2021] [Indexed: 12/24/2022]
Abstract
Background Recent studies have shown that the abnormal expression of long-chain non-coding RNAs (lncRNAs) can significantly affect the biological function of trophoblast cells and lead to the occurrence of preeclampsia (PE). This study explores the expression of lncRNA LINC00922 in PE and its effect on the function of placental trophoblast cells, along with the corresponding molecular mechanism, providing a theoretical basis and molecular target for understanding the occurrence, early diagnosis, and targeted therapy of PE. Methods Fluorescence quantitative PCR was used to detect the expression of LINC00922 in 30 cases of PE tissues and normal tissues. The CCK-8 assay, clone formation experiment, and flow cytometry were used to detect the effects of LINC00922 knockdown or overexpression on the proliferation, colony formation, and cell cycle of HTR-8/SVneo placental trophoblast cells. The Transwell assay was used to detect the effects of LINC00922 knockdown or overexpression on the invasion and migration of HTR 8/SVneo cells, and western blot was used to detect the expression of cell cycle-related proteins and invasion and migration-related proteins. Results LINC00922 was highly expressed in PE tissues. Knockdown of LINC00922 significantly inhibited the proliferation, invasion, and migration of HTR-8/SVneo cells, along with colony formation and the ability to induce cell cycle arrest in the G0/G1 phase. However, overexpression of LINC00922 had the opposite effect. Knockdown or overexpression of LINC00922 significantly affected the expression of cell cycle-related proteins cyclin-dependent kinase 2 (CDK2), G1/S-specific cyclin-D1 (Cyclin D1), p21, proliferating cell nuclear antigen (PCNA), matrix metallopeptidase 9 (MMP-9), vimentin, and E-cadherin, but had no significant effect on the expression of matrix metallopeptidase 2 (MMP-2). Conclusions LINC00922 was highly expressed in PE, and functional experiments showed that LINC00922 could significantly affect the proliferation and invasion abilities of placental trophoblast cells, suggesting that LINC00922 may play an important role in the occurrence, early diagnosis, and treatment of PE.
Collapse
Affiliation(s)
- Chengzhen Gao
- Department of gynaecology and obstetrics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hui Yang
- Department of gynaecology and obstetrics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Fei Xia
- Department of gynaecology and obstetrics, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
16
|
Cheng JC, Fang L, Li Y, Thakur A, Hoodless PA, Guo Y, Wang Z, Wu Z, Yan Y, Jia Q, Gao Y, Han X, Yu Y, Sun YP. G protein-coupled estrogen receptor stimulates human trophoblast cell invasion via YAP-mediated ANGPTL4 expression. Commun Biol 2021; 4:1285. [PMID: 34773076 PMCID: PMC8589964 DOI: 10.1038/s42003-021-02816-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
Insufficient invasion of trophoblast cells into the uterine decidua is associated with preeclampsia (PE). G protein-coupled estrogen receptor (GPER) is a membrane estrogen receptor involved in non-genomic estrogen signaling. GPER is expressed in human trophoblast cells and downregulated GPER levels are noted in PE. However, to date, the role of GPER in trophoblast cells remains largely unknown. Here, we applied RNA sequencing (RNA-seq) to HTR-8/SVneo human trophoblast cells in response to G1, an agonist of GPER, and identified angiopoietin-like 4 (ANGPTL4) as a target gene of GPER. Treatment of trophoblast cells with G1 or 17β-estradiol (E2) activated Yes-associated protein (YAP), the major downstream effector of the Hippo pathway, via GPER but in a mammalian STE20-like protein kinase 1 (MST1)-independent manner. Using pharmacological inhibitors as well as loss- and gain-of-function approaches, our results revealed that YAP activation was required for GPER-stimulated ANGPTL4 expression. Transwell invasion assays demonstrated that activation of GPER-induced ANGPTL4 promoted cell invasion. In addition, the expression levels of GPER, YAP, and ANGPTL4 were downregulated in the placenta of patients with PE. Our findings reveal a mechanism by which GPER exerts its stimulatory effect on human trophoblast cell invasion by upregulating YAP-mediated ANGPTL4 expression. Cheng, Fan, Li et al. identified ANGPTL4 as a G1-induced target gene of GPER/YAP in HRT8 cells using RNA-seq and highlighted its importance in regulating trophoblast cell invasion. The authors also reported GPER downregulation in the placenta and lower estradiol levels in patients who developed preeclampsia.
Collapse
Affiliation(s)
- Jung-Chien Cheng
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China.
| | - Lanlan Fang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Yuxi Li
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Avinash Thakur
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, Canada, V5Z 1L3.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Pamela A Hoodless
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, Canada, V5Z 1L3.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4.,School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Yanjie Guo
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Zhen Wang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Ze Wu
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Yang Yan
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Qiongqiong Jia
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Yibo Gao
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Xiaoyu Han
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Yiping Yu
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Ying-Pu Sun
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China.
| |
Collapse
|
17
|
Cell fate determination and Hippo signaling pathway in preimplantation mouse embryo. Cell Tissue Res 2021; 386:423-444. [PMID: 34586506 DOI: 10.1007/s00441-021-03530-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 09/20/2021] [Indexed: 10/20/2022]
Abstract
First cell fate determination plays crucial roles in cell specification during early phases of embryonic development. Three classical concepts have been proposed to explain the lineage specification mechanism of the preimplantation embryo: inside-outside, pre-patterning, and polarity models. Transcriptional effectors of the Hippo signal pathway are YAP and TAZ activators that can create a shuttle between the cytoplasm and the nucleus. Despite different localizations of YAP in the cell, it determines the fate of ICM and TE. How the decisive cue driving factors that determine YAP localization are coordinated remains a central unanswered question. How can an embryonic cell find its position? The objective of this review is to summarize the molecular and mechanical aspects in cell fate decision during mouse preimplantation embryonic development. The findings will reveal the relationship between cell-cell adhesion, cell polarity, and determination of cell fate during early embryonic development in mice and elucidate the inducing/inhibiting mechanisms that are involved in cell specification following zygotic genome activation and compaction processes. With future studies, new biophysical and chemical cues in the cell fate determination will impart significant spatiotemporal effects on early embryonic development. The achieved knowledge will provide important information to the development of new approaches to be used in infertility treatment and increase the success of pregnancy.
Collapse
|
18
|
Karasek C, Ashry M, Driscoll CS, Knott JG. A tale of two cell-fates: role of the Hippo signaling pathway and transcription factors in early lineage formation in mouse preimplantation embryos. Mol Hum Reprod 2021; 26:653-664. [PMID: 32647873 PMCID: PMC7473788 DOI: 10.1093/molehr/gaaa052] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/18/2020] [Indexed: 12/26/2022] Open
Abstract
In mammals, the first cell-fate decision occurs during preimplantation embryo development when the inner cell mass (ICM) and trophectoderm (TE) lineages are established. The ICM develops into the embryo proper, while the TE lineage forms the placenta. The underlying molecular mechanisms that govern lineage formation involve cell-to-cell interactions, cell polarization, cell signaling and transcriptional regulation. In this review, we will discuss the current understanding regarding the cellular and molecular events that regulate lineage formation in mouse preimplantation embryos with an emphasis on cell polarity and the Hippo signaling pathway. Moreover, we will provide an overview on some of the molecular tools that are used to manipulate the Hippo pathway and study cell-fate decisions in early embryos. Lastly, we will provide exciting future perspectives on transcriptional regulatory mechanisms that modulate the activity of the Hippo pathway in preimplantation embryos to ensure robust lineage segregation.
Collapse
Affiliation(s)
- Challis Karasek
- Developmental Epigenetics Laboratory, Department of Animal Science, Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI, USA
| | - Mohamed Ashry
- Developmental Epigenetics Laboratory, Department of Animal Science, Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI, USA
| | - Chad S Driscoll
- Developmental Epigenetics Laboratory, Department of Animal Science, Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI, USA
| | - Jason G Knott
- Developmental Epigenetics Laboratory, Department of Animal Science, Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
19
|
Huang B, Zhao Y, Zhou L, Gong T, Feng J, Han P, Qian J. PADI6 Regulates Trophoblast Cell Migration-Invasion Through the Hippo/YAP1 Pathway in Hydatidiform Moles. J Inflamm Res 2021; 14:3489-3500. [PMID: 34326657 PMCID: PMC8314932 DOI: 10.2147/jir.s313422] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/29/2021] [Indexed: 12/25/2022] Open
Abstract
Purpose Peptidyl arginine deiminase, type VI (PADI6), a member of the subcortical maternal complex, plays an important role in oocyte growth and the development of fertilized oocytes. Human patients with PADI6 mutations can suffer from multiple reproductive deficiencies including hydatidiform moles and miscarriages. Recent studies have demonstrated that the Hippo signaling pathway plays a central role in the specification of the first cell fates and the maintenance of the human placental trophoblast epithelium. The present study aimed to verify the hypothesis that PADI6 regulates the biological functions of trophoblast cells by targeting YAP1 and to explore the mechanism by which PADI6 accomplishes this in trophoblast cells. Methods Villi from HMs and human trophoblast cell lines were used to identify the localization of PADI6 and YAP1 by immunohistochemistry and immunocytochemistry. PADI6 overexpression and knockdown were induced in human trophoblast cells. Co-immunoprecipitation was used to explore the interaction between PADI6 and YAP1. Wound healing, Transwell and EdU staining assays were used to detect migration, invasion and proliferation. Flow cytometric analysis was used to analyze the cell cycle and apoptosis. β-Tubulin and F-actin levels were determined by Western blot, quantitative real-time PCR and phalloidin staining. Results The results showed that PADI6 and YAP1 had the same expression pattern in villi and colocalized in the cytotrophoblast. An interaction between PADI6 and YAP1 was also confirmed in human trophoblast cell lines. We found that PADI6 positively regulated the expression of YAP1. Functionally, overexpression of PADI6 promoted cell cycle progression and enhanced migration, invasion, proliferation and apoptosis, whereas downregulation of PADI6 showed the opposite effects. Conclusion This study demonstrates that YAP1 is a novel target of PADI6 that serves as an important regulator of trophoblast dysfunction. The crosstalk between the Hippo/YAP1 pathway and the SCMC might be a new topic to explore to uncover the pathological mechanisms of HMs.
Collapse
Affiliation(s)
- Bo Huang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, 310003, Zhejiang Province, People's Republic of China
| | - Yating Zhao
- Department of Gynecology and Obstetrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, 310003, Zhejiang Province, People's Republic of China
| | - Lin Zhou
- Department of Gynecology and Obstetrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, 310003, Zhejiang Province, People's Republic of China
| | - Tingyu Gong
- Department of Gynecology and Obstetrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, 310003, Zhejiang Province, People's Republic of China
| | - Jiawen Feng
- Department of Gynecology and Obstetrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, 310003, Zhejiang Province, People's Republic of China
| | - Peilin Han
- Department of Gynecology and Obstetrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, 310003, Zhejiang Province, People's Republic of China
| | - Jianhua Qian
- Department of Gynecology and Obstetrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, 310003, Zhejiang Province, People's Republic of China
| |
Collapse
|
20
|
Overexpression of miR-210-3p Impairs Extravillous Trophoblast Functions Associated with Uterine Spiral Artery Remodeling. Int J Mol Sci 2021; 22:ijms22083961. [PMID: 33921262 PMCID: PMC8069107 DOI: 10.3390/ijms22083961] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 12/18/2022] Open
Abstract
Hsa-miR-210-3p has been reported to be upregulated in preeclampsia (PE); however, the functions of miR-210-3p in placental development are not fully understood, and, consequently, miR-210-3p’s role in the pathogenesis of PE is still under investigation. In this study, we found that overexpression of miR-210-3p reduced trophoblast migration and invasion, extravillous trophoblast (EVT) outgrowth in first trimester explants, expression of endovascular trophoblast (enEVT) markers and the ability of trophoblast to form endothelial-like networks. In addition, miR-210-3p overexpression significantly downregulated the mRNA levels of interleukin-1B and -8, as well as CXC motif ligand 1. These cytokines have been suggested to play a role in EVT invasion and the recruitment of immune cells to the spiral artery remodeling sites. We also showed that caudal-related homeobox transcription factor 2 (CDX2) is targeted by miR-210-3p and that CDX2 downregulation mimicked the observed effects of miR-210-3p upregulation in trophoblasts. These findings suggest that miR-210-3p may play a role in regulating events associated with enEVT functions and its overexpression could impair spiral artery remodeling, thereby contributing to PE.
Collapse
|
21
|
Zha W, Guan S, Liu N, Li Y, Tian Y, Chen Y, Wang Y, Wu F. Let-7a inhibits Bcl-xl and YAP1 expression to induce apoptosis of trophoblast cells in early-onset severe preeclampsia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:139919. [PMID: 32721616 DOI: 10.1016/j.scitotenv.2020.139919] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 03/28/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
Dysregulation of the MicroRNA (miR) Let-7 family has been implicated in preeclampsia (PE). Abnormal trophoblast cell proliferation and apoptosis associate with the pathogenesis of PE. The present study was designed to test the hypothesis whether let-7a could regulate the biological functions of trophoblasts and explore the mechanism how it works in the development of early-onset severe PE. The putative target genes Bcl-xl and YAP1 of let-7a were verified by luciferase assay. The roles of let-7a, Bcl-xl and YAP1 in regulating JEG-3 cell functions were examined by altering their expression with mimic, overexpression plasmids or siRNAs. The methylation status of let-7a-3 in PE was assessed by methylation-specific and bisulfite sequencing PCR assays. JEG-3 cells were treated with DNA methyltransferase inhibitor to analyze whether let-7a-3 demethylation functioned in PE. Tumor growth and cell apoptosis were measured from nude mice inoculated with JEG-3 cells overexpressing let-7a. The results revealed let-7a was highly expressed in early-onset severe PE and let-7a-3 presented a low methylation level. Functionally, let-7a upregulation could inhibit the viability and cell cycle progression but induce the apoptosis of JEG-3 cells. Bcl-xl and YAP1, target genes of let-7a, could rescue cell apoptosis induced by let-7a. The demethylation of let-7a-3 was also observed to elevate the expression of let-7a and enhance JEG-3 cell apoptosis. Let-7a inhibited tumorigenic ability of JEG-3 cells and enhanced cell apoptosis in vivo. Altogether, let-7a could enhance cell apoptosis in trophoblasts through downregulation of Bcl-xl and YAP1, which suggests that let-7a might be a key regulator in the progression of PE.
Collapse
Affiliation(s)
- Wenhui Zha
- Department of Gynaecology and Obstetrics, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Shuang Guan
- Department of Rehabilitation, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Ning Liu
- Department of Gynaecology and Obstetrics, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Yang Li
- Center of Reproductive Medicine, Center of Prenatal Diagnosis, The First Hospital of Jilin University, Changchun 130041, PR China
| | - Yuan Tian
- Department of Gynaecology and Obstetrics, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Yang Chen
- Department of Gynaecology and Obstetrics, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Yan Wang
- Department of Gynaecology and Obstetrics, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Fuju Wu
- Department of Gynaecology and Obstetrics, The Second Hospital of Jilin University, Changchun 130041, PR China.
| |
Collapse
|
22
|
Xu B, Geng X, Liu X, Liu Y. Long non-coding RNA FAM99A modulated YAP1 to affect trophoblast cell behaviors in preeclampsia by sponging miR-134-5p. ACTA ACUST UNITED AC 2020; 53:e9732. [PMID: 33111745 PMCID: PMC7584153 DOI: 10.1590/1414-431x20209732] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 08/02/2020] [Indexed: 11/29/2022]
Abstract
Preeclampsia (PE) is a complex pregnancy syndrome. Convincing evidence indicates that long non-coding RNAs (lncRNAs) are involved in the pathogenesis of PE. This research mainly investigated the mechanism of family with sequence similarity 99 member A (FAM99A) in PE. The expressions of FAM99A, miR-134-5p, and YAP1 were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Cell apoptosis, migration, and invasion were detected by flow cytometry or transwell assay. The interaction between miR-134-5p and FAM99A or YAP1 was confirmed by dual-luciferase reporter assay. The protein expression of YAP1 was determined by western blot assay. FAM99A and YAP1 were significantly up-regulated, and miR-134-5p was significantly down-regulated in PE tissues (n=30). miR-134-5p was verified as a candidate of FAM99A and YAP1. FAM99A promoted cell metastasis, but reduced apoptosis in HTR8/SVneo cells by regulating miR-134-5p. miR-134-5p down-regulated YAP1 expression to suppress cell metastasis, while it induced apoptosis in HTR8/SVneo cells. FAM99A positively modulated YAP1 expression by sponging miR-134-5p. FAM99A modulated YAP1 to accelerate cell migration and invasion, and inhibited cell apoptosis in PE cells by sponging miR-134-5p. The novel regulatory network may shed light on the pathogenesis of PE.
Collapse
Affiliation(s)
- Bingnv Xu
- Department of Obstetrics, Maternal and Child Health Hospital Dongchangfu District, Liaocheng, Shandong, China
| | - Xiaofang Geng
- Department of Obstetrics, Maternal and Child Health Hospital Dongchangfu District, Liaocheng, Shandong, China
| | - Xiaodan Liu
- Department of Obstetrics, Maternal and Child Health Hospital Dongchangfu District, Liaocheng, Shandong, China
| | - Ying Liu
- Department of Obstetrics, Maternal and Child Health Hospital Dongchangfu District, Liaocheng, Shandong, China
| |
Collapse
|
23
|
Zhu J, Wei Y, Wang Z, Jie Q, Sun F, Li Q, Long P, Huang Y, Yu Y, Ma Y. Down-regulated FOXA1 in early-onset pre-eclampsia induces apoptosis, and inhibits migration and invasion of trophoblast cells. J Gene Med 2020; 22:e3273. [PMID: 32894789 DOI: 10.1002/jgm.3273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 07/12/2020] [Accepted: 08/15/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Pre-eclampsia (PE) is a major cause of maternal and neonatal mortality and morbidity. Abnormal invasion of trophoblast cells is a major pathogenesis observed in PE. In the present study, we aimed to explore the association between forkhead box A1 (FOXA1) and early-onset pre-eclampsia (EOPE) and to determine the effects of FOXA1 on trophoblast cell apoptosis, migration and invasion. METHODS Clinical data and placentas of patients with EOPE and normal pregnant women were collected in the First Affiliated Hospital of Hainan Medical College. The protein expression levels of FOXA1 in the clinical samples were evaluated by western blotting and immunohistochemistry. The effects of FOXA1 knockdown on HTR-8/SVneo cell apoptosis, migration and invasion were evaluated by flow cytometry, wound healing and transwell invasion assays, respectively. RESULTS The western blot and immunohistochemical analysis showed that FOXA1 protein expression in placenta of EOPE group was significantly lower than that of normal group. The expression of FOXA1 in the placentas of EOPE and normal pregnant women was negatively correlated with systolic pressure and diastolic pressure. The expression of FOXA1 in EOPE and normal pregnant women was positively correlated with gestation weeks at delivery and neonatal birthweight. In vitro functional studies showed that silencing FOXA1 increased apoptosis, and inhibited the migration and invasion of HTR-8/SVneo cells. CONCLUSIONS Down-regulation of FOXA1 in the placentas may indicate poor prognosis of EOPE. Silencing of FOXA1 induced apoptosis in trophoblast cells, and impaired the migratory and invasive capacity of trophoblast cells. FOXA1 may represent a potential therapeutic target for EOPE.
Collapse
Affiliation(s)
- Juan Zhu
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Department of Reproductive Medicine, Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, Hainan, China
| | - Yunjian Wei
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Department of Reproductive Medicine, Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, Hainan, China
| | - Zhen Wang
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Department of Reproductive Medicine, Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, Hainan, China
| | - Qiuling Jie
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Department of Reproductive Medicine, Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
| | - Fei Sun
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Department of Reproductive Medicine, Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, Hainan, China
| | - Qi Li
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Department of Reproductive Medicine, Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, Hainan, China
| | - Ping Long
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Department of Reproductive Medicine, Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, Hainan, China
| | - Yuanhua Huang
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Department of Reproductive Medicine, Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, Hainan, China
| | - Yanhong Yu
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yanlin Ma
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Department of Reproductive Medicine, Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, Hainan, China
| |
Collapse
|
24
|
Yin X, Gao R, Geng Y, Chen X, Liu X, Mu X, Ding Y, Wang Y, He J. Autophagy regulates abnormal placentation induced by folate deficiency in mice. Mol Hum Reprod 2020; 25:305-319. [PMID: 30976800 DOI: 10.1093/molehr/gaz022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 03/18/2019] [Indexed: 12/14/2022] Open
Abstract
Folate deficiency has been linked to a wide range of pregnancy disorders. Most research about folate-deficiency has focused on the embryo itself, little attention has been paid to possible effects on the placenta. According to our results, the morphology of the placenta, endocrine function, and the expression of genes involved in placental differentiation were all abnormal in folate-deficient mice on days 10, 12, and 14 of pregnancy. Similar results were found in human placenta explants cultured in folate-deficient medium. Autophagy is an inducible catabolic process activated by external nutrients starvation. Here we explored further, whether autophagy was involved in the abnormal placentation caused by folate-deficiency. The aberrant number of autophagosomes measured by transmission electron microscopy and the deviant expression of autophagy-related markers showed a disordered autophagy in placentas under conditions of folate-deficiency in vivo and in vitro dual-fluorescence mRFP-eGFP-LC3 analysis indicated enhanced autophagy was detected in HTR8/SVneo cells incubated in folate-deficient medium. Importantly, the placentation impairment in mice and human placenta explants could be recovered by inhibiting placental autophagy using 3-MA. In addition, the apoptosis and invasive capability of HTR8/SVneo cells were obviously suppressed by folate deficiency but notably elevated by 3-MA. These data suggest that folate deficiency can impair placentation and autophagy is a key factor in this. However, the signal pathway by which folate deficiency causes aberrant autophagy needs to be explored further.
Collapse
Affiliation(s)
- Xin Yin
- Laboratory of Reproductive Biology, School of Public Health and Management and Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Yuzhong District, Chongqing, PR China
| | - Rufei Gao
- Laboratory of Reproductive Biology, School of Public Health and Management and Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Yuzhong District, Chongqing, PR China
| | - Yanqing Geng
- Laboratory of Reproductive Biology, School of Public Health and Management and Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Yuzhong District, Chongqing, PR China
| | - Xuemei Chen
- Laboratory of Reproductive Biology, School of Public Health and Management and Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Yuzhong District, Chongqing, PR China
| | - Xueqing Liu
- Laboratory of Reproductive Biology, School of Public Health and Management and Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Yuzhong District, Chongqing, PR China
| | - Xinyi Mu
- Laboratory of Reproductive Biology, School of Public Health and Management and Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Yuzhong District, Chongqing, PR China
| | - Yubin Ding
- Laboratory of Reproductive Biology, School of Public Health and Management and Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Yuzhong District, Chongqing, PR China
| | - Yingxiong Wang
- Laboratory of Reproductive Biology, School of Public Health and Management and Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Yuzhong District, Chongqing, PR China
| | - Junlin He
- Laboratory of Reproductive Biology, School of Public Health and Management and Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Yuzhong District, Chongqing, PR China
| |
Collapse
|
25
|
Huang Z, Zhou J, Leung WT, Gober HJ, Pan X, Li C, Li L, Wang L. The novel role of Hippo-YAP/TAZ in immunity at the mammalian maternal-fetal interface: Opportunities, challenges. Biomed Pharmacother 2020; 126:110061. [PMID: 32145593 DOI: 10.1016/j.biopha.2020.110061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 01/05/2023] Open
Abstract
The Hippo-Yes-associated protein (YAP)/transcriptional co-activator with PDZ-binding motif (TAZ), originally identified as a regulator of tissue generation and tumorigenesis, has been proven to have a pivotal position in immunity. Its multi-faceted roles in regulating immunity cover both intrinsic mechanism of immune cells and the crosstalk with non-immune cells. Survival of the allogeneic embryo in the maternal uterine environment depends on immune tolerance, supported by the highly orchestrated cooperation between decidual immune cells, decidual stromal cells and trophoblasts at the maternal-fetal interface. The abnormal maternal-fetal dialogue is believed to be associated with adverse pregnancy outcomes such as spontaneous pregnancy loss. Recent breakthroughs shed light on the how the Hippo-YAP/TAZ manipulate the decidualization and trophoblast invasion, while further research is needed to integrate and reconcile existing findings of the Hippo-YAP/TAZ in immunity and to extend them at the context of pregnancy. In this review, we summarized the Hippo-YAP/TAZ pathways, detailed the effects of YAP/TAZ on immune cells, and discussed the role of YAP/TAZ at the maternal-fetal interface and the potential of YAP/TAZ on immunity regulation at the context of pregnancy. Given the remarkable effect of therapeutic intervention of YAP/TAZ in cancer and autoimmune diseases, it is worthy to explore the response to YAP/TAZ inhibition in the maternal-fetal immunity. This may provide a new valuable target for therapy of pregnancy loss, or potentially other pregnancy complications.
Collapse
Affiliation(s)
- Zengshu Huang
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai, China; The Academy of Integrative Medicine, Fudan University, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Jing Zhou
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai, China; The Academy of Integrative Medicine, Fudan University, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Wing Ting Leung
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai, China; The Academy of Integrative Medicine, Fudan University, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Hans Jürgen Gober
- Pharmaceutical Outcomes Programme, British Columbia Children's Hospital, 938 West 28th Avenue, Vancouver BC, Canada
| | - Xinyao Pan
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai, China; The Academy of Integrative Medicine, Fudan University, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Chuyu Li
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai, China; The Academy of Integrative Medicine, Fudan University, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Lisha Li
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai, China; The Academy of Integrative Medicine, Fudan University, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China.
| | - Ling Wang
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai, China; The Academy of Integrative Medicine, Fudan University, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China.
| |
Collapse
|
26
|
Liu R, Wei C, Ma Q, Wang W. Hippo-YAP1 signaling pathway and severe preeclampsia (sPE) in the Chinese population. Pregnancy Hypertens 2019; 19:1-10. [PMID: 31841877 DOI: 10.1016/j.preghy.2019.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 10/20/2019] [Accepted: 11/05/2019] [Indexed: 01/28/2023]
Abstract
BACKGROUND The present study aims to explore the possible mechanisms of Hippo-YAP1 signaling pathway in the development of severe preeclampsia (sPE). METHODS A total of 14 pregnancies complicated with severe preeclampsia as well as 14 healthy pregnancies were involved in this research from Department of Obstetrics, the First Affiliated Hospital of Xi'An Jiaotong University, from 15th March 2016 to 15th March 2018. The mRNA levels of YAP1, TAZ, MST1 and MST2 were tested via the RT-qPCR in the placentas between the two groups. Also, the protein expression degrees of YAP1, TAZ, MST 1 and MST 2 were detected using the technology of Western blotting. At the same time, immune-histochemistry method was performed to localize the expression of YAP1, TAZ, MST 1 and MST 2 proteins in the placentas between the two groups. Yes-associated protein expression was also detected in BeWo and HTR-8/SVneo. Overexpressed plasmid and YAP1 si-RNA were transfered into HTR-8/SVneo trophoblast cells. Transwell invasion assay was used to examine the role of YAP1 in the invasion of HTR-8/SVneo trophoblast cells. RESULTS In comparison with the normal pregnancy placentas, the mRNA levels of YAP (0.659 ± 0.169 vs. 1.758 ± 0.587, P < 0.001) and TAZ (1.148 ± 0.313 vs. 2.894 ± 0.470, P < 0.001) were decreased in the placentas of severe preeclampsia group while the mRNA levels of MST 1 (1.433 ± 0.306 vs. 0.663 ± 0.162, P < 0.001) and MST 2 (1.497 ± 0.378 vs. 0.554 ± 0.130, P < 0.001) were increased. The Western blotting shown that the expression degrees of YAP1 and TAZ proteins were significantly decreased in the placentas of severe preeclampsia, while the expression level of MST 1 and MST 2 was obviously increased. Furthermore, the staining intensity of YAP1 and TAZ were weaker in the placentas of the severe PE group while the staining intensity of MST 1 and MST 2 was significantly stronger in the placentas of the severe PE group. The invasion ability of the HTR-8/SVneo cells in the YAP1-overexpressed group was significantly higher than the corresponding control group ((313.7 ± 5.86) vs.(194.0 ± 4.00), P < 0.05) while the si-YAP1 group was significantly lower than that of the corresponding control group ((81.33 ± 2.52) vs. (204.67 ± 11.02), P < 0.05). CONCLUSIONS Hippo-YAP1 signaling pathway may play an essential role in the pathogenesis of sPE by regulating the invasion and proliferation of trophoblast.
Collapse
Affiliation(s)
- Rui Liu
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Department of Gynecology, Maternity and Children's Healthcare Hospital of Foshan, Foshan, Guangdong 528000,China
| | - Chan Wei
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Qiang Ma
- Department of Peripheral Vessels, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Weimin Wang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|