1
|
Kuhn PM, Chen S, Venkatraman A, Abadir PM, Walston JD, Kokkoli E. Co-Delivery of Valsartan and Metformin from a Thermosensitive Hydrogel-Nanoparticle System Promotes Collagen Production in Proliferating and Senescent Primary Human Dermal Fibroblasts. Biomacromolecules 2024; 25:5702-5717. [PMID: 39186039 DOI: 10.1021/acs.biomac.3c01461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Aging negatively impacts skin health, notably through the senescent cell phenotype, which reduces collagen production and leads to thinner, more fragile skin prone to injuries and chronic wounds. We designed a drug delivery system that addresses these age-related issues using a hybrid hydrogel-nanoparticle system that utilizes a poly(δ-valerolactone-co-lactide)-b-poly(ethylene-glycol)-b-poly(δ-valerolactone-co-lactide) (PVLA-PEG-PVLA) hydrogel. This hydrogel allows for the local, extended release of therapeutics targeting both proliferating and senescent cells. The PVLA-PEG-PVLA hydrogel entrapped valsartan, and metformin-loaded liposomes functionalized with a fibronectin-mimetic peptide, PR_b. Metformin acts as a senomorphic, reversing aspects of cellular senescence, and valsartan, an angiotensin receptor blocker, promotes collagen production. This combination treatment partially reversed the senescent phenotype and improved collagen production in senescent dermal fibroblasts from both young and old adults. Our codelivery hydrogel-nanoparticle system offers a promising treatment for improving age-related dermal pathologies.
Collapse
Affiliation(s)
- Paul M Kuhn
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Siwei Chen
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Aditya Venkatraman
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Peter M Abadir
- Division of Geriatrics and Gerontology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21224, United States
| | - Jeremy D Walston
- Division of Geriatrics and Gerontology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21224, United States
| | - Efrosini Kokkoli
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
2
|
Yang L, Rong GC, Wu QN. Diabetic foot ulcer: Challenges and future. World J Diabetes 2022; 13:1014-1034. [PMID: 36578870 PMCID: PMC9791573 DOI: 10.4239/wjd.v13.i12.1014] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/07/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetic foot ulcers (DFUs) have become one of the important causes of mortality and morbidity in patients with diabetes, and they are also a common cause of hospitalization, which places a heavy burden on patients and society. The prevention and treatment of DFUs requires multidisciplinary management. By controlling various risk factors, such as blood glucose levels, blood pressure, lipid levels and smoking cessation, local management of DFUs should be strengthened, such as debridement, dressing, revascularization, stem cell decompression and oxygen therapy. If necessary, systemic anti-infection treatment should be administered. We reviewed the progress in the clinical practice of treating DFUs in recent years, such as revascularization, wound repair, offloading, stem cell transplantation, and anti-infection treatment. We also summarized and prospectively analyzed some new technologies and measurements used in the treatment of DFUs and noted the future challenges and directions for the development of DFU treatments.
Collapse
Affiliation(s)
- Li Yang
- Department of Endocrinology, Dazu Hospital of Chongqing Medical University, The People's Hospital of Dazu, Chongqing 402360, China
| | - Gui-Chuan Rong
- Department of Gynaecology, Dazu Hospital of Chongqing Medical University, The People's Hospital of Dazu, Chongqing 402360, China
| | - Qi-Nan Wu
- Department of Endocrinology, Dazu Hospital of Chongqing Medical University, The People's Hospital of Dazu, Chongqing 402360, China
| |
Collapse
|
3
|
Eleftheriadou I, Tentolouris A, Tentolouris N, Papanas N. Advancing pharmacotherapy for diabetic foot ulcers. Expert Opin Pharmacother 2019; 20:1153-1160. [PMID: 30958725 DOI: 10.1080/14656566.2019.1598378] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Standard treatment for diabetic foot ulcers (DFUs) includes off-loading, debridement, moisture balance, management of infection and peripheral arterial disease (PAD) as well as adequate glycemic control. The outcomes so far are unsatisfactory. AREAS COVERED Herein, the authors provide an outline of newer pharmacological agents for the management of DFUs and give their expert perspectives on future treatment strategies. EXPERT OPINION Evidence-based healthcare calls for high quality evidence from large RCTs before the implementation of new guidelines for the management of DFUs. Empagliflozin and liraglutide can be recommended for glucose control in patients with DFUs and PAD, while intensive lipid lowering therapy with evolocumab when primary cholesterol goals are not met could be offered to patients with DFUs. Further clinical studies are warranted to develop a structured algorithm for the treatment of DFUs that fail to heal after four weeks of current standard of care. Sucrose octasulfate dressings, becaplermin gel, and platelet-rich plasma (PRP) could also be considered as advanced treatment options for the management of hard to heal DFUs.
Collapse
Affiliation(s)
- Ioanna Eleftheriadou
- a Diabetes Centre, First Department of Propaedeutic Internal Medicine , Medical School, National and Kapodistrian University of Athens, Laiko General Hospital , Athens , Greece
| | - Anastasios Tentolouris
- a Diabetes Centre, First Department of Propaedeutic Internal Medicine , Medical School, National and Kapodistrian University of Athens, Laiko General Hospital , Athens , Greece
| | - Nikolaos Tentolouris
- a Diabetes Centre, First Department of Propaedeutic Internal Medicine , Medical School, National and Kapodistrian University of Athens, Laiko General Hospital , Athens , Greece
| | - Nikolaos Papanas
- b Diabetes Centre-Diabetic Foot Clinic, Second Department of Internal Medicine , Democritus University of Thrace , Alexandroupolis , Greece
| |
Collapse
|
4
|
Fang QQ, Wang XF, Zhao WY, Ding SL, Shi BH, Xia Y, Yang H, Wu LH, Li CY, Tan WQ. Angiotensin-converting enzyme inhibitor reduces scar formation by inhibiting both canonical and noncanonical TGF-β1 pathways. Sci Rep 2018; 8:3332. [PMID: 29463869 PMCID: PMC5820264 DOI: 10.1038/s41598-018-21600-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 02/07/2018] [Indexed: 12/26/2022] Open
Abstract
Angiotensin-converting enzyme inhibitors (ACEIs) can improve the fibrotic processes in many internal organs. Recent studies have shown a relationship between ACEI with cutaneous scar formation, although it has not been confirmed, and the underlying mechanism is unclear. In this study, we cultured mouse NIH 3T3 fibroblasts with different concentrations of ACEI. We measured cell proliferation with a Cell Counting Kit-8 and collagen expression with a Sirius Red Collagen Detection Kit. Flow cytometry and western blotting were used to detect transforming growth factor β1 (TGF-β1) signaling. We also confirmed the potential antifibrotic activity of ACEI in a rat scar model. ACEI reduced fibroblast proliferation, suppressed collagen and TGF-β1 expression, and downregulated the phosphorylation of SMAD2/3 and TAK1, both in vitro and in vivo. A microscopic examination showed that rat scars treated with ramipril or losartan were not only narrower than in the controls, but also displayed enhanced re-epithelialization and neovascularization, and the formation of organized granulation tissue. These data indicate that ACEI inhibits scar formation by suppressing both TGF-β1/SMAD2/3 and TGF-β1/TAK1 pathways, and may have clinical utility in the future.
Collapse
Affiliation(s)
- Qing-Qing Fang
- Department of Plastic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, PR China.,Department of Plastic Surgery, The Fourth Affiliated Hospital, College of Medicine, Zhejiang University, Yiwu, Zhejiang Province, PR China.,Department of Plastic Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, PR China
| | - Xiao-Feng Wang
- Department of Plastic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, PR China.,Department of Plastic Surgery, The Fourth Affiliated Hospital, College of Medicine, Zhejiang University, Yiwu, Zhejiang Province, PR China.,Department of Plastic Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, PR China
| | - Wan-Yi Zhao
- Department of Plastic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, PR China.,Department of Plastic Surgery, The Fourth Affiliated Hospital, College of Medicine, Zhejiang University, Yiwu, Zhejiang Province, PR China.,Department of Plastic Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, PR China
| | - Shi-Li Ding
- Department of Hand Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, PR China
| | - Bang-Hui Shi
- Department of Plastic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, PR China.,Department of Plastic Surgery, The Fourth Affiliated Hospital, College of Medicine, Zhejiang University, Yiwu, Zhejiang Province, PR China.,Department of Plastic Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, PR China
| | - Ying Xia
- Department of Plastic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, PR China.,Department of Plastic Surgery, The Fourth Affiliated Hospital, College of Medicine, Zhejiang University, Yiwu, Zhejiang Province, PR China.,Department of Plastic Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, PR China
| | - Hu Yang
- Department of Hand Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, PR China
| | - Li-Hong Wu
- Department of Plastic Surgery, The Fourth Affiliated Hospital, College of Medicine, Zhejiang University, Yiwu, Zhejiang Province, PR China
| | - Cai-Yun Li
- Department of Plastic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, PR China
| | - Wei-Qiang Tan
- Department of Plastic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, PR China. .,Department of Plastic Surgery, The Fourth Affiliated Hospital, College of Medicine, Zhejiang University, Yiwu, Zhejiang Province, PR China. .,Department of Plastic Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, PR China.
| |
Collapse
|
5
|
Abadir P, Hosseini S, Faghih M, Ansari A, Lay F, Smith B, Beselman A, Vuong D, Berger A, Tian J, Rini D, Keenahan K, Budman J, Inagami T, Fedarko N, Marti G, Harmon J, Walston J. Topical Reformulation of Valsartan for Treatment of Chronic Diabetic Wounds. J Invest Dermatol 2018; 138:434-443. [PMID: 29078982 PMCID: PMC10941026 DOI: 10.1016/j.jid.2017.09.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 09/05/2017] [Accepted: 09/07/2017] [Indexed: 02/07/2023]
Abstract
Chronic wounds are among the most devastating and difficult to treat consequences of diabetes. Dysregulation of the skin renin-angiotensin system is implicated in abnormal wound healing in diabetic and older adults. Given this, we sought to determine the effects of topical reformulations of the angiotensin type 1 receptor blockers losartan and valsartan and the angiotensin-converting enzyme inhibitor captopril on wound healing in diabetic and aged mice with further validation in older diabetic pigs. The application of 1% valsartan gel compared with other tested formulations and placebo facilitated and significantly accelerated closure time and increased tensile strength in mice, and was validated in the porcine model. One percent of valsartan gel-treated wounds also exhibited higher mitochondrial content, collagen deposition, phosphorylated mothers against decapentaplegic homologs 2 and 3 and common mothers against decapentaplegic homolog 4, alpha-smooth muscle actin, CD31, phospho-vascular endothelial growth factor receptor 2, and p42/44 mitogen-activated protein kinase. Knockout of the angiotensin subtype 2 receptors abolished the beneficial effects of angiotensin type 1 receptor blockers, suggesting a role for angiotensin subtype 2 receptors in chronic wound healing.
Collapse
Affiliation(s)
- Peter Abadir
- Division of Geriatrics Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | - Sayed Hosseini
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mahya Faghih
- Division of Geriatrics Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Amir Ansari
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Frank Lay
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Barbara Smith
- Cell Biology Imaging Facility, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Aleksandra Beselman
- Investigational Drug Service Pharmacy, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Diep Vuong
- Division of Geriatrics Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alan Berger
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jing Tian
- Department of Biostatistics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - David Rini
- Art as Applied to Medicine, Division of Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kevin Keenahan
- Department of Bioengineering Innovation, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Joshua Budman
- Department of Bioengineering Innovation, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tadashi Inagami
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Neal Fedarko
- Division of Geriatrics Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Guy Marti
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Clinique Saint Jean, Melun, France
| | - John Harmon
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jeremy Walston
- Division of Geriatrics Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Abstract
Wounds are among the most common, painful, debilitating and costly conditions in older adults. Disruption of the angiotensin type 1 receptors (AT1R), has been associated with impaired wound healing, suggesting a critical role for AT1R in this repair process. Biological functions of angiotensin type 2 receptors (AT2R) are less studied. We investigated effects of genetically disrupting AT2R on rate and quality of wound healing. Our results suggest that AT2R effects on rate of wound closure depends on the phase of wound healing. We observed delayed healing during early phase of wound healing (inflammation). An accelerated healing rate was seen during later stages (proliferation and remodeling). By day 12, fifty percent of AT2R−/− mice had complete wound closure as compared to none in either C57/BL6 or AT1R−/− mice. There was a significant increase in AT1R, TGFβ1 and TGFβ2 expression during the proliferative and remodeling phases in AT2R−/− mice. Despite the accelerated closure rate, AT2R−/− mice had more fragile healed skin. Our results suggest that in the absence of AT2R, wound healing rate is accelerated, but yielded worse skin quality. Elucidating the contribution of both of the angiotensin receptors may help fine tune future intervention aimed at wound repair in older individuals.
Collapse
|
7
|
Diabetic foot ulcers: Part II. Management. J Am Acad Dermatol 2014; 70:21.e1-24; quiz 45-6. [PMID: 24355276 DOI: 10.1016/j.jaad.2013.07.048] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 06/26/2013] [Accepted: 07/01/2013] [Indexed: 12/12/2022]
Abstract
The management of diabetic foot ulcers can be optimized by using an interdisciplinary team approach addressing the correctable risk factors (ie, poor vascular supply, infection control and treatment, and plantar pressure redistribution) along with optimizing local wound care. Dermatologists can initiate diabetic foot care. The first step is recognizing that a loss of skin integrity (ie, a callus, blister, or ulcer) considerably increases the risk of preventable amputations. A holistic approach to wound assessment is required. Early detection and effective management of these ulcers can reduce complications, including preventable amputations and possible mortality.
Collapse
|
8
|
Lepow BD, Downey M, Yurgelon J, Klassen L, Armstrong DG. Bioengineered tissues in wound healing: a progress report. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/edm.11.27] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Gu XY, Shen SE, Huang CF, Liu YN, Chen YC, Luo L, Zeng Y, Wang AP. Effect of activated autologous monocytes/macrophages on wound healing in a rodent model of experimental diabetes. Diabetes Res Clin Pract 2013; 102:53-9. [PMID: 24011427 DOI: 10.1016/j.diabres.2013.08.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 08/07/2013] [Accepted: 08/09/2013] [Indexed: 01/13/2023]
Abstract
AIM We aimed to evaluate the effectiveness of the application of activated autologous monocytes/macrophages (Mo/Mp) on wound healing in diabetic rats. METHODS Sixty male SD rats were equally divided into the following: control group (normal, nondiabetic), PBS-treated diabetic group, and tumor necrotic factor alpha (TNF-α) plus interferon-γ (IFN-γ)-stimulated or unstimulated Mo/Mp-treated diabetic group. Full-thickness round wounds (1cm×1cm) were created in the right hind foot of rats and the wounds were treated with PBS or Mo/Mp on day 1 after injury. In the following 14 days, the percentage of wound contraction was measured, histologic examination was performed with hematoxylin and eosin staining, and vascular endothelial growth factor (VEGF) in the wound was evaluated by Western blot analysis. RESULTS Diabetic rats exhibited impaired wound healing with delayed angiogenesis and VEGF expression. The early application of TNF-α plus IFN-γ-stimulated autologous Mo/Mp to diabetic wounds significantly improved the delayed wound healing through the stimulation of angiogenesis and re-epithelization, as well as restoring the defect in VEGF expression. CONCLUSIONS Mo/Mp activated by TNF-α and IFN-γ promotes diabetic wound healing and normalizes the defect in VEGF regulation associated with diabetes-induced skin-repair disorders.
Collapse
Affiliation(s)
- Xiao-yan Gu
- Department of Rehabilitation, The 454th Hospital of Chinese PLA, Nanjing 210002, China
| | | | | | | | | | | | | | | |
Collapse
|
10
|
|