1
|
Mendibil U, Lópiz-Morales Y, Arnaiz B, Ruiz-Hernández R, Martín P, Di-Silvio D, Garcia-Urquia N, Elortza F, Azkargorta M, Olalde B, Abarrategi A. Development of bioactive solid-foam scaffolds from decellularized cartilage with chondrogenic and osteogenic properties. Mater Today Bio 2024; 28:101228. [PMID: 39296356 PMCID: PMC11408866 DOI: 10.1016/j.mtbio.2024.101228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/16/2024] [Accepted: 09/01/2024] [Indexed: 09/21/2024] Open
Abstract
Full osteochondral regeneration remains a major clinical challenge. Among other experimental cartilage regenerative approaches, decellularized cartilage (DCC) is considered a promising material for generating potentially implantable scaffolds useful as cartilage repair strategy. In this work, we focus on screening and comparing different decellularization methods, aiming to generate DCC potentially useful in biomedical context, and therefore, with biological activity and functional properties in terms of induction of differentiation and regeneration. Data indicates that enzymatic and detergents-based decellularization methods differentially affect ECM components, and that it has consequences in further biological behavior. SDS-treated DCC powder is not useful to be further processed in 2D or 3D structures, because these structures tend to rapidly solubilize, or disaggregate, in physiologic media conditions. Conversely, Trypsin-treated DCC powders can be processed to mechanically stable 2D films and 3D solid-foam scaffolds, presumably due to partial digestion of collagens during decellularization, which would ease crosslinking at DCC during solubilization and processing. In vitro cell culture studies indicate that these structures are biocompatible and induce and potentiate chondrogenic differentiation. In vivo implantation of DCC derived 3D porous scaffolds in rabbit osteochondral defects induce subchondral bone regeneration and fibrocartilage tissue formation after implantation. Therefore, this work defines an optimal cartilage tissue decellularization protocol able to generate DCC powders processable to biocompatible and bioactive 2D and 3D structures. These structures are useful for in vitro cartilage research and in vivo subchondral bone regeneration, while hyaline cartilage regeneration with DCC alone as implantable material remains elusive.
Collapse
Affiliation(s)
- Unai Mendibil
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), 20014, Donostia-San Sebastian, Spain
- TECNALIA, Basque Research and Technology Alliance (BRTA), 20009, Donostia-San Sebastian, Spain
| | | | - Blanca Arnaiz
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), 20014, Donostia-San Sebastian, Spain
| | - Raquel Ruiz-Hernández
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), 20014, Donostia-San Sebastian, Spain
| | - Pablo Martín
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), 20014, Donostia-San Sebastian, Spain
| | - Desiré Di-Silvio
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), 20014, Donostia-San Sebastian, Spain
| | - Nerea Garcia-Urquia
- TECNALIA, Basque Research and Technology Alliance (BRTA), 20009, Donostia-San Sebastian, Spain
| | - Felix Elortza
- Proteomics Platform, Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), CIBERehd, 48160, Derio, Spain
| | - Mikel Azkargorta
- Proteomics Platform, Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), CIBERehd, 48160, Derio, Spain
| | - Beatriz Olalde
- TECNALIA, Basque Research and Technology Alliance (BRTA), 20009, Donostia-San Sebastian, Spain
| | - Ander Abarrategi
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), 20014, Donostia-San Sebastian, Spain
| |
Collapse
|
2
|
Primorac D, Molnar V, Tsoukas D, Uzieliene I, Tremolada C, Brlek P, Klarić E, Vidović D, Zekušić M, Pachaleva J, Bernotiene E, Wilson A, Mobasheri A. Tissue engineering and future directions in regenerative medicine for knee cartilage repair: a comprehensive review. Croat Med J 2024; 65:268-287. [PMID: 38868973 PMCID: PMC11157252 DOI: 10.3325/cmj.2024.65.268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/26/2024] [Indexed: 01/06/2025] Open
Abstract
This review evaluates the current landscape and future directions of regenerative medicine for knee cartilage repair, with a particular focus on tissue engineering strategies. In this context, scaffold-based approaches have emerged as promising solutions for cartilage regeneration. Synthetic scaffolds, while offering superior mechanical properties, often lack the biological cues necessary for effective tissue integration. Natural scaffolds, though biocompatible and biodegradable, frequently suffer from inadequate mechanical strength. Hybrid scaffolds, combining elements of both synthetic and natural materials, present a balanced approach, enhancing both mechanical support and biological functionality. Advances in decellularized extracellular matrix scaffolds have shown potential in promoting cell infiltration and integration with native tissues. Additionally, bioprinting technologies have enabled the creation of complex, bioactive scaffolds that closely mimic the zonal organization of native cartilage, providing an optimal environment for cell growth and differentiation. The review also explores the potential of gene therapy and gene editing techniques, including CRISPR-Cas9, to enhance cartilage repair by targeting specific genetic pathways involved in tissue regeneration. The integration of these advanced therapies with tissue engineering approaches holds promise for developing personalized and durable treatments for knee cartilage injuries and osteoarthritis. In conclusion, this review underscores the importance of continued multidisciplinary collaboration to advance these innovative therapies from bench to bedside and improve outcomes for patients with knee cartilage damage.
Collapse
Affiliation(s)
- Dragan Primorac
- Dragan Primorac, Poliklinika Sv. Katarina, Branimirova 71E, 10000 Zagreb, Croatia,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Browe DC, Díaz-Payno PJ, Freeman FE, Schipani R, Burdis R, Ahern DP, Nulty JM, Guler S, Randall LD, Buckley CT, Brama PA, Kelly DJ. Bilayered extracellular matrix derived scaffolds with anisotropic pore architecture guide tissue organization during osteochondral defect repair. Acta Biomater 2022; 143:266-281. [PMID: 35278686 DOI: 10.1016/j.actbio.2022.03.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 12/15/2022]
Abstract
While some clinical advances in cartilage repair have occurred, osteochondral (OC) defect repair remains a significant challenge, with current scaffold-based approaches failing to recapitulate the complex, hierarchical structure of native articular cartilage (AC). To address this need, we fabricated bilayered extracellular matrix (ECM)-derived scaffolds with aligned pore architectures. By modifying the freeze-drying kinetics and controlling the direction of heat transfer during freezing, it was possible to produce anisotropic scaffolds with larger pores which supported homogenous cellular infiltration and improved sulfated glycosaminoglycan deposition. Neo-tissue organization in vitro could also be controlled by altering scaffold pore architecture, with collagen fibres aligning parallel to the long-axis of the pores within scaffolds containing aligned pore networks. Furthermore, we used in vitro and in vivo assays to demonstrate that AC and bone ECM derived scaffolds could preferentially direct the differentiation of mesenchymal stromal cells (MSCs) towards either a chondrogenic or osteogenic lineage respectively, enabling the development of bilayered ECM scaffolds capable of spatially supporting unique tissue phenotypes. Finally, we implanted these scaffolds into a large animal model of OC defect repair. After 6 months in vivo, scaffold implantation was found to improve cartilage matrix deposition, with collagen fibres preferentially aligning parallel to the long axis of the scaffold pores, resulting in a repair tissue that structurally and compositionally was more hyaline-like in nature. These results demonstrate how scaffold architecture and composition can be spatially modulated to direct the regeneration of complex interfaces such as the osteochondral unit, enabling their use as cell-free, off-the-shelf implants for joint regeneration. STATEMENT OF SIGNIFICANCE: The architecture of the extracellular matrix, while integral to tissue function, is often neglected in the design and evaluation of regenerative biomaterials. In this study we developed a bilayered scaffold for osteochondral defect repair consisting of tissue-specific extracellular matrix (ECM)-derived biomaterials to spatially direct stem/progenitor cell differentiation, with a tailored pore microarchitecture to promote the development of a repair tissue that recapitulates the hierarchical structure of native AC. The use of this bilayered scaffold resulted in improved tissue repair outcomes in a large animal model, specifically the ability to guide neo-tissue organization and therefore recapitulate key aspects of the zonal structure of native articular cartilage. These bilayer scaffolds have the potential to become a new therapeutic option for osteochondral defect repair.
Collapse
|
4
|
Terpstra ML, Li J, Mensinga A, de Ruijter M, van Rijen MHP, Androulidakis C, Galiotis C, Papantoniou I, Matsusaki M, Malda J, Levato R. Bioink with cartilage-derived extracellular matrix microfibers enables spatial control of vascular capillary formation in bioprinted constructs. Biofabrication 2022; 14. [PMID: 35354130 DOI: 10.1088/1758-5090/ac6282] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 03/30/2022] [Indexed: 11/11/2022]
Abstract
Microvasculature is essential for the exchange of gas and nutrient for most tissues in our body. Some tissue structures such as the meniscus presents spatially confined blood vessels adjacent to non-vascularized regions. In biofabrication, mimicking the spatial distribution of such vascular components is paramount, as capillary ingrowth into non-vascularized tissues can lead to tissue matrix alterations and subsequent pathology. Multi-material 3D bioprinting can potentially resolve anisotropic tissue features, although building complex constructs comprising stable vascularized and non-vascularized regions remains a major challenge. Here, we developed endothelial cell(EC)-laden pro- and anti-angiogenic bioinks, supplemented with bioactive matrix-derived microfibers (MFs) that were created from type I collagen sponges (col-1) and cartilage decellularized extracellular matrix (CdECM). EC-driven capillary network formation started two days after bioprinting. Supplementing cartilage-derived MFs to endothelial-cell laden bioinks reduced the total length of neo-microvessels by 29% after 14 days, compared to col-1 MFs-laden bioinks. As a proof of concept, the bioinks were bioprinted into an anatomical meniscus shape with a biomimetic vascularized outer and non-vascularized inner region, using a microgel suspension bath. The constructs were cultured up to 14 days, with in the outer zone the HUVEC-, mural cell-, and col-1 MF-laden pro-angiogenic bioink, and in the inner zone a meniscus progenitor cell (MPC)- and CdECM MF-laden anti-angiogenic bioink, revealing successful spatial confinement of the nascent vascular network only in the outer zone. Further, to co-facilitate both microvessel formation and MPC-derived matrix formation, we formulated cell culture medium conditions with a temporal switch. Overall, this study provides a new strategy that could be applied to develop zonal biomimetic meniscal constructs. Moreover, the use of ECM-derived MFs to promote or inhibit capillary networks opens new possibilities for the biofabrication of tissues with anisotropic microvascular distribution. These have potential for many applications including in vitro models, cancer progression, and testing anti-angiogenic therapies.
Collapse
Affiliation(s)
- Margo Luchiena Terpstra
- University Medical Centre Utrecht Department of Orthopedics, Heidelberglaan 100, Utrecht, 3584 CX, NETHERLANDS
| | - Jinyu Li
- Department of Applied Chemistry, Osaka University, Faculty of Engineering, Suita, Osaka 565-0871, Suita, Osaka, 565-0871, JAPAN
| | - Anneloes Mensinga
- Utrecht University Faculty of Veterinary Medicine, Heidelberglaan 8, Utrecht, Utrecht, 3584 CS, NETHERLANDS
| | - Mylène de Ruijter
- University Medical Centre Utrecht Department of Orthopedics, Heidelberglaan 100, Utrecht, Utrecht, 3584 CX, NETHERLANDS
| | - Mattie H P van Rijen
- Department of Orthopedics, Universitair Medisch Centrum Utrecht, Heidelberglaan 100, Utrecht, Utrecht, 3584 CX, NETHERLANDS
| | - Charalampos Androulidakis
- Department of Chemical Engineering, University of Patras, Stadiou Street, Platani, Patras, Periféria Dhitikís Elládh, 26504, GREECE
| | - Costas Galiotis
- Department Chemical EngineeringScience, University of Patras, Panepistimioupoli, Rio, GR-26504 Patras, Patra, Periféria Dhitikís Elládh, 26504, GREECE
| | - Ioannis Papantoniou
- Prometheus Division of Skeletal Tissue Engineering, KU Leuven, Onderwijs en Navorsing 1, +10, Herestraat 49, box 813, Leuven, 3000, BELGIUM
| | - Michiya Matsusaki
- Department of Applied Chemistry, Osaka University, Faculty of Engineering, Suita, Osaka 565-0871, Suita, Osaka, 565-0871, JAPAN
| | - Jos Malda
- Orthopaedics, University Medical Centre Utrecht Department of Orthopedics, The Netherlands, Utrecht, 3508 GA, NETHERLANDS
| | - Riccardo Levato
- Utrecht University Faculty of Veterinary Medicine, Heidelberglaan 8, Utrecht, 3584 CS, NETHERLANDS
| |
Collapse
|
5
|
Chu W, Hu G, Peng L, Zhang W, Ma Z. The use of a novel deer antler decellularized cartilage-derived matrix scaffold for repair of osteochondral defects. J Biol Eng 2021; 15:23. [PMID: 34479610 PMCID: PMC8414868 DOI: 10.1186/s13036-021-00274-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/16/2021] [Indexed: 01/17/2023] Open
Abstract
Background The physiologic regenerative capacity of cartilage is severely limited. Current studies on the repair of osteochondral defects (OCDs) have mainly focused on the regeneration of cartilage tissues. The antler cartilage is a unique regenerative cartilage that has the potential for cartilage repair. Methods Antler decellularized cartilage-derived matrix scaffolds (adCDMs) were prepared by combining freezing-thawing and enzymatic degradation. Their DNA, glycosaminoglycans (GAGs), and collagen content were then detected. Biosafety and biocompatibility were evaluated by pyrogen detection, hemolysis analysis, cytotoxicity evaluation, and subcutaneous implantation experiments. adCDMs were implanted into rabbit articular cartilage defects for 2 months to evaluate their therapeutic effects. Results AdCDMs were observed to be rich in collagen and GAGs and devoid of cells. AdCDMs were also determined to have good biosafety and biocompatibility. Both four- and eight-week treatments of OCDs showed a flat and smooth surface of the healing cartilage at the adCDMs filled site. The international cartilage repair society scores (ICRS) of adCDMs were significantly higher than those of controls (porcine dCDMs and normal saline) (p < 0.05). The repaired tissue in the adCDM group was fibrotic with high collagen, specifically, type II collagen. Conclusions We concluded that adCDMs could achieve excellent cartilage regeneration repair in a rabbit knee OCDs model. Our study stresses the importance and benefits of adCDMs in bone formation and overall anatomical reconstitution, and it provides a novel source for developing cartilage-regenerating repair materials. Supplementary Information The online version contains supplementary material available at 10.1186/s13036-021-00274-5.
Collapse
Affiliation(s)
- Wenhui Chu
- School of Life Science, Taizhou University, 1139 Shifu Avenue, Jiaojiang District, Zhejiang, 318000, Taizhou, China
| | - Gaowei Hu
- School of Life Science, Taizhou University, 1139 Shifu Avenue, Jiaojiang District, Zhejiang, 318000, Taizhou, China
| | - Lin Peng
- School of Life Science, Taizhou University, 1139 Shifu Avenue, Jiaojiang District, Zhejiang, 318000, Taizhou, China
| | - Wei Zhang
- Post-Doctoral Innovation Site, Jinan University Affiliation, Yuanzhi Health Technology Co, Ltd, Hengqin New District, 519000, Zhuhai, Guangdong, China. .,Medical Imaging Center, The First Affiliated Hospital of Jinan University, Jinan University, 613 Huangpu Avenue West, Tianhe District, Guangdong, 510080, Guangzhou, China.
| | - Zhe Ma
- School of Life Science, Taizhou University, 1139 Shifu Avenue, Jiaojiang District, Zhejiang, 318000, Taizhou, China.
| |
Collapse
|
6
|
Mendibil U, Ruiz-Hernandez R, Retegi-Carrion S, Garcia-Urquia N, Olalde-Graells B, Abarrategi A. Tissue-Specific Decellularization Methods: Rationale and Strategies to Achieve Regenerative Compounds. Int J Mol Sci 2020; 21:E5447. [PMID: 32751654 PMCID: PMC7432490 DOI: 10.3390/ijms21155447] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/25/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
The extracellular matrix (ECM) is a complex network with multiple functions, including specific functions during tissue regeneration. Precisely, the properties of the ECM have been thoroughly used in tissue engineering and regenerative medicine research, aiming to restore the function of damaged or dysfunctional tissues. Tissue decellularization is gaining momentum as a technique to obtain potentially implantable decellularized extracellular matrix (dECM) with well-preserved key components. Interestingly, the tissue-specific dECM is becoming a feasible option to carry out regenerative medicine research, with multiple advantages compared to other approaches. This review provides an overview of the most common methods used to obtain the dECM and summarizes the strategies adopted to decellularize specific tissues, aiming to provide a helpful guide for future research development.
Collapse
Affiliation(s)
- Unai Mendibil
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastian, Spain; (U.M.); (R.R.-H.); (S.R.-C.)
- TECNALIA, Basque Research and Technology Alliance (BRTA), 20009 Donostia-San Sebastian, Spain; (N.G.-U.); (B.O.-G.)
| | - Raquel Ruiz-Hernandez
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastian, Spain; (U.M.); (R.R.-H.); (S.R.-C.)
| | - Sugoi Retegi-Carrion
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastian, Spain; (U.M.); (R.R.-H.); (S.R.-C.)
| | - Nerea Garcia-Urquia
- TECNALIA, Basque Research and Technology Alliance (BRTA), 20009 Donostia-San Sebastian, Spain; (N.G.-U.); (B.O.-G.)
| | - Beatriz Olalde-Graells
- TECNALIA, Basque Research and Technology Alliance (BRTA), 20009 Donostia-San Sebastian, Spain; (N.G.-U.); (B.O.-G.)
| | - Ander Abarrategi
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastian, Spain; (U.M.); (R.R.-H.); (S.R.-C.)
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
7
|
Vyas C, Mishbak H, Cooper G, Peach C, Pereira RF, Bartolo P. Biological perspectives and current biofabrication strategies in osteochondral tissue engineering. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s40898-020-00008-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AbstractArticular cartilage and the underlying subchondral bone are crucial in human movement and when damaged through disease or trauma impacts severely on quality of life. Cartilage has a limited regenerative capacity due to its avascular composition and current therapeutic interventions have limited efficacy. With a rapidly ageing population globally, the numbers of patients requiring therapy for osteochondral disorders is rising, leading to increasing pressures on healthcare systems. Research into novel therapies using tissue engineering has become a priority. However, rational design of biomimetic and clinically effective tissue constructs requires basic understanding of osteochondral biological composition, structure, and mechanical properties. Furthermore, consideration of material design, scaffold architecture, and biofabrication strategies, is needed to assist in the development of tissue engineering therapies enabling successful translation into the clinical arena. This review provides a starting point for any researcher investigating tissue engineering for osteochondral applications. An overview of biological properties of osteochondral tissue, current clinical practices, the role of tissue engineering and biofabrication, and key challenges associated with new treatments is provided. Developing precisely engineered tissue constructs with mechanical and phenotypic stability is the goal. Future work should focus on multi-stimulatory environments, long-term studies to determine phenotypic alterations and tissue formation, and the development of novel bioreactor systems that can more accurately resemble the in vivo environment.
Collapse
|
8
|
Mouser VHM, Levato R, Mensinga A, Dhert WJA, Gawlitta D, Malda J. Bio-ink development for three-dimensional bioprinting of hetero-cellular cartilage constructs. Connect Tissue Res 2020; 61:137-151. [PMID: 30526130 DOI: 10.1080/03008207.2018.1553960] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Bioprinting is a promising tool to fabricate organized cartilage. This study aimed to investigate the printability of gelatin-methacryloyl/gellan gum (gelMA/gellan) hydrogels with and without methacrylated hyaluronic acid (HAMA), and to explore (zone-specific) chondrogenesis of chondrocytes, articular cartilage progenitor cells (ACPCs), and multipotent mesenchymal stromal cells (MSCs) embedded in these bio-inks.The incorporating of HAMA in gelMA/gellan bio-ink increased filament stability, as measured using a filament collapse assay, but did not influence (zone-specific) chondrogenesis of any of the cell types. Highest chondrogenic potential was observed for MSCs, followed by ACPCs, which displayed relatively high proteoglycan IV mRNA levels. Therefore, two-zone constructs were printed with gelMA/gellan/HAMA containing ACPCs in the superficial region and MSCs in the middle/deep region. Chondrogenic differentiation was confirmed, however, printing influence cellular differentiation.ACPC- and MSC-laden gelMA/gellan/HAMA hydrogels are of interest for the fabrication of cartilage constructs. Nevertheless, this study underscores the need for careful evaluation of the effects of printing on cellular differentiation.
Collapse
Affiliation(s)
- Vivian H M Mouser
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Riccardo Levato
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Anneloes Mensinga
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Wouter J A Dhert
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Debby Gawlitta
- Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jos Malda
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
9
|
Lee KW, Kuan TC, Lee MW, Yang CS, Hwang LC, Chen CJ, Chang SJ. Effects of bio-mimic collagen II-g-hyaluronic acid copolymers on chondrocyte maintenance. J BIOACT COMPAT POL 2019. [DOI: 10.1177/0883911519876069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Extracellular matrix has an important part of the role in tissue engineering and regenerative medicine, so it is necessary to understand the various interactions between cells and extracellular matrix. Type II collagen and hyaluronic acid are the major structural components of the extracellular matrix of articular cartilage, and they are involved in fibril formation, entanglement and binding. The aim of this study was to prepare type II collagen fibrils with surface grafted with hyaluronic acid modified at the reducing end. The topographic pattern of type II collagen fibrils showed a significant change after the surface coupling of hyaluronic acid according to atomic force microscopy scanning. The presence of hyaluronic acid on the type II collagen fibrillar surface was confirmed by the specific binding of nanogold labelled with lectin. No significant increase in cell proliferation was detected by a WST-1 assay. According to histochemical examination, the maintenance of the round shape of chondrocytes and increased glycosaminoglycan secretion revealed that these cell pellets with Col II- g-hyaluronic acid molecules contained un-dedifferentiated chondrocytes in vitro. In the mixture with the 220-kDa Col II- g-hyaluronic acid copolymer, the expression of type II collagen and aggrecan genes in chondrocytes increased as demonstrated by real-time polymerase chain reaction analysis. Experimental results show that the amount of hyaluronic acid added during culturing of chondrocytes can maintain the functionality of chondrocytes and thus allow for increased cell proliferation that is suitable for tissue repair of human cartilage.
Collapse
Affiliation(s)
- Kuan Wei Lee
- Department of Biomedical Engineering, I-Shou University, Kaohsiung City, Taiwan, ROC
| | - Tang-Ching Kuan
- Department of Biomedical Engineering, I-Shou University, Kaohsiung City, Taiwan, ROC
| | - Ming Wei Lee
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung City, Taiwan, ROC
| | - Chen Show Yang
- Department of Biomedical Engineering, I-Shou University, Kaohsiung City, Taiwan, ROC
| | - Lain-Chyr Hwang
- Department of Electrical Engineering, I-Shou University, Kaohsiung City, Taiwan, ROC
| | - Ching-Jung Chen
- School of Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Shwu Jen Chang
- Department of Biomedical Engineering, I-Shou University, Kaohsiung City, Taiwan, ROC
| |
Collapse
|
10
|
Ghassemi T, Saghatoleslami N, Mahdavi-Shahri N, Matin MM, Gheshlaghi R, Moradi A. A comparison study of different decellularization treatments on bovine articular cartilage. J Tissue Eng Regen Med 2019; 13:1861-1871. [PMID: 31314950 DOI: 10.1002/term.2936] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 07/12/2019] [Accepted: 07/13/2019] [Indexed: 12/21/2022]
Abstract
Previous researches have emphasized on suitability of decellularized tissues for regenerative applications. The decellularization of cartilage tissue has always been a challenge as the final product must be balanced in both immunogenic residue and mechanical properties. This study was designed to compare and optimize the efficacy of the most common chemical decellularization treatments on articular cartilage. Freeze/thaw cycles, trypsin, ethylenediaminetetraacetic acid (EDTA), sodium dodecyl sulfate (SDS), and Triton-X 100 were used at various concentrations and time durations for decellularization of bovine distal femoral joint cartilage samples. Histological staining, scanning electron microscopy, DNA quantification, compressive strength test, and Fourier-transform infrared spectroscopy were performed for evaluation of the decellularized cartilage samples. Treatment with 0.05% trypsin/EDTA for 1 day followed by 3% SDS for 2 days and 3% Triton X-100 for another 2 days resulted in significant reduction in DNA content and simultaneous maintenance of mechanical properties. Seeding the human adipose-derived stem cells onto the decellularized cartilage confirmed its biocompatibility. According to our findings, an optimized physiochemical decellularization method can yield in a nonimmunogenic biomechanically compatible decellularized tissue for cartilage regeneration application.
Collapse
Affiliation(s)
- Toktam Ghassemi
- Department of Chemical Engineering, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| | - Nasser Saghatoleslami
- Department of Chemical Engineering, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| | | | - Maryam M Matin
- Department of Biology, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| | - Reza Gheshlaghi
- Department of Chemical Engineering, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| | - Ali Moradi
- Orthopedic Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
A short-term evaluation of a thermoplastic polyurethane implant for osteochondral defect repair in an equine model. Vet J 2019; 251:105340. [PMID: 31492385 DOI: 10.1016/j.tvjl.2019.105340] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 01/13/2023]
Abstract
Cartilage repair remains a major challenge and treatment of (osteo)chondral defects generally results in poor quality fibrous repair tissue. Our approach aims to address some of the major biomechanical issues encountered in scaffold-based cartilage repair, such as insufficient stiffness of the scaffolds, step formation at the interface with the native tissue and inadequate integration with the original tissue. Two osteochondral defects were created on the medial femoral trochlear ridge in each stifle of six Shetland ponies. The defects were filled with a bi-layered implant consisting of a polyetherketoneketone (PEKK) bone anchor and a polyurethane elastomer. The defects in the contralateral joint served as unfilled controls. After 12 weeks, the ponies were euthanased and tissues were evaluated macroscopically and using micro-computed tomography, histology and immunohistochemistry. Post-operative recovery was good in all ponies and minimal lameness was observed. After 12 weeks, the proximally located plug was partially covered (mean±standard deviation [SD] percentage surface area covered 72.5±19.7%) and the distal plug was nearly completely covered (mean±SD percentage surface area covered 98.5±6.1%) with stiff and smooth repair tissue. Histology and immunohistochemistry confirmed that the repair tissue was well connected to the native cartilage but contained negligible amounts of collagen type II and glycosaminoglycans (GAGs). The repair tissue was stiff and fibrous in nature and presented a nearly flush surface with the surrounding native cartilage distally. This approach therefore resolves a number of issues related to scaffold-based cartilage repair and compares favourably with results of several other studies in large animal models. However, long-term follow-up is needed to evaluate the true potential of this type of implant.
Collapse
|
12
|
Browe DC, Mahon OR, Díaz‐Payno PJ, Cassidy N, Dudurych I, Dunne A, Buckley CT, Kelly DJ. Glyoxal cross‐linking of solubilized extracellular matrix to produce highly porous, elastic, and chondro‐permissive scaffolds for orthopedic tissue engineering. J Biomed Mater Res A 2019; 107:2222-2234. [DOI: 10.1002/jbm.a.36731] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/03/2019] [Accepted: 05/09/2019] [Indexed: 12/13/2022]
Affiliation(s)
- David C. Browe
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences InstituteTrinity College Dublin Dublin Ireland
- Department of Mechanical and Manufacturing Engineering, School of EngineeringTrinity College Dublin Dublin Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER)Royal College of Surgeons in Ireland and Trinity College Dublin Dublin Ireland
| | - Olwyn R. Mahon
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences InstituteTrinity College Dublin Dublin Ireland
- School of Biochemistry and Immunology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin Dublin Ireland
| | - Pedro J. Díaz‐Payno
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences InstituteTrinity College Dublin Dublin Ireland
- Department of Mechanical and Manufacturing Engineering, School of EngineeringTrinity College Dublin Dublin Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER)Royal College of Surgeons in Ireland and Trinity College Dublin Dublin Ireland
| | - Nina Cassidy
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences InstituteTrinity College Dublin Dublin Ireland
| | - Ivan Dudurych
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences InstituteTrinity College Dublin Dublin Ireland
| | - Aisling Dunne
- School of Biochemistry and Immunology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin Dublin Ireland
| | - Conor T. Buckley
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences InstituteTrinity College Dublin Dublin Ireland
- Department of Mechanical and Manufacturing Engineering, School of EngineeringTrinity College Dublin Dublin Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER)Royal College of Surgeons in Ireland and Trinity College Dublin Dublin Ireland
| | - Daniel J. Kelly
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences InstituteTrinity College Dublin Dublin Ireland
- Department of Mechanical and Manufacturing Engineering, School of EngineeringTrinity College Dublin Dublin Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER)Royal College of Surgeons in Ireland and Trinity College Dublin Dublin Ireland
| |
Collapse
|
13
|
Xia C, Mei S, Gu C, Zheng L, Fang C, Shi Y, Wu K, Lu T, Jin Y, Lin X, Chen P. Decellularized cartilage as a prospective scaffold for cartilage repair. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 101:588-595. [PMID: 31029352 DOI: 10.1016/j.msec.2019.04.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 01/10/2023]
Abstract
Articular cartilage lacks self-healing capacity, and there is no effective therapy facilitating cartilage repair. Osteoarthritis (OA) due to cartilage defects represents large and increasing healthcare burdens worldwide. Nowadays, the generation of scaffolds to preserve bioactive factors and the biophysical environment has received increasing attention. Furthermore, improved decellularization technology has provided novel insights into OA treatment. This review provides a comparative account of different cartilage defect therapies. Furthermore, some recent effective decellularization protocols have been discussed. In particular, this review focuses on the decellularization ratio of each protocol. Moreover, these protocols were compared particularly on the basis of immunogenicity and mechanical functionality. Further, various recellularization methods have been enlisted and the reparative capacity of decellularized cartilage scaffolds is evaluated herein. The advantages and limitations of different recellularization processes have been described herein. This provides a basis for the generation of decellularized cartilage scaffolds, thereby potentially promoting the possibility of decellularization as a clinical therapeutic target.
Collapse
Affiliation(s)
- Chen Xia
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China; Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Sheng Mei
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - Chenhui Gu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - Lin Zheng
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China; Department of Orthopedics, 5th Affiliated Hospital, Lishui Municipal Central Hospital, Wenzhou Medical University, Lishui, China
| | - Chen Fang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - Yiling Shi
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - Kaiwei Wu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - Tongtong Lu
- Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yongming Jin
- Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.
| | - Xianfeng Lin
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China.
| | - Pengfei Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China.
| |
Collapse
|
14
|
Naseer N, Bashir S, Latief N, Latif F, Khan SN, Riazuddin S. Human amniotic membrane as differentiating matrix for in vitro chondrogenesis. Regen Med 2018; 13:821-832. [PMID: 30299207 DOI: 10.2217/rme-2018-0017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aim: The aim of the present study is to use human amniotic membrane (HAM) for in vitro chondrogenesis of placenta-derived mesenchymal stem cells (MSCs) and umbilical cord-derived MSCs. Materials & methods: MSCs from the placenta and umbilical cord were isolated, characterized by immunophenotyping and after analyzing their rate of proliferation, cytotoxicity and viability, chondrogenesis was performed on plastic adherent surface and on HAM. Results: Successfully isolated and characterized placenta-derived MSCs and umbilical cord-derived MSCs revealed positive expression of MSCs markers CD90, CD73, CD105 and CD49d, while they were negative for CD45. Both types of cells in the presence of chondrogenic induction medium on plastic adherent surface and HAM showed aggregates of proteoglycan and strong expression of COL2A1 (collagen 2) and ACAN1 (aggrecan). Conclusion: HAM supported proliferation as well as chondrogenesis of MSCs and provide novelty of HAM utilization as an efficient natural delivery matrix for stem cell transplantation.
Collapse
Affiliation(s)
- Nadia Naseer
- Centre of Excellence in Molecular Biology, 87 West Canal Bank Road, Thokar Niazbaig Lahore, Punjab, 53700 Pakistan
| | - Saliha Bashir
- Centre of Excellence in Molecular Biology, 87 West Canal Bank Road, Thokar Niazbaig Lahore, Punjab, 53700 Pakistan
| | - Noreen Latief
- Centre of Excellence in Molecular Biology, 87 West Canal Bank Road, Thokar Niazbaig Lahore, Punjab, 53700 Pakistan
| | - Farzana Latif
- Ameer-ud-din Medical College, Post Graduate Medical Institute (PGMI), Lahore General Hospital, 6-Abdur Rehman Chughtai Road (Birdwood Road), Jail Road, Shadman, Lahore,54000 Pakistan
| | - Shaheen N Khan
- Centre of Excellence in Molecular Biology, 87 West Canal Bank Road, Thokar Niazbaig Lahore, Punjab, 53700 Pakistan
| | - Sheikh Riazuddin
- Centre of Excellence in Molecular Biology, 87 West Canal Bank Road, Thokar Niazbaig Lahore, Punjab, 53700 Pakistan
- Allama Iqbal Medical College, University of Health Sciences, Lahore, Jinnah hospital Moulana Shabir Ahmed Usmani Road, Faisal Town Lahore 54550 Pakistan
- Shaheed Zulfiqar Ali Bhutto Medical University (SZABMU), PIMS, G-8/3, Islamabad, 44000 Pakistan
| |
Collapse
|
15
|
Sun Y, Yan L, Chen S, Pei M. Functionality of decellularized matrix in cartilage regeneration: A comparison of tissue versus cell sources. Acta Biomater 2018; 74:56-73. [PMID: 29702288 PMCID: PMC7307012 DOI: 10.1016/j.actbio.2018.04.048] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/20/2018] [Accepted: 04/23/2018] [Indexed: 01/12/2023]
Abstract
Increasing evidence indicates that decellularized extracellular matrices (dECMs) derived from cartilage tissues (T-dECMs) or chondrocytes/stem cells (C-dECMs) can support proliferation and chondrogenic differentiation of cartilage-forming cells. However, few review papers compare the differences between these dECMs when they serve as substrates for cartilage regeneration. In this review, after an introduction of cartilage immunogenicity and decellularization methods to prepare T-dECMs and C-dECMs, a comprehensive comparison focuses on the effects of T-dECMs and C-dECMs on proliferation and chondrogenic differentiation of chondrocytes/stem cells in vitro and in vivo. Key factors within dECMs, consisting of microarchitecture characteristics and micromechanical properties as well as retained insoluble and soluble matrix components, are discussed in-depth for potential mechanisms underlying the functionality of these dECMs in regulating chondrogenesis. With this information, we hope to benefit dECM based cartilage engineering and tissue regeneration for future clinical application. STATEMENT OF SIGNIFICANCE The use of decellularized extracellular matrix (dECM) is becoming a promising approach for tissue engineering and regeneration. Compared to dECM derived from cartilage tissue, recently reported dECM from cell sources exhibits a distinct role in cell based cartilage regeneration. In this review paper, for the first time, tissue and cell based dECMs are comprehensively compared for their functionality in cartilage regeneration. This information is expected to provide an update for dECM based cartilage regeneration.
Collapse
Affiliation(s)
- Yu Sun
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV 26506, USA; Department of Orthopaedics, Orthopaedics Institute, Subei People's Hospital of Jiangsu Province, Yangzhou, Jiangsu 225001, China
| | - Lianqi Yan
- Department of Orthopaedics, Orthopaedics Institute, Subei People's Hospital of Jiangsu Province, Yangzhou, Jiangsu 225001, China
| | - Song Chen
- Department of Orthopaedics, Chengdu Military General Hospital, Chengdu, Sichuan 610083, China
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV 26506, USA; Exercise Physiology, West Virginia University, Morgantown, WV 26506, USA; WVU Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA.
| |
Collapse
|
16
|
Vas WJ, Shah M, Blacker TS, Duchen MR, Sibbons P, Roberts SJ. Decellularized Cartilage Directs Chondrogenic Differentiation: Creation of a Fracture Callus Mimetic. Tissue Eng Part A 2018; 24:1364-1376. [PMID: 29580181 DOI: 10.1089/ten.tea.2017.0450] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Complications that arise from impaired fracture healing have considerable socioeconomic implications. Current research in the field of bone tissue engineering predominantly aims to mimic the mature bone tissue microenvironment. This approach, however, may produce implants that are intrinsically unresponsive to the cues present during the initiation of fracture repair. As such, this study describes the development of decellularized xenogeneic hyaline cartilage matrix in an attempt to mimic the initial reparative phase of fracture repair. Three approaches based on vacuum-assisted osmotic shock (Vac-OS), Triton X-100 (Vac-STx), and sodium dodecyl sulfate (Vac-SDS) were investigated. The Vac-OS methodology reduced DNA content below 50 ng/mg of tissue, while retaining 85% of the sulfate glycosaminoglycan content, and as such was selected as the optimal methodology for decellularization. The resultant Vac-OS scaffolds (decellularized extracellular matrix [dcECM]) were also devoid of the immunogenic alpha-Gal epitope. Furthermore, minimal disruption to the structural integrity of the dcECM was demonstrated using differential scanning calorimetry and fluorescence lifetime imaging microscopy. The biological integrity of the dcECM was confirmed by its ability to drive the chondrogenic commitment and differentiation of human chondrocytes and periosteum-derived cells, respectively. Furthermore, histological examination of dcECM constructs implanted in immunocompetent mice revealed a predominantly M2 macrophage-driven regenerative response both at 2 and 8 weeks postimplantation. These findings contrasted with the implanted native costal cartilage that elicited a predominantly M1 macrophage-mediated inflammatory response. This study highlights the capacity of dcECM from the Vac-OS methodology to direct the key biological processes of endochondral ossification, thus potentially recapitulating the callus phase of fracture repair.
Collapse
Affiliation(s)
- Wollis J Vas
- 1 Department of Materials and Tissue, Institute of Orthopaedics and Musculoskeletal Science, University College London , Stanmore, United Kingdom
| | - Mittal Shah
- 1 Department of Materials and Tissue, Institute of Orthopaedics and Musculoskeletal Science, University College London , Stanmore, United Kingdom
| | - Thomas S Blacker
- 2 Department of Cell and Developmental Biology, University College London , London, United Kingdom .,3 Department of Physics and Astronomy, University College London , London, United Kingdom
| | - Michael R Duchen
- 2 Department of Cell and Developmental Biology, University College London , London, United Kingdom
| | - Paul Sibbons
- 4 Northwick Park Institute for Medical Research , Northwick Park Hospital, London, United Kingdom
| | - Scott J Roberts
- 1 Department of Materials and Tissue, Institute of Orthopaedics and Musculoskeletal Science, University College London , Stanmore, United Kingdom
| |
Collapse
|
17
|
Shetty AA, Kim SJ, Ahmed S, Trattnig S, Kim SA, Jang HJ. A cost-effective cell- and matrix-based minimally invasive single-stage chondroregenerative technique developed with validated vertical translation methodology. Ann R Coll Surg Engl 2018; 100:240-246. [PMID: 29493355 DOI: 10.1308/rcsann.2017.0223] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Introduction The morbidity and significant health economic impact associated with the chondral lesion has led to a large number of strategies for therapeutic neochondrogenesis. The challenge has been to develop techniques that are cost effective single-stage procedures with minimal surgical trauma that have undergone rigorous preclinical scrutiny and robust reproducible assessment of effectiveness. A biological repair requires the generation of a cellular and matrix composite with appropriate signalling for chondrogenic differentiation. Methods and results A technique was developed that allowed chondrogenic primary (uncultured) cells from bone marrow aspirate concentrate, combined with a composite hydrophilic and fibrillar matrix to be applied arthroscopically to a site of a chondral lesion. The construct was tested in vitro and in animal experiments before clinical trials. Clinical trials involved 60 patients in a prospective study. Symptomatic International Cartilage Repair Society grade 3 and 4a lesions were mapped and treated. Pre- and postoperative clinical assessments showed statistically significant improved outcomes; Lysholm Knee Scoring Scale (mean 52.8 to > 76.4; P < 0.05) International Knee Documentation Committee (mean 39 to > 79 P < 0.05) and Knee injury and Osteoarthritis Outcome Score (64.5 to >89.2 P < 0.05). Postoperative magnetic resonance imaging was evaluated morphologically (magnetic resonance observation of cartilage repair tissue, average MOCART score 72) and qualitatively; the regenerate was comparable to native cartilage. Conclusions This technique is effective, affordable, requires no complex tools and delivers a single-stage treatment that is potentially accessible to any centre capable of performing arthroscopic surgery. Good clinical results were found to be sustained at five years of follow-up with a regenerate that appears hyaline like using multiple magnetic resonance measures.
Collapse
Affiliation(s)
- A A Shetty
- Institute of Medical Sciences, Faculty of Health and Social Sciences, Canterbury Christ Church University , Chatham Maritime , UK
| | - S J Kim
- Department of Orthopaedic Surgery, College of Medicine, Catholic University of Korea , Gyeonggi-do , Republic of Korea
| | - S Ahmed
- Institute of Medical Sciences, Faculty of Health and Social Sciences, Canterbury Christ Church University , Chatham Maritime , UK
| | - S Trattnig
- MR Centre - High-field MR, Department of Radiology, Medical University of Vienna , Vienna , Austria
| | - S A Kim
- Department of Orthopaedic Surgery, College of Medicine, Catholic University of Korea , Gyeonggi-do , Republic of Korea
| | - H J Jang
- Department of Orthopaedic Surgery, College of Medicine, Catholic University of Korea , Gyeonggi-do , Republic of Korea
| |
Collapse
|
18
|
Schneider C, Lehmann J, van Osch GJVM, Hildner F, Teuschl A, Monforte X, Miosga D, Heimel P, Priglinger E, Redl H, Wolbank S, Nürnberger S. Systematic Comparison of Protocols for the Preparation of Human Articular Cartilage for Use as Scaffold Material in Cartilage Tissue Engineering. Tissue Eng Part C Methods 2017; 22:1095-1107. [PMID: 27846786 DOI: 10.1089/ten.tec.2016.0380] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Natural extracellular matrix-derived biomaterials from decellularized allogenic tissues are of increasing interest for tissue engineering because their structure and composition provide a complexity that is not achievable with current manufacturing techniques. The prerequisite to bring allogenic tissue from bench to bedside as a functional biomaterial is the full removal of cells while preserving most of its native characteristics such as structure and composition. The exceptionally dense structure of articular cartilage, however, poses a special challenge for decellularization, scaffold preparation, and reseeding. Therefore, we tested 24 different protocols aiming to remove cells and glycosaminoglycans (GAG) while preserving the collagen backbone and ultrastructure. The resulting matrices were analyzed for cell removal (DNA quantification, haematoxylin and eosin staining), GAG content (dimethyl methylene blue assay, Alcian blue staining and micro-computed tomography), collagen integrity (immunohistochemistry and ultrastructure), and biomechanics (compression test). Furthermore, seeding tests were conducted to evaluate cell viability and attachment to the scaffolds. Sodium dodecyl sulfate-based protocols yielded satisfactory reduction of DNA content, yet had negative effects on cell viability and attachment. Hydrochloric acid efficiently decellularized the scaffold and pepsin emerged as best option for GAG depletion. Combining these two reagents led to our final protocol, most efficient in DNA and GAG depletion while preserving the collagen architecture. The compressive modulus decreased in the absence of GAG to ∼1/3 of native cartilage, which is significantly higher than that by commercially available scaffolds tested as a reference (ranging from 1/25 to 1/100 of native cartilage). Cytocompatibility tests showed that human adipose-derived stromal cells readily adhered to the scaffold. In this study, we established a protocol combining freeze-thaw cycles, osmotic shock, and treatment with hydrochloric acid followed by a pepsin digestion step, achieving successful decellularization and GAG depletion within 1 week, resulting in a cytocompatible material with intact collagen structure. The protocol provides a basis for the generation of allogeneic scaffolds, potentially substituting manufactured scaffolds currently used in clinical articular cartilage treatment.
Collapse
Affiliation(s)
- Cornelia Schneider
- 1 Ludwig Boltzmann Institute for Experimental and Clinical Traumatology , Vienna, Austria .,2 Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Johannes Lehmann
- 3 Department of Otorhinolaryngology and Cell Biology, Erasmus MC, University Medical Center , Rotterdam, The Netherlands
| | - Gerjo J V M van Osch
- 4 Department of Otorhinolaryngology and Orthopaedics, Erasmus MC, University Medical Center , Rotterdam, The Netherlands
| | - Florian Hildner
- 2 Austrian Cluster for Tissue Regeneration, Vienna, Austria .,5 Red Cross Blood Transfusion Center of Upper Austria , Linz, Austria
| | - Andreas Teuschl
- 2 Austrian Cluster for Tissue Regeneration, Vienna, Austria .,6 Department of Biochemical Engineering, University of Applied Sciences Technikum Wien , Vienna, Austria
| | - Xavier Monforte
- 6 Department of Biochemical Engineering, University of Applied Sciences Technikum Wien , Vienna, Austria
| | - David Miosga
- 7 Department of Trauma Surgery, Medical University, Vienna, Austria
| | - Patrick Heimel
- 1 Ludwig Boltzmann Institute for Experimental and Clinical Traumatology , Vienna, Austria .,2 Austrian Cluster for Tissue Regeneration, Vienna, Austria .,8 Karl Donath Laboratory for Hard Tissue and Biomaterial Research, School of Dentistry Medical University of Vienna , Austria
| | - Eleni Priglinger
- 1 Ludwig Boltzmann Institute for Experimental and Clinical Traumatology , Vienna, Austria .,2 Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Heinz Redl
- 1 Ludwig Boltzmann Institute for Experimental and Clinical Traumatology , Vienna, Austria .,2 Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Suanne Wolbank
- 1 Ludwig Boltzmann Institute for Experimental and Clinical Traumatology , Vienna, Austria .,2 Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Sylvia Nürnberger
- 1 Ludwig Boltzmann Institute for Experimental and Clinical Traumatology , Vienna, Austria .,2 Austrian Cluster for Tissue Regeneration, Vienna, Austria .,7 Department of Trauma Surgery, Medical University, Vienna, Austria .,9 Bernhard Gottlieb University Clinic of Dentistry , Vienna, Austria .,10 School of Dentistry Medical University of Vienna , Competence Center for Morphology, Vienna, Austria
| |
Collapse
|
19
|
Kiyotake EA, Beck EC, Detamore MS. Cartilage extracellular matrix as a biomaterial for cartilage regeneration. Ann N Y Acad Sci 2017; 1383:139-159. [PMID: 27870078 DOI: 10.1111/nyas.13278] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/16/2016] [Accepted: 09/20/2016] [Indexed: 12/16/2022]
Abstract
The extracellular matrix (ECM) of various tissues possesses the model characteristics that biomaterials for tissue engineering strive to mimic; however, owing to the intricate hierarchical nature of the ECM, it has yet to be fully characterized and synthetically fabricated. Cartilage repair remains a challenge because the intrinsic properties that enable its durability and long-lasting function also impede regeneration. In the last decade, cartilage ECM has emerged as a promising biomaterial for regenerating cartilage, partly because of its potentially chondroinductive nature. As this research area of cartilage matrix-based biomaterials emerged, investigators facing similar challenges consequently developed convergent solutions in constructing robust and bioactive scaffolds. This review discusses the challenges, emerging trends, and future directions of cartilage ECM scaffolds, including a comparison between two different forms of cartilage matrix: decellularized cartilage (DCC) and devitalized cartilage (DVC). To overcome the low permeability of cartilage matrix, physical fragmentation greatly enhances decellularization, although the process itself may reduce the chondroinductivity of fabricated scaffolds. The less complex processing of a scaffold composed of DVC, which has not been decellularized, appears to have translational advantages and potential chondroinductive and mechanical advantages over DCC, without detrimental immunogenicity, to ultimately enhance cartilage repair in a clinically relevant way.
Collapse
Affiliation(s)
- Emi A Kiyotake
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma
| | - Emily C Beck
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Michael S Detamore
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma
| |
Collapse
|
20
|
Goldberg A, Mitchell K, Soans J, Kim L, Zaidi R. The use of mesenchymal stem cells for cartilage repair and regeneration: a systematic review. J Orthop Surg Res 2017; 12:39. [PMID: 28279182 PMCID: PMC5345159 DOI: 10.1186/s13018-017-0534-y] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 02/13/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The management of articular cartilage defects presents many clinical challenges due to its avascular, aneural and alymphatic nature. Bone marrow stimulation techniques, such as microfracture, are the most frequently used method in clinical practice however the resulting mixed fibrocartilage tissue which is inferior to native hyaline cartilage. Other methods have shown promise but are far from perfect. There is an unmet need and growing interest in regenerative medicine and tissue engineering to improve the outcome for patients requiring cartilage repair. Many published reviews on cartilage repair only list human clinical trials, underestimating the wealth of basic sciences and animal studies that are precursors to future research. We therefore set out to perform a systematic review of the literature to assess the translation of stem cell therapy to explore what research had been carried out at each of the stages of translation from bench-top (in vitro), animal (pre-clinical) and human studies (clinical) and assemble an evidence-based cascade for the responsible introduction of stem cell therapy for cartilage defects. This review was conducted in accordance to PRISMA guidelines using CINHAL, MEDLINE, EMBASE, Scopus and Web of Knowledge databases from 1st January 1900 to 30th June 2015. In total, there were 2880 studies identified of which 252 studies were included for analysis (100 articles for in vitro studies, 111 studies for animal studies; and 31 studies for human studies). There was a huge variance in cell source in pre-clinical studies both of terms of animal used, location of harvest (fat, marrow, blood or synovium) and allogeneicity. The use of scaffolds, growth factors, number of cell passages and number of cells used was hugely heterogeneous. SHORT CONCLUSIONS This review offers a comprehensive assessment of the evidence behind the translation of basic science to the clinical practice of cartilage repair. It has revealed a lack of connectivity between the in vitro, pre-clinical and human data and a patchwork quilt of synergistic evidence. Drivers for progress in this space are largely driven by patient demand, surgeon inquisition and a regulatory framework that is learning at the same pace as new developments take place.
Collapse
Affiliation(s)
- Andy Goldberg
- Institute of Orthopaedics and Musculoskeletal Science, Royal National Orthopaedic Hospital (RNOH), Brockley Hill Stanmore, London, HA7 4LP UK
| | - Katrina Mitchell
- Institute of Orthopaedics and Musculoskeletal Science, Royal National Orthopaedic Hospital (RNOH), Brockley Hill Stanmore, London, HA7 4LP UK
| | - Julian Soans
- Institute of Orthopaedics and Musculoskeletal Science, Royal National Orthopaedic Hospital (RNOH), Brockley Hill Stanmore, London, HA7 4LP UK
| | - Louise Kim
- Joint Research and Enterprise Office, St George’s University of London and St George’s University Hospitals NHS Foundation Trust, Hunter Wing, Cranmer Terrace, London, SW17 0RE UK
| | - Razi Zaidi
- Institute of Orthopaedics and Musculoskeletal Science, Royal National Orthopaedic Hospital (RNOH), Brockley Hill Stanmore, London, HA7 4LP UK
| |
Collapse
|
21
|
Bolaños RV, Cokelaere S, McDermott JE, Benders K, Gbureck U, Plomp S, Weinans H, Groll J, van Weeren P, Malda J. The use of a cartilage decellularized matrix scaffold for the repair of osteochondral defects: the importance of long-term studies in a large animal model. Osteoarthritis Cartilage 2017; 25:413-420. [PMID: 27554995 PMCID: PMC7116104 DOI: 10.1016/j.joca.2016.08.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/15/2016] [Accepted: 08/11/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To investigate the effect of decellularized cartilage-derived matrix (CDM) scaffolds, by itself and as a composite scaffold with a calcium phosphate (CaP) base, for the repair of osteochondral defects. It was hypothesized that the chondral defects would heal with fibrocartilaginous tissue and that the composite scaffold would result in better bone formation. METHODS After an 8-week pilot experiment in a single horse, scaffolds were implanted in eight healthy horses in osteochondral defects on the medial trochlear ridge of the femur. In one joint a composite CDM-CaP scaffold was implanted (+P), in the contralateral joint a CDM only (-P) scaffold. After euthanasia at 6 months, tissues were analysed by histology, immunohistochemistry, micro-CT, biochemistry and biomechanical evaluation. RESULTS The 8-week pilot showed encouraging formation of bone and cartilage, but incomplete defect filling. At 6 months, micro-CT and histology showed much more limited filling of the defect, but the CaP component of the +P scaffolds was well integrated with the surrounding bone. The repair tissue was fibrotic with high collagen type I and low type II content and with no differences between the groups. There were also no biochemical differences between the groups and repair tissue was much less stiff than normal tissue (P < 0.0001). CONCLUSIONS The implants failed to produce reasonable repair tissue in this osteochondral defect model, although the CaP base in the -P group integrated well with the recipient bone. The study stresses the importance of long-term in vivo studies to assess the efficacy of cartilage repair techniques.
Collapse
Affiliation(s)
- R.A. Vindas Bolaños
- Cátedra de Cirugìa de Especies Mayores, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| | - S.M. Cokelaere
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, The Netherlands
| | - J.M. Estrada McDermott
- Cátedra de Cirugìa de Especies Mayores, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| | - K.E.M. Benders
- Department of Orthopaedics, Division of Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - U. Gbureck
- Department of Functional Materials in Medicine and Dentistry, University of Wurzburg, Wurzburg, Germany
| | - S.G.M. Plomp
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, The Netherlands
| | - H. Weinans
- Department of Orthopaedics, Division of Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - J. Groll
- Department of Functional Materials in Medicine and Dentistry, University of Wurzburg, Wurzburg, Germany
| | - P.R. van Weeren
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, The Netherlands
| | - J. Malda
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, The Netherlands,Department of Orthopaedics, Division of Surgery, University Medical Center Utrecht, Utrecht, The Netherlands,Address correspondence and reprint requests to: J. Malda, Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, The Netherlands.
| |
Collapse
|
22
|
Rowland CR, Colucci LA, Guilak F. Fabrication of anatomically-shaped cartilage constructs using decellularized cartilage-derived matrix scaffolds. Biomaterials 2016; 91:57-72. [PMID: 26999455 DOI: 10.1016/j.biomaterials.2016.03.012] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 03/02/2016] [Accepted: 03/06/2016] [Indexed: 12/29/2022]
Abstract
The native extracellular matrix of cartilage contains entrapped growth factors as well as tissue-specific epitopes for cell-matrix interactions, which make it a potentially attractive biomaterial for cartilage tissue engineering. A limitation to this approach is that the native cartilage extracellular matrix possesses a pore size of only a few nanometers, which inhibits cellular infiltration. Efforts to increase the pore size of cartilage-derived matrix (CDM) scaffolds dramatically attenuate their mechanical properties, which makes them susceptible to cell-mediated contraction. In previous studies, we have demonstrated that collagen crosslinking techniques are capable of preventing cell-mediated contraction in CDM disks. In the current study, we investigated the effects of CDM concentration and pore architecture on the ability of CDM scaffolds to resist cell-mediated contraction. Increasing CDM concentration significantly increased scaffold mechanical properties, which played an important role in preventing contraction, and only the highest CDM concentration (11% w/w) was able to retain the original scaffold dimensions. However, the increase in CDM concentration led to a concomitant decrease in porosity and pore size. Generating a temperature gradient during the freezing process resulted in unidirectional freezing, which aligned the formation of ice crystals during the freezing process and in turn produced aligned pores in CDM scaffolds. These aligned pores increased the pore size of CDM scaffolds at all CDM concentrations, and greatly facilitated infiltration by mesenchymal stem cells (MSCs). These methods were used to fabricate of anatomically-relevant CDM hemispheres. CDM hemispheres with aligned pores supported uniform MSC infiltration and matrix deposition. Furthermore, these CDM hemispheres retained their original architecture and did not contract, warp, curl, or splay throughout the entire 28-day culture period. These findings demonstrate that given the appropriate fabrication parameters, CDM scaffolds are capable of maintaining complex structures that support MSC chondrogenesis.
Collapse
Affiliation(s)
- Christopher R Rowland
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, 63110, United States; Department of Developmental Biology, Washington University, St. Louis, MO, 63110, United States; Department of Biomedical Engineering, Washington University, St. Louis, MO, 63110, United States; Shriners Hospitals for Children - St. Louis Hospital, 3210 McKinley Research Building, St. Louis, MO, 63110, United States
| | - Lina A Colucci
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, 63110, United States; Department of Developmental Biology, Washington University, St. Louis, MO, 63110, United States; Department of Biomedical Engineering, Washington University, St. Louis, MO, 63110, United States; Shriners Hospitals for Children - St. Louis Hospital, 3210 McKinley Research Building, St. Louis, MO, 63110, United States
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, 63110, United States; Department of Developmental Biology, Washington University, St. Louis, MO, 63110, United States; Department of Biomedical Engineering, Washington University, St. Louis, MO, 63110, United States; Shriners Hospitals for Children - St. Louis Hospital, 3210 McKinley Research Building, St. Louis, MO, 63110, United States.
| |
Collapse
|
23
|
Cokelaere S, Malda J, van Weeren R. Cartilage defect repair in horses: Current strategies and recent developments in regenerative medicine of the equine joint with emphasis on the surgical approach. Vet J 2016; 214:61-71. [PMID: 27387728 DOI: 10.1016/j.tvjl.2016.02.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 01/26/2016] [Accepted: 02/07/2016] [Indexed: 12/27/2022]
Abstract
Chondral and osteochondral lesions due to injury or other pathology are highly prevalent conditions in horses (and humans) and commonly result in the development of osteoarthritis and progression of joint deterioration. Regenerative medicine of articular cartilage is an emerging clinical treatment option for patients with articular cartilage injury or disease. Functional articular cartilage restoration, however, remains a major challenge, but the field is progressing rapidly and there is an increasing body of supportive clinical and scientific evidence. This review gives an overview of the established and emerging surgical techniques employed for cartilage repair in horses. Through a growing insight in surgical cartilage repair possibilities, surgeons might be more stimulated to explore novel techniques in a clinical setting.
Collapse
Affiliation(s)
- Stefan Cokelaere
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 112, 3584 CM Utrecht, NL, Netherlands.
| | - Jos Malda
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 112, 3584 CM Utrecht, NL, Netherlands; Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, NL, Netherlands
| | - René van Weeren
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 112, 3584 CM Utrecht, NL, Netherlands
| |
Collapse
|
24
|
Kim IG, Ko J, Lee HR, Do SH, Park K. Mesenchymal cells condensation-inducible mesh scaffolds for cartilage tissue engineering. Biomaterials 2016; 85:18-29. [PMID: 26854388 DOI: 10.1016/j.biomaterials.2016.01.048] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 01/16/2023]
Abstract
Mesenchymal cells condensation is crucial in chondrogenic development. However current tissue-engineered scaffolds for chondrogenesis pay little attention to this phenomenon. In this study, we fabricate poly(l-lactide-co-glycolide) (PLGA)/poly(l-lactide) (PLLA) microfiber scaffolds and coat them with human fibroblast-derived matrix (hFDM) that is a decellularized extracellular matrix (ECM) obtained from in vitro cultured human lung fibroblasts (WI-38). Those scaffolds were then conjugated with heparin via EDC chemistry and subsequently immobilized with transforming growth factor (TGF)-β1. The amount of TGF-β1 was quantitatively measured and the release profile showed a continuous release of TGF-β1 for 4 weeks. Human umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) were seeded in four different scaffolds; control, fibronectin (FN)-coated, hFDM-coated, hFDM/TGF-β1 and subjected to chondrogenic differentiation in vitro for up to 28 days. Both hFDM and hFDM/TGF-β1 groups exhibited significantly more synthesis of glycosaminoglycan (GAG) and much better upregulation of chondrogenic markers expression. Interestingly, MSCs condensation that led to cell aggregates was clearly observed with time in the two hFDM-coated groups and the quantitative difference was obvious compared to the control and FN group. A mechanistic study in gene and protein level indicated that focal adhesion kinase (FAK) was involved at the early stage of cell adhesion and cell-cell contact-related markers, N-cadherin and neural cell adhesion molecule (NCAM), were highly up-regulated at later time point. In addition histological analysis proved that hFDM/TGF-β1 group was the most effective in forming neocartilage tissue in a rabbit articular cartilage defect model. Taken together, this study demonstrates not only the positive effect of hFDM on chondrogenesis of MSCs and cartilage repair but also provides an important insight toward the significance of in vitro mesenchymal condensation on chondrogenic development of MSCs.
Collapse
Affiliation(s)
- In Gul Kim
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea
| | - Jaehoon Ko
- Dept of Technical Application, Korea Institute of Industrial Technology, Gyeonggi 426-910, Republic of Korea
| | - Hye Rim Lee
- Dept of Veterinary Medicine, KonKuk University, Seoul 143-701, Republic of Korea
| | - Sun Hee Do
- Dept of Veterinary Medicine, KonKuk University, Seoul 143-701, Republic of Korea
| | - Kwideok Park
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea; Dept of Biomedical Engineering, Korea University of Science and Technology, Daejeon 305-350, Republic of Korea.
| |
Collapse
|
25
|
Almeida HV, Cunniffe GM, Vinardell T, Buckley CT, O'Brien FJ, Kelly DJ. Coupling Freshly Isolated CD44(+) Infrapatellar Fat Pad-Derived Stromal Cells with a TGF-β3 Eluting Cartilage ECM-Derived Scaffold as a Single-Stage Strategy for Promoting Chondrogenesis. Adv Healthc Mater 2015; 4:1043-53. [PMID: 25656563 DOI: 10.1002/adhm.201400687] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 01/09/2015] [Indexed: 12/21/2022]
Abstract
An alternative strategy to the use of in vitro expanded cells in regenerative medicine is the use of freshly isolated stromal cells, where a bioactive scaffold is used to provide an environment conducive to proliferation and tissue-specific differentiation in vivo. The objective of this study is to develop a cartilage extracellular matrix (ECM)-derived scaffold that could facilitate the rapid proliferation and chondrogenic differentiation of freshly isolated stromal cells. By freeze-drying cryomilled cartilage ECM of differing concentrations, it is possible to produce scaffolds with a range of pore sizes. The migration, proliferation, and chondrogenic differentiation of infrapatellar fat pad-derived stem cells (FPSCs) depend on the concentration/porosity of these scaffolds, with greater sulphated glycosaminoglycan (sGAG) accumulation observed in scaffolds with larger-sized pores. It is then sought to determine if freshly isolated fat pad-derived stromal cells, seeded onto a transforming growth factor (TGF)-β3 eluting ECM-derived scaffold, could promote chondrogenesis in vivo. While a more cartilage-like tissue could be generated using culture expanded FPSCs compared to nonenriched freshly isolated cells, fresh CD44(+) stromal cells are capable of producing a tissue in vivo that stained strongly for sGAGs and type II collagen. These findings open up new possibilities for in-theatre cell-based therapies for joint regeneration.
Collapse
Affiliation(s)
- Henrique V. Almeida
- Trinity Centre for Bioengineering; Trinity Biomedical Sciences Institute, Trinity College Dublin; Dublin 2 Ireland
- Department of Mechanical and Manufacturing Engineering; School of Engineering, Trinity College Dublin; Dublin 2 Ireland
| | - Gráinne M. Cunniffe
- Trinity Centre for Bioengineering; Trinity Biomedical Sciences Institute, Trinity College Dublin; Dublin 2 Ireland
- Department of Mechanical and Manufacturing Engineering; School of Engineering, Trinity College Dublin; Dublin 2 Ireland
| | - Tatiana Vinardell
- School of Agriculture and Food Science; University College Dublin; Belfield Dublin 4 Ireland
| | - Conor T. Buckley
- Trinity Centre for Bioengineering; Trinity Biomedical Sciences Institute, Trinity College Dublin; Dublin 2 Ireland
- Department of Mechanical and Manufacturing Engineering; School of Engineering, Trinity College Dublin; Dublin 2 Ireland
| | - Fergal J. O'Brien
- Trinity Centre for Bioengineering; Trinity Biomedical Sciences Institute, Trinity College Dublin; Dublin 2 Ireland
- Department of Anatomy; Royal College of Surgeons in Ireland; Dublin 2 Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER); Trinity College Dublin and RCSI; Dublin 2 Ireland
| | - Daniel J. Kelly
- Trinity Centre for Bioengineering; Trinity Biomedical Sciences Institute, Trinity College Dublin; Dublin 2 Ireland
- Department of Mechanical and Manufacturing Engineering; School of Engineering, Trinity College Dublin; Dublin 2 Ireland
- Department of Anatomy; Royal College of Surgeons in Ireland; Dublin 2 Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER); Trinity College Dublin and RCSI; Dublin 2 Ireland
| |
Collapse
|
26
|
Visser J, Levett PA, te Moller NCR, Besems J, Boere KWM, van Rijen MHP, de Grauw JC, Dhert WJA, van Weeren PR, Malda J. Crosslinkable hydrogels derived from cartilage, meniscus, and tendon tissue. Tissue Eng Part A 2015; 21:1195-206. [PMID: 25557049 DOI: 10.1089/ten.tea.2014.0362] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Decellularized tissues have proven to be versatile matrices for the engineering of tissues and organs. These matrices usually consist of collagens, matrix-specific proteins, and a set of largely undefined growth factors and signaling molecules. Although several decellularized tissues have found their way to clinical applications, their use in the engineering of cartilage tissue has only been explored to a limited extent. We set out to generate hydrogels from several tissue-derived matrices, as hydrogels are the current preferred cell carriers for cartilage repair. Equine cartilage, meniscus, and tendon tissue was harvested, decellularized, enzymatically digested, and functionalized with methacrylamide groups. After photo-cross-linking, these tissue digests were mechanically characterized. Next, gelatin methacrylamide (GelMA) hydrogel was functionalized with these methacrylated tissue digests. Equine chondrocytes and mesenchymal stromal cells (MSCs) (both from three donors) were encapsulated and cultured in vitro up to 6 weeks. Gene expression (COL1A1, COL2A1, ACAN, MMP-3, MMP-13, and MMP-14), cartilage-specific matrix formation, and hydrogel stiffness were analyzed after culture. The cartilage, meniscus, and tendon digests were successfully photo-cross-linked into hydrogels. The addition of the tissue-derived matrices to GelMA affected chondrogenic differentiation of MSCs, although no consequent improvement was demonstrated. For chondrocytes, the tissue-derived matrix gels performed worse compared to GelMA alone. This work demonstrates for the first time that native tissues can be processed into crosslinkable hydrogels for the engineering of tissues. Moreover, the differentiation of encapsulated cells can be influenced in these stable, decellularized matrix hydrogels.
Collapse
Affiliation(s)
- Jetze Visser
- 1 Department of Orthopaedics, University Medical Center Utrecht , Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Gawlitta D, Benders KE, Visser J, van der Sar AS, Kempen DH, Theyse LF, Malda J, Dhert WJ. Decellularized Cartilage-Derived Matrix as Substrate for Endochondral Bone Regeneration. Tissue Eng Part A 2015; 21:694-703. [DOI: 10.1089/ten.tea.2014.0117] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Debby Gawlitta
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kim E.M. Benders
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jetze Visser
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Diederik H.R. Kempen
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lars F.H. Theyse
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Jos Malda
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Wouter J.A. Dhert
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
28
|
Visser J, Gawlitta D, Benders KEM, Toma SMH, Pouran B, van Weeren PR, Dhert WJA, Malda J. Endochondral bone formation in gelatin methacrylamide hydrogel with embedded cartilage-derived matrix particles. Biomaterials 2014; 37:174-82. [PMID: 25453948 DOI: 10.1016/j.biomaterials.2014.10.020] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 10/02/2014] [Indexed: 12/26/2022]
Abstract
The natural process of endochondral bone formation in the growing skeletal system is increasingly inspiring the field of bone tissue engineering. However, in order to create relevant-size bone grafts, a cell carrier is required that ensures a high diffusion rate and facilitates matrix formation, balanced by its degradation. Therefore, we set out to engineer endochondral bone in gelatin methacrylamide (GelMA) hydrogels with embedded multipotent stromal cells (MSCs) and cartilage-derived matrix (CDM) particles. CDM particles were found to stimulate the formation of a cartilage template by MSCs in the GelMA hydrogel in vitro. In a subcutaneous rat model, this template was subsequently remodeled into mineralized bone tissue, including bone-marrow cavities. The GelMA was almost fully degraded during this process. There was no significant difference in the degree of calcification in GelMA with or without CDM particles: 42.5 ± 2.5% vs. 39.5 ± 8.3% (mean ± standard deviation), respectively. Interestingly, in an osteochondral setting, the presence of chondrocytes in one half of the constructs fully impeded bone formation in the other half by MSCs. This work offers a new avenue for the engineering of relevant-size bone grafts, by the formation of endochondral bone within a degradable hydrogel.
Collapse
Affiliation(s)
- Jetze Visser
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, The Netherlands
| | - Debby Gawlitta
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, The Netherlands; Department of Oral and Maxillofacial Surgery, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, The Netherlands
| | - Kim E M Benders
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, The Netherlands
| | - Selynda M H Toma
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, The Netherlands
| | - Behdad Pouran
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, The Netherlands; Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands
| | - P René van Weeren
- Department of Equine Sciences, Faculty of Veterinary Sciences, Utrecht University, Yalelaan 112, 3584 CM Utrecht, The Netherlands
| | - Wouter J A Dhert
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, The Netherlands; Department of Equine Sciences, Faculty of Veterinary Sciences, Utrecht University, Yalelaan 112, 3584 CM Utrecht, The Netherlands
| | - Jos Malda
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, The Netherlands; Department of Equine Sciences, Faculty of Veterinary Sciences, Utrecht University, Yalelaan 112, 3584 CM Utrecht, The Netherlands.
| |
Collapse
|