1
|
Libertini S, Jadlowsky JK, Lanz TA, Mihalcik LM, Pizzurro DM. Genotoxicity evaluation of gene therapies: A report from the International Workshop on Genotoxicity Testing (IWGT) 2022. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024. [PMID: 39301812 DOI: 10.1002/em.22633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/22/2024]
Abstract
At the 8th International Workshop on Genotoxicity Testing meeting in Ottawa, in August 2022, a plenary session was dedicated to the genotoxicity risk evaluation of gene therapies, including insertional oncogenesis and off-target genome editing. This brief communication summarizes the topics of discussion and the main insights from the speakers. Common themes included recommendations to conduct tailored risk assessments based on a weight-of-evidence approach, to promote data sharing, transparency, and cooperation between stakeholders, and to develop state-of-the-art validated tests relevant to clinical scenarios.
Collapse
Affiliation(s)
- S Libertini
- Novartis Biomedical Research, Basel, Switzerland
| | - J K Jadlowsky
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - T A Lanz
- Pfizer Drug Safety Research & Development, Groton, Connecticut, USA
| | - L M Mihalcik
- Aclairo Pharmaceutical Development Group, Sterling, Virginia, USA
| | | |
Collapse
|
2
|
Donelli R, Gazzola A, Mannu C, Etebari M, Navari M, Piccaluga PP. Conventional PCR-based versus next-generation sequencing-based approach for T-cell receptor γ gene clonality assessment in mature T-cell lymphomas: A phase 3 diagnostic accuracy study. J Biol Methods 2024; 11:e99010013. [PMID: 39323485 PMCID: PMC11423944 DOI: 10.14440/jbm.2024.0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/13/2024] [Accepted: 06/20/2024] [Indexed: 09/27/2024] Open
Abstract
Background Clonality assessment is currently the major molecular analysis utilized to support the diagnosis of suspicious lymphoid malignancies. Clonal rearrangements of the V-J segments of T-cell receptor G chain locus (TCRγ or TRG) have been observed in almost all types of T neoplasms, such as T-cell-related non-Hodgkin lymphomas and leukemias. At present, the gold standard for clonality evaluation is multiplex polymerase chain reaction (PCR), plus subsequent capillary electrophoresis/heteroduplex analyses, and/or Sanger sequencing. This approach overcomes the problem with the conventional Southern blot hybridization and is more efficient, simple, fast, and reproducible. In the recent years, the new next-generation sequencing (NGS) technologies provided alternative techniques for the analysis of antigen receptors genes, which presented several advantages, such as increased efficiency, specificity (SP), sensitivity (ST), resolution, and objectivity of the results, leading to a better classification, stratification, and monitoring of lymphoid malignancies. Nonetheless, these technologies are still far from being the new gold standard since further studies are warranted to prove their utility. The present study aimed to assess the diagnostic accuracy of these two methods by comparing a commercial NGS-based assay for the evaluation of TRG locus with the gold standard PCR-based one, to fulfill the requirements of a phase 3 diagnostic accuracy study. Methods We assessed the TRG gene rearrangements in 72 cases using the conventional and highly-validated PCR-based assay proposed by EuroClonality consortium, an alternative commercial PCR-based assay, namely, IdentiClone® TCR Gamma Gene Rearrangement Assay 2.0, and a commercial NGS-based assay, that is, Invivoscribe LymphoTrack® Dx MiSeq® (both by Invivoscribe Technologies Inc., San Diego, CA, USA), to determine the diagnostic accuracy of the latter, and compare them with reference diagnoses made based on observation of clinical manifestations, cytohistological, and immunohistochemical analyses. Statistical values were calculated using the Oxford CATmaker software package. Results Using standardized criteria of interpretation, the obtained results showed a diagnostic accuracy of 90.3% (correspondence in 65 out of 72 cases) of the test under investigation, with a ST of 86%, a SP of 95%, a positive predicting value of 94%, and a negative predicting value of 88%, demonstrating that it had high efficiency and reliability in detecting clonal TRG gene rearrangements in T-cell non-Hodgkin lymphomas. Conclusions This diagnostic accuracy study yielded comparable results using a validated PCR-based approach and a new NGS-based one. Subsequent studies and cost-effectiveness evaluation are needed to put the NGS-based clonality assessment into routine diagnostic practice.
Collapse
Affiliation(s)
- Riccardo Donelli
- Biobank of Research, IRCCS Azienda Opedaliera-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, Bologna University School of Medicine, Bologna, Italy
| | - Anna Gazzola
- Hematopathology Unit, IRCCS Azienda Opedaliera-Universitaria di Bologna, Bologna, Italy
| | - Claudia Mannu
- Hematopathology Unit, IRCCS Azienda Opedaliera-Universitaria di Bologna, Bologna, Italy
| | - Maryam Etebari
- Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mohsen Navari
- Department of Medical Biotechnology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Scienc-es, Torbat Heydariyeh, Iran
| | - Pier Paolo Piccaluga
- Biobank of Research, IRCCS Azienda Opedaliera-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, Bologna University School of Medicine, Bologna, Italy
| |
Collapse
|
3
|
Rivera M, Lim CE, Jiang Q. Protocol for in vitro co-culture assay for rapid expansion of human T cell acute lymphoblastic leukemia. STAR Protoc 2024; 5:103103. [PMID: 38829737 PMCID: PMC11179097 DOI: 10.1016/j.xpro.2024.103103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/23/2024] [Accepted: 05/13/2024] [Indexed: 06/05/2024] Open
Abstract
T cell acute lymphoblastic leukemia (T-ALL) is a rare but aggressive hematological cancer that occurs primarily in children and adolescents. Here, we present a protocol for in vitro co-culture assay that enables robust expansion of primary T-ALL cells. We describe steps for seeding T-ALL and stromal cells in 3D organoids and subsequent flow analysis to capture the T-ALL cell growth for long-term culture. This protocol provides a valuable platform for in vitro functional studies and drug screenings using patient-derived cells. For complete details on the use and execution of this protocol, please refer to Rivera et al.1.
Collapse
Affiliation(s)
- Maria Rivera
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, USA; Moores Cancer Center, La Jolla, CA 92037, USA.
| | - Chae-Eun Lim
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, USA; Moores Cancer Center, La Jolla, CA 92037, USA
| | - Qingfei Jiang
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, USA; Moores Cancer Center, La Jolla, CA 92037, USA.
| |
Collapse
|
4
|
Jiang TT, Cao S, Kruglov O, Virmani A, Geskin LJ, Falo LD, Akilov OE. Deciphering Tumor Cell Evolution in Cutaneous T-Cell Lymphomas: Distinct Differentiation Trajectories in Mycosis Fungoides and Sézary Syndrome. J Invest Dermatol 2024; 144:1088-1098. [PMID: 38036289 PMCID: PMC11034798 DOI: 10.1016/j.jid.2023.10.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/08/2023] [Accepted: 10/25/2023] [Indexed: 12/02/2023]
Abstract
Cutaneous T-cell lymphomas are a heterogeneous group of neoplasms originating in the skin, with mycosis fungoides (MF) and Sézary syndrome (SS) representing the most common variants. The cellular origin of cutaneous lymphomas has remained controversial owing to their immense phenotypic heterogeneity that obfuscates lineage reconstruction on the basis of classical surface biomarkers. To overcome this heterogeneity and reconstruct the differentiation trajectory of malignant cells in MF and SS, TCR sequencing was performed in parallel with targeted transcriptomics at the single-cell resolution among cutaneous samples in MF and SS. Unsupervised lineage reconstruction showed that Sézary cells exist as a population of CD4+ T cells distinct from those in patch, plaque, and tumor MF. Further investigation of malignant cell heterogeneity in SS showed that Sézary cells phenotypically comprised at least 3 subsets on the basis of differential proliferation potentials and expression of exhaustion markers. A T helper 1-polarized cell type, intermediate cell type, and exhausted T helper 2-polarized cell type were identified, with T helper 1- and T helper 2-polarized cells displaying divergent proliferation potentials. Collectively, these findings provide evidence to clarify the relationship between MF and SS and reveal cell subsets in SS that suggest a possible mechanism for therapeutic resistance.
Collapse
Affiliation(s)
- Tony T Jiang
- Department of Dermatology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Simon Cao
- Department of Dermatology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Oleg Kruglov
- Department of Dermatology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Aman Virmani
- School of Art and Science, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Larisa J Geskin
- Department of Dermatology, Columbia University, New York, New York, USA
| | - Louis D Falo
- Department of Dermatology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Oleg E Akilov
- Department of Dermatology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
5
|
Gazzola A, Navari M, Mannu C, Donelli R, Etebari M, Piccaluga PP. Single-Step IGHV Next-Generation Sequencing Detects Clonality and Somatic Hypermutation in Lymphoid Malignancies: A Phase III Diagnostic Accuracy Study. Cancers (Basel) 2023; 15:4624. [PMID: 37760593 PMCID: PMC10526376 DOI: 10.3390/cancers15184624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Multiplex PCR based on consensus primers followed by capillary electrophoresis and Sanger sequencing are considered as the gold standard method for the evaluation of clonality and somatic hypermutation in lymphoid malignancies. As an alternative, the next-generation sequencing (NGS) of immune receptor genes has recently been proposed as a solution, due to being highly effective and sensitive. Here, we designed a phase III diagnostic accuracy study intended to compare the current gold standard methods versus the first commercially available NGS approaches for testing immunoglobulin heavy chain gene rearrangements. METHODS We assessed IGH rearrangements in 68 samples by means of both the NGS approach (LymphoTrack® IGH assay, and LymphoTrack® IGH somatic hypermutation assay, run on Illumina MiSeq) and capillary electrophoresis/Sanger sequencing to assess clonality and somatic hypermutations (SHM). RESULTS In comparison to the routine capillary-based analysis, the NGS clonality assay had an overall diagnostic accuracy of 96% (63/66 cases). Other studied criteria included sensitivity (95%), specificity (100%), positive predictive value (100%) and negative predictive value (75%). In discrepant cases, the NGS results were confirmed by a different set of primers that provided coverage of the IGH leader sequence. Furthermore, there was excellent agreement of the SHM determination with both the LymphoTrack® FR1 and leader assays when compared to the Sanger sequencing analysis (84%), with NGS able to assess the SHM rate even in cases where the conventional approach failed. CONCLUSION Overall, conventional Sanger sequencing and next-generation-sequencing-based clonality and somatic hypermutation analyses gave comparable results. For future use in a routine diagnostic workflow, NGS-based approaches should be evaluated prospectively and an analysis of cost-effectiveness should be performed.
Collapse
Affiliation(s)
- Anna Gazzola
- Hematopathology Unit, IRCCS Azienda Opedaliera-Universitaria di Bologna S. Orsola-Malpighi, 40138 Bologna, Italy; (A.G.); (C.M.)
| | - Mohsen Navari
- Department of Medical Biotechnology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh 95196-33787, Iran;
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh 95196-33787, Iran
- Bioinformatics Research Center, Mashhad University of Medical Sciences, Mashhad 91779-48564, Iran
| | - Claudia Mannu
- Hematopathology Unit, IRCCS Azienda Opedaliera-Universitaria di Bologna S. Orsola-Malpighi, 40138 Bologna, Italy; (A.G.); (C.M.)
| | - Riccardo Donelli
- Biobank of Research, IRCCS Azienda Opedaliera-Universitaria di Bologna, 40138 Bologna, Italy;
- Department of Medical and Surgical Sciences, Institute of Hematology and Medical Oncology “L&A Seràgnoli”, Bologna University School of Medicine, 40126 Bologna, Italy
| | - Maryam Etebari
- Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh 33787-95196, Iran;
| | - Pier Paolo Piccaluga
- Biobank of Research, IRCCS Azienda Opedaliera-Universitaria di Bologna, 40138 Bologna, Italy;
- Department of Medical and Surgical Sciences, Institute of Hematology and Medical Oncology “L&A Seràgnoli”, Bologna University School of Medicine, 40126 Bologna, Italy
| |
Collapse
|
6
|
Piccaluga PP, Paolini S, Visani G. Antigen Receptors Gene Analysis for Minimal Residual Disease Detection in Acute Lymphoblastic Leukemia: The Role of High Throughput Sequencing. HEMATO 2023; 4:42-55. [DOI: 10.3390/hemato4010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2025]
Abstract
The prognosis of adult acute lymphoblastic leukemia (ALL) is variable but more often dismal. Indeed, its clinical management is challenging, current therapies inducing complete remission in 65–90% of cases, but only 30–40% of patients being cured. The major determinant of treatment failure is relapse; consequently, measurement of residual leukemic blast (minimal residual disease, MRD) has become a powerful independent prognostic indicator in adults. Numerous evidences have also supported the clinical relevance of MRD assessment for risk class assignment and treatment selection. MRD can be virtually evaluated in all ALL patients using different technologies, such as polymerase chain reaction amplification of fusion transcripts and clonal rearrangements of antigen receptor genes, flow cytometric study of leukemic immunophenotypes and, the most recent, high throughput sequencing (HTS). In this review, the authors focused on the latest developments on MRD monitoring with emphasis on the use of HTS, as well as on the clinical impact of MRD monitoring.
Collapse
Affiliation(s)
- Pier Paolo Piccaluga
- Biobank of Research and Institute of Hematology and Medical Oncology “L. and A. Seràgnoli”, IRCCS Azienda Opedaliera-Universitaria S. Orsola-Malpighi Hospital, 40138 Bologna, Italy
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna School of Medicine, 40126 Bologna, Italy
- Department of Pathology, School of Medicine, Jomo Kenyatta University of Agriculture and Technology, Juja, Nairobi P.O. Box 62000-00200, Kenya
| | - Stefania Paolini
- Biobank of Research and Institute of Hematology and Medical Oncology “L. and A. Seràgnoli”, IRCCS Azienda Opedaliera-Universitaria S. Orsola-Malpighi Hospital, 40138 Bologna, Italy
| | - Giuseppe Visani
- Hematology and Hematopoietic Stem Cell Transplant Center, AORMN, 61121 Pesaro, Italy
| |
Collapse
|
7
|
Chen YL, Ho CL, Hung CY, Chen WL, Chang C, Hou YH, Chen JR, Chen PJ, Chow NH, Huang W, Hsu YT, Chen TY, Liu T. Enhancing diagnosis of T-cell lymphoma using non-recombined T-cell receptor sequences. Front Oncol 2022; 12:1014132. [PMID: 36568146 PMCID: PMC9772823 DOI: 10.3389/fonc.2022.1014132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/25/2022] [Indexed: 12/13/2022] Open
Abstract
Clonality assessment, which can detect neoplastic T cells by identifying the uniquely recombined T-cell receptor (TCR) genes, provides important support in the diagnosis of T-cell lymphoma (TCL). BIOMED-2 is the gold standard clonality assay and has proven to be effective in European TCL patients. However, we failed to prove its sensitivity in Taiwanese TCL patients, especially based on the TCRβ gene. To explore potential impact of genetic background in the BIOMED-2 test, we analyzed TCRβ sequences of 21 healthy individuals and two TCL patients. This analysis suggests that genetic variations in the BIOMED-2 primer sites could not explain the difference in sensitivity. The BIOMED-2 test results of the two TCL patients were positive and negative, respectively. Interestingly, a higher percentage (>81%) of non-recombined TCRβ sequences was observed in the test-negative patient than those of the test-positive patient and all healthy individuals (13~66%). The result suggests a new TCR target for enhancing TCL diagnosis. To further explore the hypothesis, we proposed a cost-effective digital PCR assay that quantifies the relative abundance of non-recombined TCRβ sequences containing a J2-2P~J2-3 segment. With the digital PCR assay, bone marrow specimens from TCL patients (n=9) showed a positive outcome (i.e., the relative abundance of the J2-2P~J2-3 sequences ≧5%), whereas non-TCL patients (n=6) gave a negative result. As five of nine TCL patients had a negative BIOMED-2 test result, the J2-2P~J2-3 sequences may improve TCL detection. This is the first report showing the capability of characterizing non-recombined TCR sequences as a supplementary strategy for the BIOMED-2 clonality test.
Collapse
Affiliation(s)
- Yi-Lin Chen
- Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan,Molecular Medicine Core Laboratory, Research Center of Clinical Medicine, National Cheng Kung University Hospital, Tainan, Taiwan,Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chung-Liang Ho
- Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan,Molecular Medicine Core Laboratory, Research Center of Clinical Medicine, National Cheng Kung University Hospital, Tainan, Taiwan,Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chen-Yan Hung
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Wan-Li Chen
- Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan,Molecular Medicine Core Laboratory, Research Center of Clinical Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Chen Chang
- Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Yi-Hsin Hou
- Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan,Molecular Medicine Core Laboratory, Research Center of Clinical Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Jian-Rong Chen
- Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan,Molecular Medicine Core Laboratory, Research Center of Clinical Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Pin-Jun Chen
- Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Nan-Haw Chow
- Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan,Molecular Medicine Core Laboratory, Research Center of Clinical Medicine, National Cheng Kung University Hospital, Tainan, Taiwan,Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wenya Huang
- Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan,Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Ting Hsu
- Section of Hematology/Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Tsai-Yun Chen
- Section of Hematology/Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Tsunglin Liu
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan,*Correspondence: Tsunglin Liu,
| |
Collapse
|
8
|
Cullen JN, Martin J, Vilella AJ, Treeful A, Sargan D, Bradley A, Friedenberg SG. Development and application of a next-generation sequencing protocol and bioinformatics pipeline for the comprehensive analysis of the canine immunoglobulin repertoire. PLoS One 2022; 17:e0270710. [PMID: 35802654 PMCID: PMC9269486 DOI: 10.1371/journal.pone.0270710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 06/15/2022] [Indexed: 11/18/2022] Open
Abstract
Profiling the adaptive immune repertoire using next generation sequencing (NGS) has become common in human medicine, showing promise in characterizing clonal expansion of B cell clones through analysis of B cell receptors (BCRs) in patients with lymphoid malignancies. In contrast, most work evaluating BCR repertoires in dogs has employed traditional PCR-based approaches analyzing the IGH locus only. The objectives of this study were to: (1) describe a novel NGS protocol to evaluate canine BCRs; (2) develop a bioinformatics pipeline for processing canine BCR sequencing data; and (3) apply these methods to derive insights into BCR repertoires of healthy dogs and dogs undergoing treatment for B-cell lymphoma. RNA from peripheral blood mononuclear cells of healthy dogs (n = 25) and dogs newly diagnosed with intermediate-to-large B-cell lymphoma (n = 18) with intent to pursue chemotherapy was isolated, converted into cDNA and sequenced by NGS. The BCR repertoires were identified and quantified using a novel analysis pipeline. The IGK repertoires of the healthy dogs were far less diverse compared to IGL which, as with IGH, was highly diverse. Strong biases at key positions within the CDR3 sequence were identified within the healthy dog BCR repertoire. For a subset of the dogs with B-cell lymphoma, clonal expansion of specific IGH sequences pre-treatment and reduction post-treatment was observed. The degree of expansion and reduction correlated with the clinical outcome in this subset. Future studies employing these techniques may improve disease monitoring, provide earlier recognition of disease progression, and ultimately lead to more targeted therapeutics.
Collapse
Affiliation(s)
- Jonah N. Cullen
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, Minnesota, United States of America
| | - Jolyon Martin
- Wellcome Trust Genome Campus, Hinxton, Saffron Walden, United Kingdom
- PetMedix Ltd, Glenn Berge Building, Babraham Research Campus, Cambridge, United Kingdom
| | - Albert J. Vilella
- PetMedix Ltd, Glenn Berge Building, Babraham Research Campus, Cambridge, United Kingdom
| | - Amy Treeful
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, Minnesota, United States of America
| | - David Sargan
- Department of Veterinary Medicine, Madingley Road, Cambridge, United Kingdom
| | - Allan Bradley
- Wellcome Trust Genome Campus, Hinxton, Saffron Walden, United Kingdom
- PetMedix Ltd, Glenn Berge Building, Babraham Research Campus, Cambridge, United Kingdom
- Department of Medicine, Jeffrey Cheah Biomedical Centre, Cambridge, United Kingdom
| | - Steven G. Friedenberg
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
9
|
LymphoTrack Is Equally Sensitive as PCR GeneScan and Sanger Sequencing for Detection of Clonal Rearrangements in ALL Patients. Diagnostics (Basel) 2022; 12:diagnostics12061389. [PMID: 35741199 PMCID: PMC9222020 DOI: 10.3390/diagnostics12061389] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/26/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022] Open
Abstract
Monoclonal rearrangements of immunoglobulin (Ig) genes and T-cell receptor (TCR) genes are used for minimal measurable disease in acute lymphoblastic leukemia (ALL). The golden standard for screening of gene rearrangements in ALL has been PCR GeneScan and Sanger sequencing, which are laborsome and time-consuming methods. More rapid next-generation sequencing methods, such as LymphoTrack could possibly replace PCR GeneScan and Sanger sequencing for clonality assessment. Our aim was to evaluate to what extent LymphoTrack can replace PCR GeneScan and Sanger sequencing concerning sensitivity and quantifiability in clonality assessment in 78 ALL samples. With LymphoTrack, clonality assessment was based on the %Total reads, where ≥10% was used as cut off for clonal rearrangements. The patients displayed 0 to 4 clonal rearrangements per assay. The detection rate (rearrangements detected with PCR GeneScan and/or Sanger sequencing, also detected with LymphoTrack) was 85/85 (100%) for IGH, 64/67 (96%) for IGK, 91/93 (98%) for TCRG and 34/35 (97%) for TCRB. Our findings demonstrate that LymphoTrack was equally sensitive in detecting clonal rearrangements as PCR GeneScan and Sanger Sequencing. The LymphoTrack assay is reliable and therefore applicable for clonal assessment in ALL patients in clinical laboratories.
Collapse
|
10
|
van Bladel DAG, van der Last-Kempkes JLM, Scheijen B, Groenen PJTA. Next-Generation Sequencing-Based Clonality Detection of Immunoglobulin Gene Rearrangements in B-Cell Lymphoma. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2453:7-42. [PMID: 35622318 DOI: 10.1007/978-1-0716-2115-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Immunoglobulin (IG) clonality assessment is a widely used supplementary test for the diagnosis of suspected lymphoid malignancies. The specific rearrangements of the immunoglobulin (IG) heavy and light chain genes act as a unique hallmark of a B-cell lymphoma, a feature that is used in clonality assessment. The widely used BIOMED-2/EuroClonality IG clonality assay, visualized by GeneScanning or heteroduplex analysis, has an unprecedented high detection rate because of the complementarity of this approach. However, the BIOMED-2/EuroClonality clonality assays have been developed for the assessment of specimens with optimal DNA quality. Further improvements for the assessment of samples with suboptimal DNA quality, such as from formalin-fixed paraffin-embedded (FFPE) specimens or specimens with a limited tumor burden, are required. The EuroClonality-NGS Working Group recently developed a next-generation sequencing (NGS)-based clonality assay for the detection of the IG heavy and kappa light chain rearrangements, using the same complementary approach as in the conventional assay. By employing next-generation sequencing, both the sensitivity and specificity of the clonality assay have increased, which not only is very useful for diagnostic clonality testing but also allows robust comparison of clonality patterns in a patient with multiple lymphoma's that have suboptimal DNA quality. Here, we describe the protocols for IG-NGS clonality assessment that are compatible for Ion Torrent and Illumina sequencing platforms including pre-analytical DNA isolation, the analytical phase, and the post-analytical data analysis.
Collapse
Affiliation(s)
- Diede A G van Bladel
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Blanca Scheijen
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | | |
Collapse
|
11
|
Experiencia en el uso de protocolos Biomed-2 para el estudio de reordenamientos de TCR e inmunoglobulinas en proliferaciones linfoides en el Instituto Nacional de Cancerología, Colombia. BIOMÉDICA 2022; 42:64-78. [PMID: 35866731 PMCID: PMC9385446 DOI: 10.7705/biomedica.5940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Indexed: 11/21/2022]
Abstract
Introducción. El consorcio europeo BIOMED-2 se creó para determinar si una población linfoide de difícil clasificación patológica es clonal. En Colombia, la implementación de estas pruebas comenzó en el 2015 en el Instituto Nacional de Cancerología E.S.E. (Bogotá). Objetivos. Determinar el comportamiento de las pruebas de reordenamiento clonal o clonalidad linfoide. y determinar las dificultades de su uso en nuestro medio verificando su adaptación local y los resultados en una serie retrospectiva de casos y consecutiva de proliferaciones linfoides sometidas a los protocolos BIOMED-2. Materiales y métodos. A partir de las historias clínicas, se recolectaron los datos clínicos e histológicos y los resultados de los análisis de los reordenamientos en todos los casos de proliferaciones linfoides sometidas a los protocolos BIOMED-2, entre febrero de 2015 y mayo de 2019. Resultados. Se hallaron 132 casos, de los cuales 47 se clasificaron mediante los protocolos de Biomed-2 como hiperplasias linfoides reactivas, 62 como linfomas T, 19 como linfomas B y 3 como neoplasias linfoides de linaje no establecido. Solo en un caso falló la extracción de ADN. Según estos resultados, la mayor dificultad diagnóstica para el patólogo fue el análisis de los infiltrados linfoides T, la mayoría (44) de los cuales correspondía a lesiones cutáneas. Conclusiones. Las pruebas de clonalidad pueden usarse en tejidos de diversa calidad en nuestro medio como ayuda en el diagnóstico de proliferaciones linfoides de difícil clasificación. Es importante hacerlas e interpretarlas de manera multidisciplinaria y considerar cada caso por separado.
Collapse
|
12
|
Kim M, Jeon K, Hutt K, Zlotnicki AM, Kim HJ, Lee J, Kim HS, Kang HJ, Lee YK. Immunoglobulin gene rearrangement in Koreans with multiple myeloma: Clonality assessment and repertoire analysis using next-generation sequencing. PLoS One 2021; 16:e0253541. [PMID: 34166440 PMCID: PMC8224885 DOI: 10.1371/journal.pone.0253541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 06/07/2021] [Indexed: 11/19/2022] Open
Abstract
Introduction We assessed the applicability of next-generation sequencing (NGS)-based IGH/IGK clonality testing and analyzed the repertoire of immunoglobulin heavy chain (IGH) or immunoglobulin kappa light chain (IGK) gene usage in Korean patients with multiple myeloma (MM) for the first time. Methods Fifty-nine bone marrow samples from 57 Korean patients with MM were analyzed, and NGS-based clonality testing that targeted the IGH and IGK genes was performed using IGH FR1 and IGK primer sets. Results Clonal IGH and IGK rearrangements were observed in 74.2% and 67.7% of samples from Korean patients with kappa-restricted MM, respectively (90.3% had one or both), and in 60.7% and 95.5% of samples from those with lambda-restricted MM, respectively (85.7% had one or both). In total, 88.1% of samples from Koreans with MM had clonal IGH and/or IGK rearrangement. Clonal rearrangement was not significantly associated with the bone marrow plasma cells as a proportion of all BM lymphoid cells. IGHV3-9 (11.63%) and IGHV4-31 (9.30%) were the most frequently reported IGHV genes and were more common in Koreans with MM than in Western counterparts. IGHD3-10 and IGHD3-3 (13.95% each) were the most frequent IGHD genes; IGHD3-3 was more common in Koreans with MM. No IGK rearrangement was particularly prevalent, but single IGKV-J rearrangements were less common in Koreans with kappa-restricted MM than in Western counterparts. IGKV4-1 was less frequent in Koreans regardless of light chain type. Otherwise, the usages of the IGH V, D, and J genes and of the IGK gene were like those observed in previous Western studies. Conclusion NGS-based IGH/IGK clonality testing ought to be applicable to most Koreans with MM. The overrepresentation of IGHV3-9, IGHV4-31, and IGHD3-3 along with the underrepresentation of IGKV4-1 and the differences in IGK gene rearrangement types suggest the existence of ethnicity-specific variations in this disease.
Collapse
Affiliation(s)
- Miyoung Kim
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Kibum Jeon
- Department of Laboratory Medicine, Hangang Sacred Heart Hospital, Seoul, South Korea
| | - Kasey Hutt
- Invivoscribe, Inc., San Diego, California, United States of America
| | | | - Hyo Jung Kim
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, South Korea
| | - Jiwon Lee
- Department of Laboratory Medicine, Green Cross Laboratories, Yongin, South Korea
| | - Han-Sung Kim
- Department of Laboratory Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, South Korea
| | - Hee Jung Kang
- Department of Laboratory Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, South Korea
| | - Young Kyung Lee
- Department of Laboratory Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, South Korea
- * E-mail:
| |
Collapse
|
13
|
Abstract
Non-Hodgkin lymphoma encompasses a diverse group of B-cell and T-cell neoplasms. Current classification is based on clinical information, histologic assessment, immunophenotypic characteristics, and molecular alterations. A wide range of genetic alterations, including large chromosomal structural rearrangements, aneuploidies, point mutations, and copy number alterations, have been reported across all types of lymphomas. Many of these are now incorporated into the World Health Organization-defined criteria for the diagnostic evaluation of patients with lymphoid proliferations and, therefore, their accurate identification is paramount for diagnosis, subclassification, and selection of treatment. In addition to their value in the diagnostic setting, many alterations that are not routinely evaluated in standard clinical practice may still define specific disease entities as they have important implications in risk stratification, as well as roles in emerging alternate therapies and disease monitoring. Because of the complexity and range of alterations, their accurate and sensitive assessment requires a careful selection of technology. Here, we discuss the most commonly used molecular techniques in current clinical practice and highlight some of the benefits and pitfalls based on the type of alteration.
Collapse
|
14
|
Johansson G, Kaltak M, Rîmniceanu C, Singh AK, Lycke J, Malmeström C, Hühn M, Vaarala O, Cardell S, Ståhlberg A. Ultrasensitive DNA Immune Repertoire Sequencing Using Unique Molecular Identifiers. Clin Chem 2021; 66:1228-1237. [PMID: 32814950 DOI: 10.1093/clinchem/hvaa159] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Immune repertoire sequencing of the T-cell receptor can identify clonotypes that have expanded as a result of antigen recognition or hematological malignancies. However, current sequencing protocols display limitations with nonuniform amplification and polymerase-induced errors during sequencing. Here, we developed a sequencing method that overcame these issues and applied it to γδ T cells, a cell type that plays a unique role in immunity, autoimmunity, homeostasis of intestine, skin, adipose tissue, and cancer biology. METHODS The ultrasensitive immune repertoire sequencing method used PCR-introduced unique molecular identifiers. We constructed a 32-panel assay that captured the full diversity of the recombined T-cell receptor delta loci in γδ T cells. The protocol was validated on synthetic reference molecules and blood samples of healthy individuals. RESULTS The 32-panel assay displayed wide dynamic range, high reproducibility, and analytical sensitivity with single-nucleotide resolution. The method corrected for sequencing-depended quantification bias and polymerase-induced errors and could be applied to both enriched and nonenriched cells. Healthy donors displayed oligoclonal expansion of γδ T cells and similar frequencies of clonotypes were detected in both enrichment and nonenriched samples. CONCLUSIONS Ultrasensitive immune repertoire sequencing strategy enables quantification of individual and specific clonotypes in a background that can be applied to clinical as well as basic application areas. Our approach is simple, flexible, and can easily be implemented in any molecular laboratory.
Collapse
Affiliation(s)
- Gustav Johansson
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.,Translational Science & Experimental Medicine, Research and Early Development, Respiratory, Inflammation and Autoimmune (RIA), Gothenburg, Sweden
| | - Melita Kaltak
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Cristiana Rîmniceanu
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 7A, University of Gothenburg, Gothenburg, Sweden
| | - Avadhesh K Singh
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 7A, University of Gothenburg, Gothenburg, Sweden
| | - Jan Lycke
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Clas Malmeström
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Michael Hühn
- Translational Science & Experimental Medicine, Research and Early Development, Respiratory, Inflammation and Autoimmune (RIA), Gothenburg, Sweden
| | - Outi Vaarala
- Respiratory Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Susanna Cardell
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 7A, University of Gothenburg, Gothenburg, Sweden
| | - Anders Ståhlberg
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
15
|
Atli EI, Gurkan H, Atli E, Kirkizlar HO, Yalcintepe S, Demir S, Demirci U, Eker D, Mail C, Kalkan R, Demir AM. The Importance of Targeted Next-Generation Sequencing Usage in Cytogenetically Normal Myeloid Malignancies. Mediterr J Hematol Infect Dis 2021; 13:e2021013. [PMID: 33489052 PMCID: PMC7813283 DOI: 10.4084/mjhid.2021.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/13/2020] [Indexed: 02/07/2023] Open
Abstract
Advanced diagnostic methods give an advantage for the identification of abnormalities in myeloid malignancies. Various researchers have shown the potential importance of genetic tests before the disease's onset and in remission. Large testing panels prevent false-negative results in myeloid malignancies. However, the critical question is how the results of conventional cytogenetic and molecular cytogenetic techniques can be merged with NGS technologies. In this paper, we drew an algorithm for the evaluation of myeloid malignancies. To evaluate genetic abnormalities, we performed cytogenetics, molecular cytogenetics, and NGS testing in myeloid malignancies. In this study, we analyzed 100 patients admitted to the Medical Genetics Laboratory with different myeloid malignancies. We highlighted the possible diagnostic algorithm for cytogenetically normal cases. We applied NGS 141 gene panel for cytogenetically normal patients, and we detected two or more pathogenic variations in 61 out of 100 patients (61%). NGS's pathogenic variation detection rate varies in disease groups: they were present in 85% of A.M.L. and 23% of M.D.S. Here, we identified 24 novel variations out of total pathogenic variations in myeloid malignancies. A total of 18 novel variations were identified in A.M.L., and 6 novel variations were identified in M.D.S. Despite long turnaround times, conventional techniques are still a golden standard for myeloid malignancies but sometimes cryptic gene fusions or complex abnormalities cannot be easily identified by conventional techniques. In these conditions, advanced technologies like NGS are highly recommended.
Collapse
Affiliation(s)
- Emine Ikbal Atli
- Faculty of Medicine, Department of Medical Genetics, Edirne, Trakya University, Edirne, Turkey
| | - Hakan Gurkan
- Faculty of Medicine, Department of Medical Genetics, Edirne, Trakya University, Edirne, Turkey
| | - Engin Atli
- Faculty of Medicine, Department of Medical Genetics, Edirne, Trakya University, Edirne, Turkey
| | - Hakki Onur Kirkizlar
- Faculty of Medicine, Department of Hematology, Trakya University, Edirne, Turkey
| | - Sinem Yalcintepe
- Faculty of Medicine, Department of Medical Genetics, Edirne, Trakya University, Edirne, Turkey
| | - Selma Demir
- Faculty of Medicine, Department of Medical Genetics, Edirne, Trakya University, Edirne, Turkey
| | - Ufuk Demirci
- Faculty of Medicine, Department of Hematology, Trakya University, Edirne, Turkey
| | - Damla Eker
- Faculty of Medicine, Department of Medical Genetics, Edirne, Trakya University, Edirne, Turkey
| | - Cisem Mail
- Faculty of Medicine, Department of Medical Genetics, Edirne, Trakya University, Edirne, Turkey
| | - Rasime Kalkan
- Faculty of Medicine, Department of Medical Genetics, Near East University, Nicosia, Cyprus
| | - Ahmet Muzaffer Demir
- Faculty of Medicine, Department of Hematology, Trakya University, Edirne, Turkey
| |
Collapse
|
16
|
Lee S, Song S, Yoon SS, Koh Y, Yun H. Proper Read Filtering Method to Adequately Analyze Whole-Transcriptome Sequencing and RNA Based Immune Repertoire Sequencing Data for Tumor Milieu Research. Cancers (Basel) 2020; 12:cancers12123693. [PMID: 33317041 PMCID: PMC7763492 DOI: 10.3390/cancers12123693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The recent advancement in high-throughput sequencing has become indispensable for immune-genomics and profiling the T- and B-cell receptor repertoires. Immune repertoire sequencing (IR-seq) and whole transcriptome sequencing (WTS) can be implemented to investigate and quantitatively characterize the complex pattern of the CDR3 region. We conducted T-cell diversity analysis result comparisons of these sequencing methods and suggest an intuitive approach to discriminate reliable TCR sequences and clonotype patterns from capturing errors. Although bulk-RNA sequencing is commonly used for cancer analysis, we confirmed capturing highly enriched TCR transcripts with IR-seq is more reliable for accurate immune repertoire discovery, and singleton read filtering criteria should be applied to capture true clonotypes from error-prone sequencing data. The use of such well-established data and analytical methodologies can broaden understanding of antigen specificity in immunity and enabling efficient therapeutic antibody finding. Abstract Analysis of the T-cell receptor (TCR) repertoire is essential to characterize the extensive collections of T-cell populations with recognizing antigens in cancer research, and whole transcriptome sequencing (WTS) and immune repertoire sequencing (IR-seq) are commonly used for this measure. To date, no standard read filtering method for IR measurement has been presented. We assessed the diversity of the TCR repertoire results from the paired WTS and IR-seq data of 31 multiple myeloma (MM) patients. To invent an adequate read filtering strategy for IR analysis, we conducted comparisons with WTS results. First, our analyses for determining an optimal threshold for selecting clonotypes showed that the clonotypes supported by a single read largely affected the shared clonotypes and manifested distinct patterns of mapping qualities, unlike clonotypes with multiple reads. Second, although IR-seq could reflect a wider TCR region with a higher capture rate than WTS, an adequate comparison with the removal of unwanted bias from potential sequencing errors was possible only after applying our read filtering strategy. As a result, we suggest that TCR repertoire analysis be carried out through IR-seq to produce reliable and accurate results, along with the removal of single-read clonotypes, to conduct immune research in cancer using high-throughput sequencing.
Collapse
Affiliation(s)
- Sungyoung Lee
- Center for Precision Medicine, Seoul National University Hospital, Seoul 03082, Korea;
| | - Seulki Song
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea; (S.S.); (S.-S.Y.)
| | - Sung-Soo Yoon
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea; (S.S.); (S.-S.Y.)
- Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Korea
| | - Youngil Koh
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea; (S.S.); (S.-S.Y.)
- Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Korea
- Correspondence: (Y.K.); (H.Y.)
| | - Hongseok Yun
- Center for Precision Medicine, Seoul National University Hospital, Seoul 03082, Korea;
- Correspondence: (Y.K.); (H.Y.)
| |
Collapse
|
17
|
Zhou J, Zhang W, Zhang Y, Zheng S, Zhou L, Yang X, Wang C. Evaluation of the clinicopathologic features of diffuse large B cell lymphoma after CD19-targeted CAR T-cell therapy emphasizing the potential diagnostic pitfalls. Am J Transl Res 2020; 12:6751-6762. [PMID: 33194070 PMCID: PMC7653563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
Clinicopathologic data of 16 cases of DLBCL, NOS after CD19-targeted CAR T-cell therapy were retrospectively reviewed. Statistical analyses were performed to investigate the diagnostic agreement and indicate the relationship of the given types or their alterations (Group I versus Group II) to the prognosis. A total of 5 distinct histologic patterns were summarized. The CAR T cells were somewhat atypical, most of which were CD8 positive in the most cases (86.7%, 13/15), with a relatively high Ki-67 (60-90%). The rearrangement of BCR was demonstrated in all cases. The diagnostic test showed that the diagnostic accuracy in cases of types III (7%) and V (7%) was typically low; the diagnostic agreement in cases of type IV (for B, T, or nonlymphoma) and V (for T, or nonlymphoma) was consistently unsatisfactory. The rates of complete response (CR), partial response (PR), and progressive disease (PD) were 18.8% (3/16), 31.3% (5/16), 50% (8/16), respectively. In the follow-up, 25% (4/16) of cases experienced a recurrence and 31.3% (5/16) had died, of which 3 cases succumbed to the side effects. Group II had better disease-free survival (DFS, P=0.009). This study first described the pathologic features of DLBCL after CD19-targeted CAR T-cell therapy. Familiarity with these histologic features and combinations of medical history and genetic analyses facilitate avoiding misdiagnoses. Multiple biopsies are potentially helpful to estimate the treatment effects or prognosis, and stable alterations to any type of III to V, but not a single given one, may indicate a good prognosis.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of MedicineShanghai, China
| | - Wenjing Zhang
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of MedicineShanghai, China
| | - Yanping Zhang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou, Henan, China
| | - Saifang Zheng
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of MedicineShanghai, China
| | - Luting Zhou
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of MedicineShanghai, China
| | - Xiaoqun Yang
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of MedicineShanghai, China
| | - Chaofu Wang
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of MedicineShanghai, China
| |
Collapse
|
18
|
Tibaldi E, Gnudi F, Panzacchi S, Mandrioli D, Vornoli A, Manservigi M, Sgargi D, Falcioni L, Bua L, Belpoggi F. Identification of aspartame-induced haematopoietic and lymphoid tumours in rats after lifetime treatment. Acta Histochem 2020; 122:151548. [PMID: 32622430 DOI: 10.1016/j.acthis.2020.151548] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/02/2020] [Accepted: 03/20/2020] [Indexed: 12/22/2022]
Abstract
Lymphomas and leukaemias involving the lung have in some cases been hard to distinguish from respiratory tract infection in Sprague-Dawley (SD) rats from long-term bioassays. In order to differentiate between tumours and immune cell infiltrates, updated pathological criteria and nomenclature were used and immunohistochemistry (IHC) was applied to haematopoietic and lymphoid tissue tumours (HLTs) in the original prenatal long-term Aspartame (APM) study performed by the Ramazzini Institute (RI). All 78 cases of HLTs from treated and control groups were re-examined based on light microscopic morphological characteristics and subjected to a panel of IHC markers including Ki67, CD3, PAX5, CD20, CD68, TdT, CD45, CD14 and CD33. The analysis confirmed the diagnoses of HLTs in 72 cases, identified 3 cases of preneoplastic lesions (lymphoid hyperplasia), and categorized 3 cases as inflammatory lesions. A statistically significant increase in total HLTs (p = 0.006), total lymphomas (p = 0.032) and total leukaemias (p = 0.031) in treated female rats was confirmed (high dose vs control), and a statistically significant linear trend for each HLT type was also observed. After the HLT cases re-evaluation, the results obtained are consistent with those reported in the previous RI publication and reinforce the hypothesis that APM has a leukaemogenic and lymphomatogenic effect.
Collapse
|
19
|
Meacham PJ, Williams AM, Strawderman M, Baran AM, Archibald WJ, Wallace DS, Tschernia NP, Burack WR, Barr PM, Zent CS. Additional B-cell malignancies in patients with chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL). Leuk Lymphoma 2020; 61:1636-1644. [PMID: 32175786 DOI: 10.1080/10428194.2020.1737690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Family and migration studies suggest a genetic risk of developing chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL). We hypothesized that CLL patients have an increased risk of additional clonally unrelated B-cell malignancies. To test this, we studied 467 CLL patients (2743 person-years (PYs)) at a single institution over 17 years. The incidence rate (IR) of any additional B-cell lymphoid malignancy was 10.9 per 1000 PYs (n = 30, 6.4%). Eighteen (4%) patients had a clonally unrelated B-cell malignancy (IR = 6.6 per 1000 PYs). Standardized incidence ratios (SIRs) were used to compare the incidence of additional clonally unrelated B-cell malignancies in CLL patients to the age- and sex-matched expected rates in the USA generated from the Surveillance, Epidemiology, and End Results (SEER) database. For the subset of 13 patients having data for comparison in the SEER database, the SIR was 5.41 (95% CI = 2.9, 9.3) which is supportive of our hypothesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Walter Richard Burack
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | | | | |
Collapse
|
20
|
Agostinelli C, Akarca AU, Ramsay A, Rizvi H, Rodriguez-Justo M, Pomplun S, Proctor I, Sabattini E, Linch D, Daw S, Pittaluga S, Pileri SA, Jaffe ES, Quintanilla-Martinez L, Marafioti T. Novel markers in pediatric-type follicular lymphoma. Virchows Arch 2019; 475:771-779. [PMID: 31686194 PMCID: PMC6881426 DOI: 10.1007/s00428-019-02681-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 04/29/2019] [Accepted: 05/31/2019] [Indexed: 12/19/2022]
Abstract
The aim of this study was to review the histopathological, phenotypic, and molecular characteristics of pediatric-type follicular lymphoma (PTFL) and to assess the diagnostic value of novel immunohistochemical markers in distinguishing PTFL from follicular hyperplasia (FH). A total of 13 nodal PTFLs were investigated using immunohistochemistry, fluorescence in situ hybridization (FISH), and PCR and were compared with a further 20 reactive lymph nodes showing FH. Morphologically, PTFL cases exhibited a follicular growth pattern with irregular lymphoid follicles in which the germinal centers were composed of numerous blastoid cells showing a starry-sky appearance. Immunohistochemistry highlighted preserved CD10 (13/13) and BCL6 (13/13) staining, CD20 (13/13) positivity, a K light chain predominance (7/13), and partial BCL2 expression in 6/13 cases (using antibodies 124, E17, and SP66). The germinal center (GC)–associated markers stathmin and LLT-1 were positive in most of the cases (12/13 and 12/13, respectively). Interestingly, FOXP-1 was uniformly positive in PTFL (12/13 cases) in contrast to reactive GCs in FH, where only a few isolated positive cells were observed. FISH revealed no evidence of BCL2, BCL6, or MYC rearrangements in the examined cases. By PCR, clonal immunoglobulin gene rearrangements were detected in 100% of the tested PTFL cases. Our study confirmed the unique morphological and immunophenotypic features of PTFL and suggests that FOXP-1 can represent a novel useful diagnostic marker in the differential diagnosis between PTFL and FH.
Collapse
Affiliation(s)
- Claudio Agostinelli
- Haematopathology Unit, Department of Experimental Diagnostic and Specialty Medicine, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Ayse U Akarca
- Department of Pathology, University College London, London, UK
| | - Alan Ramsay
- Department of Cellular Pathology, University College Hospital London, London, UK
| | - Hasan Rizvi
- Department of Cellular Pathology, Barts Health NHS Trust, London, UK
| | - Manuel Rodriguez-Justo
- Department of Pathology, University College London, London, UK.,Department of Cellular Pathology, University College Hospital London, London, UK
| | - Sabine Pomplun
- Department of Cellular Pathology, University College Hospital London, London, UK
| | - Ian Proctor
- Department of Cellular Pathology, University College Hospital London, London, UK
| | - Elena Sabattini
- Haematopathology Unit, Department of Experimental Diagnostic and Specialty Medicine, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - David Linch
- Department of Haematology, University College London Cancer Institute, London, UK
| | - Stephen Daw
- Children and Young People's Cancer Service, University College Hospital London, London, UK
| | - Stefania Pittaluga
- Haematology section, Laboratory of Pathology, Center for Cancer Research National Cancer Institute, Bethesda, MD, USA
| | - Stefano A Pileri
- Division of Haematopathology, European Institute of Oncology, University Hospital of Tübingen, Institute of Pathology, Tübingen, Germany
| | - Elaine S Jaffe
- Haematology section, Laboratory of Pathology, Center for Cancer Research National Cancer Institute, Bethesda, MD, USA
| | | | - Teresa Marafioti
- Department of Pathology, University College London, London, UK. .,Department of Cellular Pathology, University College Hospital London, London, UK.
| |
Collapse
|
21
|
|
22
|
Nachmias B, Sandler V, Slyusarevsky E, Pogrebijski G, Kritchevsky S, Ben-Yehuda D, Goldschmidt N, Gatt ME. Evaluation of cerebrospinal clonal gene rearrangement in newly diagnosed non-Hodgkin's lymphoma patients. Ann Hematol 2019; 98:2561-2567. [PMID: 31515574 DOI: 10.1007/s00277-019-03798-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 09/08/2019] [Indexed: 11/24/2022]
Abstract
Overt central nervous system (CNS) involvement in aggressive non-Hodgkin's lymphoma (NHL) is rare at diagnosis. Much effort is put to identify risk factors for occult CNS involvement, and the risk assessment of CNS relapse. Prophylactic treatment carries risk of adverse events and its efficacy is not clear. Detection of cerebrospinal fluid molecular gene rearrangement (GRR) as a method to detect occult disease has been studied in acute leukemia and primary CNS lymphoma. To date, the capacity of a positive GRR in newly diagnosed NHL patients to predict CNS relapse has not been addressed. We retrospectively studied the prognostic value of GRR in cerebrospinal fluid samples of 148 newly diagnosed patients with high grade NHL. We demonstrate that positive GRR at diagnosis does not affect PFS or OS and did not predict CNS relapse. However, although numbers were small, repeated positive samples (≥ 2) correlated with a higher risk for CNS relapse (p = 0.048), possibly stressing the need for an aggressive preventive approach.
Collapse
Affiliation(s)
- Boaz Nachmias
- Hematology Department, Hadassah Hebrew University Medical Center, POB 12000, Jerusalem, Israel.
| | - Veronica Sandler
- Hematology Department, Hadassah Hebrew University Medical Center, POB 12000, Jerusalem, Israel
| | - Elena Slyusarevsky
- Hematology Department, Hadassah Hebrew University Medical Center, POB 12000, Jerusalem, Israel
| | - Galina Pogrebijski
- Hematology Department, Hadassah Hebrew University Medical Center, POB 12000, Jerusalem, Israel
| | - Svetlana Kritchevsky
- Hematology Department, Hadassah Hebrew University Medical Center, POB 12000, Jerusalem, Israel
| | - Dina Ben-Yehuda
- Hematology Department, Hadassah Hebrew University Medical Center, POB 12000, Jerusalem, Israel
| | - Neta Goldschmidt
- Hematology Department, Hadassah Hebrew University Medical Center, POB 12000, Jerusalem, Israel
| | - Moshe E Gatt
- Hematology Department, Hadassah Hebrew University Medical Center, POB 12000, Jerusalem, Israel
| |
Collapse
|
23
|
Scheijen B, Meijers RWJ, Rijntjes J, van der Klift MY, Möbs M, Steinhilber J, Reigl T, van den Brand M, Kotrová M, Ritter JM, Catherwood MA, Stamatopoulos K, Brüggemann M, Davi F, Darzentas N, Pott C, Fend F, Hummel M, Langerak AW, Groenen PJTA. Next-generation sequencing of immunoglobulin gene rearrangements for clonality assessment: a technical feasibility study by EuroClonality-NGS. Leukemia 2019; 33:2227-2240. [PMID: 31197258 PMCID: PMC6756030 DOI: 10.1038/s41375-019-0508-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/25/2019] [Accepted: 04/26/2019] [Indexed: 11/09/2022]
Abstract
One of the hallmarks of B lymphoid malignancies is a B cell clone characterized by a unique footprint of clonal immunoglobulin (IG) gene rearrangements that serves as a diagnostic marker for clonality assessment. The EuroClonality/BIOMED-2 assay is currently the gold standard for analyzing IG heavy chain (IGH) and κ light chain (IGK) gene rearrangements of suspected B cell lymphomas. Here, the EuroClonality-NGS Working Group presents a multicentre technical feasibility study of a novel approach involving next-generation sequencing (NGS) of IGH and IGK loci rearrangements that is highly suitable for detecting IG gene rearrangements in frozen and formalin-fixed paraffin-embedded tissue specimens. By employing gene-specific primers for IGH and IGK amplifying smaller amplicon sizes in combination with deep sequencing technology, this NGS-based IG clonality analysis showed robust performance, even in DNA samples of suboptimal DNA integrity, and a high clinical sensitivity for the detection of clonal rearrangements. Bioinformatics analyses of the high-throughput sequencing data with ARResT/Interrogate, a platform developed within the EuroClonality-NGS Working Group, allowed accurate identification of clonotypes in both polyclonal cell populations and monoclonal lymphoproliferative disorders. This multicentre feasibility study is an important step towards implementation of NGS-based clonality assessment in clinical practice, which will eventually improve lymphoma diagnostics.
Collapse
Affiliation(s)
- Blanca Scheijen
- Department of Pathology, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - Ruud W J Meijers
- Department of Immunology, Laboratory Medical Immunology, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Jos Rijntjes
- Department of Pathology, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - Michèle Y van der Klift
- Department of Immunology, Laboratory Medical Immunology, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Markus Möbs
- Charité-Universitätsmedizin Berlin, Institute of Pathology, D-10117, Berlin, Germany
| | - Julia Steinhilber
- Institute of Pathology and Neuropathology, Comprehensive Cancer Center, University Hospital Tübingen, 72076, Tübingen, Germany
| | - Tomas Reigl
- Molecular Medicine Program, Central European Institute of Technology, Masaryk University, 62500, Brno, Czech Republic
| | - Michiel van den Brand
- Department of Pathology, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - Michaela Kotrová
- Department of Hematology, University Hospital Schleswig-Holstein, 24105, Kiel, Germany
| | - Julia-Marie Ritter
- Charité-Universitätsmedizin Berlin, Institute of Pathology, D-10117, Berlin, Germany
| | - Mark A Catherwood
- Department of Haematology, Belfast City Hospital, Belfast BT9 7AB, UK
| | | | - Monika Brüggemann
- Department of Hematology, University Hospital Schleswig-Holstein, 24105, Kiel, Germany
| | - Frédéric Davi
- Hematology Department, Hospital Pitié-Salpêtrière and Sorbonne University, 75013, Paris, France
| | - Nikos Darzentas
- Molecular Medicine Program, Central European Institute of Technology, Masaryk University, 62500, Brno, Czech Republic.,Department of Hematology, University Hospital Schleswig-Holstein, 24105, Kiel, Germany
| | - Christiane Pott
- Department of Hematology, University Hospital Schleswig-Holstein, 24105, Kiel, Germany
| | - Falko Fend
- Institute of Pathology and Neuropathology, Comprehensive Cancer Center, University Hospital Tübingen, 72076, Tübingen, Germany
| | - Michael Hummel
- Charité-Universitätsmedizin Berlin, Institute of Pathology, D-10117, Berlin, Germany
| | - Anton W Langerak
- Department of Immunology, Laboratory Medical Immunology, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Patricia J T A Groenen
- Department of Pathology, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands.
| | | |
Collapse
|
24
|
RNA sequencing identifies clonal structure of T-cell repertoires in patients with adult T-cell leukemia/lymphoma. NPJ Genom Med 2019; 4:10. [PMID: 31069115 PMCID: PMC6502857 DOI: 10.1038/s41525-019-0084-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 04/11/2019] [Indexed: 12/11/2022] Open
Abstract
The diversity of T-cell receptor (TCR) repertoires, as generated by somatic DNA rearrangements, is central to immune system function. High-throughput sequencing technologies now allow examination of antigen receptor repertoires at single-nucleotide and, more recently, single-cell resolution. The TCR repertoire can be altered in the context of infections, malignancies or immunological disorders. Here we examined the diversity of TCR clonality and its association with pathogenesis and prognosis in adult T-cell leukemia/lymphoma (ATL), a malignancy caused by infection with human T-cell leukemia virus type-1 (HTLV-1). We analyzed 62 sets of high-throughput RNA sequencing data from 59 samples of HTLV-1−infected individuals—asymptomatic carriers (ACs), smoldering, chronic, acute and lymphoma ATL subtypes—and three uninfected controls to evaluate TCR distribution. Based on these TCR profiles, CD4-positive cells and ACs showed polyclonal patterns, whereas ATL patients showed oligo- or monoclonal patterns (with 446 average clonotypes across samples). Expression of TCRα and TCRβ genes in the dominant clone differed among the samples. ACs, CD4-positive samples and smoldering patients showed significantly higher TCR diversity compared with chronic, acute and lymphoma subtypes. CDR3 sequence length distribution, amino acid conservation and gene usage variability for ATL patients resembled those of peripheral blood cells from ACs and healthy donors. Thus, determining monoclonal architecture and clonal diversity by RNA sequencing might be useful for prognostic purposes and for personalizing ATL diagnosis and assessment of treatments.
Collapse
|
25
|
Palumbo GA, Stella S, Pennisi MS, Pirosa C, Fermo E, Fabris S, Cattaneo D, Iurlo A. The Role of New Technologies in Myeloproliferative Neoplasms. Front Oncol 2019; 9:321. [PMID: 31106152 PMCID: PMC6498877 DOI: 10.3389/fonc.2019.00321] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 04/09/2019] [Indexed: 12/17/2022] Open
Abstract
The hallmark of BCR-ABL1-negative myeloproliferative neoplasms (MPNs) is the presence of a driver mutation in JAK2, CALR, or MPL gene. These genetic alterations represent a key feature, useful for diagnostic, prognostic and therapeutical approaches. Molecular biology tests are now widely available with different specificity and sensitivity. Recently, the allele burden quantification of driver mutations has become a useful tool, both for prognostication and efficacy evaluation of therapies. Moreover, other sub-clonal mutations have been reported in MPN patients, which are associated with poorer prognosis. ASXL1 mutation appears to be the worst amongst them. Both driver and sub-clonal mutations are now taken into consideration in new prognostic scoring systems and may be better investigated using next generation sequence (NGS) technology. In this review we summarize the value of NGS and its contribution in providing a comprehensive picture of mutational landscape to guide treatment decisions. Finally, discussing the role that NGS has in defining the potential risk of disease development, we forecast NGS as the standard molecular biology technique for evaluating these patients.
Collapse
Affiliation(s)
- Giuseppe A Palumbo
- Department of Scienze Mediche, Chirurgiche e Tecnologie Avanzate "G.F. Ingrassia," University of Catania, Catania, Italy
| | - Stefania Stella
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele, Catania, Italy.,Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Maria Stella Pennisi
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele, Catania, Italy.,Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Cristina Pirosa
- Postgraduate School of Hematology, University of Catania, Catania, Italy
| | - Elisa Fermo
- Hematology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sonia Fabris
- Hematology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniele Cattaneo
- Hematology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessandra Iurlo
- Hematology Division, Myeloproliferative Syndromes Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
26
|
Qayyum S, Bullock GC, Swerdlow SH, Brower R, Nikiforova M, Aggarwal N. Diagnostic Utility of Isolated Tube C Positivity in T-Cell Receptor β Testing Using BIOMED-2 Primers. Am J Clin Pathol 2019; 151:386-394. [PMID: 30534953 DOI: 10.1093/ajcp/aqy157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
OBJECTIVES T-cell receptor (TCR) gene rearrangement studies are widely used for assessing T-cell clonality. The frequency and significance of clonal peaks restricted to TCR β (TCRB) tube C are uncertain. We retrospectively reviewed 80 TCR studies performed on bone marrow/peripheral blood. METHODS TCRB and TCR γ (TCRG) analyses were performed using BIOMED-2 primers. A peak was considered clonal or atypical if it was reproducible and 5× or more or 3× to 5× polyclonal background, respectively. RESULTS TCRB analysis demonstrated 12 (15%) of 80 cases with one to four isolated peaks in tube C (>3×) with polyclonal pattern in tubes A and B. TCRG analysis was monoclonal in two cases (both definite T-cell neoplasms), polyclonal in four, and oligoclonal in six. Of the 10 cases without clone in TCRG, six had autoimmune disorder and none had T-cell neoplasm. CONCLUSIONS Peaks restricted to TCRB tube C in the TCR analysis may be misleading, as it is often not indicative of an overt T-cell neoplasm.
Collapse
Affiliation(s)
- Sohail Qayyum
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Grant C Bullock
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Steven H Swerdlow
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Raven Brower
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Marina Nikiforova
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Nidhi Aggarwal
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
27
|
Iqbal J, Amador C, McKeithan TW, Chan WC. Molecular and Genomic Landscape of Peripheral T-Cell Lymphoma. Cancer Treat Res 2019; 176:31-68. [PMID: 30596212 DOI: 10.1007/978-3-319-99716-2_2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Peripheral T-cell lymphoma (PTCL) is an uncommon group of lymphoma covering a diverse spectrum of entities. Little was known regarding the molecular and genomic landscapes of these diseases until recently but the knowledge is still quite spotty with many rarer types of PTCL remain largely unexplored. In this chapter, the recent findings from gene expression profiling (GEP) studies, including profiling data on microRNA, where available, will be presented with emphasis on the implication on molecular diagnosis, prognostication, and the identification of new entities (PTCL-GATA3 and PTCL-TBX21) in the PTCL-NOS group. Recent studies using next-generation sequencing have unraveled the mutational landscape in a number of PTCL entities leading to a marked improvement in the understanding of their pathogenesis and biology. While many mutations are shared among PTCL entities, the frequency varies and certain mutations are quite unique to a specific entity. For example, TET2 is often mutated but this is particularly frequent (70-80%) in angioimmunoblastic T-cell lymphoma (AITL) and IDH2 R172 mutations appear to be unique for AITL. In general, chromatin modifiers and molecular components in the CD28/T-cell receptor signaling pathways are frequently mutated. The major findings will be summarized in this chapter correlating with GEP data and clinical features where appropriate. The mutational landscape of cutaneous T-cell lymphoma, specifically on mycosis fungoides and Sezary syndrome, will also be discussed.
Collapse
Affiliation(s)
- Javeed Iqbal
- Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, US
| | - Catalina Amador
- Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, US
| | - Timothy W McKeithan
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, USA
| | - Wing C Chan
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, USA.
| |
Collapse
|
28
|
Piccaluga PP, Rapezzi D, Gazzola A, Malagola M, Visani G, Gallamini A. Resolving the diagnostic dilemma of T-cell clonal expansion after hematopoietic stem cell transplantation in T-cell lymphoma patients by TCR-gamma next generation sequencing. Bone Marrow Transplant 2019; 54:159-163. [PMID: 30116015 DOI: 10.1038/s41409-018-0268-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 06/04/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Pier Paolo Piccaluga
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy.
- Istituto Euro-Mediterraneo di Scienza e Tecnologia (IEMEST), Palermo, Italy.
- Jomo Kenyatta University of Agriculture and Technology, Juja, Kenya.
| | - Davide Rapezzi
- Hematology Unit, Ospedale Santa Croce e Carle, Cuneo, Italy
| | - Anna Gazzola
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Michele Malagola
- Chair of Hematology, Division of Hematology and Stem Cell Transplantation, Brescia University, Brescia, Italy
| | - Giuseppe Visani
- Hematology and Hematopoietic Stem Cell Transplant Center, AORMN, Pesaro, Italy
| | - Andrea Gallamini
- Research, Innovation and Statistics Department. A, Lacassagne Cancer Center, Nice, France
| |
Collapse
|
29
|
Dawson AC, Williams KA, Appukuttan B, Smith JR. Emerging diagnostic tests for vitreoretinal lymphoma: a review. Clin Exp Ophthalmol 2018; 46:945-954. [DOI: 10.1111/ceo.13304] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/13/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Abby C Dawson
- Eye and Vision Health Flinders University College of Medicine and Public Health Adelaide South Australia Australia
| | - Keryn A Williams
- Eye and Vision Health Flinders University College of Medicine and Public Health Adelaide South Australia Australia
| | - Binoy Appukuttan
- Eye and Vision Health Flinders University College of Medicine and Public Health Adelaide South Australia Australia
| | - Justine R Smith
- Eye and Vision Health Flinders University College of Medicine and Public Health Adelaide South Australia Australia
| |
Collapse
|
30
|
Sonntag K, Hashimoto H, Eyrich M, Menzel M, Schubach M, Döcker D, Battke F, Courage C, Lambertz H, Handgretinger R, Biskup S, Schilbach K. Immune monitoring and TCR sequencing of CD4 T cells in a long term responsive patient with metastasized pancreatic ductal carcinoma treated with individualized, neoepitope-derived multipeptide vaccines: a case report. J Transl Med 2018; 16:23. [PMID: 29409514 PMCID: PMC5801813 DOI: 10.1186/s12967-018-1382-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/10/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Cancer vaccines can effectively establish clinically relevant tumor immunity. Novel sequencing approaches rapidly identify the mutational fingerprint of tumors, thus allowing to generate personalized tumor vaccines within a few weeks from diagnosis. Here, we report the case of a 62-year-old patient receiving a four-peptide-vaccine targeting the two sole mutations of his pancreatic tumor, identified via exome sequencing. METHODS Vaccination started during chemotherapy in second complete remission and continued monthly thereafter. We tracked IFN-γ+ T cell responses against vaccine peptides in peripheral blood after 12, 17 and 34 vaccinations by analyzing T-cell receptor (TCR) repertoire diversity and epitope-binding regions of peptide-reactive T-cell lines and clones. By restricting analysis to sorted IFN-γ-producing T cells we could assure epitope-specificity, functionality, and TH1 polarization. RESULTS A peptide-specific T-cell response against three of the four vaccine peptides could be detected sequentially. Molecular TCR analysis revealed a broad vaccine-reactive TCR repertoire with clones of discernible specificity. Four identical or convergent TCR sequences could be identified at more than one time-point, indicating timely persistence of vaccine-reactive T cells. One dominant TCR expressing a dual TCRVα chain could be found in three T-cell clones. The observed T-cell responses possibly contributed to clinical outcome: The patient is alive 6 years after initial diagnosis and in complete remission for 4 years now. CONCLUSIONS Therapeutic vaccination with a neoantigen-derived four-peptide vaccine resulted in a diverse and long-lasting immune response against these targets which was associated with prolonged clinical remission. These data warrant confirmation in a larger proof-of concept clinical trial.
Collapse
Affiliation(s)
- Katja Sonntag
- Department of Pediatric Hematology and Oncology, University Children's Hospital Tübingen, Hoppe-Seyler Street 1, 72076, Tübingen, Germany
| | - Hisayoshi Hashimoto
- Department of Pediatric Hematology and Oncology, University Children's Hospital Tübingen, Hoppe-Seyler Street 1, 72076, Tübingen, Germany
| | - Matthias Eyrich
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Medical Center Würzburg, Josef-Schneider Street 2, 97080, Würzburg, Germany
| | - Moritz Menzel
- Center for Genomics and Transcriptomics (CeGaT) GmbH and Practice for Human Genetics, Paul-Ehrlich-Straße 23, 72076, Tübingen, Germany
| | - Max Schubach
- Institute for Medical and Human Genetics, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Dennis Döcker
- Center for Genomics and Transcriptomics (CeGaT) GmbH and Practice for Human Genetics, Paul-Ehrlich-Straße 23, 72076, Tübingen, Germany
| | - Florian Battke
- Center for Genomics and Transcriptomics (CeGaT) GmbH and Practice for Human Genetics, Paul-Ehrlich-Straße 23, 72076, Tübingen, Germany
| | - Carolina Courage
- Folkhälsan Institute of Genetics, Haartmaninkatu 8, 00014, Helsinki, Finland
| | - Helmut Lambertz
- Klinikum Garmisch-Partenkirchen GmbH, Zentrum für Innere Medizin, 82467, Garmisch-Partenkirchen, Germany
| | - Rupert Handgretinger
- Department of Pediatric Hematology and Oncology, University Children's Hospital Tübingen, Hoppe-Seyler Street 1, 72076, Tübingen, Germany
| | - Saskia Biskup
- Center for Genomics and Transcriptomics (CeGaT) GmbH and Practice for Human Genetics, Paul-Ehrlich-Straße 23, 72076, Tübingen, Germany
| | - Karin Schilbach
- Department of Pediatric Hematology and Oncology, University Children's Hospital Tübingen, Hoppe-Seyler Street 1, 72076, Tübingen, Germany. .,University Children's Hospital, University Medical Center Tübingen, Hoppe-Seyler-Street 1, 72076, Tübingen, Germany.
| |
Collapse
|
31
|
Pastorello RG, D’Almeida Costa F, Osório CABT, Makdissi FBA, Bezerra SM, de Brot M, Campos AHJFM, Soares FA, Vassallo J. Breast implant-associated anaplastic large cell lymphoma in a Li-FRAUMENI patient: a case report. Diagn Pathol 2018; 13:10. [PMID: 29370815 PMCID: PMC5784673 DOI: 10.1186/s13000-018-0688-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/18/2018] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Breast implant-associated anaplastic large cell lymphoma (BIA-ALCL) is a rare malignancy, recently recognized as a provisional entity by the World Health Organization. Although increasing data have been published on this entity in recent years, a great number of patients and health professionals remain unaware of this diagnosis. CASE PRESENTATION We herein report the case of a 56-year-old female with Li-FRAUMENI syndrome who presented with late right-sided recurrent breast swelling after prophylactic adenomastectomy with implant reconstruction. Imaging scans revealed an heterogeneous mass adjacent to the implant fibrous capsule. A biopsy of the lesion rendered the diagnosis of a BIA-ALCL. CONCLUSIONS This case presents similarities with previous reports, but also some particularities, which should be stressed in order to make the diagnosis the earliest possible. The most distinct feature is that this is the second report of BIA-ALCL arising in the setting of Li-FRAUMENI syndrome.
Collapse
Affiliation(s)
- Ricardo Garcia Pastorello
- Department of Anatomic Pathology, A.C. Camargo Cancer Center, 211 Professor Antônio Prudente Street, Sao Paulo, Zip code 01509-900 Brazil
| | - Felipe D’Almeida Costa
- Department of Anatomic Pathology, A.C. Camargo Cancer Center, 211 Professor Antônio Prudente Street, Sao Paulo, Zip code 01509-900 Brazil
| | - Cynthia A. B. T. Osório
- Department of Anatomic Pathology, A.C. Camargo Cancer Center, 211 Professor Antônio Prudente Street, Sao Paulo, Zip code 01509-900 Brazil
| | | | - Stephania Martins Bezerra
- Department of Anatomic Pathology, A.C. Camargo Cancer Center, 211 Professor Antônio Prudente Street, Sao Paulo, Zip code 01509-900 Brazil
| | - Marina de Brot
- Department of Anatomic Pathology, A.C. Camargo Cancer Center, 211 Professor Antônio Prudente Street, Sao Paulo, Zip code 01509-900 Brazil
| | - Antonio Hugo J. F. M. Campos
- Department of Anatomic Pathology, A.C. Camargo Cancer Center, 211 Professor Antônio Prudente Street, Sao Paulo, Zip code 01509-900 Brazil
| | - Fernando Augusto Soares
- Department of Anatomic Pathology, A.C. Camargo Cancer Center, 211 Professor Antônio Prudente Street, Sao Paulo, Zip code 01509-900 Brazil
- Department of Breast Surgery, A.C. Camargo Cancer Center, University of São Paulo, Sao Paulo, Brazil
| | - José Vassallo
- Department of Anatomic Pathology, A.C. Camargo Cancer Center, 211 Professor Antônio Prudente Street, Sao Paulo, Zip code 01509-900 Brazil
| |
Collapse
|
32
|
Abstract
The rapid development of immunomodulatory cancer therapies has led to a concurrent increase in the application of informatics techniques to the analysis of tumors, the tumor microenvironment, and measures of systemic immunity. In this review, the use of tumors to gather genetic and expression data will first be explored. Next, techniques to assess tumor immunity are reviewed, including HLA status, predicted neoantigens, immune microenvironment deconvolution, and T-cell receptor sequencing. Attempts to integrate these data are in early stages of development and are discussed in this review. Finally, we review the application of these informatics strategies to therapy development, with a focus on vaccines, adoptive cell transfer, and checkpoint blockade therapies.
Collapse
Affiliation(s)
- J Hammerbacher
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston
| | - A Snyder
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York
- Adaptive Biotechnologies, Seattle, USA
| |
Collapse
|
33
|
Mahe E, Pugh T, Kamel-Reid S. T cell clonality assessment: past, present and future. J Clin Pathol 2017; 71:195-200. [PMID: 29055897 PMCID: PMC5868531 DOI: 10.1136/jclinpath-2017-204761] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 09/24/2017] [Indexed: 01/15/2023]
Abstract
T cell clonality testing has important clinical and research value, providing a specific and reproducible assessment of clonal diversity in T cell proliferations. Here we review the conceptual foundations of T cell clonality assays, including T cell ontogeny and T cell receptor structure and function; we also provide an introduction to T cell receptor genomics and the concept of the T cell clonotype. This is followed by a review of historical and current methods by which T cell clonality may be assayed, including current assay limitations. Some of these assay limitations have been overcome by employing next-generation sequencing (NGS)-based technologies that are becoming a mainstay of modern molecular pathology. In this vein, we provide an introduction to NGS technologies, including a review of the preanalytical, analytical and postanalytical technologies relevant to T cell clonality NGS assays.
Collapse
Affiliation(s)
- Etienne Mahe
- Department of Pathology and Laboratory Medicine, The University of Calgary, Calgary, Alberta, Canada
| | - Tevor Pugh
- Department of Medical Biophysics, The University of Toronto, Toronto, Ontario, Canada
| | - Suzanne Kamel-Reid
- Department of Laboratory Medicine and Pathobiology, The University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
34
|
Juskevicius D, Dirnhofer S, Tzankov A. Genetic background and evolution of relapses in aggressive B-cell lymphomas. Haematologica 2017; 102:1139-1149. [PMID: 28554945 PMCID: PMC5566014 DOI: 10.3324/haematol.2016.151647] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/03/2017] [Indexed: 12/13/2022] Open
Abstract
Relapses of aggressive B-cell lymphomas pose a higher risk to affected patients because of potential treatment resistance and usually rapid tumor growth. Recent advances, such as targeting Bruton tyrosine kinase, have provided promising results in small numbers of cases, but treatment for the majority of patients remains challenging and outcomes are generally poor. A number of recent studies have utilized state-of-the-art genomic technologies in an attempt to better understand tumor genome evolution during relapse and to identify relapse-specific genetic alterations. It has been found that in some settings (e.g. diffuse large B-cell lymphomas in immunocompromised patients, secondary diffuse large B-cell lymphomas as Richter transformations) a significant part of the recurrences are clonally-unrelated de novo neoplasms, which might have distinct genomic and drug sensitivity profiles as well as different prognoses. Similar to earlier findings in indolent lymphomas, genetic tumor evolution of clonally-related relapsing aggressive B-cell lymphomas is predominantly characterized by two patterns: early divergence from a common progenitor and late divergence/linear evolution from a primary tumor. The clinical implications of these distinct patterns are not yet clear and will require additional investigation; however, it is plausible that these two patterns of recurrence are linked to different treatment-resistance mechanisms. Attempts to identify drivers of relapses result in a very heterogeneous list of affected genes and pathways as well as epigenetic mechanisms and suggest many ways of how recurrent tumors can adapt to treatment and expand their malignant properties.
Collapse
Affiliation(s)
- Darius Juskevicius
- Institute of Pathology & Medical Genetics, University of Basel and University Hospital Basel, Switzerland
| | - Stephan Dirnhofer
- Institute of Pathology & Medical Genetics, University of Basel and University Hospital Basel, Switzerland
| | - Alexandar Tzankov
- Institute of Pathology & Medical Genetics, University of Basel and University Hospital Basel, Switzerland
| |
Collapse
|
35
|
Sudhakar N, Rajkumar T, Rajalekshmy KR, Nancy NK. Characterization of clonal immunoglobulin heavy (IGH) V-D-J gene rearrangements and the complementarity-determining region in South Indian patients with precursor B-cell acute lymphoblastic leukemia. Blood Res 2017; 52:55-61. [PMID: 28401103 PMCID: PMC5383589 DOI: 10.5045/br.2017.52.1.55] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 11/13/2016] [Accepted: 12/27/2016] [Indexed: 12/01/2022] Open
Abstract
Background This study characterized clonal IG heavy V-D-J (IGH) gene rearrangements in South Indian patients with precursor B-cell acute lymphoblastic leukemia (precursor B-ALL) and identified age-related predominance in VDJ rearrangements. Methods IGH rearrangements were studied in 50 precursor B-ALL cases (common ALL=37, pre-B ALL=10, pro-B ALL=3) by polymerase chain reaction (PCR) heteroduplex analysis. Twenty randomly selected clonal IGH rearrangement sequences were analyzed using the IMGT/V-QUEST tool. Results Clonal IGH rearrangements were detected in 41 (82%) precursor B-ALL cases. Among the IGHV1-IGHV7 subgroups, IGHV3 was used in 25 (50%) cases. Among the IGHD1-IGHD7 genes, IGHD2 and IGHD3 were used in 8 (40%) and 5 (25%) clones, respectively. Among the IGHJ1-IGHJ6 genes, IGHJ6 and IGHJ4 were used in 9 (45%) and 6 (30%) clones, respectively. In 6 out of 20 (30%) IGH rearranged sequences, CDR3 was in frame whereas 14 (70%) had rearranged sequences and CDR3 was out of frame. A somatic mutation in Vmut/Dmut/Jmut was detected in 14 of 20 IGH sequences. On average, Vmut/Dmut/Jmut were detected in 0.1 nt, 1.1 nt, and 0.2 nt, respectively. Conclusion The IGHV3 gene was frequently used whereas lower frequencies of IGHV5 and IGHV6 and a higher frequency of IGHV4 were detected in children compared with young adults. The IGHD2 and IGHD3 genes were over-represented, and the IGHJ6 gene was predominantly used in precursor-B-ALL. However, the IGH gene rearrangements in precursor-B-ALL did not show any significant age-associated genotype pattern attributed to our population.
Collapse
Affiliation(s)
- Natarajan Sudhakar
- Department of Molecular Oncology, Cancer Institute (WIA), Chennai, India.; Department of Biotechnology, Dr. M.G.R. Educational & Research Institute, Chennai, India
| | | | | | | |
Collapse
|
36
|
Goldschmidt N, Darawshy F, Kleinstern G, Slyusarevsky E, Pogrebijski G, Krichevsky S, Ben-Yehuda D, Gatt ME. The prognostic value of bone marrow involvement at the molecular level in aggressive lymphoma. Leuk Lymphoma 2016; 58:45-52. [PMID: 27756163 DOI: 10.1080/10428194.2016.1201569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
We retrospectively studied the prognostic role of molecular (gene rearrangement, GRR) bone marrow (BM) involvement in diffuse large B-cell lymphoma (DLBCL, 424 patients) and in peripheral T-cell lymphoma (PTCL, 67 patients). When correlating BM GRR to histological findings at diagnosis, the GRR test was more sensitive (p = 0.036) but less specific (p < 0.0001) in PTCL than in DLBCL. For DLBCL (but not PTCL), a positive BM GRR correlated with advanced stage (p = 0.0001) and high IPI (p = 0.002), and worsened the progression free survival (PFS) (p = 0.05) and overall survival (OS) (p = 0.01), irrespective of rituximab treatment. Histologic negative/GRR positive cases had worse PFS/OS (p < 0.0001) than histologic/GRR double negative cases, however BM GRR was not an independent prognostic survival factor. End-of-treatment BM GRR did not predict survival. We conclude that BM GRR is unjustified as a prognostic tool for PTCL and should be reserved for a subset of DLBCL patients with negative histology of the BM.
Collapse
Affiliation(s)
- Neta Goldschmidt
- a Department of Hematology , Hadassah-Hebrew University Medical Center , Jerusalem , Israel
| | - Fares Darawshy
- a Department of Hematology , Hadassah-Hebrew University Medical Center , Jerusalem , Israel
| | - Geffen Kleinstern
- b School of Public Health, Hadassah-Hebrew University Medical Center , Jerusalem , Israel
| | - Elena Slyusarevsky
- a Department of Hematology , Hadassah-Hebrew University Medical Center , Jerusalem , Israel
| | - Galina Pogrebijski
- a Department of Hematology , Hadassah-Hebrew University Medical Center , Jerusalem , Israel
| | - Svetlana Krichevsky
- a Department of Hematology , Hadassah-Hebrew University Medical Center , Jerusalem , Israel
| | - Dina Ben-Yehuda
- a Department of Hematology , Hadassah-Hebrew University Medical Center , Jerusalem , Israel
| | - Moshe E Gatt
- a Department of Hematology , Hadassah-Hebrew University Medical Center , Jerusalem , Israel
| |
Collapse
|
37
|
Colling R, Royston D, Soilleux E. Transformation of CLL to ALCL: the role of clonality studies in diagnostic molecular haematopathology. J Hematop 2016; 9:143-147. [PMID: 27766121 PMCID: PMC5047934 DOI: 10.1007/s12308-016-0280-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/15/2016] [Indexed: 12/03/2022] Open
Abstract
Clonality studies greatly assist in the diagnosis of challenging haematopathology cases. These robust and standardised tests aid the detection of clonal lymphoid populations and may assist in lymphocyte subtyping. In this case report, a gentleman presented with a high-grade transformation of a B cell neoplasm which histologically and immunophenotypically mimicked a T cell anaplastic large-cell lymphoma. With the aid of T cell and B cell receptor clonality studies, it was demonstrated that this tumour was in fact of B cell lineage. This report exemplifies the role of these increasingly used and relatively new molecular tests in unusual and difficult lymphoma presentations and highlights potential pitfalls in the interpretation of their results.
Collapse
Affiliation(s)
- Richard Colling
- Department of Cellular Pathology, Oxford University Hospitals NHS Trust, Oxford, UK
- Department of Oncology, University of Oxford, Oxford, UK
| | - Daniel Royston
- Department of Cellular Pathology, Oxford University Hospitals NHS Trust, Oxford, UK
- Nuffield Division of Clinical Laboratory Sciences, University of Oxford, Oxford, UK
| | - Elizabeth Soilleux
- Department of Cellular Pathology, Oxford University Hospitals NHS Trust, Oxford, UK
- Nuffield Division of Clinical Laboratory Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
38
|
Xu D, Yang Z, Zhang D, Wu W, Guo Y, Chen Q, Xu D, Cui W. Rapid detection of immunoglobulin heavy chain gene rearrangement by PCR and melting curve analysis using combined FR2 and FR3 primers. Diagn Pathol 2015; 10:140. [PMID: 26255311 PMCID: PMC4529721 DOI: 10.1186/s13000-015-0370-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 07/27/2015] [Indexed: 11/18/2022] Open
Abstract
Background Immunoglobulin heavy chain (IgH) gene rearrangement test is a standard tool in diagnosing B-cell lymphoma. The BIOMED-2 multiplex PCR protocol has become the most commonly used laboratory method for detecting clonal IgH gene rearrangement. However, post-PCR procedure requires manual transfer of PCR product for analysis and is time-consuming. A novel strategy using LightCycler to continuously monitor fluorescence during melting curve analysis (MCA) can overcome these shortcomings. The previous studies published on this method were all restricted to FR3 primers of BIOMED-2. Methods Real-time PCR and subsequent MCA were performed on 71 clinical DNA samples from formalin-fixed, paraffin-embedded tissues, including 40 with B-cell non-Hodgkin lymphomas and 31 with reactive lymphoid hyperplasia. We optimized the current method using FR3 primers and applied FR2 primers for the first time into MCA to detect IgH gene rearrangement. Polyacrylamide gel electrophoresis and capillary gel electrophoresis were also performed on all lymphoma samples with the identical FR2 primers. Results MCA of combined FR2 and FR3 primer sets yielded the sensitivity and the specificity equal to 70 % (28/40) and 100 % (31/31), respectively. Addition of FR2 primers increased the sensitivity by 12.5 % (5/40) comparing to FR3 primers alone. MCA was slightly more sensitive than polyacrylamide gel electrophoresis and comparable to capillary gel electrophoresis to detect clonal IgH gene rearrangement. Conclusions Combined PCR and DNA melting curve analysis in a closed system can reduce cross-contamination risk. This method can test 96 samples simultaneously within 90 min and therefore, it is high-throughput and faster. PCR-MCA in the LightCycler system has potential for evaluating monoclonal IgH gene rearrangement in a clinical environment.
Collapse
Affiliation(s)
- Danfei Xu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Zhuo Yang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Donghong Zhang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Wei Wu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Ye Guo
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Qian Chen
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Dongsheng Xu
- Hematopathology Program, CBL Path, Inc., Rye Brook, NY, 10753, USA.
| | - Wei Cui
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|