1
|
Pieniak M, Rokosz M, Nawrocka P, Reichert A, Zyzelewicz B, Mahmut MK, Oleszkiewicz A. Null cross-modal effects of olfactory training on visual, auditory or olfactory working memory in 6- to 9-year-old children. Neuropsychol Rehabil 2025; 35:524-545. [PMID: 38762780 DOI: 10.1080/09602011.2024.2343484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/04/2024] [Indexed: 05/20/2024]
Abstract
Systematic exposure to odours (olfactory training, OT) is a method of smell loss treatment. Due to olfactory system projections to prefrontal brain areas, OT has been hypothesized to enhance cognitive functions, but its effects have been studied predominantly in adults. This study tested OT effects on working memory (WM), i.e., the ability to store and manipulate information for a short time, in healthy children aged 6-9 years. We expected OT to improve olfactory WM and establish cross-modal transfer to visual and auditory WM. Participants performed 12 weeks of bi-daily OT with either 4 odours (lemon, eucalyptus, rose, cloves; OT group) or odourless propylene glycol (placebo group). Pre- and post-training, participants' WM was measured utilizing odours (olfactory WM) or pictures (visual WM) and a word-span task (auditory WM). 84 children (40 girls) completed the study. The analyses revealed no changes in the WM performance following OT. The olfactory WM task was the most difficult for children, highlighting the need to include olfactory-related tasks in educational programmes to improve children's odour knowledge and memory, just as they learn about sounds and pictures. Further neuroimaging research is needed to fully understand the impact of OT on cognitive functions in children.
Collapse
Affiliation(s)
- Michal Pieniak
- Institute of Psychology, University of Wroclaw, Wroclaw, Poland
- Smell & Taste Clinic, Department of Otorhinolaryngology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Marta Rokosz
- Institute of Psychology, University of Wroclaw, Wroclaw, Poland
| | | | - Aleksandra Reichert
- Institute of Psychology, University of Wroclaw, Wroclaw, Poland
- Smell & Taste Clinic, Department of Otorhinolaryngology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | - Mehmet K Mahmut
- Food, Flavour and Fragrance Lab, School of Psychological Sciences, Macquarie University, Sydney, Australia
| | - Anna Oleszkiewicz
- Institute of Psychology, University of Wroclaw, Wroclaw, Poland
- Smell & Taste Clinic, Department of Otorhinolaryngology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
2
|
Martinec Nováková L, Marková M. Six-week engagement in after-school activities involving chemosensory education does not affect olfactory abilities and personal significance of olfaction in 9-11-year-olds: Preliminary evidence. Physiol Behav 2025; 291:114784. [PMID: 39675653 DOI: 10.1016/j.physbeh.2024.114784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 12/05/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
Chemosensory learning is a lifelong process of acquiring perceptual expertise and semantic knowledge about chemical stimuli within the everyday environment. In the research context, it is usually simulated using olfactory training, which typically involves repeated exposure to a set of odors over a period of time. Following olfactory training, enhanced olfactory performance has been observed in adults, and similar evidence is beginning to emerge in children. However, the literature is scant concerning the effects of interventions that more closely resemble how chemosensory experience is acquired in daily life. Since children's chemosensory ecology appears to play a crucial role in olfactory development, we investigated whether engaging in activities that stimulate the chemical senses enhances olfactory performance and metacognition. To this end, we invited 20 children aged 9-11 years to participate in teacher-assisted after-school activities for 30-60 minutes a day for six weeks. During the odd weeks, the children appraised herbal and spice blends and used them to prepare dishes and make beauty products. During the even ones, they explored the city by smellwalking and created smellscape maps. The educational outcomes were evaluated using the Sniffin' Sticks test for odor identification and discrimination and the Children's Personal Significance of Olfaction. Bayesian analyses did not reveal any compelling evidence in support of the alternative hypothesis that children in the chemosensory education group outperform those in the comparison group at the post-test. Rates of reliable increase but also decrease in performance on the Sniffin' Sticks identification and discrimination tests were similar in both groups. We corroborated the previous findings regarding girls' and older children's greater proficiency at identifying odors and the female keener interest in the sense of smell. We offer several practical suggestions researchers may want to consider to tailor their research protocols to reflect more closely the broader context in which chemosensory learning takes place and better capture the nuanced outcomes of such interventions.
Collapse
Affiliation(s)
- Lenka Martinec Nováková
- Department of Psychology and Life Sciences, Faculty of Humanities, Charles University, Pátkova 2137/5, 182 00 Prague 8 - Libeň, Czech Republic.
| | - Magdaléna Marková
- Department of Psychology and Life Sciences, Faculty of Humanities, Charles University, Pátkova 2137/5, 182 00 Prague 8 - Libeň, Czech Republic
| |
Collapse
|
3
|
Dias M, Shaida Z, Haloob N, Hopkins C. Recovery rates and long-term olfactory dysfunction following COVID-19 infection. World J Otorhinolaryngol Head Neck Surg 2024; 10:121-128. [PMID: 38855291 PMCID: PMC11156684 DOI: 10.1002/wjo2.163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/08/2024] [Indexed: 06/11/2024] Open
Abstract
Objectives Olfactory dysfunction is one of the most recognized symptoms of COVID-19, significantly impacting quality of life, particularly in cases where recovery is prolonged. This review aims to explore patterns of olfactory recovery post-COVID-19 infection, with particular focus on delayed recovery. Data Sources Published literature in the English language, including senior author's own work, online and social media platforms, and patients' anecdotal reports. Method A comprehensive review of the literature was undertaken by the authors with guidance from the senior author with expertise in the field of olfaction. Results Based on self-report, an estimated 95% of patients recover their olfactory function within 6 months post-COVID-19 infection. However, psychophysical testing detects higher rates of persistent olfactory dysfunction. Recovery has been found to continue for at least 2 years postinfection; negative prognostic indicators include severe olfactory loss in the acute phase, female sex, and older age. Variability in quantitative and qualitative disturbance in prolonged cases likely reflects both peripheral and central pathophysiological mechanisms. Limitations of many of the reviewed studies reflect lack of psychophysical testing and baseline olfactory assessment. Conclusions Post-COVID-19 olfactory dysfunction remains a significant health and psychosocial burden. Emerging evidence is improving awareness and knowledge among clinicians to better support patients through their olfactory rehabilitation, with hope of recovery after several months or years. Further research is needed to better understand the underlying pathogenesis of delayed recovery, identify at risk individuals earlier in the disease course, and develop therapeutic targets.
Collapse
|
4
|
Vance DE, Del Bene VA, Kamath V, Frank JS, Billings R, Cho DY, Byun JY, Jacob A, Anderson JN, Visscher K, Triebel K, Martin KM, Li W, Puga F, Fazeli PL. Does Olfactory Training Improve Brain Function and Cognition? A Systematic Review. Neuropsychol Rev 2024; 34:155-191. [PMID: 36725781 PMCID: PMC9891899 DOI: 10.1007/s11065-022-09573-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 12/01/2022] [Indexed: 02/03/2023]
Abstract
Olfactory training (OT), or smell training,consists of repeated exposure to odorants over time with the intended neuroplastic effect of improving or remediating olfactory functioning. Declines in olfaction parallel declines in cognition in various pathological conditions and aging. Research suggests a dynamic neural connection exists between olfaction and cognition. Thus, if OT can improve olfaction, could OT also improve cognition and support brain function? To answer this question, we conducted a systematic review of the literature to determine whether there is evidence that OT translates to improved cognition or altered brain morphology and connectivity that supports cognition. Across three databases (MEDLINE, Scopus, & Embase), 18 articles were identified in this systematic review. Overall, the reviewed studies provided emerging evidence that OT is associated with improved global cognition, and in particular, verbal fluency and verbal learning/memory. OT is also associated with increases in the volume/size of olfactory-related brain regions, including the olfactory bulb and hippocampus, and altered functional connectivity. Interestingly, these positive effects were not limited to patients with smell loss (i.e., hyposmia & anosmia) but normosmic (i.e., normal ability to smell) participants benefitted as well. Implications for practice and research are provided.
Collapse
Affiliation(s)
- David E Vance
- School of Nursing, University of Alabama at Birmingham, 1701 University Boulevard, Birmingham, AL, USA.
| | - Victor A Del Bene
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Vidyulata Kamath
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Jennifer Sandson Frank
- School of Nursing, University of Alabama at Birmingham, 1701 University Boulevard, Birmingham, AL, USA
| | - Rebecca Billings
- UAB Libraries, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Do-Yeon Cho
- Department of Surgery, Veterans Affairs, University of Alabama at Birmingham, & Division of Otolaryngology, Birmingham, AL, USA
| | - Jun Y Byun
- School of Nursing, University of Alabama at Birmingham, 1701 University Boulevard, Birmingham, AL, USA
| | - Alexandra Jacob
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Joseph N Anderson
- School of Medicine, Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kristina Visscher
- Department of Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kristen Triebel
- School of Medicine, Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Karli M Martin
- School of Medicine, Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Wei Li
- Department of Clinical and Diagnostic Sciences, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Frank Puga
- School of Nursing, University of Alabama at Birmingham, 1701 University Boulevard, Birmingham, AL, USA
| | - Pariya L Fazeli
- School of Nursing, University of Alabama at Birmingham, 1701 University Boulevard, Birmingham, AL, USA
| |
Collapse
|
5
|
Pieniak M, Seidel K, Oleszkiewicz A, Gellrich J, Karpinski C, Fitze G, Schriever VA. Olfactory training effects in children after mild traumatic brain injury. Brain Inj 2023; 37:1272-1284. [PMID: 37486172 DOI: 10.1080/02699052.2023.2237889] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 05/29/2023] [Accepted: 06/12/2023] [Indexed: 07/25/2023]
Abstract
OBJECTIVE Mild traumatic brain injury (mTBI) might impair the sense of smell and cognitive functioning. Repeated, systematic exposure to odors, i.e., olfactory training (OT) has been proposed for treatment of olfactory dysfunctions, including post-traumatic smell loss. Additionally, OT has been shown to mitigate cognitive deterioration in older population and enhance selected cognitive functions in adults. We aimed to investigate olfactory and cognitive effects of OT in the pediatric population after mTBI, likely to exhibit cognitive and olfactory deficits. METHODS Our study comprised 159 children after mTBI and healthy controls aged 6-16 years (M = 9.68 ± 2.78 years, 107 males), who performed 6-months-long OT with a set of 4 either high- or low-concentrated odors. Before and after OT we assessed olfactory functions, fluid intelligence, and executive functions. RESULTS OT with low-concentrated odors increased olfactory sensitivity in children after mTBI. Regardless of health status, children who underwent OT with low-concentrated odors had higher fluid intelligence scores at post-training measurement, whereas scores of children performing OT with high-concentrated odors did not change. CONCLUSION Our study suggests that OT with low-concentrated odors might accelerate rehabilitation of olfactory sensitivity in children after mTBI and support cognitive functions in the area of fluid intelligence regardless of head trauma.
Collapse
Affiliation(s)
- Michal Pieniak
- Smell & Taste Clinic, Department of Otorhinolaryngology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Faculty of Historical and Pedagogical Sciences, Institute of Psychology, University of Wrocław, Wroclaw, Poland
| | - Katharina Seidel
- Abteilung Neuropädiatrie, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Anna Oleszkiewicz
- Smell & Taste Clinic, Department of Otorhinolaryngology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Faculty of Historical and Pedagogical Sciences, Institute of Psychology, University of Wrocław, Wroclaw, Poland
| | - Janine Gellrich
- Abteilung Neuropädiatrie, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Christian Karpinski
- Klinik Und Poliklinik Für Kinderchirurgie, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Guido Fitze
- Klinik Und Poliklinik Für Kinderchirurgie, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Valentin A Schriever
- Abteilung Neuropädiatrie, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Charité - Universitätsmedizin Berlin, Berlin, Germany
- Department of Pediatric Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
6
|
Woo CC, Miranda B, Sathishkumar M, Dehkordi-Vakil F, Yassa MA, Leon M. Overnight olfactory enrichment using an odorant diffuser improves memory and modifies the uncinate fasciculus in older adults. Front Neurosci 2023; 17:1200448. [PMID: 37554295 PMCID: PMC10405466 DOI: 10.3389/fnins.2023.1200448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/07/2023] [Indexed: 08/10/2023] Open
Abstract
OBJECTIVE Cognitive loss in older adults is a growing issue in our society, and there is a need to develop inexpensive, simple, effective in-home treatments. This study was conducted to explore the use of olfactory enrichment at night to improve cognitive ability in healthy older adults. METHODS Male and female older adults (N = 43), age 60-85, were enrolled in the study and randomly assigned to an Olfactory Enriched or Control group. Individuals in the enriched group were exposed to 7 different odorants a week, one per night, for 2 h, using an odorant diffuser. Individuals in the control group had the same experience with de minimis amounts of odorant. Neuropsychological assessments and fMRI scans were administered at the beginning of the study and after 6 months. RESULTS A statistically significant 226% improvement was observed in the enriched group compared to the control group on the Rey Auditory Verbal Learning Test and improved functioning was observed in the left uncinate fasciculus, as assessed by mean diffusivity. CONCLUSION Minimal olfactory enrichment administered at night produces improvements in both cognitive and neural functioning. Thus, olfactory enrichment may provide an effective and low-effort pathway to improved brain health.
Collapse
Affiliation(s)
- Cynthia C. Woo
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Blake Miranda
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, United States
| | - Mithra Sathishkumar
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, United States
| | | | - Michael A. Yassa
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, United States
| | - Michael Leon
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, United States
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
7
|
Watanabe K, Kokubun K, Yamakawa Y. Altered Grey Matter-Brain Healthcare Quotient: Interventions of Olfactory Training and Learning of Neuroplasticity. Life (Basel) 2023; 13:life13030667. [PMID: 36983823 PMCID: PMC10052964 DOI: 10.3390/life13030667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/09/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Recent studies revealed that grey matter (GM) changes due to various training and learning experiences, using magnetic resonance imaging. In this study, we investigate the effect of psychological characteristics and attitudes toward training and learning on GM changes. Ninety participants were recruited and distributed into three groups: an olfactory training group that underwent 40 olfactory training sessions designed for odour classification tasks, a group classified for learning of neuroplasticity and brain healthcare using a TED Talk video and 28 daily brain healthcare messages, and a control group. Further, we assessed psychological characteristics, such as curiosity and personal growth initiatives. In the olfactory training group, we conducted a questionnaire survey on olfactory training regarding their interests and sense of accomplishment. In the olfactory training group, the GM change was significantly correlated with the sense of achievement and interest in training. The learning of neuroplasticity and brain healthcare group showed a significantly smaller 2-month GM decline than did the control group. The Curiosity and Exploration Inventory-II scores were significantly correlated with GM changes in both intervention groups only. In conclusion, our result suggested that training or learning with a sense of accomplishment, interest, and curiosity would lead to greater GM changes.
Collapse
Affiliation(s)
- Keita Watanabe
- Institution of Open Innovation, Kyoto University, Kyoto 606-8501, Japan
- Correspondence:
| | - Keisuke Kokubun
- Smart-Aging Research Center, Tohoku University, Sendai 980-8575, Japan
| | - Yoshinori Yamakawa
- Institution of Open Innovation, Kyoto University, Kyoto 606-8501, Japan
- Institute of Innovative Research, Tokyo Institute of Technology, Tokyo 152-8550, Japan
- Academic and Industrial Innovation, Kobe University, Kobe 657-8501, Japan
- ImPACT Program of Council for Science, Technology, and Innovation (Cabinet Office, Government of Japan), Tokyo 100-8914, Japan
- BRAIN IMPACT General Incorporated Association, Kyoto 606-8501, Japan
| |
Collapse
|
8
|
Leon M, Woo CC. Olfactory loss is a predisposing factor for depression, while olfactory enrichment is an effective treatment for depression. Front Neurosci 2022; 16:1013363. [PMID: 36248633 PMCID: PMC9558899 DOI: 10.3389/fnins.2022.1013363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
The loss of olfactory stimulation correlates well with at least 68 widely differing neurological disorders, including depression, and we raise the possibility that this relationship may be causal. That is, it seems possible that olfactory loss makes the brain vulnerable to expressing the symptoms of these neurological disorders, while daily olfactory enrichment may decrease the risk of expressing these symptoms. This situation resembles the cognitive reserve that is thought to protect people with Alzheimer’s neuropathology from expressing the functional deficit in memory through the cumulative effect of intellectual stimulation. These relationships also resemble the functional response of animal models of human neurological disorders to environmental enrichment, wherein the animals continue to have the induced neuropathology, but do not express the symptoms as they do in a standard environment with restricted sensorimotor stimulation.
Collapse
Affiliation(s)
- Michael Leon
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
- Center for the Neurobiology of Learning and Memory, Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
- *Correspondence: Michael Leon,
| | - Cynthia C. Woo
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
9
|
Kay LM. COVID-19 and olfactory dysfunction: a looming wave of dementia? J Neurophysiol 2022; 128:436-444. [PMID: 35894511 PMCID: PMC9377782 DOI: 10.1152/jn.00255.2022] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 02/06/2023] Open
Abstract
Olfactory dysfunction is a hallmark symptom of COVID-19 disease resulting from the SARS-CoV-2 virus. The cause of the sudden and usually temporary anosmia that most people suffer from COVID-19 is likely entirely peripheral-inflammation and other damage caused by the virus in the sensory epithelium inside the upper recesses of the nasal cavity can damage or prevent chemicals from properly activating the olfactory sensory neurons. However, persistent olfactory dysfunction from COVID-19, in the form of hyposmia and parosmia (decreased or altered smell) may affect as many as 15 million people worldwide. This epidemic of olfactory dysfunction is thus a continuing public health concern. Mounting evidence suggests that the SARS-CoV-2 virus itself or inflammation from the immune response in the nasal sensory epithelium may invade the olfactory bulb, likely via non-neuronal transmission. COVID-19-related long-term olfactory dysfunction and early damage to olfactory and limbic brain regions suggest a pattern of degeneration similar to that seen in early stages of Alzheimer's disease, Parkinson's disease, and Lewy body dementia. Thus, long-term olfactory dysfunction coupled with cognitive and emotional disturbance from COVID-19 may be the first signs of delayed onset dementia from neurodegeneration. Few treatments are known to be effective to prevent further degeneration, but the first line of defense against degeneration may be olfactory and environmental enrichment. There is a pressing need for more research on treatments for olfactory dysfunction and longitudinal studies including cognitive and olfactory function from patients who have recovered from even mild COVID-19.NEW & NOTEWORTHY More than 15 million people worldwide experience persistent COVID-19 olfactory dysfunction, possibly caused by olfactory bulb damage. SARS-CoV-2 can cause inflammation and viral invasion of the olfactory bulb, initiating a cascade of degeneration similar to Alzheimer's disease and Lewy body disease. People who have had even mild cases of COVID-19 show signs of degeneration in cortical areas connected with the olfactory system. These data suggest a wave of post-COVID dementia in the coming decades.
Collapse
Affiliation(s)
- Leslie M Kay
- Institute for Mind and Biology, Department of Psychology, The University of Chicago, Chicago, Illinois
| |
Collapse
|
10
|
Kye Wen Tan N, Jing-Wen C, Kye Jyn Tan B, Han R, Zhao JJ, Sen Hui Quah E, Kelly C, Wei Yang Teo N, See A, Toh ST, Hopkins C. The burden of prolonged smell and taste loss in covid-19. BMJ 2022; 378:o1895. [PMID: 35896196 DOI: 10.1136/bmj.o1895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nicole Kye Wen Tan
- Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore
| | | | - Benjamin Kye Jyn Tan
- Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore
| | - Ruobing Han
- Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore
| | - Joseph J Zhao
- Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore
| | - Emrick Sen Hui Quah
- Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore
| | | | - Neville Wei Yang Teo
- Surgery Academic Clinical Program, SingHealth, Singapore
- Department of Otorhinolaryngology-Head & Neck Surgery, Singapore General Hospital (SGH), Singapore
| | - Anna See
- Surgery Academic Clinical Program, SingHealth, Singapore
- Department of Otorhinolaryngology-Head & Neck Surgery, Singapore General Hospital (SGH), Singapore
- Department of Otorhinolaryngology-Head & Neck Surgery, Sengkang General Hospital (SKH), Singapore
| | - Song Tar Toh
- Surgery Academic Clinical Program, SingHealth, Singapore
- Department of Otorhinolaryngology-Head & Neck Surgery, Singapore General Hospital (SGH), Singapore
| | - Claire Hopkins
- Department of Otorhinolaryngology-Head & Neck Surgery, Guy's and St Thomas' Hospitals, London, United Kingdom
- King's College, London, United Kingdom
| |
Collapse
|
11
|
Douaud G, Lee S, Alfaro-Almagro F, Arthofer C, Wang C, McCarthy P, Lange F, Andersson JLR, Griffanti L, Duff E, Jbabdi S, Taschler B, Keating P, Winkler AM, Collins R, Matthews PM, Allen N, Miller KL, Nichols TE, Smith SM. SARS-CoV-2 is associated with changes in brain structure in UK Biobank. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2021.06.11.21258690. [PMID: 34189535 PMCID: PMC8240690 DOI: 10.1101/2021.06.11.21258690] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
There is strong evidence for brain-related abnormalities in COVID-19 1-13 . It remains unknown however whether the impact of SARS-CoV-2 infection can be detected in milder cases, and whether this can reveal possible mechanisms contributing to brain pathology. Here, we investigated brain changes in 785 UK Biobank participants (aged 51-81) imaged twice, including 401 cases who tested positive for infection with SARS-CoV-2 between their two scans, with 141 days on average separating their diagnosis and second scan, and 384 controls. The availability of pre-infection imaging data reduces the likelihood of pre-existing risk factors being misinterpreted as disease effects. We identified significant longitudinal effects when comparing the two groups, including: (i) greater reduction in grey matter thickness and tissue-contrast in the orbitofrontal cortex and parahippocampal gyrus, (ii) greater changes in markers of tissue damage in regions functionally-connected to the primary olfactory cortex, and (iii) greater reduction in global brain size. The infected participants also showed on average larger cognitive decline between the two timepoints. Importantly, these imaging and cognitive longitudinal effects were still seen after excluding the 15 cases who had been hospitalised. These mainly limbic brain imaging results may be the in vivo hallmarks of a degenerative spread of the disease via olfactory pathways, of neuroinflammatory events, or of the loss of sensory input due to anosmia. Whether this deleterious impact can be partially reversed, or whether these effects will persist in the long term, remains to be investigated with additional follow up.
Collapse
|
12
|
Hu B, Zhang J, Gong M, Deng Y, Cao Y, Xiang Y, Ye D. Research Progress of Olfactory Nerve Regeneration Mechanism and Olfactory Training. Ther Clin Risk Manag 2022; 18:185-195. [PMID: 35281777 PMCID: PMC8906848 DOI: 10.2147/tcrm.s354695] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/28/2022] [Indexed: 11/24/2022] Open
Abstract
The olfactory nerve (ON) is the only cranial nerve exposed to the external environment. Hence, it is susceptible to damage from head trauma, viral infection, inflammatory stimulation, and chemical toxins, which can lead to olfactory dysfunction. However, compared with all other cranial nerves, the ON is unique due to its inherent ability to regenerate. This characteristic provides a theoretical basis for treatment of olfactory dysfunction. Olfactory training (OT) is one of the main treatments for olfactory dysfunction. It is easy to apply and has few side-effects, and has been shown to be efficacious for patients with olfactory dysfunction of various causes. To further understand the application value of ON regeneration and OT on olfactory dysfunction, we review the research progress on the mechanism of ON regeneration and OT.
Collapse
Affiliation(s)
- Bian Hu
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, People’s Republic of China
- Department of Otorhinolaryngology-Head and Neck Surgery, Ninghai First Hospital, Ningbo, 315699, Zhejiang, People’s Republic of China
| | - Jingyu Zhang
- Shanghai Jiao Tong University, Shanghai, 200030, People’s Republic of China
| | - Mengdan Gong
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, People’s Republic of China
| | - Yongqin Deng
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, People’s Republic of China
| | - Yujie Cao
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, People’s Republic of China
| | - Yizhen Xiang
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, People’s Republic of China
| | - Dong Ye
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, People’s Republic of China
- Correspondence: Dong Ye, Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, People’s Republic of China, Tel +86 13819861213, Fax +86 574-87392232, Email
| |
Collapse
|