1
|
Struijk C, Korpershoek J, Lydon KL, Verdonk P, Michielsen J, Krych AJ, Vonk LA, Saris DBF. Identification and culture of meniscons, meniscus cells with their pericellular matrix. Cytotherapy 2025; 27:98-106. [PMID: 39373674 DOI: 10.1016/j.jcyt.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/11/2024] [Accepted: 08/15/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND AIMS Meniscus injury is highly debilitating and often results in osteoarthritis. Treatment is generally symptomatic; no regenerative treatments are available. "Chondrons," articular chondrocytes with preserved pericellular matrix, produce more hyaline cartilage extracellular matrix and improve cartilage repair. If meniscons exist in the meniscus and have similar therapeutic potential as chondrons, employing these cells has potential for meniscus cell therapy and tissue engineering. In this study, we isolated and cultured "meniscons," meniscus cells surrounded by their native pericellular matrix, and investigated cell behavior in culture compared with chondrons. METHODS Human meniscons were enzymatically isolated from osteoarthritic menisci and cultured up to 28 days in fibrin glue. Freshly isolated meniscons and chondrons were analyzed by histology and transmission electron microscopy. We used 5-([4,6-dichlorotriazin-2-yl]amino)fluorescein hydrochloride labeling and type VI collagen immunohistochemistry to image pericellular matrix after 0 and 28 days of culture. Gene expression was quantified using real-time polymerase chain reaction and DNA content and proteoglycan production were analyzed using biochemical assays. RESULTS Meniscons were successfully isolated from human meniscus tissue. The pericellular matrix of meniscons and chondrons was preserved during 28 days of culture. Meniscons and chondrons had similar cell proliferation and proteoglycan production. Meniscons and chondrons expressed similar levels of collagen type I alpha 1 chain, whereas collagen type II alpha 1 chain and aggrecan expression was lower in the meniscon population. CONCLUSIONS Freshly isolated meniscons and meniscons cultured for 28 days share similarities with chondrons with regard to cell proliferation, morphology and biochemical activity. Rapid isolation of meniscons (45 min) demonstrates potential for one-stage meniscus regeneration and repair, which should be confirmed in vivo.
Collapse
Affiliation(s)
- Caroline Struijk
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA; Department of Orthopedic Surgery, Antwerp University, Antwerp, Belgium
| | - Jasmijn Korpershoek
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA; Department of Orthopaedics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Katherine L Lydon
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Peter Verdonk
- Department of Orthopedic Surgery, Antwerp University, Antwerp, Belgium; Orthoca, Antwerp, Belgium
| | - Jozef Michielsen
- Department of Orthopedic Surgery, Antwerp University, Antwerp, Belgium
| | - Aaron J Krych
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Lucienne A Vonk
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Daniel B F Saris
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA; Department of Orthopaedics, University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
2
|
Galocha-León C, Antich C, Clares-Naveros B, Voltes-Martínez A, Marchal JA, Gálvez-Martín P. Design and Characterization of Biomimetic Hybrid Construct Based on Hyaluronic Acid and Alginate Bioink for Regeneration of Articular Cartilage. Pharmaceutics 2024; 16:1422. [PMID: 39598545 PMCID: PMC11597687 DOI: 10.3390/pharmaceutics16111422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Three-dimensional bioprinting technology has enabled great advances in the treatment of articular cartilage (AC) defects by the biofabrication of biomimetic constructs that restore and/or regenerate damaged tissue. In this sense, the selection of suitable cells and biomaterials to bioprint constructs that mimic the architecture, composition, and functionality of the natural extracellular matrix (ECM) of the native tissue is crucial. In the present study, a novel cartilage-like biomimetic hybrid construct (CBC) was developed by 3D bioprinting to facilitate and promote AC regeneration. Methods: The CBC was biofabricated by the co-bioprinting of a bioink based on hyaluronic acid (HA) and alginate (AL) loaded with human mesenchymal stromal cells (hMSCs), with polylactic acid supporting the biomaterial, in order to mimic the microenvironment and structural properties of native AC, respectively. The CBC was biologically in vitro characterized. In addition, its physiochemical characteristics were evaluated in order to determine if the presence of hMSCs modified its properties. Results: Results from biological analysis demonstrated that CBC supported the high viability and proliferation of hMSCs, facilitating chondrogenesis after 5 weeks in vitro. The evaluation of physicochemical properties in the CBCs confirmed that the CBC developed could be suitable for use in cartilage tissue engineering. Conclusions: The results demonstrated that the use of bioprinted CBCs based on hMSC-AL/HA-bioink for AC repair could enhance the regeneration and/or formation of hyaline cartilaginous tissue.
Collapse
Affiliation(s)
- Cristina Galocha-León
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, E-18071 Granada, Spain; (C.G.-L.); (B.C.-N.)
| | - Cristina Antich
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, E-18100 Granada, Spain; (C.A.); (A.V.-M.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospital of Granada, University of Granada, E-18100 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, E-18012 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, E-18071 Granada, Spain
- BioFab i3D—Biofabrication and 3D (Bio) Printing Laboratory, University of Granada, E-18100 Granada, Spain
| | - Beatriz Clares-Naveros
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, E-18071 Granada, Spain; (C.G.-L.); (B.C.-N.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospital of Granada, University of Granada, E-18100 Granada, Spain
| | - Ana Voltes-Martínez
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, E-18100 Granada, Spain; (C.A.); (A.V.-M.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospital of Granada, University of Granada, E-18100 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, E-18012 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, E-18071 Granada, Spain
- BioFab i3D—Biofabrication and 3D (Bio) Printing Laboratory, University of Granada, E-18100 Granada, Spain
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, E-18100 Granada, Spain; (C.A.); (A.V.-M.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospital of Granada, University of Granada, E-18100 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, E-18012 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, E-18071 Granada, Spain
- BioFab i3D—Biofabrication and 3D (Bio) Printing Laboratory, University of Granada, E-18100 Granada, Spain
| | | |
Collapse
|
3
|
Chen L, Yang J, Cai Z, Huang Y, Xiao P, Wang J, Wang F, Huang W, Cui W, Hu N. Electroactive Biomaterials Regulate the Electrophysiological Microenvironment to Promote Bone and Cartilage Tissue Regeneration. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202314079] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Indexed: 01/06/2025]
Abstract
AbstractThe incidence of large bone and articular cartilage defects caused by traumatic injury is increasing worldwide; the tissue regeneration process for these injuries is lengthy due to limited self‐healing ability. Endogenous bioelectrical phenomenon has been well recognized to play an important role in bone and cartilage homeostasis and regeneration. Studies have reported that electrical stimulation (ES) can effectively regulate various biological processes and holds promise as an external intervention to enhance the synthesis of the extracellular matrix, thereby accelerating the process of bone and cartilage regeneration. Hence, electroactive biomaterials have been considered a biomimetic approach to ensure functional recovery by integrating various physiological signals, including electrical, biochemical, and mechanical signals. This review will discuss the role of endogenous bioelectricity in bone and cartilage tissue, as well as the effects of ES on cellular behaviors. Then, recent advances in electroactive materials and their applications in bone and cartilage tissue regeneration are systematically overviewed, with a focus on their advantages and disadvantages as tissue repair materials and performances in the modulation of cell fate. Finally, the significance of mimicking the electrophysiological microenvironment of target tissue is emphasized and future development challenges of electroactive biomaterials for bone and cartilage repair strategies are proposed.
Collapse
Affiliation(s)
- Li Chen
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| | - Jianye Yang
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| | - Zhengwei Cai
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Yanran Huang
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| | - Pengcheng Xiao
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| | - Juan Wang
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Fan Wang
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Wei Huang
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| | - Wenguo Cui
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Ning Hu
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| |
Collapse
|
4
|
Fredrikson JP, Brahmachary PP, June RK, Cox LM, Chang CB. Pericellular Matrix Formation and Atomic Force Microscopy of Single Primary Human Chondrocytes Cultured in Alginate Microgels. Adv Biol (Weinh) 2024; 8:e2300268. [PMID: 37688354 PMCID: PMC10843004 DOI: 10.1002/adbi.202300268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/21/2023] [Indexed: 09/10/2023]
Abstract
One of the main components of articular cartilage is the chondrocyte's pericellular matrix (PCM), which is critical for regulating mechanotransduction, biochemical cues, and healthy cartilage development. Here, individual primary human chondrocytes (PHC) are encapsulated and cultured in 50 µm diameter alginate microgels using drop-based microfluidics. This unique culturing method enables PCM formation and manipulation of individual cells. Over ten days, matrix formation is observed using autofluorescence imaging, and the elastic moduli of isolated cells are measured using AFM. Matrix production and elastic modulus increase are observed for the chondrons cultured in microgels. Furthermore, the elastic modulus of cells grown in microgels increases ≈ten-fold over ten days, nearly reaching the elastic modulus of in vivo PCM. The AFM data is further analyzed using a Gaussian mixture model and shows that the population of PHCs grown in microgels exhibit two distinct populations with elastic moduli averaging 9.0 and 38.0 kPa. Overall, this work shows that microgels provide an excellent culture platform for the growth and isolation of PHCs, enabling PCM formation that is mechanically similar to native PCM. The microgel culture platform presented here has the potential to revolutionize cartilage regeneration procedures through the inclusion of in vitro developed PCM.
Collapse
Affiliation(s)
- Jacob P Fredrikson
- Department of Chemical & Biological Engineering, Montana State University, P.O. Box 173920, Bozeman, MT, 59717, USA
- Center for Biofilm Engineering, Montana State University, P.O. Box 173980, Bozeman, MT, 59717, USA
| | - Priyanka P Brahmachary
- Department of Mechanical & Industrial Engineering, Montana State University, P.O. Box 173800, Bozeman, MT, 59717, USA
| | - Ronald K June
- Department of Mechanical & Industrial Engineering, Montana State University, P.O. Box 173800, Bozeman, MT, 59717, USA
- Department of Microbiology & Cell Biology, Montana State University, P.O. Box 173520, Bozeman, MT, 59717, USA
| | - Lewis M Cox
- Department of Mechanical & Industrial Engineering, Montana State University, P.O. Box 173800, Bozeman, MT, 59717, USA
| | - Connie B Chang
- Department of Chemical & Biological Engineering, Montana State University, P.O. Box 173920, Bozeman, MT, 59717, USA
- Center for Biofilm Engineering, Montana State University, P.O. Box 173980, Bozeman, MT, 59717, USA
- Department of Physiology & Biomedical Engineering, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| |
Collapse
|
5
|
Ong LJY, Fan X, Rujia Sun A, Mei L, Toh YC, Prasadam I. Controlling Microenvironments with Organs-on-Chips for Osteoarthritis Modelling. Cells 2023; 12:579. [PMID: 36831245 PMCID: PMC9954502 DOI: 10.3390/cells12040579] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Osteoarthritis (OA) remains a prevalent disease affecting more than 20% of the global population, resulting in morbidity and lower quality of life for patients. The study of OA pathophysiology remains predominantly in animal models due to the complexities of mimicking the physiological environment surrounding the joint tissue. Recent development in microfluidic organ-on-chip (OoC) systems have demonstrated various techniques to mimic and modulate tissue physiological environments. Adaptations of these techniques have demonstrated success in capturing a joint tissue's tissue physiology for studying the mechanism of OA. Adapting these techniques and strategies can help create human-specific in vitro models that recapitulate the cellular processes involved in OA. This review aims to comprehensively summarise various demonstrations of microfluidic platforms in mimicking joint microenvironments for future platform design iterations.
Collapse
Affiliation(s)
- Louis Jun Ye Ong
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane City, QLD 4000, Australia
- Center for Biomedical Technologies, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia
- Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane City, QLD 4000, Australia
| | - Xiwei Fan
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane City, QLD 4000, Australia
- Center for Biomedical Technologies, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia
| | - Antonia Rujia Sun
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane City, QLD 4000, Australia
- Center for Biomedical Technologies, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia
| | - Lin Mei
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane City, QLD 4000, Australia
- Center for Biomedical Technologies, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia
| | - Yi-Chin Toh
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane City, QLD 4000, Australia
- Center for Biomedical Technologies, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia
- Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane City, QLD 4000, Australia
- Centre for Microbiome Research, Queensland University of Technology, Brisbane City, QLD 4000, Australia
| | - Indira Prasadam
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane City, QLD 4000, Australia
- Center for Biomedical Technologies, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia
| |
Collapse
|
6
|
Taheri S, Ghazali ZS, Montazeri L, Ebrahim FA, Javadpour J, Kamguyan K, Thormann E, Renaud P, Bonakdar S. Engineered substrates incapable of induction of chondrogenic differentiation compared to the chondrocyte imprinted substrates. Biomed Mater 2023; 18. [PMID: 36693281 DOI: 10.1088/1748-605x/acb5d7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 01/24/2023] [Indexed: 01/26/2023]
Abstract
It is well established that surface topography can affect cell functions. However, finding a reproducible and reliable method for regulating stem cell behavior is still under investigation. It has been shown that cell imprinted substrates contain micro- and nanoscale structures of the cell membrane that serve as hierarchical substrates, can successfully alter stem cell fate. This study investigated the effect of the overall cell shape by fabricating silicon wafers containing pit structure in the average size of spherical-like chondrocytes using photolithography technique. We also used chondrocyte cell line (C28/I2) with spindle-like shape to produce cell imprinted substrates. The effect of all substrates on the differentiation of adipose-derived mesenchymal stem cells (ADSCs) has been studied. The AFM and scanning electron microscopy images of the prepared substrates demonstrated that the desired shapes were successfully transferred to the substrates. Differentiation of ADSCs was investigated by immunostaining for mature chondrocyte marker, collagen II, and gene expression of collagen II, Sox9, and aggrecan markers. C28/I2 imprinted substrate could effectively enhanced chondrogenic differentiation compared to regular pit patterns on the wafer. It can be concluded that cell imprinted substrates can induce differentiation signals better than engineered lithographic substrates. The nanostructures on the cell-imprinted patterns play a crucial role in harnessing cell fate. Therefore, the patterns must include the nano-topographies to have reliable and reproducible engineered substrates.
Collapse
Affiliation(s)
- Shiva Taheri
- National Cell Bank Department, Iran Pasteur Institute, Tehran, Iran.,School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Zahra Sadat Ghazali
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Leila Montazeri
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | | - Jafar Javadpour
- School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Khorshid Kamguyan
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Esben Thormann
- Department of Chemistry, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Philippe Renaud
- STI-IMT-LMIS4, École Polytechnique Fédérale de Lausanne, Station 17, 1015 Lausanne, Switzerland
| | - Shahin Bonakdar
- National Cell Bank Department, Iran Pasteur Institute, Tehran, Iran
| |
Collapse
|
7
|
Rigogliuso S, Campora S, Notarbartolo M, Ghersi G. Recovery of Bioactive Compounds from Marine Organisms: Focus on the Future Perspectives for Pharmacological, Biomedical and Regenerative Medicine Applications of Marine Collagen. Molecules 2023; 28:molecules28031152. [PMID: 36770818 PMCID: PMC9920902 DOI: 10.3390/molecules28031152] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/05/2023] [Accepted: 01/17/2023] [Indexed: 01/27/2023] Open
Abstract
Marine environments cover more than 70% of the Earth's surface and are among the richest and most complex ecosystems. In terms of biodiversity, the ocean represents an important source, still not widely exploited, of bioactive products derived from species of bacteria, plants, and animals. However, global warming, in combination with multiple anthropogenic practices, represents a serious environmental problem that has led to an increase in gelatinous zooplankton, a phenomenon referred to as jellyfish bloom. In recent years, the idea of "sustainable development" has emerged as one of the essential elements of green-economy initiatives; therefore, the marine environment has been re-evaluated and considered an important biological resource. Several bioactive compounds of marine origin are being studied, and among these, marine collagen represents one of the most attractive bio-resources, given its use in various disciplines, such as clinical applications, cosmetics, the food sector, and many other industrial applications. This review aims to provide a current overview of marine collagen applications in the pharmacological and biomedical fields, regenerative medicine, and cell therapy.
Collapse
Affiliation(s)
- Salvatrice Rigogliuso
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy
| | - Simona Campora
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy
- Correspondence: (S.C.); (M.N.); Tel.: +39-091-238-62813 (S.C.); +39-091-238-97426 (M.N.)
| | - Monica Notarbartolo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy
- Correspondence: (S.C.); (M.N.); Tel.: +39-091-238-62813 (S.C.); +39-091-238-97426 (M.N.)
| | - Giulio Ghersi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy
- Abiel s.r.l., c/o Department STEBICEF, University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy
| |
Collapse
|
8
|
Hirose K, Kuwahara M, Nakata E, Tetsunaga T, Yamada K, Saiga K, Takigawa M, Ozaki T, Kubota S, Hattori T. Elevated Expression of CCN3 in Articular Cartilage Induces Osteoarthritis in Hip Joints Irrespective of Age and Weight Bearing. Int J Mol Sci 2022; 23:15311. [PMID: 36499638 PMCID: PMC9738275 DOI: 10.3390/ijms232315311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis (OA) occurs not only in the knee but also in peripheral joints throughout the whole body. Previously, we have shown that the expression of cellular communication network factor 3 (CCN3), a matricellular protein, increases with age in knee articular cartilage, and the misexpression of CCN3 in cartilage induces senescence-associated secretory phenotype (SASP) factors, indicating that CCN3 promotes cartilage senescence. Here, we investigated the correlation between CCN3 expression and OA degenerative changes, principally in human femoral head cartilage. Human femoral heads obtained from patients who received total hip arthroplasty were categorized into OA and femoral neck fracture (normal) groups without significant age differences. Gene expression analysis of RNA obtained from femoral head cartilage revealed that CCN3 and MMP-13 expression in the non-weight-bearing part was significantly higher in the OA group than in the normal group, whereas the weight-bearing OA parts and normal cartilage showed no significant differences in the expression of these genes. The expression of COL10A1, however, was significantly higher in weight-bearing OA parts compared with normal weight-bearing parts, and was also higher in weight-bearing parts compared with non-weight-bearing parts in the OA group. In contrast, OA primary chondrocytes from weight-bearing parts showed higher expression of CCN3, p16, ADAMTS4, and IL-1β than chondrocytes from the corresponding normal group, and higher ADAMTS4 and IL-1β in the non-weight-bearing part compared with the corresponding normal group. Acan expression was significantly lower in the non-weight-bearing group in OA primary chondrocytes than in the corresponding normal chondrocytes. The expression level of CCN3 did not show significant differences between the weight-bearing part and non-weight-bearing part in both OA and normal primary chondrocytes. Immunohistochemical analysis showed accumulated CCN3 and aggrecan neoepitope staining in both the weight-bearing part and non-weight-bearing part in the OA group compared with the normal group. The CCN3 expression level in cartilage had a positive correlation with the Mankin score. X-ray analysis of cartilage-specific CCN3 overexpression mice (Tg) revealed deformation of the femoral and humeral head in the early stage, and immunohistochemical analysis showed accumulated aggrecan neoepitope staining as well as CCN3 staining and the roughening of the joint surface in Tg femoral and humeral heads. Primary chondrocytes from the Tg femoral head showed enhanced expression of Ccn3, Adamts5, p16, Il-6, and Tnfα, and decreased expression of Col2a1 and -an. These findings indicate a correlation between OA degenerative changes and the expression of CCN3, irrespective of age and mechanical loading. Furthermore, the Mankin score indicates that the expression level of Ccn3 correlates with the progression of OA.
Collapse
Affiliation(s)
- Kazuki Hirose
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
- Department of Orthopaedic Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Miho Kuwahara
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Eiji Nakata
- Department of Orthopaedic Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Tomonori Tetsunaga
- Department of Orthopaedic Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Kazuki Yamada
- Department of Orthopaedic Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Kenta Saiga
- Department of Orthopaedic Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Masaharu Takigawa
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School/Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Toshifumi Ozaki
- Department of Orthopaedic Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Satoshi Kubota
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Takako Hattori
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| |
Collapse
|
9
|
Wan JT, Qiu XS, Fu ZH, Huang YC, Min SX. Tumor necrosis factor-α inhibition restores matrix formation by human adipose-derived stem cells in the late stage of chondrogenic differentiation. World J Stem Cells 2022; 14:798-814. [PMID: 36483847 PMCID: PMC9724386 DOI: 10.4252/wjsc.v14.i11.798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/05/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Cartilage tissue engineering is a promising strategy for treating cartilage damage. Matrix formation by adipose-derived stem cells (ADSCs), which are one type of seed cell used for cartilage tissue engineering, decreases in the late stage of induced chondrogenic differentiation in vitro, which seriously limits research on ADSCs and their application. AIM To improve the chondrogenic differentiation efficiency of ADSCs in vitro, and optimize the existing chondrogenic induction protocol. METHODS Tumor necrosis factor-alpha (TNF-α) inhibitor was added to chondrogenic culture medium, and then Western blotting, enzyme linked immunosorbent assay, immunofluorescence and toluidine blue staining were used to detect the cartilage matrix secretion and the expression of key proteins of nuclear factor kappa-B (NF-κB) signaling pathway. RESULTS In this study, we found that the levels of TNF-α and matrix metalloproteinase 3 were increased during the chondrogenic differentiation of ADSCs. TNF-α then bound to its receptor and activated the NF-κB pathway, leading to a decrease in cartilage matrix synthesis and secretion. Blocking TNF-α with its inhibitors etanercept (1 μg/mL) or infliximab (10 μg/mL) significantly restored matrix formation. CONCLUSION Therefore, this study developed a combination of ADSC therapy and targeted anti-inflammatory drugs to optimize the chondrogenesis of ADSCs, and this approach could be very beneficial for translating ADSC-based approaches to treat cartilage damage.
Collapse
Affiliation(s)
- Jiang-Tao Wan
- Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
- Institute of Orthopedics, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, Guangdong Province, China
| | - Xian-Shuai Qiu
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong Province, China
| | - Zhuo-Hang Fu
- Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
- Institute of Orthopedics, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, Guangdong Province, China
| | - Yong-Can Huang
- Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
- Institute of Orthopedics, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, Guangdong Province, China
| | - Shao-Xiong Min
- Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong Province, China.
| |
Collapse
|
10
|
Nazbar A, Samani S, Yazdian Kashani S, Amanzadeh A, Shoeibi S, Bonakdar S. Molecular imprinting as a simple way for the long-term maintenance of the stemness and proliferation potential of adipose-derived stem cells: an in vitro study. J Mater Chem B 2022; 10:6816-6830. [DOI: 10.1039/d2tb00279e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Culturing adipose-derived stem cells (ADSCs) on the biomimetic ADSC-imprinted substrate is a simple way for long-term maintenance of their stemness and proliferation potential.
Collapse
Affiliation(s)
- Abolfazl Nazbar
- National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran
| | - Saeed Samani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Yazdian Kashani
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Amir Amanzadeh
- National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran
| | - Shahram Shoeibi
- Food and Drug Laboratory Research Center (FDLRC), Iran Food and Drug Administration (IFDA), MOH & ME, Tehran, Iran
| | - Shahin Bonakdar
- National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
11
|
Li Y, Chen W, Dai Y, Huang Y, Chen Z, Xi T, Zhou Z, Liu H. Decellularized sturgeon cartilage extracellular matrix scaffold inhibits chondrocyte hypertrophy in vitro and in vivo. J Tissue Eng Regen Med 2021; 15:732-744. [PMID: 34032003 DOI: 10.1002/term.3222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/21/2022]
Abstract
Since chondrocyte hypertrophy greatly limits the efficiency of cartilage defects repairing via cartilage tissue engineering (CTE), it is critical to develop a functional CTE scaffold able to inhibit chondrocyte hypertrophy during this period of cartilage regeneration. In this study, we tested the applicability of using decellularized sturgeon cartilage ECM (dSCECM) scaffold to cease chondrocyte hypertrophy during cartilage damage repair. The dSCECM scaffolds with interconnected porous structure and pore size of 114.1 ± 20.9 μm were successfully prepared with freeze-dry method. Chondrocytes displayed a round shape and aggregated to form cellular spheroids within dSCECM scaffolds, which is similar to their chondrocytic phenotype within cartilage in vivo. Higher transcriptional level of chondrogenic related genes and integrin related genes was observed in chondrocytes incubated with dSCECM scaffolds instead of type I collagen (COL I) scaffolds, which were used as the control due to their widely usage in CTE and clinic applications. Furthermore, it confirmed that, compared with COL I scaffolds, dSCECM scaffolds significantly reduced the transcription of chondrocyte hypertrophy related genes in chondrocytes following the hypertrophic induction treatment. To test the ability of dSCECM scaffold to inhibit chondrocytes hypertrophy in vivo, chondrocytes with dSCECM scaffolds and COL I scaffolds were cultured with hypertrophic media and were implanted into nude mice respectively. Following 4 weeks implantation, interestingly, only the specimens derived from COL I scaffolds displayed consequences of chondrocyte hypertrophy like calcification deposition, demonstrating that chondrocyte hypertrophy is ceased by the dSCECM scaffold following hypertrophic induction. It suggests that the dSCECM scaffold can be potentially applied in clinical treating cartilage defects via the CTE approach to avoid the risk of chondrocyte hypertrophy.
Collapse
Affiliation(s)
- Yongsheng Li
- College of Materials Science and Engineering, Hunan University, Changsha, China
| | - Wei Chen
- College of Materials Science and Engineering, Hunan University, Changsha, China
| | - Yao Dai
- College of Materials Science and Engineering, Hunan University, Changsha, China
| | - Yuting Huang
- College of Materials Science and Engineering, Hunan University, Changsha, China
| | - Zongming Chen
- College of Materials Science and Engineering, Hunan University, Changsha, China
| | - Tingfei Xi
- Shenzhen Institute, Peking University, Shenzhen, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Zheng Zhou
- College of Biology, Hunan University, Changsha, China
| | - Hairong Liu
- College of Materials Science and Engineering, Hunan University, Changsha, China
- Hunan Province Key Laboratory for Spray Deposition Technology and Application, Hunan University, Changsha, China
| |
Collapse
|
12
|
Liau LL, Hassan MNFB, Tang YL, Ng MH, Law JX. Feasibility of Human Platelet Lysate as an Alternative to Foetal Bovine Serum for In Vitro Expansion of Chondrocytes. Int J Mol Sci 2021; 22:ijms22031269. [PMID: 33525349 PMCID: PMC7865277 DOI: 10.3390/ijms22031269] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 01/22/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease that affects a lot of people worldwide. Current treatment for OA mainly focuses on halting or slowing down the disease progress and to improve the patient’s quality of life and functionality. Autologous chondrocyte implantation (ACI) is a new treatment modality with the potential to promote regeneration of worn cartilage. Traditionally, foetal bovine serum (FBS) is used to expand the chondrocytes. However, the use of FBS is not ideal for the expansion of cells mean for clinical applications as it possesses the risk of animal pathogen transmission and animal protein transfer to host. Human platelet lysate (HPL) appears to be a suitable alternative to FBS as it is rich in biological factors that enhance cell proliferation. Thus far, HPL has been found to be superior in promoting chondrocyte proliferation compared to FBS. However, both HPL and FBS cannot prevent chondrocyte dedifferentiation. Discrepant results have been reported for the maintenance of chondrocyte redifferentiation potential by HPL. These differences are likely due to the diversity in the HPL preparation methods. In the future, more studies on HPL need to be performed to develop a standardized technique which is capable of producing HPL that can maintain the chondrocyte redifferentiation potential reproducibly. This review discusses the in vitro expansion of chondrocytes with FBS and HPL, focusing on its capability to promote the proliferation and maintain the chondrogenic characteristics of chondrocytes.
Collapse
Affiliation(s)
- Ling Ling Liau
- Physiology Department, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia;
| | - Muhammad Najib Fathi bin Hassan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (M.N.F.b.H.); (M.H.N.)
| | - Yee Loong Tang
- Pathology Department, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia;
| | - Min Hwei Ng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (M.N.F.b.H.); (M.H.N.)
| | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (M.N.F.b.H.); (M.H.N.)
- Correspondence: ; Tel.: +603-9145-7677; Fax: +603-9145-7678
| |
Collapse
|
13
|
Rahmani Del Bakhshayesh A, Babaie S, Tayefi Nasrabadi H, Asadi N, Akbarzadeh A, Abedelahi A. An overview of various treatment strategies, especially tissue engineering for damaged articular cartilage. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 48:1089-1104. [DOI: 10.1080/21691401.2020.1809439] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Azizeh Rahmani Del Bakhshayesh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soraya Babaie
- Department of Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Tayefi Nasrabadi
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nahideh Asadi
- Department of Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Akbarzadeh
- Department of Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Abedelahi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
14
|
Rigogliuso S, Salamone M, Barbarino E, Barbarino M, Nicosia A, Ghersi G. Production of Injectable Marine Collagen-Based Hydrogel for the Maintenance of Differentiated Chondrocytes in Tissue Engineering Applications. Int J Mol Sci 2020; 21:ijms21165798. [PMID: 32806778 PMCID: PMC7461064 DOI: 10.3390/ijms21165798] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 12/22/2022] Open
Abstract
Cartilage is an avascular tissue with limited ability of self-repair. The use of autologous chondrocyte transplants represent an effective strategy for cell regeneration; however, preserving the differentiated state, which ensures the ability to regenerate damaged cartilage, represents the main challenge during in vitro culturing. For this purpose, we produced an injectable marine collagen-based hydrogel, by mixing native collagen from the jellyfish Rhizostoma pulmo with hydroxy-phenyl-propionic acid (HPA)-functionalized marine gelatin. This biocompatible hydrogel formulation, due to the ability of enzymatically reticulate using horseradish peroxidase (HPR) and H2O2, gives the possibility of trap cells inside, in the absence of cytotoxic effects, during the cross-linking process. Moreover, it enables the modulation of the hydrogel stiffness merely varying the concentration of H2O2 without changes in the concentration of polymer precursors. The maintenance of differentiated chondrocytes in culture was then evaluated via morphological analysis of cell phenotype, GAG production and cytoskeleton organization. Additionally, gene expression profiling of differentiation/dedifferentiation markers provided evidence for the promotion of the chondrogenic gene expression program. This, combined with the biochemical properties of marine collagen, represents a promising strategy for maintaining in vitro the cellular phenotype in the aim of the use of autologous chondrocytes in regenerative medicine practices.
Collapse
Affiliation(s)
- Salvatrice Rigogliuso
- Abiel s.r.l, c/o University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy; (S.R.); (M.S.)
| | - Monica Salamone
- Abiel s.r.l, c/o University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy; (S.R.); (M.S.)
| | - Enza Barbarino
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy; (E.B.); (M.B.)
| | - Maria Barbarino
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy; (E.B.); (M.B.)
| | - Aldo Nicosia
- Institute for Biomedical Research and Innovation-National Research Council (IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy
- Correspondence: (A.N.); (G.G.)
| | - Giulio Ghersi
- Abiel s.r.l, c/o University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy; (S.R.); (M.S.)
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy; (E.B.); (M.B.)
- Correspondence: (A.N.); (G.G.)
| |
Collapse
|
15
|
Lim MH, Jeun JH, Kim DH, Park SH, Kim SJ, Lee WS, Hwang SH, Lim JY, Kim SW. Evaluation of Collagen Gel-Associated Human Nasal Septum-Derived Chondrocytes As a Clinically Applicable Injectable Therapeutic Agent for Cartilage Repair. Tissue Eng Regen Med 2020; 17:387-399. [PMID: 32399775 DOI: 10.1007/s13770-020-00261-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Articular cartilage injury has a poor repair ability and limited regeneration capacity with therapy based on articular chondrocytes (ACs) implantation. Here, we validated the hypothesis that human nasal septum-derived chondrocytes (hNCs) are potent therapeutic agents for clinical use in cartilage tissue engineering using an injectable hydrogel, type I collagen (COL1). METHODS We manufactured hNCs incorporated in clinical-grade soluble COL1 and investigated their clinical potential as agents in an articular defect model. RESULTS The hNCs encapsulated in COL1 (hNC-collagen) were uniformly distributed throughout the collagen and showed much greater growth rate than hACs encapsulated in collagen for the 14 days of culture. Fluorescent staining of hNC-collagen showed high expression levels of chondrocyte-specific proteins under clinical conditions. Moreover, a negative mycoplasma screening result were obtained in culture of hNC-collagen. Notably, implantation of hNC-collagen increased the repair of osteochondral defects in rats compared with implantation of collagen only. Many human cells were detected within the cartilage defects. CONCLUSION These results provide reliable evidences supporting for clinical applications of hNC-collagen in regenerative medicine for cartilage repair.
Collapse
Affiliation(s)
- Mi Hyun Lim
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Banpo-daero 222, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Jung Ho Jeun
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Banpo-daero 222, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Do Hyun Kim
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Banpo-daero 222, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Sun Hwa Park
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Banpo-daero 222, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Seok-Jung Kim
- Department of Orthopedics, Uijeongbu St. Mary's Hospital, 271 Cheonbo-ro, Uijeongbu-si, Gyeonggi-do, 11765, Republic of Korea
| | - Weon Sun Lee
- Department of Otolaryngology-Head and Neck Surgery, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 327 Sosa-ro, Bucheon-si, Seoul, Gyeonggi-do, 14647, Republic of Korea
| | - Se Hwan Hwang
- Department of Otolaryngology-Head and Neck Surgery, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 327 Sosa-ro, Bucheon-si, Seoul, Gyeonggi-do, 14647, Republic of Korea.
| | - Jung Yeon Lim
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Banpo-daero 222, Seocho-gu, Seoul, 06591, Republic of Korea.
| | - Sung Won Kim
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Banpo-daero 222, Seocho-gu, Seoul, 06591, Republic of Korea.
| |
Collapse
|
16
|
Akaraphutiporn E, Sunaga T, Bwalya EC, Echigo R, Okumura M. Alterations in characteristics of canine articular chondrocytes in non-passaged long-term monolayer culture: Matter of differentiation, dedifferentiation and redifferentiation. J Vet Med Sci 2020; 82:793-803. [PMID: 32350166 PMCID: PMC7324834 DOI: 10.1292/jvms.20-0118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
This study investigated the effects of culture time on phenotype stability of canine
articular chondrocytes (CACs) in non-passaged long-term monolayer culture. Third passage
(P3) CACs isolated from four cartilage samples were seeded at three different initial
seeding densities (0.2 × 104, 1.0 × 104 and 5.0 × 104
cells/cm2) and maintained in monolayer condition up to 8 weeks without
undergoing subculture after confluence. The characteristic changes of chondrocytes during
the culture period were evaluated based on the cell morphology, cell proliferation,
glycosaminoglycans (GAGs) content, DNA quantification, mRNA expression and ultrastructure
of chondrocytes. Chondrocytes maintained under post-confluence condition exhibited a
capability to grow and proliferate up to 4 weeks. Alcian blue staining and
Dimethylmethylene blue (DMMB) assay revealed that the extracellular matrix (ECM) synthesis
was increased in a time-dependent manner from 2 to 8 weeks. The chondrocyte mRNA
expression profile was dramatically affected by prolonged culture time, with a significant
downregulation of collagen type I, whereas the expression of
collagen type II, aggrecan, Sox9 and
matrix metalloproteinase 13 (MMP-13) were significantly upregulated. In
addition, transmission electron microscopy (TEM) result indicated dilation of rough
endoplasmic reticulum (RER) in these long-term monolayer cultured chondrocytes. These
findings demonstrate that the chondrocytes phenotype could be partially redifferentiated
through the spontaneous redifferentiation process in long-term cultures using standard
culture medium without the addition of chondrogenic supplements or tissue-culture
scaffolds.
Collapse
Affiliation(s)
- Ekkapol Akaraphutiporn
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Takafumi Sunaga
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Eugene C Bwalya
- Department of Clinical Studies, Samora Machel School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia
| | - Ryosuke Echigo
- Veterinary Medical Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Masahiro Okumura
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| |
Collapse
|
17
|
Gao Y, Gao J, Li H, Du D, Jin D, Zheng M, Zhang C. Autologous costal chondral transplantation and costa-derived chondrocyte implantation: emerging surgical techniques. Ther Adv Musculoskelet Dis 2019; 11:1759720X19877131. [PMID: 31579403 PMCID: PMC6759717 DOI: 10.1177/1759720x19877131] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/29/2019] [Indexed: 01/08/2023] Open
Abstract
It is a great challenge to cure symptomatic lesions and considerable defects of hyaline cartilage due to its complex structure and poor self-repair capacity. If left untreated, unmatured degeneration will cause significant complications. Surgical intervention to repair cartilage may prevent progressive joint degeneration. A series of surgical techniques, including biological augmentation, microfracture and bone marrow stimulation, autologous chondrocyte implantation (ACI), and allogenic and autogenic chondral/osteochondral transplantation, have been used for various indications. However, the limited repairing capacity and the potential pitfalls of these techniques cannot be ignored. Increasing evidence has shown promising outcomes from ACI and cartilage transplantation. Nevertheless, the morbidity of autologous donor sites and limited resource of allogeneic bone have considerably restricted the wide application of these surgical techniques. Costal cartilage, which preserves permanent chondrocytes and the natural osteochondral junction, is an ideal candidate for the restoration of cartilage defects. Several in vitro and in vivo studies have shown good performance of costal cartilage transplantation. Although costal cartilage is a classic donor in plastic and cosmetic surgery, it is rarely used in skeletal cartilage restoration. In this review, we introduce the fundamental properties of costal cartilage and summarize costa-derived chondrocyte implantation and costal chondral/osteochondral transplantation. We will also discuss the pitfalls and pearls of costal cartilage transplantation. Costal chondral/osteochondral transplantation and costa-based chondrocytotherapy might be up-and-coming surgical techniques for recalcitrant cartilage lesions.
Collapse
Affiliation(s)
| | - Junjie Gao
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Centre for Orthopaedic Translational Research, University of Western Australia, Nedlands, WA, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - Hengyuan Li
- Department of Orthopaedics, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang, China
- Centre for Orthopaedic Translational Research, Medical School, University of Western Australia, Nedlands, WA, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - Dajiang Du
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Dongxu Jin
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Minghao Zheng
- Centre for Orthopaedic Translational Research, Medical School, University of Western Australia, Nedlands, WA, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - Changqing Zhang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
- Institute of Microsurgery on Extremities, Shanghai 200233, China
| |
Collapse
|
18
|
Singh RK, Knowles JC, Kim HW. Advances in nanoparticle development for improved therapeutics delivery: nanoscale topographical aspect. J Tissue Eng 2019; 10:2041731419877528. [PMID: 31555432 PMCID: PMC6749784 DOI: 10.1177/2041731419877528] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 08/31/2019] [Indexed: 01/24/2023] Open
Abstract
Nanoparticle-based therapeutics delivery holds great promise for the treatment of intractable diseases. The high loading of drug molecules and their precise delivery to target sites are needed to gain optimal therapeutic functions of the nanoparticle delivery system. In this communication, we highlight, among other properties of nanoparticles (e.g. size, shape, surface chemistry, and degradation), the nanoscale topography, which has recently been shown to be an important parameter, ultimately determining drug loading, cell penetration, and body clearance. This nanotopographical aspect is considered to offer a new effective strategy to the development of nanoparticles for drug and gene delivery with enhanced therapeutic outcome.
Collapse
Affiliation(s)
- Rajendra K Singh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Jonathan C Knowles
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
- Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London (UCL), London, UK
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|