1
|
Abbas SEM, Maged G, Wang H, Lotfy A. Mesenchymal Stem/Stromal Cells Microencapsulation for Cell Therapy. Cells 2025; 14:149. [PMID: 39936941 PMCID: PMC11817150 DOI: 10.3390/cells14030149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/11/2025] [Accepted: 01/16/2025] [Indexed: 02/13/2025] Open
Abstract
Cell microencapsulation is one of the most studied strategies to overcome the challenges associated with the implementation of mesenchymal stem/stromal cells (MSCs) in vivo. This approach isolates/shields donor MSCs from the host immune system using a semipermeable membrane that allows for the diffusion of gases, nutrients, and therapeutics, but not host immune cells. As a result, microencapsulated MSCs survive and engraft better after infusion, and they can be delivered specifically to the targeted site. Additionally, microencapsulation enables the co-culture of MSCs with different types of cells in a three-dimensional (3D) environment, allowing for better cellular interaction. Alginate, collagen, and cellulose are the most popular materials, and air jet extrusion, microfluidics, and emulsion are the most used techniques for MSC cell encapsulation in the literature. These materials and techniques differ in the size range of the resultant microcapsules and their compatibility with the applied materials. This review discusses various materials and techniques used for the microencapsulation of MSCs. We also shed light on the recent findings in this field, the advantages and drawbacks of using encapsulated MSCs, and the in vivo translation of the microencapsulated MSCs in cell therapy.
Collapse
Affiliation(s)
| | - Ghada Maged
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria 21526, Egypt
| | - Hongjun Wang
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29401, USA
| | - Ahmed Lotfy
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
2
|
Chen A, Qu J, You Y, Pan J, Scheper V, Lin Y, Tian X, Shu F, Luo Y, Tang J, Zhang H. Intratympanic injection of MSC-derived small extracellular vesicles protects spiral ganglion neurons from degeneration. Biomed Pharmacother 2024; 179:117392. [PMID: 39232388 DOI: 10.1016/j.biopha.2024.117392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/23/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024] Open
Abstract
Sensorineural hearing loss is one of the most prevalent sensory deficits. Spiral ganglion neurons (SGNs) exhibit very limited regeneration capacity and their degeneration leads to profound hearing loss. Mesenchymal stem cell-derived small extracellular vesicles (MSC-sEV) have been demonstrated to repair tissue damage in various degenerative diseases. However, the effects of MSC-sEV on SGN degeneration remain unclear. In this study, we investigated the efficacy of MSC-sEV for protection against ouabain-induced SGN degeneration. MSC-sEV were derived from rat bone marrow and their components related to neuron growth were determined by proteomic analysis. In primary culture SGNs, MSC-sEV significantly promoted neurite growth and growth cone development. The RNA-Seq analysis of SGNs showed that enriched pathways include neuron development and axon regeneration, consistent with proteomics. In ouabain induced SGN degeneration rat model, MSC-sEV administration via intratympanic injection significantly enhanced SGN survival and mitigated hearing loss. Furthermore, after ouabain treatment, SGNs displayed evident signs of apoptosis, including nuclei condensation and fragmentation, with numerous cells exhibiting TUNEL-positive. However, administration of MSC-sEV effectively decreased the number of TUNEL-positive cells and reduced caspase-3 activation. In conclusion, our findings demonstrate the potential of MSC-sEV in preventing SGN degeneration and promoting neural growth, suggesting intratympanic injection of MSC-sEV is a specific and efficient strategy for neural hearing loss.
Collapse
Affiliation(s)
- Anning Chen
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; Ear Research Institute, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Jiaxi Qu
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; Ear Research Institute, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Yunyou You
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; Ear Research Institute, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Jing Pan
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; Ear Research Institute, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Verena Scheper
- Department of Otolaryngology, Hannover Medical School, Hannover 30625, Germany; Cluster of Excellence "Hearing4all", German Research Foundation, Hannover Medical School, Hannover 30625, Germany
| | - Yongdong Lin
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; Ear Research Institute, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Xuexin Tian
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; Ear Research Institute, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Fan Shu
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; Ear Research Institute, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Yanjing Luo
- Department of Otolaryngology, Hannover Medical School, Hannover 30625, Germany; Cluster of Excellence "Hearing4all", German Research Foundation, Hannover Medical School, Hannover 30625, Germany
| | - Jie Tang
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; Ear Research Institute, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou 510515, China.
| | - Hongzheng Zhang
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; Ear Research Institute, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| |
Collapse
|
3
|
Adelipour M, Hwang H, Kwon D, Kim KK, Moon JH, Lubman DM, Kim J. Evaluation of the effect of dimethyl fumarate on human bone marrow-derived mesenchymal stem cells using bottom-up proteomics. Biochimie 2024; 221:147-158. [PMID: 37931793 PMCID: PMC11068858 DOI: 10.1016/j.biochi.2023.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 11/08/2023]
Abstract
Mesenchymal stem cells (MSCs) have potential as a viable treatment option in the field of regenerative medicine, but MSC-based therapy needs to be more efficient. Preconditioning is a method to improve MSC-based therapy, and dimethyl fumarate (DMF) - an agent that can enhance the antioxidative capacity of cells - can be considered for preconditioning of MSCs. In this study, we treated bone marrow-derived MSCs with DMF and evaluated their proteome using bottom-up proteomics. The MSCs were exposed to 10 μM DMF for 24 h, followed by lysis with an SDS solution, digestion with trypsin using an s-trap column, and analysis using nanoLC-MS/MS, which identified 2262 proteins with confidence. Bioinformatic analysis of the identified proteins revealed 47 upregulated proteins and 81 downregulated proteins upon DMF treatment. Pathway enrichment analysis suggested a possible decrease in autophagy and a decrease in the activity of the TCA cycle, while indicating a potential increase in proliferation and antioxidant activity in DMF-treated MSCs compared to untreated MSCs. Our findings suggest that DMF can enhance the proliferation of MSCs and increase their stability, and that preconditioning could improve the therapeutic efficacy of MSCs for the treatment of regenerative diseases.
Collapse
Affiliation(s)
- Maryam Adelipour
- Department of Clinical Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Hyojin Hwang
- Department of Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Dokyung Kwon
- Department of Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Kee K Kim
- Department of Biochemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Jeong Hee Moon
- Core Research Facility and Analysis Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - David M Lubman
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, 55, USA
| | - Jeongkwon Kim
- Department of Chemistry, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
4
|
Bastami F, Safavi SM, Seifi S, Nadjmi N, Khojasteh A. Addition of Bone-Marrow Mesenchymal Stem Cells to 3D-Printed Alginate/Gelatin Hydrogel Containing Freeze-Dried Bone Nanoparticles Accelerates Regeneration of Critical Size Bone Defects. Macromol Biosci 2024; 24:e2300065. [PMID: 37846197 DOI: 10.1002/mabi.202300065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 08/20/2023] [Indexed: 10/18/2023]
Abstract
A 3D-printed biodegradable hydrogel, consisting of alginate, gelatin, and freeze-dried bone allograft nanoparticles (npFDBA), is developed as a scaffold for enhancing cell adhesion, proliferation, and osteogenic differentiation when combined with rat bone marrow mesenchymal stem cells (rBMSCs). This composite hydrogel is intended for the regeneration of critical-sized bone defects using a rat calvaria defect model. The behavior of rBMSCs seeded onto the scaffold is evaluated through scanning electron microscope, MTT assays, and quantitative real-time PCR. In a randomized study, thirty rats are assigned to five treatment groups: 1) rBMSCs-loaded hydrogel, 2) rBMSCs-loaded FDBA microparticles, 3) hydrogel alone, 4) FDBA alone, and 5) an empty defect serving as a negative control. After 8 weeks, bone regeneration is assessed using H&E, Masson's trichrome staining, and immunohistochemistry. The 3D-printed hydrogel displays excellent adhesion, proliferation, and differentiation of rBMSCs. The rBMSCs-loaded hydrogel exhibits comparable new bone regeneration to the rBMSCs-loaded FDBA group, outperforming other groups with statistical significance (P-value < 0.05). These findings are corroborated by Masson's trichrome staining and osteocalcin expression. The rBMSCs-loaded 3D-printed hydrogel demonstrates promising potential for significantly enhancing bone regeneration, surpassing the conventional clinical approach (FDBA).
Collapse
Affiliation(s)
- Farshid Bastami
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyedeh-Mina Safavi
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sina Seifi
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasser Nadjmi
- Department of Cranio-Maxillofacial Surgery, University Hospital, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Arash Khojasteh
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Cranio-Maxillofacial Surgery, University Hospital, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Xu M, Chen A, Chen D, Wu S, Deng Z, Wen H, Zhong H, Lu K, Tang J, Ma D, Zhang H. Preparation, characterization, and in vitro/vivo evaluation of a multifunctional electrode coating for cochlear implants. BIOMATERIALS ADVANCES 2024; 157:213736. [PMID: 38128170 DOI: 10.1016/j.bioadv.2023.213736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/11/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Cochlear implantation (CI) is the primary intervention for patients with sensorineural hearing loss to restore their hearing. However, approximately 90 % of CI recipients experience unexpected fibrosis around the inserted electrode arrays due to acute and chronic inflammation. This fibrosis leads to progressive residual hearing loss. Addressing this complication is crucial for enhancing CI outcomes, yet an effective treatment has not yet been found. In this study, we developed a multifunctional dexamethasone (DXM)-loaded polytrimethylene carbonate (PTMC) electrode coating to mitigate inflammatory reactions and fibrosis after CI. This thin and flexible coating could preserve the mechanical performance of the electrode and reduce the implantation resistance for CI. The in vitro release studies demonstrated the DXM-PTMC coating's efficient drug loading and sustained release capability over 90 days. DXM-PTMC also showed long-term stability, high biocompatibility, and effective anti-inflammatory effects in vitro and in vivo. Compared with the uncoated group, DXM-PTMC coating significantly inhibited the expression of inflammatory factors, such as NO, TNF-α, IL-1β, and IL-6. DXM-PTMC coating suppressed fibrosis in rat implantation models for 3 weeks by reducing both acute and chronic inflammation. Our findings suggest that DXM-PTMC coating is a novel strategy to improve the outcomes of CI.
Collapse
Affiliation(s)
- Muqing Xu
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; Ear Research Institute, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Anning Chen
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; Ear Research Institute, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Dongxiu Chen
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; Ear Research Institute, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Shengquan Wu
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Zhipeng Deng
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Hang Wen
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Huiling Zhong
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Kejin Lu
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Jie Tang
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; Ear Research Institute, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou 510515, China.
| | - Dong Ma
- Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China.
| | - Hongzheng Zhang
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; Ear Research Institute, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| |
Collapse
|
6
|
Lu J, Wang M, Meng Y, An W, Wang X, Sun G, Wang H, Liu W. Current advances in biomaterials for inner ear cell regeneration. Front Neurosci 2024; 17:1334162. [PMID: 38282621 PMCID: PMC10811200 DOI: 10.3389/fnins.2023.1334162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/28/2023] [Indexed: 01/30/2024] Open
Abstract
Inner ear cell regeneration from stem/progenitor cells provides potential therapeutic strategies for the restoration of sensorineural hearing loss (SNHL), however, the efficiency of regeneration is low and the functions of differentiated cells are not yet mature. Biomaterials have been used in inner ear cell regeneration to construct a more physiologically relevant 3D culture system which mimics the stem cell microenvironment and facilitates cellular interactions. Currently, these biomaterials include hydrogel, conductive materials, magneto-responsive materials, photo-responsive materials, etc. We analyzed the characteristics and described the advantages and limitations of these materials. Furthermore, we reviewed the mechanisms by which biomaterials with different physicochemical properties act on the inner ear cell regeneration and depicted the current status of the material selection based on their characteristics to achieve the reconstruction of the auditory circuits. The application of biomaterials in inner ear cell regeneration offers promising opportunities for the reconstruction of the auditory circuits and the restoration of hearing, yet biomaterials should be strategically explored and combined according to the obstacles to be solved in the inner ear cell regeneration research.
Collapse
Affiliation(s)
- Junze Lu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Institute of Otorhinolaryngology, Jinan, China
| | - Man Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Institute of Otorhinolaryngology, Jinan, China
| | - Yu Meng
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Institute of Otorhinolaryngology, Jinan, China
| | - Weibin An
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Institute of Otorhinolaryngology, Jinan, China
| | - Xue Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Institute of Otorhinolaryngology, Jinan, China
| | - Gaoying Sun
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Institute of Otorhinolaryngology, Jinan, China
| | - Haibo Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Institute of Otorhinolaryngology, Jinan, China
| | - Wenwen Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Institute of Otorhinolaryngology, Jinan, China
| |
Collapse
|
7
|
Schwieger J, Gao Z, Lenarz T, Munro G, Petersen KA, Scheper V. "Of mice and men": the relevance of Cometin and Erythropoietin origin for its effects on murine spiral ganglion neuron survival and neurite outgrowth in vitro. Front Neurosci 2023; 17:1224463. [PMID: 37638326 PMCID: PMC10450246 DOI: 10.3389/fnins.2023.1224463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/28/2023] [Indexed: 08/29/2023] Open
Abstract
Neurotrophic factors (NTF) play key roles in the survival of neurons, making them promising candidates for therapy of neurodegenerative diseases. In the case of the inner ear, sensorineural hearing loss (SNHL) is characterized over time by a degeneration of the primary auditory neurons, the spiral ganglion neurons (SGN). It is well known that selected NTF can protect SGN from degeneration, which positively influences the outcome of cochlear implants, the treatment of choice for patients with profound to severe SNHL. However, the outcome of studies investigating protective effects of NTF on auditory neurons are in some cases of high variability. We hypothesize that the factor origin may be one aspect that affects the neuroprotective potential. The aim of this study was to investigate the neuroprotective potential of human and mouse Erythropoietin (EPO) and Cometin on rat SGN. SGN were isolated from neonatal rats (P 2-5) and cultured in serum-free medium. EPO and Cometin of mouse and human origin were added in concentrations of 0.1, 1, and 10 ng/mL and 0.1, 1, and 10 μg/mL, respectively. The SGN survival rate and morphology, and the neurite outgrowth were determined and compared to negative (no additives) and positive (brain-derived neurotrophic factor, BDNF) controls. A neuroprotective effect of 10 μg/mL human Cometin comparable to that obtained with BDNF was observed in the SGN-culture. In contrast, mouse Cometin was ineffective. A similar influence of 10 μg/mL human and mouse and 1 μg/mL human Cometin on the length of regenerated neurites compared to BDNF was also detected. No other Cometin-conditions, and none of the EPO-conditions tested had neuroprotective or neuritogenic effects or influenced the neuronal morphology of the SGN. The neuroprotective effect of 10 μg/mL human Cometin on SGN indicates it is a potentially interesting protein for the supportive treatment of inner ear disorders. The finding that mouse Cometin had no effect on the SGN in the parallel-performed experiments underlines the importance of species origin of molecules being screened for therapeutic purpose.
Collapse
Affiliation(s)
- Jana Schwieger
- Department of Otorhinolaryngology, Hannover Medical School, Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
- Cluster of Excellence "Hearing4all" EXC 1077/2, Hannover, Germany
| | - Ziwen Gao
- Department of Otorhinolaryngology, Hannover Medical School, Hannover, Germany
- Ear Nose and Throat Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Thomas Lenarz
- Department of Otorhinolaryngology, Hannover Medical School, Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
- Cluster of Excellence "Hearing4all" EXC 1077/2, Hannover, Germany
| | | | | | - Verena Scheper
- Department of Otorhinolaryngology, Hannover Medical School, Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
- Cluster of Excellence "Hearing4all" EXC 1077/2, Hannover, Germany
| |
Collapse
|
8
|
Khan MM, Parikh V. Prospects for Neurotrophic Factor-Based Early Intervention in Schizophrenia: Lessons Learned from the Effects of Antipsychotic Drugs on Cognition, Neurogenesis, and Neurotrophic Factors. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2023; 22:289-303. [PMID: 35366786 DOI: 10.2174/1871527321666220401124151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/13/2022] [Accepted: 02/18/2022] [Indexed: 12/16/2022]
Abstract
Although reducing psychotic symptoms in schizophrenia has been a major focus of therapeutic interventions for decades, improving cognition is considered a better predictor of functional outcomes. However, the most commonly prescribed antipsychotic drugs (APDs) show only marginal beneficial effects on cognition in patients with schizophrenia. The neural mechanisms underlying cognitive disturbances in schizophrenia remain unknown that making drug development efforts very challenging. Since neurotrophic factors are the primary architects of neurogenesis, synaptic plasticity, learning, and memory, the findings from preclinical and clinical studies that assess changes in neurogenesis and neurotrophic factors and their relationship to cognitive performance in schizophrenia, and how these mechanisms might be impacted by APD treatment, may provide valuable clues in developing therapies to combat cognitive deficit in schizophrenia. Numerous evidence produced over the years suggests a deficit in a wide spectrum of neurotrophic factors in schizophrenia. Since schizophrenia is considered a neurodevelopmental disorder, early intervention with neurotrophic factors may be more effective in ameliorating the cognitive deficits and psychopathological symptoms associated with this pathology. In this context, results from initial clinical trials with neurotrophic factors and their future potential to improve cognition and psychosocial functioning in schizophrenia are discussed.
Collapse
Affiliation(s)
- Mohammad M Khan
- Laboratory of Translational Neurology and Molecular Psychiatry, Department of Biotechnology, Era\'s Lucknow Medical College and Hospital, and Faculty of Science, Era University, Lucknow, UP, India
| | - Vinay Parikh
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, USA
| |
Collapse
|
9
|
Changes in the Electrically Evoked Compound Action Potential over time After Implantation and Subsequent Deafening in Guinea Pigs. J Assoc Res Otolaryngol 2022; 23:721-738. [PMID: 35948695 PMCID: PMC9789241 DOI: 10.1007/s10162-022-00864-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 07/12/2022] [Indexed: 01/06/2023] Open
Abstract
The electrically evoked compound action potential (eCAP) is a direct measure of the responsiveness of the auditory nerve to electrical stimulation from a cochlear implant (CI). CIs offer a unique opportunity to study the auditory nerve's electrophysiological behavior in individual human subjects over time. In order to understand exactly how the eCAP relates to the condition of the auditory nerve, it is crucial to compare changes in the eCAP over time in a controlled model of deafness-induced auditory nerve degeneration. In the present study, 10 normal-hearing young adult guinea pigs were implanted and deafened 4 weeks later, so that the effect of deafening could be monitored within-subject over time. Following implantation, but before deafening, most examined eCAP characteristics significantly changed, suggesting increasing excitation efficacy (e.g., higher maximum amplitude, lower threshold, shorter latency). Conversely, inter-phase gap (IPG) effects on these measures - within-subject difference measures that have been shown to correlate well with auditory nerve survival - did not vary for most eCAP characteristics. After deafening, we observed an initial increase in excitability (steeper slope of the eCAP amplitude growth function (AGF), lower threshold, shorter latency and peak width) which typically returned to normal-hearing levels within a week, after which a slower process, probably reflecting spiral ganglion cell loss, took place over the remaining 6 weeks (e.g., decrease in maximum amplitude, AGF slope, peak area, and IPG effect for AGF slope; increase in IPG effect for latency). Our results suggest that gradual changes in peak width and latency reflect the rate of neural degeneration, while peak area, maximum amplitude, and AGF slope reflect neural population size, which may be valuable for clinical diagnostics.
Collapse
|
10
|
Samiei M, Abdolahinia ED, Fathi M, Barar J, Omidi Y. Chitosan-based bioactive hydrogels for osteogenic differentiation of dental pulp stem cells. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Abstract
Neuroprosthetic devices that record and modulate neural activities have demonstrated immense potential for bypassing or restoring lost neurological functions due to neural injuries and disorders. However, implantable electrical devices interfacing with brain tissue are susceptible to a series of inflammatory tissue responses along with mechanical or electrical failures which can affect the device performance over time. Several biomaterial strategies have been implemented to improve device-tissue integration for high quality and stable performance. Ranging from developing smaller, softer, and more flexible electrode designs to introducing bioactive coatings and drug-eluting layers on the electrode surface, such strategies have shown different degrees of success but with limitations. With their hydrophilic properties and specific bioactivities, carbohydrates offer a potential solution for addressing some of the limitations of the existing biomolecular approaches. In this review, we summarize the role of polysaccharides in the central nervous system, with a primary focus on glycoproteins and proteoglycans, to shed light on their untapped potential as biomaterials for neural implants. Utilization of glycosaminoglycans for neural interface and tissue regeneration applications is comprehensively reviewed to provide the current state of carbohydrate-based biomaterials for neural implants. Finally, we will discuss the challenges and opportunities of applying carbohydrate-based biomaterials for neural tissue interfaces.
Collapse
Affiliation(s)
- Vaishnavi Dhawan
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Xinyan Tracy Cui
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for Neural Basis of Cognition, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA
| |
Collapse
|
12
|
Park SY, Kim DS, Kim HM, Lee JK, Hwang DY, Kim TH, You S, Han DK. Human Mesenchymal Stem Cell-Derived Extracellular Vesicles Promote Neural Differentiation of Neural Progenitor Cells. Int J Mol Sci 2022; 23:ijms23137047. [PMID: 35806058 PMCID: PMC9267053 DOI: 10.3390/ijms23137047] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have been adopted in various preclinical and clinical studies because of their multipotency and low immunogenicity. However, numerous obstacles relating to safety issues remain. Therefore, MSC-derived extracellular vesicles (EVs) have been recently employed. EVs are nano-sized endoplasmic reticulum particles generated and released in cells that have similar biological functions to their origin cells. EVs act as cargo for bioactive molecules such as proteins and genetic materials and facilitate tissue regeneration. EVs obtained from adipose-derived MSC (ADMSC) also have neuroprotective and neurogenesis effects. On the basis of the versatile effects of EVs, we aimed to enhance the neural differentiation ability of ADMSC-derived EVs by elucidating the neurogenic-differentiation process. ADMSC-derived EVs isolated from neurogenesis conditioned media (differentiated EVs, dEVs) increased neurogenic ability by altering innate microRNA expression and cytokine composition. Consequently, dEVs promoted neuronal differentiation of neural progenitor cells in vitro, suggesting that dEVs are a prospective candidate for EV-based neurological disorder regeneration therapy.
Collapse
Affiliation(s)
- So-Yeon Park
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Korea; (S.-Y.P.); (D.-S.K.); (H.-M.K.); (J.-K.L.); (D.-Y.H.)
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Da-Seul Kim
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Korea; (S.-Y.P.); (D.-S.K.); (H.-M.K.); (J.-K.L.); (D.-Y.H.)
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Seoul 06974, Korea;
| | - Hyun-Mun Kim
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Korea; (S.-Y.P.); (D.-S.K.); (H.-M.K.); (J.-K.L.); (D.-Y.H.)
| | - Jun-Kyu Lee
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Korea; (S.-Y.P.); (D.-S.K.); (H.-M.K.); (J.-K.L.); (D.-Y.H.)
| | - Dong-Youn Hwang
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Korea; (S.-Y.P.); (D.-S.K.); (H.-M.K.); (J.-K.L.); (D.-Y.H.)
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Seoul 06974, Korea;
| | - Seungkwon You
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
- Correspondence: (S.Y.); (D.K.H.)
| | - Dong Keun Han
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Korea; (S.-Y.P.); (D.-S.K.); (H.-M.K.); (J.-K.L.); (D.-Y.H.)
- Correspondence: (S.Y.); (D.K.H.)
| |
Collapse
|
13
|
Schwieger J, Frisch AS, Rau TS, Lenarz T, Hügl S, Scheper V. 3D Printed Cell Culture Chamber for Testing the Effect of Pump-Based Chronic Drug Delivery on Inner Ear Tissue. Biomolecules 2022; 12:biom12040589. [PMID: 35454178 PMCID: PMC9032916 DOI: 10.3390/biom12040589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/11/2022] [Accepted: 04/15/2022] [Indexed: 11/16/2022] Open
Abstract
Cochlear hair cell damage and spiral ganglion neuron (SGN) degeneration are the main causes of sensory neural hearing loss. Cochlear implants (CIs) can replace the function of the hair cells and stimulate the SGNs electrically. The condition of the SGNs and their spatial distance to the CI are key factors for CI-functionality. For a better performance, a high number of neurons and a closer contact to the electrode are intended. Neurotrophic factors are able to enhance SGN survival and neurite outgrowth, and thereby might optimize the electrode-nerve interaction. This would require chronic factor treatment, which is not yet established for the inner ear. Investigations on chronic drug delivery to SGNs could benefit from an appropriate in vitro model. Thus, an inner ear inspired Neurite Outgrowth Chamber (NOC), which allows the incorporation of a mini-osmotic pump for long-term drug delivery, was designed and three-dimensionally printed. The NOC’s function was validated using spiral ganglion explants treated with ciliary neurotrophic factor, neurotrophin-3, or control fluid released via pumps over two weeks. The NOC proved to be suitable for explant cultivation and observation of pump-based drug delivery over the examined period, with neurotrophin-3 significantly increasing neurite outgrowth compared to the other groups.
Collapse
Affiliation(s)
- Jana Schwieger
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, 30625 Hannover, Germany; (A.S.F.); (T.S.R.); (T.L.); (S.H.); (V.S.)
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625 Hannover, Germany
- Cluster of Excellence “Hearing4all” EXC 1077/2, 30625 Hannover, Germany
- Correspondence: ; Tel.: +49-5115327262
| | - Anna Sophie Frisch
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, 30625 Hannover, Germany; (A.S.F.); (T.S.R.); (T.L.); (S.H.); (V.S.)
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625 Hannover, Germany
| | - Thomas S. Rau
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, 30625 Hannover, Germany; (A.S.F.); (T.S.R.); (T.L.); (S.H.); (V.S.)
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625 Hannover, Germany
- Cluster of Excellence “Hearing4all” EXC 1077/2, 30625 Hannover, Germany
| | - Thomas Lenarz
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, 30625 Hannover, Germany; (A.S.F.); (T.S.R.); (T.L.); (S.H.); (V.S.)
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625 Hannover, Germany
- Cluster of Excellence “Hearing4all” EXC 1077/2, 30625 Hannover, Germany
| | - Silke Hügl
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, 30625 Hannover, Germany; (A.S.F.); (T.S.R.); (T.L.); (S.H.); (V.S.)
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625 Hannover, Germany
- Cluster of Excellence “Hearing4all” EXC 1077/2, 30625 Hannover, Germany
| | - Verena Scheper
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, 30625 Hannover, Germany; (A.S.F.); (T.S.R.); (T.L.); (S.H.); (V.S.)
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625 Hannover, Germany
- Cluster of Excellence “Hearing4all” EXC 1077/2, 30625 Hannover, Germany
| |
Collapse
|
14
|
Kurian AG, Singh RK, Patel KD, Lee JH, Kim HW. Multifunctional GelMA platforms with nanomaterials for advanced tissue therapeutics. Bioact Mater 2022; 8:267-295. [PMID: 34541401 PMCID: PMC8424393 DOI: 10.1016/j.bioactmat.2021.06.027] [Citation(s) in RCA: 183] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
Polymeric hydrogels are fascinating platforms as 3D scaffolds for tissue repair and delivery systems of therapeutic molecules and cells. Among others, methacrylated gelatin (GelMA) has become a representative hydrogel formulation, finding various biomedical applications. Recent efforts on GelMA-based hydrogels have been devoted to combining them with bioactive and functional nanomaterials, aiming to provide enhanced physicochemical and biological properties to GelMA. The benefits of this approach are multiple: i) reinforcing mechanical properties, ii) modulating viscoelastic property to allow 3D printability of bio-inks, iii) rendering electrical/magnetic property to produce electro-/magneto-active hydrogels for the repair of specific tissues (e.g., muscle, nerve), iv) providing stimuli-responsiveness to actively deliver therapeutic molecules, and v) endowing therapeutic capacity in tissue repair process (e.g., antioxidant effects). The nanomaterial-combined GelMA systems have shown significantly enhanced and extraordinary behaviors in various tissues (bone, skin, cardiac, and nerve) that are rarely observable with GelMA. Here we systematically review these recent efforts in nanomaterials-combined GelMA hydrogels that are considered as next-generation multifunctional platforms for tissue therapeutics. The approaches used in GelMA can also apply to other existing polymeric hydrogel systems.
Collapse
Affiliation(s)
- Amal George Kurian
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Rajendra K. Singh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Kapil D. Patel
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London, WC1X8LD, UK
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| |
Collapse
|
15
|
Lu X, Guo H, Li J, Sun T, Xiong M. Recombinant Human Bone Morphogenic Protein-2 Immobilized Fabrication of Magnesium Functionalized Injectable Hydrogels for Controlled-Delivery and Osteogenic Differentiation of Rat Bone Marrow-Derived Mesenchymal Stem Cells in Femoral Head Necrosis Repair. Front Cell Dev Biol 2021; 9:723789. [PMID: 34900987 PMCID: PMC8656218 DOI: 10.3389/fcell.2021.723789] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
Femoral head necrosis (FHN) is a clinically progressive disease that leads to overwhelming complications without an effective therapeutic approach. In recent decades, transplantation of mesenchymal stem cells (MSCs) has played a promising role in the treatment of FHN in the initial stage; however, the success rate is still low because of unsuitable cell carriers and abridged osteogenic differentiation of the transplanted MSCs. Biopolymeric-derived hydrogels have been extensively applied as effective cell carriers and drug vesicles; they provide the most promising contributions in the fields of tissue engineering and regenerative medicine. However, the clinical potential of hydrogels may be limited because of inappropriate gelation, swelling, mechanical characteristics, toxicity in the cross-linking process, and self-healing ability. Naturally, gelated commercial hydrogels are not suitable for cell injection and infiltration because of their static network structure. In this study, we designed a novel thermogelling injectable hydrogel using natural silk fibroin-blended chitosan (CS) incorporated with magnesium (Mg) substitutes to improve physical cross-linking, stability, and cell osteogenic compatibility. The presented observations demonstrate that the developed injectable hydrogels can facilitate the controlled delivery of immobilized recombinant human bone morphogenic protein-2 (rhBMP-2) and rat bone marrow-derived MSCs (rBMSCs) with greater cell encapsulation efficiency, compatibility, and osteogenic differentiation. In addition, outcomes of in vivo animal studies established promising osteoinductive, bone mineral density, and bone formation rate after implantation of the injectable hydrogel scaffolds. Therefore, the developed hydrogels have great potential for clinical applications of FHN therapy.
Collapse
Affiliation(s)
- Xueliang Lu
- Department of Orthopedics, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Hongyu Guo
- Clinical Medical College, Henan University of Science and Technology, Luoyang, China
| | - Jiaju Li
- Clinical Medical College, Henan University of Science and Technology, Luoyang, China
| | - Tianyu Sun
- Clinical Medical College, Henan University of Science and Technology, Luoyang, China
| | - Mingyue Xiong
- Department of Orthopedics, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
16
|
Wey K, Schirrmann R, Diesing D, Lang S, Brandau S, Hansen S, Epple M. Coating of cochlear implant electrodes with bioactive DNA-loaded calcium phosphate nanoparticles for the local transfection of stimulatory proteins. Biomaterials 2021; 276:121009. [PMID: 34280824 DOI: 10.1016/j.biomaterials.2021.121009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/23/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022]
Abstract
Calcium phosphate nanoparticles were loaded with nucleic acids to enhance the on-growth of tissue to a cochlear implant electrode. The nanoparticle deposition on a metallic electrode surface is possible by electrophoretic deposition (EPD) or layer-by-layer deposition (LbL). Impedance spectroscopy showed that the coating layer did not interrupt the electrical conductance at physiological frequencies and beyond (1-40,000 Hz). The transfection was demonstrated with the model cell lines HeLa and 3T3 as well as with primary explanted spiral ganglion neurons (rat) with the model protein enhanced green fluorescent protein (EGFP). The expression of the functional protein brain-derived neurotrophic factor (BDNF) was also shown. Thus, a coating of inner-ear cochlear implant electrodes with nanoparticles that carry nucleic acids will enhance the ongrowth of spiral ganglion cell axons for an improved transmission of electrical pulses.
Collapse
Affiliation(s)
- Karolin Wey
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany
| | - Ronja Schirrmann
- Department of Otorhinolaryngology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Detlef Diesing
- Physical Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Stephan Lang
- Department of Otorhinolaryngology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sven Brandau
- Department of Otorhinolaryngology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Stefan Hansen
- Department of Otorhinolaryngology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Matthias Epple
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
17
|
Teng K, An Q, Chen Y, Zhang Y, Zhao Y. Recent Development of Alginate-Based Materials and Their Versatile Functions in Biomedicine, Flexible Electronics, and Environmental Uses. ACS Biomater Sci Eng 2021; 7:1302-1337. [PMID: 33764038 DOI: 10.1021/acsbiomaterials.1c00116] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alginate is a natural polysaccharide that is easily chemically modified or compounded with other components for various types of functionalities. The alginate derivatives are appealing not only because they are biocompatible so that they can be used in biomedicine or tissue engineering but also because of the prospering bioelectronics that require various biomaterials to interface between human tissues and electronics or to serve as electronic components themselves. The study of alginate-based materials, especially hydrogels, have repeatedly found new frontiers over recent years. In this Review, we document the basic properties of alginate, their chemical modification strategies, and the recent development of alginate-based functional composite materials. The newly thrived functions such as ionically conductive hydrogel or 3D or 4D cell culturing matrix are emphasized among other appealing potential applications. We expect that the documentation of relevant information will stimulate scientific efforts to further develop biocompatible electronics or smart materials and to help the research domain better address the medicine, energy, and environmental challenges faced by human societies.
Collapse
Affiliation(s)
- Kaixuan Teng
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Sciences and Technology, China University of Geosciences, Beijing 100083, China
| | - Qi An
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Sciences and Technology, China University of Geosciences, Beijing 100083, China
| | - Yao Chen
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Sciences and Technology, China University of Geosciences, Beijing 100083, China
| | - Yihe Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Sciences and Technology, China University of Geosciences, Beijing 100083, China
| | - Yantao Zhao
- Institute of Orthopedics, Fourth Medical Center of the General Hospital of CPLA, Beijing 100048, China.,Beijing Engineering Research Center of Orthopedics Implants, Beijing 100048, China
| |
Collapse
|
18
|
Fu Y, Xie X, Wang Y, Liu J, Zheng Z, Kaplan DL, Wang X. Sustained Photosynthesis and Oxygen Generation of Microalgae-Embedded Silk Fibroin Hydrogels. ACS Biomater Sci Eng 2021; 7:2734-2744. [PMID: 33834759 DOI: 10.1021/acsbiomaterials.1c00168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Microalgae immobilized in hydrogels offer advantages over those cultured in suspension culture in terms of carbon fixation and oxygen emission. However, alginate as a commonly used hydrogel for microalgal immobilization encounters problems with mechanical strength and stability. To address this limitation, silk fibroin (silk) hydrogels prepared by ultrasonication were utilized to host microalgae when mixed with the presonicated protein solution prior to its gelation. The gelation time, stability, and light transmission of these silk gels were evaluated, and a silk concentration of 4% w/v and a gel thickness of 1 mm provided mechanical strength and stability during algal culture in comparison to alginate hydrogels. Furthermore, silk hydrogels with algal cell densities of 7.6 × 105 and 7.8 × 107 cells/mL had better stability than those with a lower cell density (3.2 × 103 cells/mL), likely due to cell confinement and impact on proliferation. The silk hydrogels with microalgae at a high density generated 6.13 mg/L of oxygen continuously for 7 days. An oxygen-generating device was fabricated by coating the surface of a dialysis tube with a thin layer of the microalgae-embedded silk hydrogel, where the microalgal cells were nourished with culture medium prefilled in the dialysis tube. When suspended in a sealed flask filled with CO2 gas, the system continuously produced oxygen (151 mL) for at least 60 days, with an oxygen production efficiency 6 times that of microalgal suspension culture controls. This microalgae embedding and cultivation technique could have potential utility in air purification, tissue repair, and other applications due to the efficient and sustained generation of oxygen.
Collapse
Affiliation(s)
- Yuhang Fu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Xusheng Xie
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Yongfeng Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Jian Liu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Zhaozhu Zheng
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - David Lee Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Xiaoqin Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| |
Collapse
|
19
|
Newland B, Newland H, Lorenzi F, Eigel D, Welzel PB, Fischer D, Wang W, Freudenberg U, Rosser A, Werner C. Injectable Glycosaminoglycan-Based Cryogels from Well-Defined Microscale Templates for Local Growth Factor Delivery. ACS Chem Neurosci 2021; 12:1178-1188. [PMID: 33754692 PMCID: PMC8033563 DOI: 10.1021/acschemneuro.1c00005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
![]()
Glycosaminoglycan-based hydrogels
hold great potential for applications
in tissue engineering and regenerative medicine. By mimicking the
natural extracellular matrix processes of growth factor binding and
release, such hydrogels can be used as a sustained delivery device
for growth factors. Since neural networks commonly follow well-defined,
high-aspect-ratio paths through the central and peripheral nervous
system, we sought to create a fiber-like, elongated growth factor
delivery system. Cryogels, with networks formed at subzero temperatures,
are well-suited for the creation of high-aspect-ratio biomaterials,
because they have a macroporous structure making them mechanically
robust (for ease of handling) yet soft and highly compressible (for
interfacing with brain tissue). Unlike hydrogels, cryogels can be
synthesized in advance of their use, stored with ease, and rehydrated
quickly to their original shape. Herein, we use solvent-assisted microcontact
molding to form sacrificial templates, in which we produced highly
porous cryogel microscale scaffolds with a well-defined elongated
shape via the photopolymerization of poly(ethylene glycol) diacrylate
and maleimide-functionalized heparin. Dissolution of the template
yielded cryogels that could load nerve growth factor (NGF) and release
it over a period of 2 weeks, causing neurite outgrowth in PC12 cell
cultures. This microscale template-assisted synthesis technique allows
tight control over the cryogel scaffold dimensions for high reproducibility
and ease of injection through fine gauge needles.
Collapse
Affiliation(s)
- Ben Newland
- Leibniz-Institut für Polymerforschung Dresden e.V., Max Bergmann Center of Biomaterials Dresden, Hohe Straße 6, D-01069 Dresden, Germany
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, U.K
| | - Heike Newland
- Leibniz-Institut für Polymerforschung Dresden e.V., Max Bergmann Center of Biomaterials Dresden, Hohe Straße 6, D-01069 Dresden, Germany
| | - Francesca Lorenzi
- Leibniz-Institut für Polymerforschung Dresden e.V., Max Bergmann Center of Biomaterials Dresden, Hohe Straße 6, D-01069 Dresden, Germany
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Francesco Marzolo, 135131 Padova, Italy
| | - Dimitri Eigel
- Leibniz-Institut für Polymerforschung Dresden e.V., Max Bergmann Center of Biomaterials Dresden, Hohe Straße 6, D-01069 Dresden, Germany
| | - Petra B. Welzel
- Leibniz-Institut für Polymerforschung Dresden e.V., Max Bergmann Center of Biomaterials Dresden, Hohe Straße 6, D-01069 Dresden, Germany
| | - Dieter Fischer
- Leibniz-Institut für Polymerforschung Dresden e.V., Max Bergmann Center of Biomaterials Dresden, Hohe Straße 6, D-01069 Dresden, Germany
| | - Wenxin Wang
- Charles Institute for Dermatology, University College Dublin, Dublin D04 V1W8, Ireland
| | - Uwe Freudenberg
- Leibniz-Institut für Polymerforschung Dresden e.V., Max Bergmann Center of Biomaterials Dresden, Hohe Straße 6, D-01069 Dresden, Germany
| | - Anne Rosser
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff CF10 3AX, U.K
- Brain Repair And Intracranial Neurotherapeutics (BRAIN) Unit, Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis
Building, Maindy Road, Cardiff CF24 4HQ3, U.K
| | - Carsten Werner
- Leibniz-Institut für Polymerforschung Dresden e.V., Max Bergmann Center of Biomaterials Dresden, Hohe Straße 6, D-01069 Dresden, Germany
| |
Collapse
|
20
|
Quarterman JC, Geary SM, Salem AK. Evolution of drug-eluting biomedical implants for sustained drug delivery. Eur J Pharm Biopharm 2021; 159:21-35. [PMID: 33338604 PMCID: PMC7856224 DOI: 10.1016/j.ejpb.2020.12.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/19/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023]
Abstract
In the field of drug delivery, the most commonly used treatments have traditionally been systemically delivered using oral or intravenous administration. The problems associated with this type of delivery is that the drug concentration is controlled by first pass metabolism, and therefore may not always remain within the therapeutic window. Implantable drug delivery systems (IDDSs) are an excellent alternative to traditional delivery because they offer the ability to precisely control the drug release, deliver drugs locally to the target tissue, and avoid the toxic side effects often experienced with systemic administration. Since the creation of the first FDA-approved IDDS in 1990, there has been a surge in research devoted to fabricating and testing novel IDDS formulations. The versatility of these systems is evident when looking at the various biomedical applications that utilize IDDSs. This review provides an overview of the history of IDDSs, with examples of the different types of IDDS formulations, as well as looking at current and future biomedical applications for such systems. Though there are still obstacles that need to be overcome, ever-emerging new technologies are making the manufacturing of IDDSs a rewarding therapeutic endeavor with potential for further improvements.
Collapse
Affiliation(s)
- Juliana C Quarterman
- University of Iowa College of Pharmacy, Department of Pharmaceutical Sciences and Experimental Therapeutics, 180 S. Grand Avenue, Iowa City, IA 52242, United States
| | - Sean M Geary
- University of Iowa College of Pharmacy, Department of Pharmaceutical Sciences and Experimental Therapeutics, 180 S. Grand Avenue, Iowa City, IA 52242, United States
| | - Aliasger K Salem
- University of Iowa College of Pharmacy, Department of Pharmaceutical Sciences and Experimental Therapeutics, 180 S. Grand Avenue, Iowa City, IA 52242, United States.
| |
Collapse
|
21
|
Maharajan N, Cho GW, Jang CH. Therapeutic Application of Mesenchymal Stem Cells for Cochlear Regeneration. In Vivo 2021; 35:13-22. [PMID: 33402445 PMCID: PMC7880755 DOI: 10.21873/invivo.12227] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 09/27/2020] [Accepted: 09/30/2020] [Indexed: 12/11/2022]
Abstract
Hearing loss is one of the major worldwide health problems that seriously affects human social and cognitive development. In the auditory system, three components outer ear, middle ear and inner ear are essential for the hearing mechanism. In the inner ear, sensory hair cells and ganglion neuronal cells are the essential supporters for hearing mechanism. Damage to these cells can be caused by long-term exposure of excessive noise, ototoxic drugs (aminoglycosides), ear tumors, infections, heredity and aging. Since mammalian cochlear hair cells do not regenerate naturally, some therapeutic interventions may be required to replace the damaged or lost cells. Cochlear implants and hearing aids are the temporary solutions for people suffering from severe hearing loss. The current discoveries in gene therapy may provide a deeper understanding in essential genes for the inner ear regeneration. Stem cell migration, survival and differentiation to supporting cells, cochlear hair cells and spiral ganglion neurons are the important foundation in understanding stem cell therapy. Moreover, mesenchymal stem cells (MSCs) from different sources (bone marrow, umbilical cord, adipose tissue and placenta) could be used in inner ear therapy. Transplanted MSCs in the inner ear can recruit homing factors at the damaged sites to induce transdifferentiation into inner hair cells and ganglion neurons or regeneration of sensory hair cells, thus enhancing the cochlear function. This review summarizes the potential application of mesenchymal stem cells in hearing restoration and combining stem cell and molecular therapeutic strategies can also be used in the recovery of cochlear function.
Collapse
Affiliation(s)
- Nagarajan Maharajan
- Department of Biology, College of Natural Science, BK21-Plus Research Team for Bioactive Control Technology, Chosun University, Gwangju, Republic of Korea
| | - Gwang Won Cho
- Department of Biology, College of Natural Science, BK21-Plus Research Team for Bioactive Control Technology, Chosun University, Gwangju, Republic of Korea
| | - Chul Ho Jang
- Department of Otolaryngology, Chonnam National University Medical School, Gwangju, Republic of Korea
| |
Collapse
|
22
|
Li CY, Mittal R, Bergman J, Mittal J, Eshraghi AA. Recent advancements toward gapless neural-electrode interface post-cochlear implantation. Neural Regen Res 2021; 16:1805-1806. [PMID: 33510086 PMCID: PMC8328784 DOI: 10.4103/1673-5374.306085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Crystal Y Li
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Rahul Mittal
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jenna Bergman
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jeenu Mittal
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Adrien A Eshraghi
- Department of Otolaryngology; Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami; Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
| |
Collapse
|
23
|
Consecutive Treatment with Brain-Derived Neurotrophic Factor and Electrical Stimulation Has a Protective Effect on Primary Auditory Neurons. Brain Sci 2020; 10:brainsci10080559. [PMID: 32824176 PMCID: PMC7464901 DOI: 10.3390/brainsci10080559] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 01/27/2023] Open
Abstract
Degeneration of neurons, such as the inner ear spiral ganglion neurons (SGN), may be decelerated or even stopped by neurotrophic factor treatment, such as brain-derived neurotrophic factor (BDNF), as well as electrical stimulation (ES). In a clinical setting, drug treatment of the SGN could start directly during implantation of a cochlear implant, whereas electrical stimulation begins days to weeks later. The present study was conducted to determine the effects of consecutive BDNF and ES treatments on SGN density and electrical responsiveness. An electrode drug delivery device was implanted in guinea pigs 3 weeks after deafening and five experimental groups were established: two groups received intracochlear infusion of artificial perilymph (AP) or BDNF; two groups were treated with AP respectively BDNF in addition to ES (AP + ES, BDNF + ES); and one group received BDNF from the day of implantation until day 34 followed by ES (BDNF ⇨ ES). Electrically evoked auditory brainstem responses were recorded. After one month of treatment, the tissue was harvested and the SGN density was assessed. The results show that consecutive treatment with BDNF and ES was as successful as the simultaneous combined treatment in terms of enhanced SGN density compared to the untreated contralateral side but not in regard to the numbers of protected cells.
Collapse
|