1
|
Sarathi R, Sarumathy S, Durai Mavalavan VM. EVOLUTION OF METFORMIN IN BREAST CANCER THERAPY IN LAST TWO DECADES: A REVIEW. Exp Oncol 2024; 46:185-191. [PMID: 39704463 DOI: 10.15407/exp-oncology.2024.03.185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Indexed: 12/21/2024]
Abstract
Among women, breast cancer is one of the most prevalent cancers. The disease has a complex etiology, with multiple biological pathways contributing to its development. As insulin signaling has mitogenic effects, glucose is a necessary cellular metabolic substrate, and the growth and metastasis of breast cancer are closely related to cellular glucose metabolism. Anti-diabetic medications have drawn increased attention as a potential treatment for breast cancer. Metformin lowers cancer incidence and death rates in patients with type 2 diabetes, according to epidemiologic studies. Preclinical studies conducted in vivo and in vitro offer fascinating new insights into the cellular mechanisms underlying metformin oncostatic action. We present an overview of the mechanisms of anticancer effects of metformin and discuss its potential function as an adjuvant in the treatment of breast cancer.
Collapse
Affiliation(s)
- R Sarathi
- Department of Pharmacy Practice, SRM College of Pharmacy, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, India
| | - S Sarumathy
- Department of Pharmacy Practice, SRM College of Pharmacy, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, India
| | - V M Durai Mavalavan
- Department of Medical Oncology, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, India
| |
Collapse
|
2
|
Heydarnia E, Sepasi A, Asefi N, Khakshournia S, Mohammadnejad J. The effects of metformin and PCL-sorafenib nanoparticle co-treatment on MCF-7 cell culture model of breast cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7213-7221. [PMID: 38656346 DOI: 10.1007/s00210-024-03049-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 03/10/2024] [Indexed: 04/26/2024]
Abstract
Despite breakthrough therapeutics in breast cancer, it is one of the main causes of mortality among women worldwide. Thus, drug therapies for treating breast cancer have recently been developed by scientists. Metformin and sorafenib are well-known therapeutics in breast cancer. In the present study, we combined sorafenib and PCL-sorafenib with metformin to improve drug absorption and promote therapeutic efficiency. The MCF-7 cells were treated with metformin, sorafenib, or PCL-sorafenib. The growth inhibitory effect of these drugs and cell viability were assessed using MTT and flow cytometry assays, respectively. The expression of targeted genes involved in cell proliferation, signaling, and the cell cycle was measured by real-time PCR. The results showed that MCF-7 cells treated with metformin/sorafenib and PCL-sorafenib/metformin co-treatment contributed to 50% viability compared to the untreated group. Moreover, PI and Annexin V staining tests showed that the cell viability for metformin/sorafenib and PCL-sorafenib/metformin was 38% and 17%, respectively. Furthermore, sorafenib/metformin and PCL-sorafenib/metformin lead to p53 gene expression increase by which they can increase ROS, thereby decreasing GPX4 gene expression. In addition, they affected the expression of BCL2 and BAX genes and altered the cell cycle. Together, the combination of PCL-sorafenib/metformin and sorafenib/metformin increased sorafenib absorption at lower doses and also led to apoptosis and oxidative stress increases in MCF-7 cells.
Collapse
Affiliation(s)
- Emad Heydarnia
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Aref Sepasi
- Department of Medical Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Genetics, Breast Cancer Research Center, Motamed Cancer Institute, Tehran, Iran
| | - Nika Asefi
- Department of Genetics, Breast Cancer Research Center, Motamed Cancer Institute, Tehran, Iran
| | - Sara Khakshournia
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Javad Mohammadnejad
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, 14395-1561, Iran.
| |
Collapse
|
3
|
Płonka-Czerw J, Żyrek L, Latocha M. Changes in the Sensitivity of MCF-7 and MCF-7/DX Breast Cancer Cells to Cytostatic in the Presence of Metformin. Molecules 2024; 29:3531. [PMID: 39124936 PMCID: PMC11313889 DOI: 10.3390/molecules29153531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Multidrug resistance is a serious problem in modern medicine and the reason for the failure of various therapies. A particularly important problem is the occurrence of multidrug resistance in cancer therapies which affects many cancer patients. Observations on the effect of metformin-a well-known hypoglycemic drug used in the treatment of type 2 diabetes-on cancer cells indicate the possibility of an interaction of this substance with drugs already used and, as a result, an increase in the sensitivity of cancer cells to cytostatics. The aim of this study was to evaluate the effect of metformin on the occurrence of multidrug resistance of breast cancer cells. The MCF-7-sensitive cell line and the MCF-7/DX cytostatic-resistant cell line were used for this study. WST-1 and LDH assays were used to evaluate the effects of metformin and doxorubicin on cell proliferation and viability. The effect of metformin on increasing the sensitivity of MCF-7 and MCF-7/DX cells to doxorubicin was evaluated in an MDR test. The participation of metformin in increasing the sensitivity of resistant cells to the effect of the cytostatic (doxorubicin) has been demonstrated.
Collapse
Affiliation(s)
- Justyna Płonka-Czerw
- Department of Cell Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jedności 8, 41-200 Sosnowiec, Poland; (L.Ż.); (M.L.)
| | | | | |
Collapse
|
4
|
Elmahboub Y, Albash R, Magdy William M, Rayan AH, Hamed NO, Ousman MS, Raslan NA, Mosallam S. Metformin Loaded Zein Polymeric Nanoparticles to Augment Antitumor Activity against Ehrlich Carcinoma via Activation of AMPK Pathway: D-Optimal Design Optimization, In Vitro Characterization, and In Vivo Study. Molecules 2024; 29:1614. [PMID: 38611893 PMCID: PMC11013883 DOI: 10.3390/molecules29071614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Metformin (MET), an antidiabetic drug, is emerging as a promising anticancer agent. This study was initiated to investigate the antitumor effects and potential molecular targets of MET in mice bearing solid Ehrlich carcinoma (SEC) as a model of breast cancer (BC) and to explore the potential of zein nanoparticles (ZNs) as a carrier for improving the anticancer effect of MET. ZNs were fabricated through ethanol injection followed by probe sonication method. The optimum ZN formulation (ZN8) was spherical and contained 5 mg zein and 30 mg sodium deoxycholate with a small particle size and high entrapment efficiency percentage and zeta potential. A stability study showed that ZN8 was stable for up to three months. In vitro release profiles proved the sustained effect of ZN8 compared to the MET solution. Treatment of SEC-bearing mice with ZN8 produced a more pronounced anticancer effect which was mediated by upregulation of P53 and miRNA-543 as well as downregulation of NF-κB and miRNA-191-5p gene expression. Furthermore, ZN8 produced a marked elevation in pAMPK and caspase-3 levels as well as a significant decrease in cyclin D1, COX-2, and PGE2 levels. The acquired findings verified the potency of MET-loaded ZNs as a treatment approach for BC.
Collapse
Affiliation(s)
- Yasmina Elmahboub
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza 12585, Egypt;
| | - Rofida Albash
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza 12585, Egypt;
| | - Mira Magdy William
- Department of Biochemistry, Faculty of Pharmacy, October 6 University, Giza 12585, Egypt
| | - Amal H. Rayan
- Department of Medical Education, College of Medicine, AlMaarefa University, Diriyah, Riyadh 13713, Saudi Arabia
| | - Najat O. Hamed
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, AlMaarefa University, Diriyah, Riyadh 13713, Saudi Arabia;
| | - Mona S. Ousman
- Emergency Medical Services, College of Applied Sciences, AlMaarefa University, Diriyah, Riyadh 13713, Saudi Arabia;
| | - Nahed A Raslan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11651, Egypt;
- Clinical Pharmacy Program, College of Health Sciences and Nursing, Al-Rayan Colleges, Medina 42541, Saudi Arabia
| | - Shaimaa Mosallam
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, Giza 12585, Egypt;
| |
Collapse
|
5
|
Sharma N, Dhingra R. Clinical potentials of metformin in cancer therapy. JOURNAL OF DIABETOLOGY 2023; 14:186-192. [DOI: 10.4103/jod.jod_84_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 09/28/2023] [Indexed: 01/05/2025] Open
Abstract
Abstract
Diabetes is a prevalent metabolic disorder that results in several comorbidities including cancer. Cancer becomes the most severe complication of diabetes patients. Growing evidence proved that impaired glucose homeostasis is an independent risk factor for the occurrence of various types of cancers including liver, pancreatic, gastric (stomach), colorectal, kidney, and breast cancers, and influences cancer prognosis. Diabetes mellitus and cancer have a bidirectional relationship, thus there is a need to look for drugs that can be beneficial in treating both diseases. Therefore, more research is focusing on evaluating the role of antihyperglycemic agents in the treatment of various types of cancers. Metformin, an FDA-approved first-line antihyperglycemic agent can be used as a monotherapy or as an adjuvant to chemotherapeutic agents in the treatment of various types of cancer. However, the exact mechanism of metformin as an anticancer agent is still unknown, the majority of the described putative mechanisms focus on promoting the activity of the AMP-activated protein kinase (AMPK) pathway. This review article thus gives insights into the prognosis of cancer in diabetes patients and aims to explore the possible mechanism of action of metformin in the prevention and treatment of cancer.
Collapse
Affiliation(s)
- Nidhi Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, G.D. Goenka University, Sohna, Haryana, India
| | - Richa Dhingra
- Department of Pharmacy, School of Medical and Allied Sciences, G.D. Goenka University, Sohna, Haryana, India
| |
Collapse
|
6
|
Patel PJ, Shah JS. Metformin pretreatment potentiates the antiproliferative action of doxorubicin against breast cancer. ANNALES PHARMACEUTIQUES FRANÇAISES 2023:S0003-4509(23)00023-8. [PMID: 36907329 DOI: 10.1016/j.pharma.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 01/17/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
OBJECTIVES The present study aimed to evaluate the effect of metformin pretreatment on the potentiation of antiproliferative action of doxorubicin against breast cancer. MATERIAL AND METHODS Female Wistar rats were administered with 7,12-Dimethylbenz(a)anthracene (DMBA) (35mg) in 1mL olive oil subcutaneously beneath the mammary gland. Animals were pretreated with metformin (Met) 200mg/kg two weeks before DMBA administration. DMBA control groups received doxorubicin (Dox) (4mg/kg and 2mg/kg), Met (200mg/kg) alone and in combination with Dox (4mg/kg). Met pre-treated DMBA control groups received Dox 4mg/kg and 2mg/kg. RESULTS Met pre-treated groups treated with Dox exhibited a decrease in tumor incidence, tumor volume and increased survival rate than the DMBA group. Organ-to-body weight ratios and histopathology of heart, liver and lungs of Met pre-treated groups treated with Dox showed lesser toxicity than Dox treated DMBA control groups. There was a noteworthy decrease in malondialdehyde levels and a substantial increase in the levels of reduced glutathione together with a significant decrease in the levels of inflammatory markers like IL-6, IL-1β and NF-κB in Met pre-treated groups treated with Dox. Histopathology of breast tumors revealed better control of tumors in Met pre-treated groups treated with Dox than DMBA control group. Immunohistochemistry and real-time PCR data revealed a significant reduction in Ki67 expression in Met pre-treated groups treated with Dox as compared to the DMBA control group. CONCLUSION The present study suggests that metformin pretreatment potentiates the antiproliferative action of doxorubicin against breast cancer.
Collapse
Affiliation(s)
- P J Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India.
| | - J S Shah
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India.
| |
Collapse
|
7
|
Orchard SG, Lockery JE, Broder JC, Ernst ME, Espinoza S, Gibbs P, Wolfe R, Polekhina G, Zoungas S, Loomans-Kropp HA, Woods RL. Association of metformin, aspirin, and cancer incidence with mortality risk in adults with diabetes. JNCI Cancer Spectr 2023; 7:pkad017. [PMID: 36857596 PMCID: PMC10042437 DOI: 10.1093/jncics/pkad017] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/06/2023] [Accepted: 02/20/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND Metformin and aspirin are commonly co-prescribed to people with diabetes. Metformin may prevent cancer, but in older people (over 70 years), aspirin has been found to increase cancer mortality. This study examined whether metformin reduces cancer mortality and incidence in older people with diabetes; it used randomization to 100 mg aspirin or placebo in the ASPirin in Reducing Events in the Elderly (ASPREE) trial to quantify aspirin's impact on metformin users. METHODS Analysis included community-dwelling ASPREE participants (aged ≥70 years, or ≥65 years for members of US minority populations) with diabetes. Diabetes was defined as a fasting blood glucose level greater than 125 mg/dL, self-report of diabetes, or antidiabetic medication use. Cox proportional hazards regression models were used to analyze the association of metformin and a metformin-aspirin interaction with cancer incidence and mortality, with adjustment for confounders. RESULTS Of 2045 participants with diabetes at enrollment, 965 were concurrently using metformin. Metformin was associated with a reduced cancer incidence risk (adjusted hazard ratio [HR] = 0.68, 95% confidence interval [CI] = 0.51 to 0.90), but no conclusive benefit for cancer mortality (adjusted HR = 0.72, 95% CI = 0.43 to 1.19). Metformin users randomized to aspirin had greater risk of cancer mortality compared with placebo (HR = 2.53, 95% CI = 1.18 to 5.43), but no effect was seen for cancer incidence (HR = 1.11, 95% CI = 0.75 to 1.64). The possible effect modification of aspirin on cancer mortality, however, was not statistically significant (interaction P = .11). CONCLUSIONS In community-dwelling older adults with diabetes, metformin use was associated with reduced cancer incidence. Increased cancer mortality risk in metformin users randomized to aspirin warrants further investigation. ASPREE TRIAL REGISTRATION ClinicalTrials.gov ID NCT01038583.
Collapse
Affiliation(s)
- Suzanne G Orchard
- School of Public Health and Preventive Medicine, Monash University, Melbourne,VIC, Australia
| | - Jessica E Lockery
- School of Public Health and Preventive Medicine, Monash University, Melbourne,VIC, Australia
- Translational Immunology and Nanotechnology Research Theme, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
- Department of Internal Medicine, Division of Cancer Prevention and Control, Ohio State University, Columbus, OH, USA
| | - Jonathan C Broder
- School of Public Health and Preventive Medicine, Monash University, Melbourne,VIC, Australia
| | - Michael E Ernst
- Department of Pharmacy Practice and Science, College of Pharmacy and Department of Family Medicine, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Sara Espinoza
- Division of Geriatrics, Gerontology and Palliative Medicine, Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, and Geriatrics Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Peter Gibbs
- The Walter & Eliza Hall Institute of Medical Research, Royal Parade, Parkville, Melbourne, VIC, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Rory Wolfe
- School of Public Health and Preventive Medicine, Monash University, Melbourne,VIC, Australia
| | - Galina Polekhina
- School of Public Health and Preventive Medicine, Monash University, Melbourne,VIC, Australia
| | - Sophia Zoungas
- School of Public Health and Preventive Medicine, Monash University, Melbourne,VIC, Australia
| | - Holli A Loomans-Kropp
- Department of Internal Medicine, Division of Cancer Prevention and Control, Ohio State University, Columbus, OH, USA
- Cancer Prevention Fellowship Program, Division of Cancer Prevention, National Cancer Institute, Rockville, MD, USA
| | - Robyn L Woods
- School of Public Health and Preventive Medicine, Monash University, Melbourne,VIC, Australia
| |
Collapse
|
8
|
Gholami M, Klashami ZN, Ebrahimi P, Mahboobipour AA, Farid AS, Vahidi A, Zoughi M, Asadi M, Amoli MM. Metformin and long non-coding RNAs in breast cancer. J Transl Med 2023; 21:155. [PMID: 36849958 PMCID: PMC9969691 DOI: 10.1186/s12967-023-03909-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/21/2023] [Indexed: 03/01/2023] Open
Abstract
Breast cancer (BC) is the second most common cancer and cause of death in women. In recent years many studies investigated the association of long non-coding RNAs (lncRNAs), as novel genetic factors, on BC risk, survival, clinical and pathological features. Recent studies also investigated the roles of metformin treatment as the firstline treatment for type 2 diabetes (T2D) played in lncRNAs expression/regulation or BC incidence, outcome, mortality and survival, separately. This comprehensive study aimed to review lncRNAs associated with BC features and identify metformin-regulated lncRNAs and their mechanisms of action on BC or other types of cancers. Finally, metformin affects BC by regulating five BC-associated lncRNAs including GAS5, HOTAIR, MALAT1, and H19, by several molecular mechanisms have been described in this review. In addition, metformin action on other types of cancers by regulating ten lncRNAs including AC006160.1, Loc100506691, lncRNA-AF085935, SNHG7, HULC, UCA1, H19, MALAT1, AFAP1-AS1, AC026904.1 is described.
Collapse
Affiliation(s)
- Morteza Gholami
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeynab Nickhah Klashami
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Pirooz Ebrahimi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata, Italy
| | | | - Amir Salehi Farid
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Aida Vahidi
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Marziyeh Zoughi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojgan Asadi
- Metabolomics and Genomics Research Center Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa M Amoli
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Osman M, Muqbel T, Abduallh A, Alanazi S, Khalifa NE, Khojali WMA, Elagib HM, Hussein W, Abdallah MH. Metformin Therapy and Breast Cancer Incidence in the Ha'il Region. Healthcare (Basel) 2023; 11:healthcare11030321. [PMID: 36766896 PMCID: PMC9914021 DOI: 10.3390/healthcare11030321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Metformin is a drug used to treat patients with type 2 diabetes, especially those who suffer from obesity. It is also used in the treatment of women with polycystic ovary syndrome (PCOS). This disease is related to insulin resistance and multiplied blood sugar ranges. Furthermore, it has been established that the use of metformin improves the menstrual cycles and ovulation rates of these women. METHODS A structured questionnaire was conducted to determine the prevalence of breast cancer among women using metformin in the Ha'il region. RESULT The incidence of breast cancer among women using metformin in the Ha'il region is very low. Thus, it can be said that breast cancer cases declined among diabetics taking metformin. This means that metformin use is associated with a lower risk of breast cancer in women with type 2 diabetes, even in cases where these women have a family history of breast cancer. CONCLUSIONS According to previous findings, metformin has been linked to lower breast cancer risk in women with type 2 diabetes. Furthermore, the findings of this study corroborate the literature on this subject by indicating that there is a substantial connection between metformin use and a lower risk of breast cancer in women with type 2 diabetes. However, further in vitro and in vivo experiments are crucial to investigate the protective effect of metformin against breast cancer and to confirm our findings.
Collapse
Affiliation(s)
- Mhdia Osman
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Ha’il, P.O. Box 2440, Ha’il 55476, Saudi Arabia
- Correspondence: (M.O.); (W.H.)
| | - Taif Muqbel
- Student College of Pharmacy, University of Ha’il, Ha’il 55476, Saudi Arabia
| | - Ahad Abduallh
- Student College of Pharmacy, University of Ha’il, Ha’il 55476, Saudi Arabia
| | - Shuruq Alanazi
- Student College of Pharmacy, University of Ha’il, Ha’il 55476, Saudi Arabia
| | - Nasrin E. Khalifa
- Department of Pharmaceutics, Faculty of Pharmacy, University of Ha’il, Ha’il 55476, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, University of Khartoum, Khartoum 13314, Sudan
| | - Weam M. A. Khojali
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ha’il, Ha’il 55476, Saudi Arabia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Omdurman Islamic University, Khartoum 14415, Sudan
| | - Halima Mustafa Elagib
- Department of Pharmacology, Faculty of Medicine, University of Ha’il, Ha’il 55476, Saudi Arabia
- Department of Pharmacology, College of Pharmacy, Omdurman Islamic University, Khartoum 14415, Sudan
| | - Weiam Hussein
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ha’il, Ha’il 55476, Saudi Arabia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Aden University, Aden 6075, Yemen
- Correspondence: (M.O.); (W.H.)
| | - Marwa H. Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, University of Ha’il, Ha’il 55476, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
10
|
Wu XY, Xu WW, Huan XK, Wu GN, Li G, Zhou YH, Najafi M. Mechanisms of cancer cell killing by metformin: a review on different cell death pathways. Mol Cell Biochem 2023; 478:197-214. [PMID: 35771397 DOI: 10.1007/s11010-022-04502-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/08/2022] [Indexed: 01/17/2023]
Abstract
Cancer resistance to anti-tumour agents has been one of the serious challenges in different types of cancer treatment. Usually, an increase in the cell death markers can predict a higher rate of survival among patients diagnosed with cancer. By increasing the regulation of survival genes, cancer cells can display a higher resistance to therapy through the suppression of anti-tumour immunity and inhibition of cell death signalling pathways. Administration of certain adjuvants may be useful in order to increase the therapeutic efficiency of anti-cancer therapy through the stimulation of different cell death pathways. Several studies have demonstrated that metformin, an antidiabetic drug with anti-cancer properties, amplifies cell death mechanisms, especially apoptosis in a broad-spectrum of cancer cells. Stimulation of the immune system by metformin has been shown to play a key role in the induction of cell death. It seems that the induction or suppression of different cell death mechanisms has a pivotal role in either sensitization or resistance of cancer cells to therapy. This review explains the cellular and molecular mechanisms of cell death following anticancer therapy. Then, we discuss the modulatory roles of metformin on different cancer cell death pathways including apoptosis, mitotic catastrophe, senescence, autophagy, ferroptosis and pyroptosis.
Collapse
Affiliation(s)
- Xiao-Yu Wu
- Department of Surgical Oncology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Wen-Wen Xu
- Department of Gynaecology, The Affiliated Hospital of Nanjing University of Chinese Medi-Cine, Nanjing, 210029, Jiangsu, China
| | - Xiang-Kun Huan
- Department of Surgical Oncology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Guan-Nan Wu
- Department of Surgical Oncology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Gang Li
- Department of General Surgery, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Yu-Hong Zhou
- Digestive Endoscopy Center, The Affiliated Hospital of Nanjing University of Chinese Medi-Cine, Nanjing, 210029, Jiangsu, China.
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
11
|
Mu W, Jiang Y, Liang G, Feng Y, Qu F. Metformin: A Promising Antidiabetic Medication for Cancer Treatment. Curr Drug Targets 2023; 24:41-54. [PMID: 36336804 DOI: 10.2174/1389450124666221104094918] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/18/2022] [Accepted: 10/10/2022] [Indexed: 11/09/2022]
Abstract
Metformin is a widely used drug in patients with type 2 diabetes mellitus. Metformin inhibits hepatic gluconeogenesis and increases glucose utilization in peripheral tissues. In recent years, several studies have shown that metformin is a potential therapeutic agent against cancer, alone or combined with other anticancer treatments. Metformin mainly activates the AMPK complex and regulates intracellular energy status, inhibiting the mitochondrial respiratory chain complex I and reducing the production of reactive oxygen species. Other anticancer targets of metformin are specific transcription factors inhibiting cell proliferation, promoting apoptosis and reducing drug resistance. In addition, metformin modulates tumor cells' response to anticancer treatments, favoring the activity of T cells. In diabetic patients, metformin reduces the occurrence of cancer and improves the prognosis and efficacy of anticancer treatments. In this review, we provided a comprehensive perspective of metformin as an anticancer drug.
Collapse
Affiliation(s)
- Wei Mu
- Department of Pharmacy and Clinical Pharmacy, Precision Medicine Center, 904th Hospital of PLA, 214044 Wuxi, Jiangsu, PR China
| | - Yunyun Jiang
- Department of Pharmacy and Clinical Pharmacy, Precision Medicine Center, 904th Hospital of PLA, 214044 Wuxi, Jiangsu, PR China
| | - Guoqiang Liang
- Central Laboratory, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, 215000 Suzhou, Jiangsu, PR China
| | - Yue Feng
- Department of Pharmacy and Clinical Pharmacy, Precision Medicine Center, 904th Hospital of PLA, 214044 Wuxi, Jiangsu, PR China
| | - Falin Qu
- Department of Pharmacy and Clinical Pharmacy, Precision Medicine Center, 904th Hospital of PLA, 214044 Wuxi, Jiangsu, PR China
| |
Collapse
|
12
|
Ennis CS, Llevenes P, Qiu Y, Dries R, Denis GV. The crosstalk within the breast tumor microenvironment in type II diabetes: Implications for cancer disparities. Front Endocrinol (Lausanne) 2022; 13:1044670. [PMID: 36531496 PMCID: PMC9751481 DOI: 10.3389/fendo.2022.1044670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/17/2022] [Indexed: 12/04/2022] Open
Abstract
Obesity-driven (type 2) diabetes (T2D), the most common metabolic disorder, both increases the incidence of all molecular subtypes of breast cancer and decreases survival in postmenopausal women. Despite this clear link, T2D and the associated dysfunction of diverse tissues is often not considered during the standard of care practices in oncology and, moreover, is treated as exclusion criteria for many emerging clinical trials. These guidelines have caused the biological mechanisms that associate T2D and breast cancer to be understudied. Recently, it has been illustrated that the breast tumor microenvironment (TME) composition and architecture, specifically the surrounding cellular and extracellular structures, dictate tumor progression and are directly relevant for clinical outcomes. In addition to the epithelial cancer cell fraction, the breast TME is predominantly made up of cancer-associated fibroblasts, adipocytes, and is often infiltrated by immune cells. During T2D, signal transduction among these cell types is aberrant, resulting in a dysfunctional breast TME that communicates with nearby cancer cells to promote oncogenic processes, cancer stem-like cell formation, pro-metastatic behavior and increase the risk of recurrence. As these cells are non-malignant, despite their signaling abnormalities, data concerning their function is never captured in DNA mutational databases, thus we have limited insight into mechanism from publicly available datasets. We suggest that abnormal adipocyte and immune cell exhaustion within the breast TME in patients with obesity and metabolic disease may elicit greater transcriptional plasticity and cellular heterogeneity within the expanding population of malignant epithelial cells, compared to the breast TME of a non-obese, metabolically normal patient. These challenges are particularly relevant to cancer disparities settings where the fraction of patients seen within the breast medical oncology practice also present with co-morbid obesity and metabolic disease. Within this review, we characterize the changes to the breast TME during T2D and raise urgent molecular, cellular and translational questions that warrant further study, considering the growing prevalence of T2D worldwide.
Collapse
Affiliation(s)
- Christina S. Ennis
- Boston University-Boston Medical Center Cancer Center, Boston University School of Medicine, Boston, MA, United States
- Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA, United States
| | - Pablo Llevenes
- Boston University-Boston Medical Center Cancer Center, Boston University School of Medicine, Boston, MA, United States
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Yuhan Qiu
- Boston University-Boston Medical Center Cancer Center, Boston University School of Medicine, Boston, MA, United States
| | - Ruben Dries
- Boston University-Boston Medical Center Cancer Center, Boston University School of Medicine, Boston, MA, United States
- Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA, United States
- Division of Computational Biomedicine, Boston University School of Medicine, Boston, MA, United States
| | - Gerald V. Denis
- Boston University-Boston Medical Center Cancer Center, Boston University School of Medicine, Boston, MA, United States
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- Shipley Prostate Cancer Research Professor, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
13
|
Mishra A, Pathak Y, Mishra SK, Prakash H, Tripathi V. Natural compounds as a potential modifier of stem cells renewal: Comparative analysis. Eur J Pharmacol 2022; 938:175412. [PMID: 36427534 DOI: 10.1016/j.ejphar.2022.175412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/09/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
Cancer stem cells (CSCs) are indispensable for development, progression, drug resistance, and tumor metastasis. Current cancer-directed interventions target targeting rapidly dividing cancer cells and slow dividing CSCs, which are the root cause of cancer origin and recurrence. The most promising targets include several self-renewal pathways involved in the maintenance and renewal of CSCs, such as the Wnt/β-Catenin, Sonic Hedgehog, Notch, Hippo, Autophagy, and Ferroptosis. In view of safety, natural compounds are coming to the front line of treatment modalities for modifying various signaling pathways simultaneously involved in maintaining CSCs. Therefore, targeting CSCs with natural compounds is a promising approach to treating various types of cancers. In view of this, here we provide a comprehensive update on the current status of natural compounds that effectively tune key self-renewal pathways of CSCs. In addition, we highlighted surface expression markers in several types of cancer. We also emphasize how natural compounds target these self-renewal pathways to reduce therapy resistance and cancer recurrence properties of CSCs, hence providing valuable cancer therapeutic strategies. The inclusion of nutraceuticals is believed to enhance the therapeutic efficacy of current cancer-directed interventions significantly.
Collapse
Affiliation(s)
- Amaresh Mishra
- School of Biotechnology, Gautam Buddha University, Greater Noida, 201310, India
| | - Yamini Pathak
- School of Biotechnology, Gautam Buddha University, Greater Noida, 201310, India
| | | | - Hridayesh Prakash
- Amity Institute of Virology and Immunology, Amity University, Uttar Pradesh, India
| | - Vishwas Tripathi
- School of Biotechnology, Gautam Buddha University, Greater Noida, 201310, India.
| |
Collapse
|
14
|
Waters JA, Urbano I, Robinson M, House CD. Insulin-like growth factor binding protein 5: Diverse roles in cancer. Front Oncol 2022; 12:1052457. [PMID: 36465383 PMCID: PMC9714447 DOI: 10.3389/fonc.2022.1052457] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/02/2022] [Indexed: 11/18/2022] Open
Abstract
Insulin-like growth factor binding proteins (IGFBPs) and the associated signaling components in the insulin-like growth factor (IGF) pathway regulate cell differentiation, proliferation, apoptosis, and adhesion. Of the IGFBPs, insulin-like growth factor binding protein 5 (IGFBP5) is the most evolutionarily conserved with a dynamic range of IGF-dependent and -independent functions, and studies on the actions of IGFBP5 in cancer have been somewhat paradoxical. In cancer, the IGFBPs respond to external stimuli to modulate disease progression and therapeutic responsiveness in a context specific manner. This review discusses the different roles of IGF signaling and IGFBP5 in disease with an emphasis on discoveries within the last twenty years, which underscore a need to clarify the IGF-independent actions of IGFBP5, the impact of its subcellular localization, the differential activities of each of the subdomains, and the response to elements of the tumor microenvironment (TME). Additionally, recent advances addressing the role of IGFBP5 in resistance to cancer therapeutics will be discussed. A better understanding of the contexts in which IGFBP5 functions will facilitate the discovery of new mechanisms of cancer progression that may lead to novel therapeutic opportunities.
Collapse
Affiliation(s)
- Jennifer A. Waters
- Biology Department, San Diego State University, San Diego, CA, United States
| | - Ixchel Urbano
- Biology Department, San Diego State University, San Diego, CA, United States
| | - Mikella Robinson
- Biology Department, San Diego State University, San Diego, CA, United States
| | - Carrie D. House
- Biology Department, San Diego State University, San Diego, CA, United States,Moore’s Cancer Center, University of California, San Diego, San Diego, CA, United States,*Correspondence: Carrie D. House,
| |
Collapse
|
15
|
Кузнецов КО, Сафина ЭР, Гаймакова ДВ, Фролова ЯС, Оганесян ИЮ, Садертдинова АГ, Назмиева КА, Исламгулов АХ, Каримова АР, Галимова АМ, Ризванова ЭВ. [Metformin and malignant neoplasms: a possible mechanism of antitumor action and prospects for use in practice]. PROBLEMY ENDOKRINOLOGII 2022; 68:45-55. [PMID: 36337018 PMCID: PMC9762452 DOI: 10.14341/probl13097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 06/16/2023]
Abstract
Metformin is a first-line antidiabetic drug for the treatment of type 2 diabetes mellitus (DM2); its molecular target is AMP-activated protein kinase (AMPK), which is involved in many metabolic processes. Metformin not only reduces blood glucose levels and improves insulin sensitivity, but also inhibits lipolysis and reduces cardiovascular risk in patients with DM2. In recent years, it has been proven that metformin slows down the aging process, stimulates hair growth, eliminates cognitive impairment, and also has an antitumor effect. Most basic studies have shown that metformin inhibits the growth of tumor cells and promotes cellular apoptosis, while clinical studies show contradictory results. This discrepancy can be explained by the difference in the concentration of metformin between basic and clinical studies. The maximum daily dose of metformin for patients with DM2 is 2500 mg / day, and the dose used in basic research was much higher. Metformin directly activates the AMPK signaling pathway, inhibits the production of reactive oxygen species, induces the activation of mTORC1, inhibits cyclin D1, which leads to a reduction in the risk of the occurrence and development of malignant neoplasms. In addition, metformin indirectly inhibits tumor growth, proliferation, invasion and metastasis by reducing the concentration of glucose in the blood, insulin resistance, as well as by reducing inflammation and affecting the tumor microenvironment. Glycolysis plays an important role in the energy metabolism of tumors, and metformin is able to have an inhibitory effect on it. Currently, studies of the mechanism of antitumor effects of metformin are becoming more extensive and in-depth, but there are still some contradictions.
Collapse
Affiliation(s)
- К. О. Кузнецов
- Российский национальный исследовательский медицинский университет им. Н.И. Пирогова
| | - Э. Р. Сафина
- Башкирский государственный медицинский университет
| | | | - Я. С. Фролова
- Первый Московский государственный медицинский университет им. И.М. Сеченова
| | - И. Ю. Оганесян
- Первый Московский государственный медицинский университет им. И.М. Сеченова
| | | | | | | | | | | | | |
Collapse
|
16
|
Ge S, Wang B, Wang Z, He J, Ma X. Common Multiple Primary Cancers Associated With Breast and Gynecologic Cancers and Their Risk Factors, Pathogenesis, Treatment and Prognosis: A Review. Front Oncol 2022; 12:840431. [PMID: 35756608 PMCID: PMC9213651 DOI: 10.3389/fonc.2022.840431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/16/2022] [Indexed: 12/15/2022] Open
Abstract
The mammary gland is closely related to the female reproductive system in many aspects, affecting the whole gynecological system. Breast cancer (BC) is the most common malignancy in women and associated with considerable negative effects. Due to various factors including co-pathogenic genetic mutations, environment factors, lifestyle, behavioral factors, treatment regimens and in-creased survival of patients with BC, there is an increased probability of developing additional primary gynecologic cancers such as ovarian cancer (OC), endometrial cancer (EC), and cervical cancer (CC). More and more studies have been conducted in recent years. Multiple primary cancers (MPCs), also known as multiple primary malignancies, refers to two or more different primary cancers in the same patient occurring in the same or different organs or tissues. The pathogenesis of multiple primary cancers is complex and has a negative effect on the prognosis and survival of patients. This review discusses the common types of BC-associated MPCs, namely, BC associated with OC, BC associated with EC and BC associated with CC, as well as risk factors, pathogenesis, treatment, and prognosis of MPCs associated with breast and gynecologic cancers. It provides new intervention and treatment ideas for patients with BC-associated MPCs to improve quality of life and prognosis.
Collapse
Affiliation(s)
- Shuwen Ge
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Bo Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Zihao Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Junjian He
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Xiaoxin Ma
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| |
Collapse
|
17
|
Turco C, Esposito G, Iaiza A, Goeman F, Benedetti A, Gallo E, Daralioti T, Perracchio L, Sacconi A, Pasanisi P, Muti P, Pulito C, Strano S, Ianniello Z, Fatica A, Forcato M, Fazi F, Blandino G, Fontemaggi G. MALAT1-dependent hsa_circ_0076611 regulates translation rate in triple-negative breast cancer. Commun Biol 2022; 5:598. [PMID: 35710947 PMCID: PMC9203778 DOI: 10.1038/s42003-022-03539-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 05/30/2022] [Indexed: 11/21/2022] Open
Abstract
Vascular Endothelial Growth Factor A (VEGFA) is the most commonly expressed angiogenic growth factor in solid tumors and is generated as multiple isoforms through alternative mRNA splicing. Here, we show that lncRNA MALAT1 (metastasis-associated lung adenocarcinoma transcript 1) and ID4 (inhibitor of DNA-binding 4) protein, previously referred to as regulators of linear isoforms of VEGFA, induce back-splicing of VEGFA exon 7, producing circular RNA circ_0076611. Circ_0076611 is detectable in triple-negative breast cancer (TNBC) cells and tissues, in exosomes released from TNBC cells and in the serum of breast cancer patients. Circ_0076611 interacts with a variety of proliferation-related transcripts, included MYC and VEGFA mRNAs, and increases cell proliferation and migration of TNBC cells. Mechanistically, circ_0076611 favors the expression of its target mRNAs by facilitating their interaction with components of the translation initiation machinery. These results add further complexity to the multiple VEGFA isoforms expressed in cancer cells and highlight the relevance of post-transcriptional regulation of VEGFA expression in TNBC cells. The circular isoform of VEGFA mRNA (circ_0076611), associated with size and pathogenesis of triple-negative breast tumors, is produced via back splicing of exon-7 by a RNP complex comprising lncRNA-MALAT1, ID4 and SRSF1, and secreted through exosomes.
Collapse
Affiliation(s)
- Chiara Turco
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Gabriella Esposito
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Alessia Iaiza
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Histology and Medical Embryology, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Frauke Goeman
- UOSD SAFU, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Anna Benedetti
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Histology and Medical Embryology, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Enzo Gallo
- Department of Pathology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Theodora Daralioti
- Department of Pathology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Letizia Perracchio
- Department of Pathology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Andrea Sacconi
- UOSD Clinical Trial Center, Biostatistics and Bioinformatics, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Patrizia Pasanisi
- Unit of Epidemiology and Prevention, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Paola Muti
- Department of Health Research Methods, Evidence, and Impact, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada.,Department of Biomedical, Surgical and Dental Sciences, "Università degli Studi di Milano", Milan, Italy
| | - Claudio Pulito
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Sabrina Strano
- UOSD SAFU, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Zaira Ianniello
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Alessandro Fatica
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Mattia Forcato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Histology and Medical Embryology, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy.
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
| | - Giulia Fontemaggi
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
| |
Collapse
|
18
|
Aoun R, El Hadi C, Tahtouh R, El Habre R, Hilal G. Microarray analysis of breast cancer gene expression profiling in response to 2-deoxyglucose, metformin, and glucose starvation. Cancer Cell Int 2022; 22:123. [PMID: 35305635 PMCID: PMC8933915 DOI: 10.1186/s12935-022-02542-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/07/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Breast cancer (BC) is the most frequently diagnosed cancer in women. Altering glucose metabolism and its effects on cancer progression and treatment resistance is an emerging interest in BC research. For instance, combining chemotherapy with glucose-lowering drugs (2-deoxyglucose (2-DG), metformin (MET)) or glucose starvation (GS) has shown better outcomes than with chemotherapy alone. However, the genes and molecular mechanisms that govern the action of these glucose deprivation conditions have not been fully elucidated. Here, we investigated the differentially expressed genes in MCF-7 and MDA-MB-231 BC cell lines upon treatment with glucose-lowering drugs (2-DG, MET) and GS using microarray analysis to study the difference in biological functions between the glucose challenges and their effect on the vulnerability of BC cells. METHODS MDA-MB-231 and MCF-7 cells were treated with 20 mM MET or 4 mM 2-DG for 48 h. GS was performed by gradually decreasing the glucose concentration in the culture medium to 0 g/L, in which the cells remained with fetal bovine serum for one week. Expression profiling was carried out using Affymetrix Human Clariom S microarrays. Differentially expressed genes were obtained from the Transcriptome Analysis Console and enriched using DAVID and R packages. RESULTS Our results showed that MDA-MB-231 cells were more responsive to glucose deprivation than MCF-7 cells. Endoplasmic reticulum stress response and cell cycle inhibition were detected after all three glucose deprivations in MDA-MB-231 cells and only under the metformin and GS conditions in MCF-7 cells. Induction of apoptosis and inhibition of DNA replication were observed with all three treatments in MDA-MB-231 cells and metformin-treated MCF-7 cells. Upregulation of cellular response to reactive oxygen species and inhibition of DNA repair mechanisms resulted after metformin and GS administration in MDA-MB-231 cell lines and metformin-treated MCF-7 cells. Autophagy was induced after 2-DG treatment in MDA-MB-231 cells and after metformin in MCF-7 cells. Finally, inhibition of DNA methylation were observed only with GS in MDA-MB-231 cells. CONCLUSION The procedure used to process cancer cells and analyze their expression data distinguishes our study from others. GS had the greatest effect on breast cancer cells compared to 2-DG and MET. Combining MET and GS could restrain both cell lines, making them more vulnerable to conventional chemotherapy.
Collapse
Affiliation(s)
- Rita Aoun
- Cancer and Metabolism Laboratory, Faculty of Medicine, Saint-Joseph University, Beirut, Lebanon
| | | | - Roula Tahtouh
- Cancer and Metabolism Laboratory, Faculty of Medicine, Saint-Joseph University, Beirut, Lebanon
| | - Rita El Habre
- Cancer and Metabolism Laboratory, Faculty of Medicine, Saint-Joseph University, Beirut, Lebanon
| | - George Hilal
- Cancer and Metabolism Laboratory, Faculty of Medicine, Saint-Joseph University, Beirut, Lebanon.
| |
Collapse
|
19
|
Teufelsbauer M, Lang C, Plangger A, Rath B, Moser D, Staud C, Radtke C, Neumayer C, Hamilton G. Effects of metformin on human bone-derived mesenchymal stromal cell-breast cancer cell line interactions. Med Oncol 2022; 39:54. [PMID: 35150338 PMCID: PMC8840908 DOI: 10.1007/s12032-022-01655-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/10/2022] [Indexed: 11/29/2022]
Abstract
Metformin is used to treat patients with type 2 diabetes mellitus and was found to lower the incidence of cancer. Bone metastasis is a common impairment associated with advanced breast cancer. The present study investigated the effects of metformin on human bone-derived mesenchymal stromal cells (BM-MSC)—breast cancer cell line interactions. BM-MSCs grown from box chisels were tested for growth-stimulating and migration-controlling activity on four breast cancer cell lines either untreated or after pretreatment with metformin. Growth stimulation was tested in MTT tests and migration in scratch assays. Furthermore, the expression of adipokines of BM-MSCs in response to metformin was assessed using Western blot arrays. Compared to breast cancer cell lines (3.6 ± 1.4% reduction of proliferation), 500 µM metformin significantly inhibited the proliferation of BM-MSC lines (mean 12.3 ± 2.2 reduction). Pretreatment of BM-MSCs with metformin showed variable effects of the resulting conditioned media (CM) on breast cancer cell lines depending on the specific BM-MSC—cancer line combination. Metformin significantly reduced the migration of breast cancer cell lines MDA-MB-231 and MDA-MB-436 in response to CM of drug-pretreated BM-MSCs. Assessment of metformin-induced alterations in the expression of adipokines by BM-MSC CM indicated increased osteogenic signaling and possibly impairment of metastasis. In conclusion, the anticancer activities of metformin are the result of a range of direct and indirect mechanisms that lower tumor proliferation and progression. A lower metformin-induced protumor activity of BM-MSCs in the bone microenvironment seem to contribute to the positive effects of the drug in selected breast cancer patients.
Collapse
Affiliation(s)
- Maryana Teufelsbauer
- Department of Plastic and Reconstructive Surgery, Medical University of Vienna, Vienna, Austria
| | - Clemens Lang
- Department of Trauma Surgery, Sozialmedizinisches Zentrum Ost, Donauspital, Vienna, Austria
| | - Adelina Plangger
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Barbara Rath
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Doris Moser
- Department of Cranio, Maxillofacial and Oral Surgery, Medical University of Vienna, Vienna, Austria
| | - Clement Staud
- Department of Plastic and Reconstructive Surgery, Medical University of Vienna, Vienna, Austria
| | - Christine Radtke
- Department of Plastic and Reconstructive Surgery, Medical University of Vienna, Vienna, Austria
| | - Christoph Neumayer
- Department of Vascular Surgery, Medical University of Vienna, Vienna, Austria
| | - Gerhard Hamilton
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
20
|
Malik JA, Ahmed S, Jan B, Bender O, Al Hagbani T, Alqarni A, Anwar S. Drugs repurposed: An advanced step towards the treatment of breast cancer and associated challenges. Biomed Pharmacother 2021; 145:112375. [PMID: 34863612 DOI: 10.1016/j.biopha.2021.112375] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/15/2021] [Accepted: 10/25/2021] [Indexed: 02/09/2023] Open
Abstract
Breast cancer (BC) is mostly observed in women and is responsible for huge mortality in women subjects globally. Due to the continued development of drug resistance and other contributing factors, the scientific community needs to look for new alternatives, and drug repurposing is one of the best opportunities. Here we light upon the drug repurposing with a major focus on breast cancer. BC is a division of cancer known as the leading cause of death of 2.3 million women globally, with 685,000 fatalities. This number is steadily rising, necessitating the development of a treatment that can extend survival time. All available treatments for BC are very costly as well as show side effects. This unfulfilled requirement of the anti-cancer drugs ignited an enthusiasm for drug repositioning, which means finding out the anti-cancer use of already marketed drugs for other complications. With the advancement in proteomics, genomics, and computational approaches, the drug repurposing process hastens. So many drugs are repurposed for the BC, including alkylating agents, antimetabolite, anthracyclines, an aromatase inhibitor, mTOR, and many more. The drug resistance in breast cancer is rising, so reviewing how the challenges in breast cancer can be combated with drug repurposing. This paper provides the updated information on all the repurposed drugs candidates for breast cancer with the molecular mechanism responsible for their anti-tumor activity. Additionally, all the challenges that occur during the repurposing of the drugs are discussed.
Collapse
Affiliation(s)
- Jonaid Ahmad Malik
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Guwahati, India; Department of Biomedical engineering, Indian Institute of Technology (IIT), Ropar, Punjab, India
| | - Sakeel Ahmed
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Mohali, India
| | - Bisma Jan
- Department of Pharmaceutical Sciences, University of Kashmir, Srinagar, India
| | - Onur Bender
- Biotechnology Institute, Ankara University, Ankara, Turkey
| | - Turki Al Hagbani
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| | - Aali Alqarni
- Pharmaceutical Chemistry Department, Pharmacology unit, College of Clinical Pharmacy, Al Baha University, Saudi Arabia
| | - Sirajudheen Anwar
- Pharmacology and Toxicology Department, College of Pharmacy, University of Hail, Hail, Saudi Arabia.
| |
Collapse
|
21
|
Meerson A, Khatib S, Mahajna J. Natural Products Targeting Cancer Stem Cells for Augmenting Cancer Therapeutics. Int J Mol Sci 2021; 22:ijms222313044. [PMID: 34884848 PMCID: PMC8657727 DOI: 10.3390/ijms222313044] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells (CSC) have been identified in several types of solid tumors. In some cases, CSC may be the source of all the tumor cells, the cause of the tumor's resistance to chemotherapeutic agents, and the source of metastatic cells. Thus, a combination therapy targeting non-CSC tumor cells as well as specifically targeting CSCs holds the potential to be highly effective. Natural products (NPs) have been a historically rich source of biologically active compounds and are known for their ability to influence multiple signaling pathways simultaneously with negligible side effects. In this review, we discuss the potential of NPs in targeting multiple signaling pathways in CSC and their potential to augment the efficacy of standard cancer therapy. Specifically, we focus on the anti-CSC activities of flavonoids, FDA-approved drugs originating from natural sources. Additionally, we emphasize the potential of NPs in targeting microRNA-mediated signaling, given the roles of microRNA in the maintenance of the CSC phenotype.
Collapse
Affiliation(s)
- Ari Meerson
- Department of Natural Products and Nutrition, MIGAL—Galilee Research Institute, Kiryat Shmona 11016, Israel; (A.M.); (S.K.)
- Faculty of Sciences, Tel Hai Academic College, Qiryat Shemona 12208, Israel
| | - Soliman Khatib
- Department of Natural Products and Nutrition, MIGAL—Galilee Research Institute, Kiryat Shmona 11016, Israel; (A.M.); (S.K.)
- Faculty of Sciences, Tel Hai Academic College, Qiryat Shemona 12208, Israel
| | - Jamal Mahajna
- Department of Natural Products and Nutrition, MIGAL—Galilee Research Institute, Kiryat Shmona 11016, Israel; (A.M.); (S.K.)
- Faculty of Sciences, Tel Hai Academic College, Qiryat Shemona 12208, Israel
- Correspondence:
| |
Collapse
|
22
|
Kaltenmeier C, Morocco B, Yazdani H, Reitz K, Meyer K, Molinari M, Geller D, Tohme S. Impact of Metformin Use on Survival in Patients Undergoing Liver Resection for Colorectal Cancer Metastases. Am Surg 2021; 87:1766-1774. [PMID: 34766506 DOI: 10.1177/00031348211060445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
INTRODUCTION Resection of colorectal liver metastases provides the best chance for survival in patients with Stage IV colorectal cancer; however, hepatic recurrence is frequent and the main cause of death. Multiple epidemiological studies have documented an association between metformin and anti-neoplastic effects in a variety of cancers. Given the vast literature, we evaluated the incidence on recurrence and survival of patients on metformin who undergo surgery for colorectal liver metastasis (CRLM). METHODS We selected 270 consecutive patients with known CRLM who underwent hepatic metastases resection at our institution between January 1st 2012 and December 31st 2019. Patients were divided based on their use of metformin (n = 62) or no metformin (n = 208). Adjusted analysis of recurrence-free (RFS) and overall survival (OS) was performed. RESULTS Patients on metformin had significantly longer RFS (HR: .44, 95% CI: .26-.75, P < .002; Median RFS: 49 months vs 33 months) and OS (HR .60, 95% CI .31-.97, P < .048, Median OS: 72 months vs 60 months). Additional factors associated with shorter RFS on univariate analysis included the following: CEA > 200 ng/ml (HR: 2.23, 95% CI 1.21-4.03, P < .010), positive liver margin (HR: 3.70, 95% CI 2.27-6.03, P < .001), and >1 tumor (HR: 1.98, 95% CI 1.26-3.09, P < .003). Liver margin remained a significant factor for predicting shorter OS (HR: 4.99, 95% CI 2.49-10.0, P < .001). CONCLUSION In this study, we found that patients with CRLM on metformin have prolonged RFS and OS postliver resection. Further prospective randomized trials need to be carried out to evaluate the anti-neoplastic effect of metformin in diabetic and non-diabetic cancer patients.
Collapse
Affiliation(s)
| | - Brittany Morocco
- Department of Surgery, 6614University of Pittsburgh, Pittsburgh, PA, USA
| | - Hamza Yazdani
- Department of Surgery, 6614University of Pittsburgh, Pittsburgh, PA, USA
| | - Katherine Reitz
- Department of Surgery, 6614University of Pittsburgh, Pittsburgh, PA, USA
| | - Kelley Meyer
- Department of Surgery, 6614University of Pittsburgh, Pittsburgh, PA, USA
| | - Michele Molinari
- Department of Surgery, 6614University of Pittsburgh, Pittsburgh, PA, USA
| | - David Geller
- Department of Surgery, 6614University of Pittsburgh, Pittsburgh, PA, USA
| | - Samer Tohme
- Department of Surgery, 6614University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
23
|
Hussein S, Khanna P, Yunus N, Gatza ML. Nuclear Receptor-Mediated Metabolic Reprogramming and the Impact on HR+ Breast Cancer. Cancers (Basel) 2021; 13:cancers13194808. [PMID: 34638293 PMCID: PMC8508306 DOI: 10.3390/cancers13194808] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 09/22/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Breast cancer is the most commonly diagnosed and second leading cause of cancer-related deaths in women in the United States, with hormone receptor positive (HR+) tumors representing more than two-thirds of new cases. Recent evidence has indicated that dysregulation of multiple metabolic programs, which can be driven through nuclear receptor activity, is essential for tumor genesis, progression, therapeutic resistance and metastasis. This study will review the current advances in our understanding of the impact and implication of altered metabolic processes driven by nuclear receptors, including hormone-dependent signaling, on HR+ breast cancer. Abstract Metabolic reprogramming enables cancer cells to adapt to the changing microenvironment in order to maintain metabolic energy and to provide the necessary biological macromolecules required for cell growth and tumor progression. While changes in tumor metabolism have been long recognized as a hallmark of cancer, recent advances have begun to delineate the mechanisms that modulate metabolic pathways and the consequence of altered signaling on tumorigenesis. This is particularly evident in hormone receptor positive (HR+) breast cancers which account for approximately 70% of breast cancer cases. Emerging evidence indicates that HR+ breast tumors are dependent on multiple metabolic processes for tumor progression, metastasis, and therapeutic resistance and that changes in metabolic programs are driven, in part, by a number of key nuclear receptors including hormone-dependent signaling. In this review, we discuss the mechanisms and impact of hormone receptor mediated metabolic reprogramming on HR+ breast cancer genesis and progression as well as the therapeutic implications of these metabolic processes in this disease.
Collapse
Affiliation(s)
- Shaimaa Hussein
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA; (S.H.); (P.K.)
- Department of Radiation Oncology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Pooja Khanna
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA; (S.H.); (P.K.)
- Department of Radiation Oncology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903, USA
- School of Arts and Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903, USA;
| | - Neha Yunus
- School of Arts and Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903, USA;
| | - Michael L. Gatza
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA; (S.H.); (P.K.)
- Department of Radiation Oncology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903, USA
- School of Arts and Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903, USA;
- Correspondence: ; Tel.: +1-732-235-8751
| |
Collapse
|
24
|
Qian HY, Zhou F, Wu R, Cao XJ, Zhu T, Yuan HD, Chen YN, Zhang PA. Metformin Attenuates Bone Cancer Pain by Reducing TRPV1 and ASIC3 Expression. Front Pharmacol 2021; 12:713944. [PMID: 34421611 PMCID: PMC8371459 DOI: 10.3389/fphar.2021.713944] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/14/2021] [Indexed: 11/13/2022] Open
Abstract
Bone cancer pain (BCP) is a common pathologic pain associated with destruction of bone and pathological reconstruction of nervous system. Current treatment strategies in clinical is inadequate and have unacceptable side effects due to the unclear pathology mechanism. In the present study, we showed that transplantation of Walker 256 cells aggravated mechanical allodynia of BCP rats (**p < 0.01 vs. Sham), and the expression of ASIC3 (Acid-sensitive ion channel 3) and TRPV1 was obviously enhanced in L4-6 dorsal root ganglions (DRGs) of BCP rats (**p < 0.01 vs. Sham). ASIC3 and TRPV1 was mainly expressed in CGRP and IB4 positive neurons of L4-6 DRGs. While, TRPV1 but not ASIC3 was markedly upregulated in L4-6 spinal dorsal horn (SDH) of BCP rats (**p < 0.01 vs. Sham). Importantly, intrathecal injection of CPZ (a TRPV1 inhibitor) or Amiloride (an ASICs antagonist) markedly increased the paw withdraw threshold (PWT) of BCP rats response to Von Frey filaments (**p < 0.01 vs. BCP + NS). What’s more, intraperitoneally injection of Metformin or Vinorelbine markedly elevated the PWT of BCP rats, but reduced the expression of TRPV1 and ASIC3 in L4-6 DRGs and decreased the TRPV1 expression in SDH (*p < 0.05, **p < 0.01 vs. BCP + NS). Collectively, these results suggest an effective analgesic effect of Metformin on mechanical allodynia of BCP rats, which may be mediated by the downregulation of ASIC3 and TRPV1.
Collapse
Affiliation(s)
- He-Ya Qian
- Department of Oncology, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China.,Center for Translational Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
| | - Fang Zhou
- Department of Oncology, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
| | - Rui Wu
- Center for Translational Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
| | - Xiao-Jun Cao
- Center for Translational Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
| | - Tao Zhu
- Department of Laboratory, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
| | - Hao-Dong Yuan
- Department of Laboratory, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
| | - Ya-Nan Chen
- Department of Oncology, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
| | - Ping-An Zhang
- Center for Translational Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China.,Center for Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou, China
| |
Collapse
|
25
|
Alipour S, Abedi M, Saberi A, Maleki-Hajiagha A, Faiz F, Shahsavari S, Eslami B. Metformin as a new option in the medical management of breast fibroadenoma; a randomized clinical trial. BMC Endocr Disord 2021; 21:169. [PMID: 34416879 PMCID: PMC8377455 DOI: 10.1186/s12902-021-00824-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 07/15/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Fibroadenoma (FA) is the most common benign solid breast mass in women, with no definite method of management. Because fibroadenoma is dependent on female sex hormones and comprises hypertrophic changes at cellular levels, we investigated the effects of metformin (MF), a safe hypoglycemic agent with anti-estrogenic and anti-proliferative properties, in the management of fibroadenoma. METHODS In this randomized clinical trial study, eligible women with fibroadenomas were assigned randomly to the metformin (1000 mg daily for six months) or the placebo group. Breast physical and ultrasound exam was performed before and after the intervention, and the changes in the size of fibroadenomas were compared in the two groups. RESULTS Overall, 83 patients in the treatment, and 92 in the placebo group completed the study. A statistically significant difference in changing size between the two groups was observed only in the smallest mass. In the largest FAs, the rate of size reduction was higher in the treatment group (60.2 % vs. 43.5 %); while a higher rate of enlargement was observed in the placebo group (38 % vs. 20.5 %). In the smallest FAs, the rate of the masses that got smaller or remained stable was about 90 % in the treatment group and 50 % in the placebo group. We categorized size changes of FAs into < 20 % enlargement and ≥ 20 % enlargement. The odds ratio (OR) for an elargemnt less than 20% was 1.48 (95 % CI = 1.10-1.99) in the treatment group in comparison with the placebo group; the odds for an enlargement less than 20% was higher in women with multiples fibroadenomas (OR = 4.67, 95 % CI: 1.34-16.28). In our study, no serious adverse effect was recorded, and the medicine was well-tolerated by all users. CONCLUSIONS This is the first study that evaluates the effect of MF on the management of fibroadenoma, and the results suggest a favorable effect. Larger studies using higher doses of MF and including a separate design for patients with single or multiple FAs are suggested in order to confirm this effect. TRIAL REGISTRATION This trial (IRCT20100706004329N7) was retrospectively registered on 2018-10-07.
Collapse
Affiliation(s)
- Sadaf Alipour
- Breast Disease Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Surgery, Arash Women's Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahboubeh Abedi
- Department of Radiology, Arash Women's Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Azin Saberi
- Department of Surgery, Arash Women's Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Arezoo Maleki-Hajiagha
- Research Development Center, Arash Women's Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Firoozeh Faiz
- Department of Endocrinology and Metabolism, Arash Women's Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Shahsavari
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Health Products Safety Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Bita Eslami
- Breast Disease Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
26
|
Wang Q, Ma X, Long J, Du X, Pan B, Mao H. Metformin and survival of women with breast cancer: A meta-analysis of randomized controlled trials. J Clin Pharm Ther 2021; 47:263-269. [PMID: 34397110 DOI: 10.1111/jcpt.13500] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 07/16/2021] [Accepted: 07/23/2021] [Indexed: 12/24/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Metformin has been suggested to confer anticancer efficacy. However, it remains uncertain whether additional use of metformin could improve survival of women with breast cancer. We performed a meta-analysis of randomized controlled trials (RCTs) to evaluate the influence of metformin on survival outcome in women with breast cancer. METHODS Relevant RCTs were obtained by search of PubMed, Embase and Cochrane's Library databases from inception to 15 May 2021. A random-effects model incorporating the potential publication bias was used to pool the results. RESULTS AND DISCUSSION Five phase II RCTs including 396 non-diabetic women with breast cancer were included in the meta-analysis. Pooled results showed that additional use of metformin was not associated with improved progression-free survival (PFS, hazard ratio [HR]: 1.00, 95% confidence interval [CI]: 0.70 to 1.43, p = 0.98; I2 = 32%) or overall survival (OS, HR: 1.00, 95% CI: 0.71 to 1.39, p = 0.98; I2 = 0%). Sensitivity analysis by excluding one study at a time showed consistent results (HR for PFS: 0.91 to 1.14, p all >0.05; HR for OS: 0.88 to 1.21, P all >0.05). WHAT IS NEW AND CONCLUSION Current evidence from phase II clinical trials does not support that additional use of metformin could improve the survival outcome in women with breast cancer.
Collapse
Affiliation(s)
- Qiandan Wang
- The First Department of Breast Surgery, Gansu Provincial Maternity and Child-care Hospital, Gansu, China
| | - Xiufen Ma
- The First Department of Breast Surgery, Gansu Provincial Maternity and Child-care Hospital, Gansu, China
| | - Jianping Long
- The First Department of Breast Surgery, Gansu Provincial Maternity and Child-care Hospital, Gansu, China
| | - Xiaoyan Du
- The First Department of Breast Surgery, Gansu Provincial Maternity and Child-care Hospital, Gansu, China
| | - Bin Pan
- The First Department of Breast Surgery, Gansu Provincial Maternity and Child-care Hospital, Gansu, China
| | - Hongyan Mao
- The First Department of Breast Surgery, Gansu Provincial Maternity and Child-care Hospital, Gansu, China
| |
Collapse
|
27
|
Durrani IA, Bhatti A, John P. The prognostic outcome of 'type 2 diabetes mellitus and breast cancer' association pivots on hypoxia-hyperglycemia axis. Cancer Cell Int 2021; 21:351. [PMID: 34225729 PMCID: PMC8259382 DOI: 10.1186/s12935-021-02040-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 06/24/2021] [Indexed: 12/24/2022] Open
Abstract
Type 2 diabetes mellitus and breast cancer are complex, chronic, heterogeneous, and multi-factorial diseases; with common risk factors including but not limited to diet, obesity, and age. They also share mutually inclusive phenotypic features such as the metabolic deregulations resulting from hyperglycemia, hypoxic conditions and hormonal imbalances. Although, the association between diabetes and cancer has long been speculated; however, the exact molecular nature of this link remains to be fully elucidated. Both the diseases are leading causes of death worldwide and a causal relationship between the two if not addressed, may translate into a major global health concern. Previous studies have hypothesized hyperglycemia, hyperinsulinemia, hormonal imbalances and chronic inflammation, as some of the possible grounds for explaining how diabetes may lead to cancer initiation, yet further research still needs to be done to validate these proposed mechanisms. At the crux of this dilemma, hyperglycemia and hypoxia are two intimately related states involving an intricate level of crosstalk and hypoxia inducible factor 1, at the center of this, plays a key role in mediating an aggressive disease state, particularly in solid tumors such as breast cancer. Subsequently, elucidating the role of HIF1 in establishing the diabetes-breast cancer link on hypoxia-hyperglycemia axis may not only provide an insight into the molecular mechanisms underlying the association but also, illuminate on the prognostic outcome of the therapeutic targeting of HIF1 signaling in diabetic patients with breast cancer or vice versa. Hence, this review highlights the critical role of HIF1 signaling in patients with both T2DM and breast cancer, potentiates its significance as a prognostic marker in comorbid patients, and further discusses the potential prognostic outcome of targeting HIF1, subsequently establishing the pressing need for HIF1 molecular profiling-based patient selection leading to more effective therapeutic strategies emerging from personalized medicine.
Collapse
Affiliation(s)
- Ilhaam Ayaz Durrani
- Atta-ur-Rehman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
| | - Attya Bhatti
- Atta-ur-Rehman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan.
| | - Peter John
- Atta-ur-Rehman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
| |
Collapse
|
28
|
Luo D, Wang X, Zhong X, Chang J, He M, Wang H, Li Y, Zhao C, Luo Y, Ran L. MPEG-PCL Nanomicelles Platform for Synergistic Metformin and Chrysin Delivery to Breast Cancer in Mice. Anticancer Agents Med Chem 2021; 22:280-293. [PMID: 34165412 DOI: 10.2174/1871520621666210623092725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/18/2021] [Accepted: 03/31/2021] [Indexed: 01/27/2023]
Abstract
BACKGROUND Metformin (MET) is a well-known anti-diabetic drug that also has anti-cancer effects. However, high therapeutic doses of MET on cancer cells and the low efficacy of combinatory therapeutic approaches limit its clinical application. Recent studies have shown that chrysin (CHR) can improve the pharmaceutical efficacy of MET by suppressing human telomerase reverse transcriptase (hTERT) and cyclin D1 gene expression. OBJECTIVE This study aimed to develop different ratios of methoxy poly(ethylene glycol)-b-poly(e-caprolactone) (MPEG-PCL) micelles for breast cancer to co-deliver a synergistic CHR/MET combination. METHODS CHR/MET drug-loaded micelles were prepared by modified thin-film hydration. Fourier infrared spectrum, gel permeation chromatography, transmission electron microscopy, and high-performance liquid chromatography were used to evaluate the physicochemical properties of nanostructures. Cell proliferation and cell apoptosis were assessed by MTT and Annexin V-FITC/PI double staining method. The gene expression of hTERT and cyclin D1 was measured by real-time PCR assay. A subcutaneous mouse T47D xenograft model was established to evaluate the in vivo efficiency. RESULTS When the ratio of MPEG-PCL was 1:1.7, the highest drug loading rate and encapsulation efficiency of CHR (11.31±0.37) and MET (12.22±0.44) were observed. Uniform MPEG-PCL micelles of 51.70±1.91 nm allowed MET to incorporate with CHR, which were co-delivered to breast cancer cells. We demonstrated that CHR/MET co-delivery micelles showed a good synergistic effect on inhibiting proliferation in T47D cells (combination index=0.87) by suppressing hTERT and cyclin D1 gene expression. Compared with the free CHR/MET group, the apoptosis rate on T47D cells by CHR/MET nano-micelles significantly improved from 71.33% to 79.25%. The tumour volume and tumour weight of the CHR/MET group increased more slowly than that of the single-drug treatment group (P<0.05). Compared with the CHR/MET group, the tumour volume and tumour weight of the CHR/MET nano-micelle group decreased by 42% and 59%, respectively. CONCLUSIONS We demonstrated that ratiometric CHR/MET micelles could provide an effective technique for the treatment of breast cancer.
Collapse
Affiliation(s)
- Daiqin Luo
- Guizhou Cancer Hospital/Affiliated Cancer Hospital of Guiyang Medical University/ Department of Oncology,The Affiliated Hospital of Guiyang Medical University; Gui Yang city, GuiZhou province, China
| | - Xinjun Wang
- Clinical Research Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Xiaomei Zhong
- The Second People's Hospital of Guiyang; GuiYang 550000, China
| | - Jianying Chang
- Guizhou Cancer Hospital/Affiliated Cancer Hospital of Guiyang Medical University/ Department of Oncology,The Affiliated Hospital of Guiyang Medical University; Gui Yang city, GuiZhou province, China
| | - Mingyuan He
- Guizhou Cancer Hospital/Affiliated Cancer Hospital of Guiyang Medical University/ Department of Oncology,The Affiliated Hospital of Guiyang Medical University; Gui Yang city, GuiZhou province, China
| | - Heran Wang
- Guizhou Cancer Hospital/Affiliated Cancer Hospital of Guiyang Medical University/ Department of Oncology,The Affiliated Hospital of Guiyang Medical University; Gui Yang city, GuiZhou province, China
| | - Yongxia Li
- Guizhou Cancer Hospital/Affiliated Cancer Hospital of Guiyang Medical University/ Department of Oncology,The Affiliated Hospital of Guiyang Medical University; Gui Yang city, GuiZhou province, China
| | - Chaofen Zhao
- Guizhou Cancer Hospital/Affiliated Cancer Hospital of Guiyang Medical University/ Department of Oncology,The Affiliated Hospital of Guiyang Medical University; Gui Yang city, GuiZhou province, China
| | - Yan Luo
- Guiyang Medical University Guiyang, 550001, P.R. China, Gui Zhou province, China
| | - Li Ran
- Guizhou Cancer Hospital/Affiliated Cancer Hospital of Guiyang Medical University/ Department of Oncology,The Affiliated Hospital of Guiyang Medical University; Gui Yang city, GuiZhou province, China
| |
Collapse
|
29
|
Alsheikh HAM, Metge BJ, Ha CM, Hinshaw DC, Mota MSV, Kammerud SC, Lama-Sherpa T, Sharafeldin N, Wende AR, Samant RS, Shevde LA. Normalizing glucose levels reconfigures the mammary tumor immune and metabolic microenvironment and decreases metastatic seeding. Cancer Lett 2021; 517:24-34. [PMID: 34052331 DOI: 10.1016/j.canlet.2021.05.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/09/2021] [Accepted: 05/21/2021] [Indexed: 12/29/2022]
Abstract
Obesity and diabetes cumulatively create a distinct systemic metabolic pathophysiological syndrome that predisposes patients to several diseases including breast cancer. Moreover, diabetic and obese women with breast cancer show a significant increase in mortality compared to non-obese and/or non-diabetic women. We hypothesized that these metabolic conditions incite an aggressive tumor phenotype by way of impacting tumor cell-autonomous and tumor cell non-autonomous events. In this study, we established a type 2 diabetic mouse model of triple-negative mammary carcinoma and investigated the effect of a glucose lowering therapy, metformin, on the overall tumor characteristics and immune/metabolic microenvironment. Diabetic mice exhibited larger mammary tumors that had increased adiposity with high levels of O-GlcNAc protein post-translational modification. These tumors also presented with a distinct stromal profile characterized by altered collagen architecture, increased infiltration by tumor-permissive M2 macrophages, and early metastatic seeding compared to non-diabetic/lean mice. Metformin treatment of the diabetic/obese mice effectively normalized glucose levels, reconfigured the mammary tumor milieu, and decreased metastatic seeding. Our results highlight the impact of two metabolic complications of obesity and diabetes on tumor cell attributes and showcase metformin's ability to revert tumor cell and stromal changes induced by an obese and diabetic host environment.
Collapse
Affiliation(s)
| | - Brandon J Metge
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Chae-Myeong Ha
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Dominique C Hinshaw
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mateus S V Mota
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sarah C Kammerud
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tshering Lama-Sherpa
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Noha Sharafeldin
- Division of Hematology & Oncology, Dept of Medicine, UAB School of Medicine, UAB, USA; Institute for Cancer Outcomes and Survivorship, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Adam R Wende
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rajeev S Samant
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; Birmingham Veterans Affairs, Birmingham, AL, USA; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lalita A Shevde
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
30
|
Kathuria D, Raul AD, Wanjari P, Bharatam PV. Biguanides: Species with versatile therapeutic applications. Eur J Med Chem 2021; 219:113378. [PMID: 33857729 DOI: 10.1016/j.ejmech.2021.113378] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 12/18/2022]
Abstract
Biguanides are compounds in which two guanidine moieties are fused to form a highly conjugated system. Biguanides are highly basic and hence they are available as salts mostly hydrochloride salts, these cationic species have been found to exhibit many therapeutic properties. This review covers the research and development carried out on biguanides and accounts the various therapeutic applications of drugs containing biguanide group-such as antimalarial, antidiabetic, antiviral, anticancer, antibacterial, antifungal, anti-tubercular, antifilarial, anti-HIV, as well as other biological activities. The aim of this review is to compile all the medicinal chemistry applications of this class of compounds so as to pave way for the accelerated efforts in finding the drug action mechanisms associated with this class of compounds. Importance has been given to the organic chemistry of these biguanide derivatives also.
Collapse
Affiliation(s)
- Deepika Kathuria
- University Center for Research and Development, Chandigarh University, Gharuan, Punjab, 140413, India
| | - Akshay D Raul
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, 160 062, Punjab, India
| | - Pravin Wanjari
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, 160 062, Punjab, India
| | - Prasad V Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, 160 062, Punjab, India.
| |
Collapse
|
31
|
Agbele AT, Faromika OP, Awe OO, Amodu FR, Edaogbogun GO, Bello KA. Impact of metformin on the therapeutic effect of radiotherapy. RADIATION MEDICINE AND PROTECTION 2021. [DOI: 10.1016/j.radmp.2020.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
32
|
Fahim SM, Hsu CH, Lin FJ, Qian J, Chou C. Association between prior use of anti-diabetic medication and breast cancer stage at diagnosis. Expert Opin Drug Saf 2020; 20:235-243. [PMID: 33207942 DOI: 10.1080/14740338.2021.1853703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND Knowledge regarding antidiabetic medication (ADM) use prior to breast cancer (BC) diagnosis remains limited. The objectives were to (1) evaluate if the prior use of ADM was associated with BC stage at diagnosis and (2) identify and compare patient characteristics among BC patients using different ADMs. RESEARCH DESIGN AND METHODS Newly diagnosed female BC patients exposed to any medication during one year prior to cancer diagnosis were identified in 2008-2013 Linked Surveillance, Epidemiology, and End Results (SEER)-Medicare database. Stage at diagnosis, categorized as early and advanced, was the primary outcome. Chi-square tests were used to compare characteristics and logistic regression models were applied to examine the effect while controlling for patient's characteristics. RESULTS A total of 1,719 female BC patients used ADM while 6,084 patients were non-ADM users. Although a higher proportion of ADM users (20.36%) were diagnosed with advanced stage compared to the non-ADM users (14.46%), the difference was not statistically significant after adjusting for the patients' characteristics. Besides, insulin users were more likely to be diagnosed with advanced stage (adjusted odds ratio 1.69; 95% CI 1.15, 2.48) compared to metformin users. CONCLUSIONS The association between ADM use and BC diagnostic characteristics varied based on different treatments.
Collapse
Affiliation(s)
- Shahariar Mohammed Fahim
- Department of Health Outcomes Research and Policy, Harrison School of Pharmacy, Auburn University , Auburn, AL, USA
| | - Chiu-Hsieh Hsu
- Department of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health, the University of Arizona , Tucson, AZ, USA
| | - Fang-Ju Lin
- Graduate Institute of Clinical Pharmacy & School of Pharmacy, College of Medicine, National Taiwan University , Taipei, Taiwan.,Department of Pharmacy, National Taiwan University Hospital , Taipei, Taiwan
| | - Jingjing Qian
- Department of Health Outcomes Research and Policy, Harrison School of Pharmacy, Auburn University , Auburn, AL, USA
| | - Chiahung Chou
- Department of Health Outcomes Research and Policy, Harrison School of Pharmacy, Auburn University , Auburn, AL, USA.,Department of Medical Research, China Medical University Hospital , Taichung, Taiwan
| |
Collapse
|
33
|
Affiliation(s)
- Anne Kilvert
- Consultant Physician, Northampton Community Diabetes Team UK
| | - Charles Fox
- Honorary Lecturer, Leicester Diabetes Centre Leicester UK
| |
Collapse
|
34
|
Harguindey S, Alfarouk K, Polo Orozco J, Fais S, Devesa J. Towards an Integral Therapeutic Protocol for Breast Cancer Based upon the New H +-Centered Anticancer Paradigm of the Late Post-Warburg Era. Int J Mol Sci 2020; 21:E7475. [PMID: 33050492 PMCID: PMC7589677 DOI: 10.3390/ijms21207475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/13/2022] Open
Abstract
A brand new approach to the understanding of breast cancer (BC) is urgently needed. In this contribution, the etiology, pathogenesis, and treatment of this disease is approached from the new pH-centric anticancer paradigm. Only this unitarian perspective, based upon the hydrogen ion (H+) dynamics of cancer, allows for the understanding and integration of the many dualisms, confusions, and paradoxes of the disease. The new H+-related, wide-ranging model can embrace, from a unique perspective, the many aspects of the disease and, at the same time, therapeutically interfere with most, if not all, of the hallmarks of cancer known to date. The pH-related armamentarium available for the treatment of BC reviewed here may be beneficial for all types and stages of the disease. In this vein, we have attempted a megasynthesis of traditional and new knowledge in the different areas of breast cancer research and treatment based upon the wide-ranging approach afforded by the hydrogen ion dynamics of cancer. The concerted utilization of the pH-related drugs that are available nowadays for the treatment of breast cancer is advanced.
Collapse
Affiliation(s)
- Salvador Harguindey
- Department of Oncology, Institute of Clinical Biology and Metabolism, 01004 Vitoria, Spain;
| | - Khalid Alfarouk
- Department of Pharmacology, Al-Ghad International Colleges for Applied Medical Sciences, Al-Madinah Al-Munawarah 42316, Saudi Arabia and Alfarouk Biomedical Research LLC, Tampa, FL 33617, USA;
| | - Julián Polo Orozco
- Department of Oncology, Institute of Clinical Biology and Metabolism, 01004 Vitoria, Spain;
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità (National Institute of Health), 00161 Rome, Italy;
| | - Jesús Devesa
- Scientific Direction, Foltra Medical Centre, 15886 Teo, Spain;
| |
Collapse
|
35
|
Saguyod SJU, Alhallak I, Simmen RCM, Velarde MC. Metformin regulation of progesterone receptor isoform-B expression in human endometrial cancer cells is glucose-dependent. Oncol Lett 2020; 20:249. [PMID: 32994812 PMCID: PMC7509689 DOI: 10.3892/ol.2020.12112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/25/2020] [Indexed: 11/17/2022] Open
Abstract
Metformin (MET) constitutes the first-line treatment against type 2 diabetes. Growing evidence linking insulin resistance and cancer risk has expanded the therapeutic potential of MET to several cancer types. However, the oncostatic mechanisms of MET are not well understood. MET has been shown to promote the expression of progesterone receptor (PGR) and other antitumor biomarkers in patients with non-diabetic endometrial cancer (EC) and in Ishikawa EC cells cultured in normal glucose (5.5 mM) media. Therefore, the present study aimed to assess the effects of MET on EC cells under conditions simulating diabetes. Ishikawa cells treated with 10 nM 17β-estradiol (E2) and/or 100 µM MET and exposed to normal and high (17.5 mM) concentrations of glucose were evaluated for proliferative and PGR expression status. Under normal glucose conditions, MET attenuated E2-induced cell proliferation and cyclin D1 gene expression, and increased total PGR and PGR-B transcript levels. MET inhibited Ishikawa cell spheroid formation only in the absence of E2 treatment. In E2-treated cells under high glucose conditions, MET showed no effects on cell proliferation and spheroid formation, and increased total PGR but not PGR-B transcript levels. Transfection with Krüppel-like factor 9 small interfering RNA increased PGR-A transcript levels, irrespective of glucose environment. Medroxyprogesterone acetate downregulated PGR-A expression more effectively with metformin under high compared with normal glucose conditions. To evaluate the potential mechanisms underlying the targeting of PGR by MET, E2-treated cells were incubated with MET and the AMPK inhibitor Compound C, or with the AMPK activator 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), under normal glucose conditions. Compound C abrogated the effects of MET on PGR-B while AICAR increased PGR-B transcript levels, albeit less effectively compared with MET. The present results demonstrate the glucose-dependent effects of MET on PGR-B isoform expression, which may inform the response to progestin therapy in diabetic women with EC.
Collapse
Affiliation(s)
- Sofia Jade U Saguyod
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, PH 1101, Philippines
| | - Iad Alhallak
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Rosalia C M Simmen
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.,The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Michael C Velarde
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, PH 1101, Philippines
| |
Collapse
|
36
|
Salim E, El-Sisi AED, Sokar S, El-Sayad M, Moussa E. Metformin potentiates the chemotherapeutic effects of doxorubicin on 2-amino-1-methyl-6-phenylimidazo[4,5b] pyridine-induced Mammary Carcinoma in rats. Fundam Clin Pharmacol 2020; 35:700-713. [PMID: 32905620 DOI: 10.1111/fcp.12604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/20/2020] [Accepted: 09/02/2020] [Indexed: 11/28/2022]
Abstract
This study was carried out to evaluate the antitumor activity of Metformin (Met) and its impending utility to potentiate the chemotherapeutic action of doxorubicin on 2-amino-1-methyl-6-phenylimidazo[4,5b]pyridine (PhIP)-induced rat mammary carcinogenesis. Female Sprague -Dawley (SD) rats were divided into seven groups (n = 15 each). Mammary carcinogenesis was induced by the administration of PhIP at a dose of 75 mg/kg by gavage. Met treatment was 2 mg/ml in drinking water for 26 weeks started after the last PhIP dose. Doxorubicin (Dox) treatment started after one month of the last PhIP dose with a dose of 4 mg/kg, i.v. once per week for 4 weeks. Compared to the PhIP group, the latency period of tumors in the PhIP+Dox, PhIP+Met, and PhIP+Dox+Met groups were significantly increased and tumors' incidences and multiplicities were significantly reduced. By immunohistochemistry, carcinomas from the combination treatment groups showed a significant decrease in the labeling indexes (LI%) of cellular proliferation and CD44 compared to the PhIP group while LI% for ERα was significantly decreased in all combination treatment groups compared to the PhIP-administered group. Moreover, the quantitative mRNA expression of ERα was significantly decreased in mammary tumors from PhIP + Dox+Met combined group more than the PhIP + Dox group. However, mRNA expression of EGF was found significantly lower in all combination treatment groups compared to the PhIP group. These findings suggest that Metformin potentiate the antitumor efficacy of doxorubicin and had beneficial effects on PhIP-induced mammary carcinogenesis through the prevention of cellular proliferation and mRNA expression of ERα and EGF.
Collapse
Affiliation(s)
- Elsayed Salim
- Department of Zoology, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Alaa El-Din El-Sisi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Samia Sokar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Magda El-Sayad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Ethar Moussa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
37
|
Teufelsbauer M, Rath B, Plangger A, Staud C, Nanobashvili J, Huk I, Neumayer C, Hamilton G, Radtke C. Effects of metformin on adipose-derived stromal cell (ADSC) - Breast cancer cell lines interaction. Life Sci 2020; 261:118371. [PMID: 32882267 DOI: 10.1016/j.lfs.2020.118371] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/28/2020] [Accepted: 08/28/2020] [Indexed: 10/23/2022]
Abstract
AIMS Metformin is a clinical drug administered to patients to treat type 2 diabetes mellitus that was found to be associated with a lower risk of occurrence of cancer and cancer-related death. The present study investigated the effects of metformin on human adipose-derived stromal cells (ADSC) - breast cancer cell line interactions. MAIN METHODS ADSCs grown from lipoaspirates were tested for growth-stimulating and migration-controlling activity on breast cancer cell lines after pretreatment with metformin. Furthermore, secreted proteins of ADSCs, phosphorylation of intracellular proteins and the effect of metformin on adipocytic differentiation of ADSCs were assayed. KEY FINDINGS Compared to breast cancer cell lines (4.0 ± 3.5% reduction of proliferation), 2 mM metformin significantly inhibited the proliferation of ADSC lines (19.2 ± 8.4% reduction of proliferation). This effect on ADSCs seems to be mediated by altered phosphorylation of GSK-3, CREB and PRAS40. Furthermore, treatment with metformin abolished the induction of differentiation of three ADSC lines to adipocytes. 1 and 2 mM metformin significantly impaired the migration of breast cancer cell lines MDA-MB-231 and MDA-MB-436 in scratch assays. SIGNIFICANCE Metformin showed low direct inhibitory effects on breast cancer cell lines at physiological concentrations but exerted a significant retardation of the growth and the adipocytic differentiation of ADSCs. Thus, the anticancer activity of metformin in breast cancer at physiological drug concentrations seems to be mediated by an indirect mechanism that lowers the supportive activity of ADSCs.
Collapse
Affiliation(s)
- Maryana Teufelsbauer
- Department of Plastic and Reconstructive Surgery, Medical University of Vienna, Vienna, Austria
| | - Barbara Rath
- Department of Vascular Surgery, Medical University of Vienna, Vienna, Austria
| | - Adelina Plangger
- Department of Vascular Surgery, Medical University of Vienna, Vienna, Austria
| | - Clement Staud
- Department of Plastic and Reconstructive Surgery, Medical University of Vienna, Vienna, Austria
| | - Josif Nanobashvili
- Department of Vascular Surgery, Medical University of Vienna, Vienna, Austria
| | - Ihor Huk
- Department of Vascular Surgery, Medical University of Vienna, Vienna, Austria
| | - Christoph Neumayer
- Department of Vascular Surgery, Medical University of Vienna, Vienna, Austria
| | - Gerhard Hamilton
- Department of Vascular Surgery, Medical University of Vienna, Vienna, Austria.
| | - Christine Radtke
- Department of Plastic and Reconstructive Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
38
|
Kehm RD, McDonald JA, Fenton SE, Kavanaugh-Lynch M, Leung KA, McKenzie KE, Mandelblatt JS, Terry MB. Inflammatory Biomarkers and Breast Cancer Risk: A Systematic Review of the Evidence and Future Potential for Intervention Research. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17155445. [PMID: 32731638 PMCID: PMC7432395 DOI: 10.3390/ijerph17155445] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/16/2020] [Accepted: 07/24/2020] [Indexed: 12/18/2022]
Abstract
Measuring systemic chronic inflammatory markers in the blood may be one way of understanding the role of inflammation in breast cancer risk, and might provide an intermediate outcome marker in prevention studies. Here, we present the results of a systematic review of prospective epidemiologic studies that examined associations between systemic inflammatory biomarkers measured in blood and breast cancer risk. From 1 January 2014 to 20 April 2020, we identified 18 unique studies (from 16 publications) that examined the association of systemic inflammatory biomarkers measured in blood with breast cancer risk using prospectively collected epidemiologic data. Only one marker, C-reactive protein, was studied extensively (measured in 13 of the 16 publications), and had some evidence of a positive association with breast cancer risk. Evidence associating other inflammatory biomarkers and more comprehensive panels of markers with the development of breast cancer is limited. Future prospective evidence from expanded panels of systemic blood inflammatory biomarkers is needed to establish strong and independent links with breast cancer risk, along with mechanistic studies to understand inflammatory pathways and demonstrate how breast tissue responds to chronic inflammation. This knowledge could ultimately support the development and evaluation of mechanistically driven interventions to reduce inflammation and prevent breast cancer.
Collapse
Affiliation(s)
- Rebecca D. Kehm
- Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 W 168th St, New York, NY 10032, USA; (R.D.K.); (J.A.M.)
| | - Jasmine A. McDonald
- Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 W 168th St, New York, NY 10032, USA; (R.D.K.); (J.A.M.)
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, 1130 St Nicholas Ave, New York, NY 10032, USA
| | - Suzanne E. Fenton
- National Toxicology Program Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, 111 TW Alexander Drive, Durham, NC 27709, USA;
| | - Marion Kavanaugh-Lynch
- California Breast Cancer Research Program, University of California, 300 Lakeside Drive, Oakland, CA 94612, USA; (M.K.-L.); (K.E.M.)
| | | | - Katherine E. McKenzie
- California Breast Cancer Research Program, University of California, 300 Lakeside Drive, Oakland, CA 94612, USA; (M.K.-L.); (K.E.M.)
| | - Jeanne S. Mandelblatt
- Department of Oncology, Cancer Prevention and Control Program, Georgetown-Lombardi Comprehensive Cancer Center, Georgetown University, 3800 Reservoir Rd. NW, Washington, DC 20057, USA
- Correspondence: (J.S.M.); (M.B.T.)
| | - Mary Beth Terry
- Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 W 168th St, New York, NY 10032, USA; (R.D.K.); (J.A.M.)
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, 1130 St Nicholas Ave, New York, NY 10032, USA
- Correspondence: (J.S.M.); (M.B.T.)
| |
Collapse
|
39
|
Barker RM, Holly JMP, Biernacka KM, Allen-Birt SJ, Perks CM. Mini Review: Opposing Pathologies in Cancer and Alzheimer's Disease: Does the PI3K/Akt Pathway Provide Clues? Front Endocrinol (Lausanne) 2020; 11:403. [PMID: 32655497 PMCID: PMC7324530 DOI: 10.3389/fendo.2020.00403] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/20/2020] [Indexed: 12/30/2022] Open
Abstract
This minireview is a brief overview examining the roles of insulin-like growth factors (IGFs) and the PI3K/Akt pathway in two apparently unconnected diseases: Alzheimer's dementia and cancer. For both, increased age is a major risk factor, and, in accord with the global rise in average life expectancy, their prevalence is also increasing. Cancer, however, involves excessive cell proliferation and metastasis, whereas Alzheimer's disease (AD) involves cell death and tissue destruction. The apparent "inverse" nature of these disease states is examined here, but also some important commonalities in terms of the PI3K/Akt pathway, glucose utilization and cell deregulation/death. The focus here is on four key molecules associated with this pathway; notably, the insulin receptor substrate 1 (IRS-1), cellular tumor antigen p53 (p53), peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (PIN1) and low-density lipoprotein receptor-related protein-1 (LRP1), all previously identified as potential therapeutic targets for both diseases. The insulin-resistant state, commonly reported in AD brain, results in neuronal glucose deprivation, due to a dampening down of the PI3K/Akt pathway, including overactivity of the mammalian target of rapamycin 1 (mTORC1) complex, hyperphosphorylation of p53 and neuronal death. This contrasts with cancer, where there is overstimulation of the PI3K/Akt pathway and the suppression of mTORC1 and p53, enabling abundant energy and unrestrained cell proliferation. Although these disease states appear to be diametrically opposed, the same key molecules are controlling pathology and, with differential targeting of therapeutics, may yet provide a beneficial outcome for both.
Collapse
Affiliation(s)
- Rachel M. Barker
- IGFs & Metabolic Endocrinology Group, Bristol Medical School, Translational Health Sciences, Southmead Hospital, University of Bristol, Bristol, United Kingdom
| | - Jeff M. P. Holly
- IGFs & Metabolic Endocrinology Group, Bristol Medical School, Translational Health Sciences, Southmead Hospital, University of Bristol, Bristol, United Kingdom
| | - Kalina M. Biernacka
- IGFs & Metabolic Endocrinology Group, Bristol Medical School, Translational Health Sciences, Southmead Hospital, University of Bristol, Bristol, United Kingdom
| | - Shelley J. Allen-Birt
- Molecular Neurobiology Group, Bristol Medical School, Translational Health Sciences, Southmead Hospital, University of Bristol, Bristol, United Kingdom
| | - Claire M. Perks
- IGFs & Metabolic Endocrinology Group, Bristol Medical School, Translational Health Sciences, Southmead Hospital, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
40
|
The Use of Metformin to Increase the Human Healthspan. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1260:319-332. [PMID: 32304040 DOI: 10.1007/978-3-030-42667-5_13] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Metformin is a safe, effective and useful drug for glucose management in patients with diabetes. However in recent years, more attention has been paid to the possibility of using metformin as an anti-aging drug. It was shown to significantly increase the lifespan in some model organisms and delay the onset of age-associated declines. The current review summarizes advances in clinical research on the potential role of metformin in the field of lifespan and healthspan extension. Growing amounts of evidence from clinical trials suggest that metformin can effectively reduce the risk of many age-related diseases and conditions, including cardiometabolic disorders, neurodegeneration, chronic inflammation and frailty. Metformin also holds promise as a drug that could be repurposed for chemoprevention or adjuvant therapy for certain types of cancer. Moreover, metformin induces autophagy by activation of AMPK and can thus be potentially used to promote heathspan by hormesis-like mechanisms. Although long-term intake of metformin is associated with low risk of adverse events, well-designed clinical trials are still required to uncover the potential use of this drug as a geroprotector.
Collapse
|
41
|
Metformin: A Possible Option in Cancer Chemotherapy. Anal Cell Pathol (Amst) 2020; 2020:7180923. [PMID: 32399389 PMCID: PMC7201450 DOI: 10.1155/2020/7180923] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/20/2020] [Accepted: 04/10/2020] [Indexed: 02/07/2023] Open
Abstract
Metformin has been used for a long time as an antidiabetic medication for type 2 diabetes. It is used either as a monotherapy or in combination with other antidiabetic medications. The drug came into prominence in diabetes and other conditions with cardiovascular risk after the landmark study of 1995 by the United Kingdom Prospective Diabetes Study which emphasized its importance. However, the drug has been used in experimental trials in various aspects of medicine and pharmacology such as in reproductive medicine, cancer chemotherapy, metabolic diseases, and neurodegenerative diseases. It has been in use in the treatment of polycystic ovarian disease and obesity and is being considered in type 1 diabetes. This study seeks to evaluate the relevance of metformin in cancer management. Different mechanisms have been proposed for its antitumor action which involves the following: (a) the activation of adenosine monophosphate kinase, (b) modulation of adenosine A1 receptor (ADORA), (c) reduction in insulin/insulin growth factors, and (d) the role of metformin in the inhibition of endogenous reactive oxygen species (ROS); and its resultant damage to deoxyribonucleic acid (DNA) molecule is another paramount antitumor mechanism.
Collapse
|
42
|
Harguindey S, Alfarouk K, Polo Orozco J, Hardonnière K, Stanciu D, Fais S, Devesa J. A New and Integral Approach to the Etiopathogenesis and Treatment of Breast Cancer Based upon Its Hydrogen Ion Dynamics. Int J Mol Sci 2020; 21:E1110. [PMID: 32046158 PMCID: PMC7036897 DOI: 10.3390/ijms21031110] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 12/11/2022] Open
Abstract
Despite all efforts, the treatment of breast cancer (BC) cannot be considered to be a success story. The advances in surgery, chemotherapy and radiotherapy have not been sufficient at all. Indeed, the accumulated experience clearly indicates that new perspectives and non-main stream approaches are needed to better characterize the etiopathogenesis and treatment of this disease. This contribution deals with how the new pH-centric anticancer paradigm plays a fundamental role in reaching a more integral understanding of the etiology, pathogenesis, and treatment of this multifactorial disease. For the first time, the armamentarium available for the treatment of the different types and phases of BC is approached here from a Unitarian perspective-based upon the hydrogen ion dynamics of cancer. The wide-ranged pH-related molecular, biochemical and metabolic model is able to embrace most of the fields and subfields of breast cancer etiopathogenesis and treatment. This single and integrated approach allows advancing towards a unidirectional, concerted and synergistic program of treatment. Further efforts in this line are likely to first improve the therapeutics of each subtype of this tumor and every individual patient in every phase of the disease.
Collapse
Affiliation(s)
- Salvador Harguindey
- Institute of Clinical Biology and Metabolism, Postas 13, 01004 Vitoria, Spain;
| | - Khalid Alfarouk
- Al-Ghad International Colleges for Applied Medical Sciences, Al-Madinah Al-Munawarah, Saudi Arabia and Alfarouk Biomedical Research LLC, Tampa, FL 33617, USA;
| | - Julián Polo Orozco
- Institute of Clinical Biology and Metabolism, Postas 13, 01004 Vitoria, Spain;
| | - Kévin Hardonnière
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, 92290 Châtenay-Malabry, France;
| | - Daniel Stanciu
- Scientific Direction, MCS Foundation For Life, 5623KR Eindhoven, The Netherlands;
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità (National Institute of Health), Viale Regina Elena, 299, 00161 Rome, Italy;
| | - Jesús Devesa
- Scientific Direction, Foltra Medical Centre, Travesía de Montouto 24, 15886 Teo, Spain;
| |
Collapse
|
43
|
|