1
|
Buvall L, Menzies RI, Williams J, Woollard KJ, Kumar C, Granqvist AB, Fritsch M, Feliers D, Reznichenko A, Gianni D, Petrovski S, Bendtsen C, Bohlooly-Y M, Haefliger C, Danielson RF, Hansen PBL. Selecting the right therapeutic target for kidney disease. Front Pharmacol 2022; 13:971065. [PMID: 36408217 PMCID: PMC9666364 DOI: 10.3389/fphar.2022.971065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/17/2022] [Indexed: 02/02/2025] Open
Abstract
Kidney disease is a complex disease with several different etiologies and underlying associated pathophysiology. This is reflected by the lack of effective treatment therapies in chronic kidney disease (CKD) that stop disease progression. However, novel strategies, recent scientific breakthroughs, and technological advances have revealed new possibilities for finding novel disease drivers in CKD. This review describes some of the latest advances in the field and brings them together in a more holistic framework as applied to identification and validation of disease drivers in CKD. It uses high-resolution 'patient-centric' omics data sets, advanced in silico tools (systems biology, connectivity mapping, and machine learning) and 'state-of-the-art' experimental systems (complex 3D systems in vitro, CRISPR gene editing, and various model biological systems in vivo). Application of such a framework is expected to increase the likelihood of successful identification of novel drug candidates based on strong human target validation and a better scientific understanding of underlying mechanisms.
Collapse
Affiliation(s)
- Lisa Buvall
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Robert I. Menzies
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Julie Williams
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Kevin J. Woollard
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Chanchal Kumar
- Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Anna B. Granqvist
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Maria Fritsch
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Denis Feliers
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Anna Reznichenko
- Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Davide Gianni
- Functional Genomics, Discovery Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Slavé Petrovski
- Centre for Genomics Research, Discovery Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Claus Bendtsen
- Data Sciences & Quantitative Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Mohammad Bohlooly-Y
- Translational Genomics, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Carolina Haefliger
- Centre for Genomics Research, Discovery Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Regina Fritsche Danielson
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Pernille B. L. Hansen
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
2
|
Sears SM, Vega AA, Kurlawala Z, Oropilla GB, Krueger A, Shah PP, Doll MA, Miller R, Beverly LJ, Siskind LJ. F4/80 hi Resident Macrophages Contribute to Cisplatin-Induced Renal Fibrosis. KIDNEY360 2022; 3:818-833. [PMID: 36128491 PMCID: PMC9438415 DOI: 10.34067/kid.0006442021] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/07/2022] [Indexed: 01/10/2023]
Abstract
Background Cisplatin-induced kidney injury remains a major obstacle in utilizing cisplatin as a chemotherapeutic for solid-organ cancers. Thirty percent of patients treated with cisplatin develop acute kidney injury (AKI), and even patients who do not develop AKI are at risk for long-term declines in kidney function and development of chronic kidney disease (CKD). Modeling cisplatin-induced kidney injury in mice has revealed that repeated low doses of cisplatin lead to development of kidney fibrosis. This model can be used to examine AKI-to-CKD transition processes. Macrophages play a role in some of these processes, including immune response, wound healing, and tissue remodeling. Depleting macrophage populations in the kidney reduced fibrosis development in other models of renal fibrosis. Methods We used either C57BL/6 mice with a Ccr2 genetic knockout or liposome encapsulated clodronate (Clodrosome) to deplete macrophage populations during repeated 9 mg/kg cisplatin treatments. We assessed how immune cell populations were altered in the blood and kidney of these mice and how these alterations affected development of renal fibrosis and kidney injury. Results We found that Clodrosome treatment decreased collagen deposition, myofibroblast accumulation, and inflammatory cytokine production, whereas Ccr2 genetic knockout had no effect on these markers after cisplatin treatment. Additionally, Ccr2-/- mice had decreased levels of F4/80lo infiltrating macrophages in the kidney after cisplatin treatments, but Clodrosome treatment depleted F4/80hi resident and CD206+ M2 macrophages. Conclusions These data suggest that Clodrosome depletion of F4/80hi and M2 macrophages in the kidney attenuates development of renal fibrosis after repeated low doses of cisplatin.
Collapse
Affiliation(s)
- Sophia M. Sears
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky
| | - Alexis A. Vega
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, Kentucky
| | - Zimple Kurlawala
- Department of Medicine, University of Louisville, Louisville, Kentucky
- Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky
| | - Gabrielle B. Oropilla
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky
| | - Austin Krueger
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky
| | - Parag P. Shah
- Department of Medicine, University of Louisville, Louisville, Kentucky
- University of Louisville Brown Cancer Center, Louisville, Kentucky
| | - Mark A. Doll
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky
| | - Robert Miller
- University of Louisville Brown Cancer Center, Louisville, Kentucky
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky
| | - Levi J. Beverly
- Department of Medicine, University of Louisville, Louisville, Kentucky
- University of Louisville Brown Cancer Center, Louisville, Kentucky
| | - Leah J. Siskind
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky
- University of Louisville Brown Cancer Center, Louisville, Kentucky
| |
Collapse
|
3
|
Grant MP, Henley N, Dubuissez M, Chen N, Hartmann U, Royal V, Barbier O, Pichette V, Gerarduzzi C. Sub-chronic oral exposure of tungsten induces markers of kidney injury. Am J Physiol Cell Physiol 2021; 322:C205-C217. [PMID: 34852206 DOI: 10.1152/ajpcell.00277.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tungsten is a naturally occurring transition element used in a broad range of applications. As a result of its extensive use, we are increasingly exposed to tungsten from our environment, including potable water, since tungsten can become bioaccessible in ground sources. The kidneys are particularly susceptible to tungsten exposure as this is the main site for tungsten excretion. In this study, we investigated the prolonged effects of tungsten on the kidneys and how this may impact injury and function. When mice were exposed to tungsten in their drinking water for 1-month, kidney function had not significantly changed. Following 3-month exposure, mice were presented with deterioration in kidney function as determined by serum and urine creatinine levels. During 3-months of tungsten exposure, murine kidneys demonstrated significant increases in the myofibroblast marker ⍺SMA, and extracellular matrix products: fibronectin, collagen, and matricellular proteins. In addition, Masson's trichrome and H&E staining revealed an increase in fibrotic tissue and vacuolization of tubular epithelial cells, respectively, from kidneys of tungsten-treated mice, indicative of renal injury. In vitro treatment of kidney fibroblasts with tungsten led to increased proliferation and upregulation of Transforming Growth Factor Beta 1 (TGFβ1), which was consistent with the appearance of fibroblast-to-myofibroblast transition (FMT) markers. Our data suggest that continuous exposure to tungsten impairs kidney function that may lead to the development of chronic kidney disease (CKD).
Collapse
Affiliation(s)
- Michael P Grant
- Department of Orthopaedics, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada; Department of Surgery, McGill University, Montréal, Québec, Montreal, Canada
| | - Nathalie Henley
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l'Université de Montréal, Montréal, Québec, Montreal, Canada
| | - Marion Dubuissez
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l'Université de Montréal, Montréal, Québec, Canada; Département de microbiologie, infectiologie et immunologie, Montreal, Canada
| | - Nan Chen
- Faculty of Science, University of British Columbia, Vancouver, British Columbia, Vancouver, Canada
| | - Ursula Hartmann
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Cologne, Germany
| | - Virginie Royal
- Départment de Pathologie, Hôpital Maisonneuve-Rosemont, Montréal, Québec, Montreal, Canada
| | - Olivier Barbier
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col San Pedro Zacatenco, C.P. 07360, Ciudad de México, CDMX, Mexico, Mexico
| | - Vincent Pichette
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l'Université de Montréal, Montréal, Québec; Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, Québec; Département de Médecine, Faculté de Médecine, Université de Montréal, Montréal, Québec, Montreal, Canada
| | - Casimiro Gerarduzzi
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l'Université de Montréal, Montréal, Québec; Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, Québec; Département de Médecine, Faculté de Médecine, Université de Montréal, Montréal, Québec, Montreal, Canada
| |
Collapse
|
4
|
Barreto EF, Schreier DJ, May HP, Mara KC, Chamberlain AM, Kashani KB, Piche SL, Wi CI, Kane-Gill SL, Smith VT, Rule AD. Incidence of Serum Creatinine Monitoring and Outpatient Visit Follow-Up among Acute Kidney Injury Survivors after Discharge: A Population-Based Cohort Study. Am J Nephrol 2021; 52:817-826. [PMID: 34727542 PMCID: PMC8665070 DOI: 10.1159/000519375] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/30/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Acute kidney injury (AKI) affects 20% of hospitalized patients and worsens outcomes. To limit complications, post-discharge follow-up and kidney function testing are advised. The objective of this study was to evaluate the frequency of follow-up after discharge among AKI survivors. METHODS This was a population-based cohort study of adult Olmsted County residents hospitalized with an episode of stage II or III AKI between 2006 and 2014. Those dismissed from the hospital on dialysis, hospice, or who died within 30 days after discharge were excluded. The frequency and predictors of follow-up, defined as an outpatient serum creatinine (SCr) level or an in-person healthcare visit after discharge were described. RESULTS In the 627 included AKI survivors, the 30-day cumulative incidence of a follow-up outpatient SCr was 80% (95% confidence interval [CI]: 76% and 83%), a healthcare visit was 82% (95% CI: 79 and 85%), or both was 70% (95% CI: 66 and 73%). At 90 days and 1 year after discharge, the cumulative incidences of meeting both follow-up criteria rose to 82 and 91%, respectively. Independent predictors of receiving both an outpatient SCr assessment and healthcare visit within 30 days included lower estimated glomerular filtration rate at discharge, higher comorbidity burden, longer length of hospitalization, and greater maximum AKI severity. Age, sex, race/ethnicity, education level, and socioeconomic status did not predict follow-up. CONCLUSIONS Among patients with moderate to severe AKI, 30% did not have follow-up with a SCr and healthcare visit in the 30-day post-discharge interval. Follow-up was associated with higher acuity of illness rather than demographic or socioeconomic factors.
Collapse
Affiliation(s)
| | | | | | - Kristin C. Mara
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, MN, USA
| | | | - Kianoush B. Kashani
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Chung-Il Wi
- Pediatric Asthma Epidemiology Research, Mayo Clinic, Rochester, MN, USA
| | | | | | - Andrew D. Rule
- Division of Epidemiology, Mayo Clinic, Rochester, MN, USA
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|