1
|
Chen L, Wu P, Zhu Y, Luo H, Tan Q, Chen Y, Luo D, Chen Z. Electrospinning strategies targeting fibroblast for wound healing of diabetic foot ulcers. APL Bioeng 2025; 9:011501. [PMID: 40027546 PMCID: PMC11869202 DOI: 10.1063/5.0235412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 02/11/2025] [Indexed: 03/05/2025] Open
Abstract
The high incidence and prevalence of diabetic foot ulcers (DFUs) present a substantial clinical and economic burden, necessitating innovative therapeutic approaches. Fibroblasts, characterized by their intrinsic cellular plasticity and multifunctional capabilities, play key roles in the pathophysiological processes underlying DFUs. Hyperglycemic conditions lead to a cascade of biochemical alterations that culminate in the dysregulation of fibroblast phenotype and function, which is the primary cause of impaired wound healing in DFUs. Biomaterials, particularly those engineered at the nanoscale, hold significant promise for enhancing DFU treatment outcomes. Electrospun nanofiber scaffolds, with their structural and compositional similarities to the natural extracellular matrix, serve as an effective substrate for fibroblast adhesion, proliferation, and migration. This review comprehensively summarizes the biological behavior of fibroblasts in DFUs and the mechanism mediating wound healing. At the same time, the mechanism of biological materials, especially electrospun nanofiber scaffolds, to improve the therapeutic effect by regulating the activity of fibroblasts was also discussed. By highlighting the latest advancements and clinical applications, we aim to provide a clear perspective on the future direction of DFU treatment strategies centered on fibroblast-targeted therapies.
Collapse
Affiliation(s)
| | - Ping Wu
- Department of Burn plastic and Cosmetology, Chongqing University FuLing HospitalChina
| | - Yu Zhu
- Department of Burn plastic and Cosmetology, Chongqing University FuLing HospitalChina
| | - Han Luo
- Department of Burn plastic and Cosmetology, Chongqing University FuLing HospitalChina
| | - Qiang Tan
- Department of Burn plastic and Cosmetology, Chongqing University FuLing HospitalChina
| | - Yongsong Chen
- Department of Burn plastic and Cosmetology, Chongqing University FuLing HospitalChina
| | - Dan Luo
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan 610500, China
| | - Zhiyong Chen
- Author to whom correspondence should be addressed:
| |
Collapse
|
2
|
Kim J, Go MY, Jeon CY, Shin JU, Kim M, Lim HW, Shin DW. Pinitol Improves Diabetic Foot Ulcers in Streptozotocin-Induced Diabetes Rats Through Upregulation of Nrf2/HO-1 Signaling. Antioxidants (Basel) 2024; 14:15. [PMID: 39857349 PMCID: PMC11762712 DOI: 10.3390/antiox14010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/17/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
Diabetic foot ulcers represent a severe complication of diabetes, often resulting in amputation and high mortality rates. Currently, there are no treatments for diabetic foot ulcers other than antibiotics and dressings. In this study, we evaluated the wound-healing effects of an antidiabetic agent pinitol in lipopolysaccharide (LPS)-damaged human dermal fibroblasts (HDFs) and streptozotocin (STZ)-induced diabetic rat models with a foot wound. Our findings indicated that pinitol enhanced cell migration, proliferation, and wound healing by activating Nrf2, thereby mitigating oxidative stress and inflammatory responses at the wound site. Additionally, pinitol restored mitochondrial energy metabolism, decreased matrix metalloproteinase (MMP) activity, and increased collagen deposition. Furthermore, pinitol facilitated angiogenesis, contributing to improved wound healing. Taken together, these findings suggest that pinitol could be a promising therapeutic agent for the treatment of diabetic foot ulcers.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dong Wook Shin
- Research Institute for Biomedical and Health Science, Konkuk University, Chungju 27478, Republic of Korea; (J.K.); (M.Y.G.); (C.Y.J.); (J.U.S.); (M.K.); (H.W.L.)
| |
Collapse
|
3
|
Williams-Reid H, Johannesson A, Buis A. Wound management, healing, and early prosthetic rehabilitation: Part 2 - A scoping review of physical biomarkers. CANADIAN PROSTHETICS & ORTHOTICS JOURNAL 2024; 7:43716. [PMID: 39990247 PMCID: PMC11844764 DOI: 10.33137/cpoj.v7i2.43716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/29/2024] [Indexed: 02/25/2025] Open
Abstract
BACKGROUND The timely provision of load-bearing prostheses significantly reduces healthcare costs and lowers post-amputation mortality risk. However, current methods for assessing residuum health remain subjective, underscoring the need for standardized, evidence-based approaches incorporating physical biomarkers to evaluate residual limb healing and determine readiness for prosthetic rehabilitation. OBJECTIVES This review aimed to identify predictive, diagnostic, and indicative physical biomarkers of healing of the tissues and structures found in the residual limbs of adults with amputation. METHODOLOGY A scoping review was conducted following Joanna Briggs Institute (JBI) and PRISMA-ScR guidance. Searches using "biomarkers", "wound healing", and "amputation" were performed on May 6, 2023, on Web of Science, Ovid MEDLINE, Ovid Embase, Scopus, Cochrane, PubMed, and CINAHL databases. Inclusion criteria were: 1) References to physical biomarkers and healing; 2) Residuum tissue healing; 3) Clear methodology with ethical approval; 4) Published from 2017 onwards. Articles were assessed for quality (QualSyst tool) and evidence level (JBI system), and categorized by study, wound, and model type. Physical biomarkers that were repeated not just within categories, but across more than one of the study categories were reported on. FINDINGS The search strategy identified 3,306 sources, 157 of which met the inclusion criteria. Histology was the most frequently repeated physical biomarker used in 64 sources, offering crucial diagnostic insights into cellular healing processes. Additional repeated indicative and predictive physical biomarkers, including ankle-brachial index, oxygenation measures, perfusion, and blood pulse and pressure measurements, were reported in 25, 19, 13, and 12 sources, respectively, providing valuable data on tissue oxygenation and vascular health. CONCLUSION Ultimately, adopting a multifaceted approach that integrates a diverse array of physical biomarkers (accounting for physiological factors and comorbidities known to influence healing) may substantially enhance our understanding of the healing process and inform the development of effective rehabilitation strategies for individuals undergoing amputation.
Collapse
Affiliation(s)
- H Williams-Reid
- Department of Biomedical Engineering, Faculty of Engineering, University of Strathclyde, Glasgow, Scotland
| | | | - A Buis
- Department of Biomedical Engineering, Faculty of Engineering, University of Strathclyde, Glasgow, Scotland
| |
Collapse
|
4
|
Williams-Reid H, Johannesson A, Buis A. Wound management, healing, and early prosthetic rehabilitation: Part 1 - A scoping review of healing and non-healing definitions. CANADIAN PROSTHETICS & ORTHOTICS JOURNAL 2024; 7:43715. [PMID: 39990241 PMCID: PMC11844765 DOI: 10.33137/cpoj.v7i2.43715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/25/2024] [Indexed: 02/25/2025] Open
Abstract
BACKGROUND Following lower limb amputation, timely prosthetic fitting enhances mobility and quality of life. However, inconsistent definitions of surgical site healing complicate prosthesis readiness assessment and highlight the need for objective wound management measures. OBJECTIVE This review aimed to compile definitions of healing and non-healing provided in the literature investigating biomarkers of healing of the tissues and structures found in the residual limbs of adults with amputation. METHODOLOGY A scoping review was conducted following JBI and PRISMA-ScR guidance. Searches using "biomarkers," "wound healing," and "amputation" were performed on May 6, 2023, on Web of Science, Ovid MEDLINE, Ovid Embase, Scopus, Cochrane, PubMed, and CINAHL databases. Inclusion criteria were: 1) References to biomarkers and healing; 2) Residuum tissue healing; 3) Clear methodology with ethical approval; 4) Published from 2017 onwards. Articles were assessed for quality (QualSyst tool) and evidence level (JBI system). FINDINGS Of 3,306 articles screened, 219 met the inclusion criteria and are reviewed in this article, with 77% rated strong quality. 43% of all included sources did not define healing, while the remainder used specific criteria including epithelialization (14%), wound size reduction (28%), gradings scales (3%), scarring (1%), absence of wound complications (2%), hydroxyproline levels (0.5%), no amputation (0.5%), or neovascularization (0.5%). 84% of included sources did not provide definitions of non-healing. Studies defining non-healing used criteria like wound complications (4%), the need for operative interventions (4%), or lack of wound size reduction (1%). For 10% of included sources, healing and non-healing definitions were considered not applicable given the research content. Total percentages exceed 100% for both healing and non-healing definitions because some sources used two definition classifications, such as epithelialization and wound size reduction. The findings indicate a lack of standardized definitions irrespective of study type. CONCLUSION This review reveals significant gaps in current definitions of healing and non-healing, often based on superficial assessments that overlook deeper tissue healing and mechanical properties essential for prosthesis use. It emphasizes the need for comprehensive definitions incorporating biomarkers and psychosocial factors to improve wound management and post-amputation recovery.
Collapse
Affiliation(s)
- H Williams-Reid
- Department of Biomedical Engineering, Faculty of Engineering, University of Strathclyde, Glasgow, Scotland
| | | | - A Buis
- Department of Biomedical Engineering, Faculty of Engineering, University of Strathclyde, Glasgow, Scotland
| |
Collapse
|
5
|
Berlanga-Acosta J, Garcia-Ojalvo A, Fernández-Montequin J, Falcon-Cama V, Acosta-Rivero N, Guillen-Nieto G, Pujol-Ferrer M, Limonta-Fernandez M, Ayala-Avila M, Eriksson E. Epidermal Growth Factor Intralesional Delivery in Chronic Wounds: The Pioneer and Standalone Technique for Reversing Wound Chronicity and Promoting Sustainable Healing. Int J Mol Sci 2024; 25:10883. [PMID: 39456666 PMCID: PMC11507032 DOI: 10.3390/ijms252010883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
The early expectations about growth factors' (GFs') discovery as an undisputed therapeutic solution for chronic wounds progressively eclipsed when they failed to accelerate acute wound closure and restore the healing trajectory of stagnant ulcers. Critical knowledge about chronic wound biology and GF pharmacology was a conundrum at that time. Diabetes undermines keratinocytes' and fibroblasts' physiology, impairing skin healing abilities. Diabetic ulcers, as other chronic wounds, are characterized by hyperinflammation, unbalanced proteolytic activity, catabolism, and free radical cytotoxicity. This hostile scenario for the chemical stability, integrity, and functionality of GFs led to the conclusion that topical administration may jeopardize GFs' clinical effectiveness. Epidermal growth factor (EGF) has a proximal position in tissues homeostasis by activating survival and mitogenic pathways from embryonic life to adulthood. Seminal experiments disclosed unprecedented pharmacological bounties of parenterally administered EGF. Accordingly, the experience accumulated for more than 20 years of EGF intralesional infiltration of diabetic wound bottoms and edges has translated into sustained healing responses, such as low recurrences and amputation rates. This delivery route, in addition to being safe and tolerated, has shown to restore a variety of circulating biochemical markers ordinarily disturbed in diabetic conditions. EGF infiltration triggers a cascade of local fibroblast reactions, supporting its molecular integrity, prolonged mean residence time, and ultimately eliciting its receptor trafficking and nuclear translocation. The intralesional delivery route seems to warrant that EGF reaches wound fibroblasts' epigenetic core, mitigating the consequences of metabolic memory imprinting.
Collapse
Affiliation(s)
- Jorge Berlanga-Acosta
- Wound Healing, Tissue Repair and Cytoprotection Research Project, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Playa, P.O. Box 6162, Havana 11600, Cuba; (A.G.-O.); (V.F.-C.); (N.A.-R.); (G.G.-N.); (M.P.-F.); (M.L.-F.); (M.A.-A.)
| | - Ariana Garcia-Ojalvo
- Wound Healing, Tissue Repair and Cytoprotection Research Project, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Playa, P.O. Box 6162, Havana 11600, Cuba; (A.G.-O.); (V.F.-C.); (N.A.-R.); (G.G.-N.); (M.P.-F.); (M.L.-F.); (M.A.-A.)
| | - Jose Fernández-Montequin
- National Institute of Angiology and Vascular Surgery—Diabetic Angiopathy Service, Calzada del Cerro 1551 esq, Domínguez, Cerro, Havana 12000, Cuba;
| | - Viviana Falcon-Cama
- Wound Healing, Tissue Repair and Cytoprotection Research Project, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Playa, P.O. Box 6162, Havana 11600, Cuba; (A.G.-O.); (V.F.-C.); (N.A.-R.); (G.G.-N.); (M.P.-F.); (M.L.-F.); (M.A.-A.)
| | - Nelson Acosta-Rivero
- Wound Healing, Tissue Repair and Cytoprotection Research Project, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Playa, P.O. Box 6162, Havana 11600, Cuba; (A.G.-O.); (V.F.-C.); (N.A.-R.); (G.G.-N.); (M.P.-F.); (M.L.-F.); (M.A.-A.)
| | - Gerardo Guillen-Nieto
- Wound Healing, Tissue Repair and Cytoprotection Research Project, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Playa, P.O. Box 6162, Havana 11600, Cuba; (A.G.-O.); (V.F.-C.); (N.A.-R.); (G.G.-N.); (M.P.-F.); (M.L.-F.); (M.A.-A.)
| | - Merardo Pujol-Ferrer
- Wound Healing, Tissue Repair and Cytoprotection Research Project, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Playa, P.O. Box 6162, Havana 11600, Cuba; (A.G.-O.); (V.F.-C.); (N.A.-R.); (G.G.-N.); (M.P.-F.); (M.L.-F.); (M.A.-A.)
| | - Miladys Limonta-Fernandez
- Wound Healing, Tissue Repair and Cytoprotection Research Project, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Playa, P.O. Box 6162, Havana 11600, Cuba; (A.G.-O.); (V.F.-C.); (N.A.-R.); (G.G.-N.); (M.P.-F.); (M.L.-F.); (M.A.-A.)
| | - Marta Ayala-Avila
- Wound Healing, Tissue Repair and Cytoprotection Research Project, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Playa, P.O. Box 6162, Havana 11600, Cuba; (A.G.-O.); (V.F.-C.); (N.A.-R.); (G.G.-N.); (M.P.-F.); (M.L.-F.); (M.A.-A.)
| | - Elof Eriksson
- Joseph E. Murray Professor of Plastic and Reconstructive Surgery, Brigham and Women’s Hospital, Harvard Medical School, Main Pike, ASB-2, 75 Francis St, Boston, MA 02115, USA;
| |
Collapse
|
6
|
Lee SJ, Koh A, Lee SH, Kim KW. Efficacy of epidermal growth factor in suppressing inflammation and proliferation in pterygial fibroblasts through interactions with microenvironmental M1 macrophages. Sci Rep 2024; 14:22601. [PMID: 39349715 PMCID: PMC11442942 DOI: 10.1038/s41598-024-74413-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024] Open
Abstract
The protein epidermal growth factor (EGF), which plays a crucial role in promoting cell proliferation and survival, has recently demonstrated potential in reducing inflammation. In this study, we examined the impact of EGF on the anti-inflammatory and anti-proliferative properties of pterygium, a prevalent hypervascular proliferative disease affecting the ocular surface. In surgically excised tissues, markers for fibrotic and inflammatory signals, including VIM, ACTA2, FAP, MMP2, VCAM1, ICAM1, CD86, IL6, and IL1B were upregulated in the pterygium body stroma compared to the normal conjunctival stroma. EGF exerted anti-inflammatory and anti-vasculogenic effects on pterygial fibroblasts when co-cultured with M1 macrophages. Moreover, exosomes derived from EGF-preconditioned M1 macrophages suppressed the heightened inflammatory and vasculogenic signals in pterygial fibroblasts induced by exosomes from M1 macrophages. Paradoxically, the proliferation of pterygial fibroblasts was inhibited by EGF in the in vitro microenvironment with M1 macrophages, despite EGF being known as a growth factor. EGF-preconditioning of M1 macrophages rescued the increased proliferation of pterygial fibroblasts induced by exosomes from M1 macrophages. In conclusion, our findings demonstrate that EGF effectively mitigates inflammation and proliferation in pterygial fibroblasts within a microenvironment containing M1 macrophages.
Collapse
Affiliation(s)
- Soo Jin Lee
- Chung-Ang Ocular Surface Restoration via Immune-inflammation Alleviation (CORIA) Laboratory, Seoul, Republic of Korea
| | - Ahra Koh
- Chung-Ang Ocular Surface Restoration via Immune-inflammation Alleviation (CORIA) Laboratory, Seoul, Republic of Korea
- Chung-Ang University Graduate School, Seoul, Republic of Korea
| | - Seung Hyeun Lee
- Chung-Ang Ocular Surface Restoration via Immune-inflammation Alleviation (CORIA) Laboratory, Seoul, Republic of Korea
- Department of Ophthalmology, Chung-Ang University Gwangmyeong Hospital, Gwangmyeong-si, Gyeonggi-do, Republic of Korea
| | - Kyoung Woo Kim
- Chung-Ang Ocular Surface Restoration via Immune-inflammation Alleviation (CORIA) Laboratory, Seoul, Republic of Korea.
- Chung-Ang University Graduate School, Seoul, Republic of Korea.
- Department of Ophthalmology, Chung-Ang University College of Medicine, Chung-Ang University Hospital, 102 Heukseok-ro, Dongjak-gu, Seoul, 06973, Republic of Korea.
| |
Collapse
|
7
|
Chowdhury A, Mitra Mazumder P. Unlocking the potential of flavonoid-infused drug delivery systems for diabetic wound healing with a mechanistic exploration. Inflammopharmacology 2024:10.1007/s10787-024-01561-5. [PMID: 39217278 DOI: 10.1007/s10787-024-01561-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Diabetes is one of the common endocrine disorders generally characterized by elevated levels of blood sugar. It can originate either from the inability of the pancreas to synthesize insulin, which is considered as an autoimmune disorder, or the reduced production of insulin, considered as insulin resistivity. A wound can be defined as a condition of damage to living tissues including skin, mucous membrane and other organs as well. Wounds get complicated with respect to time based on specific processes like diabetes mellitus, obesity and immunocompromised conditions. Proper growth and functionality of the epidermis gets sustained due to impaired diabetic wound healing which shows a sign of dysregulated wound healing process. In comparison with synthetic medications, phytochemicals like flavonoids, tannins, alkaloids and glycosides have gained enormous importance relying on their distinct potential to heal diabetic wounds. Flavonoids are one of the most promising and important groups of natural compounds which can be used to treat acute as well as chronic wounds. Flavonoids show excellent properties due to the presence of hydroxyl groups in their chemical structure, which makes this class of compounds different from others. Based on the novel principles of nanotechnology via utilizing suitable drug delivery systems, the delivery of bioactive constituents from plant source amplifies the wound-healing mechanism, minimizes complexities and enhances bioavailability. Hence, the encapsulation and applicability of flavonoids with an emphasis on mechanistic route and wound-healing therapeutics have been highlighted in the subsequent study with focus on multiple drug delivery systems.
Collapse
Affiliation(s)
- Ankit Chowdhury
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Papiya Mitra Mazumder
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.
| |
Collapse
|
8
|
Pérez HJ, Crombet T. Notable correlation between serum epidermal growth factor values and inflammatory status in patients with COVID-19. Immun Inflamm Dis 2024; 12:e1355. [PMID: 39110087 PMCID: PMC11304898 DOI: 10.1002/iid3.1355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/04/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
INTRODUCTION Despite its crucial role in Epidermal Growth Factor Receptor (EGFR) activation, and the resulting impact on the health-disease process, epidermal growth factor (EGF) is an underexplored molecule in relation to how its serum concentrations relate to other analytes and clinical variables in pathological contexts. OBJECTIVE To clarify the possible correlation between EGF and clinical and analytical variables in the context of COVID-19. METHODS Cross-sectional observational and analytical study, in patients with virological and clinical diagnosis of COVID-19, selected by simple random sampling, admitted between August and September 2021. UMELISA-EGF commercial kits were used. RESULTS Differences in overall EGF values were observed between groups (566.04 vs. 910.53 pg/ml, p = .0430). In COVID-19 patients, no notable correlations were observed for neutrophil, platelet, triglyceride or liver enzyme values (p > .05). Significant correlations were observed with the neutrophil-lymphocyte indicator (r = 0.4711, p = .0128) as well as with the platelet-lymphocyte index (r = 0.4553, p = .0155). Statistical results of multivariate regression analysis suggest NLR (β = .2232, p = .0353) and PLR (β = .2117, p = .0411) are predictors of inflammation in patients with COVID-19. CONCLUSIONS Serum EGF concentrations in COVID-19 correlate positively with prognostic inflammatory markers of severity and could presumably act as an independent risk factor for the development of inflammation in response to new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
Collapse
Affiliation(s)
- Héctor José Pérez
- Critical Care DivisionSaturnino Lora Provincial HospitalSantiago de CubaCuba
| | - Tania Crombet
- Clinical Trials DivisionCentre for Molecular ImmunologyHavanaCuba
| |
Collapse
|
9
|
Mohsin F, Javaid S, Tariq M, Mustafa M. Molecular immunological mechanisms of impaired wound healing in diabetic foot ulcers (DFU), current therapeutic strategies and future directions. Int Immunopharmacol 2024; 139:112713. [PMID: 39047451 DOI: 10.1016/j.intimp.2024.112713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/02/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Diabetic foot ulcer (DFU) is a foremost cause of amputation in diabetic patients. Consequences of DFU include infections, decline in limb function, hospitalization, amputation, and in severe cases, death. Immune cells including macrophages, regulatory T cells, fibroblasts and other damage repair cells work in sync for effective healing and in establishment of a healthy skin barrier post-injury. Immune dysregulation during the healing of wounds can result in wound chronicity. Hyperglycemic conditions in diabetic patients influence the pathophysiology of wounds by disrupting the immune system as well as promoting neuropathy and ischemic conditions, making them difficult to heal. Chronic wound microenvironment is characterized by increased expression of matrix metalloproteinases, reactive oxygen species as well as pro-inflammatory cytokines, resulting in persistent inflammation and delayed healing. Novel treatment modalities including growth factor therapies, nano formulations, microRNA based treatments and skin grafting approaches have significantly augmented treatment efficiency, demonstrating creditable efficacy in clinical practices. Advancements in local treatments as well as invasive methodologies, for instance formulated wound dressings, stem cell applications and immunomodulatory therapies have been successful in targeting the complex pathophysiology of chronic wounds. This review focuses on elucidating the intricacies of emerging physical and non-physical therapeutic interventions, delving into the realm of advanced wound care and comprehensively summarizing efficacy of evidence-based therapies for DFU currently available.
Collapse
Affiliation(s)
- Fatima Mohsin
- KAM School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan.
| | - Sheza Javaid
- KAM School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan.
| | - Mishal Tariq
- KAM School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan.
| | - Muhammad Mustafa
- KAM School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan.
| |
Collapse
|
10
|
Hendawy OM, Al-Sanea MM, Mohammed Elbargisy R, Ur Rahman H, Hassan YA, Elshaarawy RFM, Khedr AIM. Alginate-chitosan-microencapsulated tyrosols/oleuropein-rich olive mill waste extract for lipopolysaccharide-induced skin fibroblast inflammation treatment. Int J Pharm 2023; 643:123260. [PMID: 37481097 DOI: 10.1016/j.ijpharm.2023.123260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/03/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023]
Abstract
The Ca2+ ion-driven emulsification-ionotropic gelation method produced chitosan-alginate microspheres (CAMSs) with a narrow particle size distribution (PSD). Particle size distribution and zeta potential studies, as well as spectral electron microscopy, were used to assess the microspheres' physicochemical properties and morphology. The tyrosols (hydroxytyrosol (HT), tyrosol (TY), and oleuropein (OE) were loaded into these microspheres using a polyphenol extract (PPE) from Koroneki olive mill waste (KOMW). The microencapsulation efficiency and loading capacity of microspheres for PPE were 98.8% and 3.9%, respectively. Three simulated fluids, including gastric (pH = 1.2), intestinal (pH = 6.8), and colonic (pH = 7.4), were used to examine how the pH of the releasing medium affected the ability of CAMSs to release bioactive phenols. At a severely acidic pH (1.2, SGF), PPE release is nearly halted, while at pH 6.8 (SCF), release is at its maximum. Additionally, the PPE-CAMPs have ameliorated the endogenous antioxidant content SOD, GST, GPx with significant values from 0.05 to 0.01 in the treated LPS/human skin fibroblast cells. The anti-inflammatory response was appeared through their attenuations activity for the released cytokines TNF-α, IL6, IL1β, and IL 12 with levels significantly from 0.01 to 0.001. Microencapsulation of PPE by CAMPs significantly improved its antioxidant and anti-inflammatory capabilities.
Collapse
Affiliation(s)
- Omnia M Hendawy
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia.
| | - Mohammad M Al-Sanea
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - Rehab Mohammed Elbargisy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Hidayat Ur Rahman
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Al-Jouf Province, Sakaka 72341, Saudi Arabia
| | - Yasser A Hassan
- Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Reda F M Elshaarawy
- Department of Chemistry, Faculty of Science, Suez University, 43533 Suez, Egypt; Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany.
| | - Amgad I M Khedr
- Department of Pharmacognosy, Faculty of Pharmacy, Port Said University, 42526 Port Said, Egypt
| |
Collapse
|
11
|
Wang JJ, Yu YY, Wang PY, Huang XM, Chen X, Chen XG. Sequential treatment for diabetic foot ulcers in dialysis patients: A case report. World J Diabetes 2023; 14:1323-1329. [PMID: 37664469 PMCID: PMC10473955 DOI: 10.4239/wjd.v14.i8.1323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/16/2023] [Accepted: 07/14/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Diabetic foot ulcers (DFUs) are common in patients with diabetes, especially those undergoing hemodialysis. In severe cases, these ulcers can cause damage to the lower extremities and lead to amputation. Traditional treatments such as flap transposition and transfemoral amputation are not always applicable in all cases. Therefore, there is a need for alternative treatment methods. CASE SUMMARY This report describes a 62-year-old female patient who was admitted to the hospital with plantar and heel ulcers on her left foot. The patient had a history of renal failure and was undergoing regular hemodialysis. Digital subtraction angiography showed extensive stenosis and occlusion in the left superficial femoral artery, left peroneal artery and left posterior tibial artery. Following evaluation by a multidisciplinary team, the patient was diagnosed with type 2 DFUs (TEXAS 4D). Traditional treatments were deemed unsuitable, and the patient was treated with endovascular surgery in the affected area, in addition to supportive medical treatment, local debridement, and sequential repair using split-thickness skin and tissue-engineered skin grafts combined with negative pressure treatment. After four months, the wound had completely healed, and the patient was able to walk with a walking aid. CONCLUSION This study demonstrates a new treatment method for DFUs was successful, using angioplasty, skin grafts, and negative pressure.
Collapse
Affiliation(s)
- Jin-Jun Wang
- College of Marine Life Science, Ocean University of China, Qingdao 266003, Shandong Province, China
- Department of Vascular Surgery, Qingdao Haici Hospital Affiliated to Qingdao University, Qingdao 266033, Shandong Province, China
| | - Yuan-Yuan Yu
- Department of Vascular Surgery, Qingdao Haici Hospital Affiliated to Qingdao University, Qingdao 266033, Shandong Province, China
| | - Pin-Yi Wang
- Department of Vascular Surgery, Qingdao Haici Hospital Affiliated to Qingdao University, Qingdao 266033, Shandong Province, China
| | - Xian-Ming Huang
- Department of Vascular Surgery, Qingdao Haici Hospital Affiliated to Qingdao University, Qingdao 266033, Shandong Province, China
| | - Xiao Chen
- Department of Vascular Surgery, Qingdao Haici Hospital Affiliated to Qingdao University, Qingdao 266033, Shandong Province, China
| | - Xi-Guang Chen
- College of Marine Life Science, Ocean University of China, Qingdao 266003, Shandong Province, China
| |
Collapse
|
12
|
Krizanova O, Penesova A, Sokol J, Hokynkova A, Samadian A, Babula P. Signaling pathways in cutaneous wound healing. Front Physiol 2022; 13:1030851. [PMID: 36505088 PMCID: PMC9732733 DOI: 10.3389/fphys.2022.1030851] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/07/2022] [Indexed: 11/27/2022] Open
Abstract
Wound healing is a very complex process, where variety of different pathways is activated, depending on the phase of healing. Improper or interrupted healing might result in development of chronic wounds. Therefore, novel approaches based on detailed knowledge of signalling pathways that are activated during acute or chronic cutaneous wound healing enables quicker and more effective healing. This review outlined new possibilities of cutaneous wound healing by modulation of some signalling molecules, e.g., gasotransmitters, or calcium. Special focus is given to gasotransmitters, since these bioactive signalling molecules that can freely diffuse into the cell and exert antioxidative effects. Calcium is an important booster of immune system and it can significantly contribute to healing process. Special interest is given to chronic wounds caused by diabetes mellitus and overcoming problems with the inflammation.
Collapse
Affiliation(s)
- Olga Krizanova
- Institute of Clinical and Translational Research, Biomedical Research Center SAS, Bratislava, Slovakia,Department of Chemistry, Faculty of Natural Sciences, University of St. Cyril and Methodius, Trnava, Slovakia,Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Adela Penesova
- Institute of Clinical and Translational Research, Biomedical Research Center SAS, Bratislava, Slovakia
| | - Jozef Sokol
- Department of Chemistry, Faculty of Natural Sciences, University of St. Cyril and Methodius, Trnava, Slovakia
| | - Alica Hokynkova
- Department of Burns and Plastic Surgery, Faculty of Medicine, Masaryk University and University Hospital, Brno, Czechia
| | - Amir Samadian
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Petr Babula
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czechia,*Correspondence: Petr Babula,
| |
Collapse
|
13
|
Russell FD, Visagie JC, Noll JL. Secretion of IL-6 by fibroblasts exposed to Australian honeys involves lipopolysaccharide and is independent of floral source. Sci Rep 2022; 12:16628. [PMID: 36198760 PMCID: PMC9534836 DOI: 10.1038/s41598-022-21130-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/22/2022] [Indexed: 11/18/2022] Open
Abstract
Honey stimulates cellular secretion of cytokines, which has been attributed to activation of lipopolysaccharide (LPS)-dependent and LPS-independent pathways. The objective of this study was to identify whether LPS is present in Australian honey samples at levels that can stimulate interleukin-6 (IL-6) secretion by fibroblasts and whether it can transduce cell signalling by activating toll-like receptor 4 (TLR4). IL-6 was measured in culture media of fibroblasts exposed to honey for 24 h. LPS was detected in a 0.125 mg/mL solution of grey ironbark honey (0.61 ± 0.05 ng/g honey). TLR4 signalling was observed in RAW264.7 macrophages that were exposed to honey and this was prevented by preincubating the honey with the LPS-neutralising agent, polymyxin B. Australian Eucalyptus, Leptospermum and Cyathode honeys stimulated IL-6 secretion in cultured human dermal fibroblasts. To examine whether the response was dependent on floral source, fibroblasts were exposed to four different samples of grey ironbark honey obtained from Queensland and New South Wales, Australia. The magnitude of the cytokine response to these honeys was highly varied. We conclude that Australian honeys contain endotoxin at levels that can stimulate IL-6 secretion by fibroblasts and that signalling in macrophages involves TLR4 activation. The IL-6 secretory response was independent of floral source.
Collapse
Affiliation(s)
- Fraser D Russell
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore DC, QLD, 4558, Australia. .,School of Health and Behavioural Sciences, University of the Sunshine Coast, Maroochydore DC, QLD, 4558, Australia.
| | - Jeanne C Visagie
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Maroochydore DC, QLD, 4558, Australia
| | - Jamie L Noll
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Maroochydore DC, QLD, 4558, Australia
| |
Collapse
|