1
|
Kuo HT, Hsu AY, Tseng H, Wu BQ, Hsia NY, Lin CJ, Hsu MY. Editorial: Advancing the Management of Noninfectious Uveitis Through Molecular Targeted Drugs. Int J Rheum Dis 2025; 28:e70215. [PMID: 40223395 DOI: 10.1111/1756-185x.70215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/29/2025] [Accepted: 04/02/2025] [Indexed: 04/15/2025]
Affiliation(s)
- Hou-Ting Kuo
- Department of Ophthalmology, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of General Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Alan Y Hsu
- Department of Ophthalmology, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Hsin Tseng
- Department of Ophthalmology, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Bing-Qi Wu
- Department of Ophthalmology, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of General Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Ning-Yi Hsia
- Department of Ophthalmology, China Medical University Hospital, China Medical University, Taichung, Taiwan
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
- Department of Optometry, Asia University, Taichung, Taiwan
| | - Chun-Ju Lin
- Department of Ophthalmology, China Medical University Hospital, China Medical University, Taichung, Taiwan
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
- Department of Optometry, Asia University, Taichung, Taiwan
| | - Min-Yen Hsu
- Department of Ophthalmology, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
2
|
Spadafora M, Morsia S, Di Lernia VG, Kaleci S, Pellacani G, Longo C. Off-Label Use of Topical Ruxolitinib in Dermatology: A Systematic Literature Review and Current Perspectives. Exp Dermatol 2025; 34:e70095. [PMID: 40192197 PMCID: PMC11974361 DOI: 10.1111/exd.70095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 03/05/2025] [Accepted: 03/24/2025] [Indexed: 04/10/2025]
Abstract
JAK inhibitors are used to treat various inflammatory skin diseases. However, systemic formulations are associated with an increased risk of major adverse events. Ruxolitinib 1.5% cream is a selective topical JAK1 and JAK2 inhibitor, which has recently been approved by EMA and MHRA for treating non-segmental vitiligo, while being FDA-approved for both vitiligo and atopic dermatitis. Recent literature has reported the off-label use of topical Ruxolitinib for several skin conditions, but data are mostly limited to single case reports and series and few prospective studies, with mixed results. We conducted a systematic review of the literature to investigate the potential efficacy of topical Ruxolitinib in various skin diseases in an off-label setting. The following keywords were used for searching the MEDLINE (Pubmed) and Scopus databases from inception to September 2024: "ruxolitinib cream and dermatology" and "topical ruxolitinib and dermatology". Reviews, articles not focusing on the main topic, books and book chapters, and articles with no English text were excluded. A total of 170 studies were screened, of which 112 fell within exclusion criteria and 58 were assessed for eligibility. Of these, 28 studies, published between 2012 and 2024, were selected. Ruxolitinib cream resulted in being used off-label mostly for treating lichenoid and granulomatous dermatoses, as well as alopecia areata. While for the former skin conditions, topical ruxolitinib proved to be effective and safe, results on efficacy in alopecia areata were controversial. Topical ruxolitinib might be a promising therapeutic option for lichenoid and granulomatous dermatoses. Noteworthily, despite the exciting results from the oral formulation, no consistent data were described for topical ruxolitinib in alopecia areata. Our review reported encouraging results for many inflammatory skin conditions that should be investigated in further studies.
Collapse
Affiliation(s)
- Marco Spadafora
- Azienda Unità Sanitaria Locale ‐ IRCCS di Reggio Emilia, Skin Cancer CenterReggio EmiliaItaly
- Department of Surgery, Medicine, Dental Medicine and Morphological SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | | | - Vito Giuseppe Di Lernia
- Dermatology UnitArcispedale Santa Maria Nuova, Azienda USL‐IRCCS di Reggio EmiliaReggio EmiliaItaly
| | - Shaniko Kaleci
- Department of Surgery, Medicine, Dental Medicine and Morphological SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Giovanni Pellacani
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Dermatology ClinicSapienza University of RomeRomeItaly
| | - Caterina Longo
- Azienda Unità Sanitaria Locale ‐ IRCCS di Reggio Emilia, Skin Cancer CenterReggio EmiliaItaly
- University of Modena and Reggio EmiliaModenaItaly
| |
Collapse
|
3
|
Constantino Cunha EG, de Almeida AR, Dantas AT, de Oliveira Gonçalves ME, Pereira MC, Guimarães Gonçalves RS, Branco Pinto Duarte AL, Barreto de Melo Rêgo MJ, da Rocha Pitta MG. Soluble oncostatin M receptor (sOSMR): A potential biomarker in systemic sclerosis diagnosis. Clin Chim Acta 2025; 569:120177. [PMID: 39894192 DOI: 10.1016/j.cca.2025.120177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/28/2024] [Accepted: 01/29/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND Systemic sclerosis (SSc) is a complex disease whose diagnosis is based on clinical manifestations, serological testing for autoantibodies, and nailfold capillaroscopy. Although some proteins have been proposed as biomarkers, the diagnosis of SSc remains a challenge for clinicians. The soluble oncostatin M receptor (sOSMR) is a potential biomarker for the diagnosis of SSc, as it appears to act as an antagonist of oncostatin M (OSM)-mediated signaling, which is involved in biological and inflammatory processes, including tissue injury and fibrosis. Therefore, this study aimed to evaluate the diagnostic performance of sOSMR in systemic sclerosis. METHODOLOGY Serum samples were collected from 105 patients with SSc, 50 with rheumatoid arthritis (RA), 64 with systemic lupus erythematosus (SLE), and 130 healthy controls (HC). The sOSMR levels were measured using an ELISA kit, and a receiver operating characteristic (ROC) curve was used to analyze the biomarker's potential for diagnosing SSc. RESULTS sOSMR levels are significantly elevated in the serum of patients with SSc when compared to patients with RA and SLE, as well as healthy controls (p < 0.0001 for all comparisons). The area under the curve (AUC) of ROC curve analysis revealed the ability of sOSMR serum levels to distinguish patients with SSc from those with RA (0.901 [95 % CI 0.842-0.943]; p < 0.0001), with a sensitivity of 89.52 % and specificity of 78.00 %, and from patients with SLE (0.897 [95 % CI 0.841-0.938]; p < 0.0001), with a sensitivity of 81.90 % and specificity of 89.06 %, as well as from healthy controls (0.876 [95 % CI 0.827 - 0.916]; p < 0.0001), with a sensitivity of 82.86 % and specificity of 81.54 %. When comparing patients with SSc to patients with other diseases (RA and SLE combined), an AUC of 0.898 ([95 % CI 0.851-0.935]; p < 0.0001) was found, with a sensitivity of 82.86 % and specificity of 85.09 %. CONCLUSION Serum sOSMR levels are elevated in patients with SSc and have shown a good ability to distinguish between SSc patients, patients with other autoimmune rheumatologic diseases (RA and SLE), and healthy controls. Thus, sOSMR is a promising marker for diagnosing SSc.
Collapse
Affiliation(s)
- Eudes Gustavo Constantino Cunha
- Laboratório de Imunomodulação e Novas Abordagens Terapêuticas, Núcleo de Pesquisa em Inovação Terapêutica, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Anderson Rodrigues de Almeida
- Laboratório de Imunomodulação e Novas Abordagens Terapêuticas, Núcleo de Pesquisa em Inovação Terapêutica, Universidade Federal de Pernambuco, Recife, PE, Brazil.
| | | | - Maria Eduarda de Oliveira Gonçalves
- Laboratório de Imunomodulação e Novas Abordagens Terapêuticas, Núcleo de Pesquisa em Inovação Terapêutica, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Michelly Cristiny Pereira
- Laboratório de Imunomodulação e Novas Abordagens Terapêuticas, Núcleo de Pesquisa em Inovação Terapêutica, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | | | - Moacyr Jesus Barreto de Melo Rêgo
- Laboratório de Imunomodulação e Novas Abordagens Terapêuticas, Núcleo de Pesquisa em Inovação Terapêutica, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Maira Galdino da Rocha Pitta
- Laboratório de Imunomodulação e Novas Abordagens Terapêuticas, Núcleo de Pesquisa em Inovação Terapêutica, Universidade Federal de Pernambuco, Recife, PE, Brazil
| |
Collapse
|
4
|
Wan Q, Li D, Shang S, Wu H, Chen F, Li Q. Novel Synergistic Therapeutic Approach in Idiopathic Pulmonary Fibrosis: Combining the Antifibrotic Nintedanib with the Anti-inflammatory Baricitinib. Pulm Pharmacol Ther 2025:102346. [PMID: 40010629 DOI: 10.1016/j.pupt.2025.102346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 01/16/2025] [Accepted: 02/22/2025] [Indexed: 02/28/2025]
Abstract
BACKGROUND Baricitinib and nintedanib can target inflammation and fibrosis respectively, which are the two most important processes in idiopathic pulmonary fibrosis (IPF). However, it is still unknown whether targeting these two processes simultaneously can synergistically improve the therapeutic effect of IPF. Therefore, it is necessary to predict the possible translational potential through preclinical studies. METHODS We evaluated both the in vitro and in vivo efficacy of a drug combination, nintedanib with baricitinb, a JAK1/JAK2 inhibitor. We first examined the fibroblast proliferation and myofibroblast differentiation of single agents or combinations by the MTT assay. Then we determined the migration of the fibroblasts by a wound healing assay. Meanwhile, we quantified the protein level of related growth factor or cytokines in the cell supernatant by ELISA. Finally, we investigated the therapeutic potential and mechanism in a bleomycin-induced mouse model. RESULTS Our results showed that the combination of nintedanib and baricitinib was more effective in suppressing fibroblast proliferation, myofibroblast transformation and fibroblast migration compared to either agent alone. In a bleomycin-induced IPF mouse model, the combination therapy resulted in a higher survival rate, increased body weight, and a lower lung/body weight ratio compared to the individual drugs. Moreover, both drugs improved lung functions in mice, but their combined administration led to superior outcomes. Histopathological analysis also revealed that the combination therapy mitigated pulmonary inflammation and fibrosis to a greater extent than the individual compounds. Mechanistically, baricitinib appears to orchestrate the effects of nintedanib in IPF by modulating the expression of genes such as il-6, tgf-β, col1α1 and fibronectin. CONCLUSION The synergistic targeting of inflammation by baricitinib and fibrosis by nintedanib preclinically improves IPF outcomes, thus suggesting their potential as a novel combination therapy for this condition.
Collapse
Affiliation(s)
- Qin Wan
- Medical College of Nanchang University, Nanchang, 330006, Jiangxi, China; Department of Geriatrics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, China
| | - Dongdong Li
- Medical College of Nanchang University, Nanchang, 330006, Jiangxi, China; Department of Pulmonary and Critical Care Medicine, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, China
| | - Shu Shang
- Department of Geriatrics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, China
| | - Haifeng Wu
- Department of Pulmonary and Critical Care Medicine, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, China
| | - Faxiu Chen
- Department of Geriatrics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, China
| | - Qiugen Li
- Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
5
|
Chikhoune L, Poggi C, Moreau J, Dubucquoi S, Hachulla E, Collet A, Launay D. JAK inhibitors (JAKi): Mechanisms of action and perspectives in systemic and autoimmune diseases. Rev Med Interne 2025; 46:89-106. [PMID: 39550233 DOI: 10.1016/j.revmed.2024.10.452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 10/07/2024] [Accepted: 10/27/2024] [Indexed: 11/18/2024]
Abstract
Janus kinase (JAK) molecules are involved in important cellular activation pathways. Over the past decade, many targeted therapies have emerged, including the increasingly promising role of JAK inhibitors (JAKi) in the treatment of inflammatory and autoimmune diseases. The spectrum of use of these small molecules is increasingly broader. JAKi have been approved in several autoimmune diseases. Currently, four molecules (tofacitinib, baricitinib, upadacitinib and filgotinib) have been labeled for moderate to severe rheumatoid arthritis (RA) with failure or poor tolerance of one or more conventional disease-modifying antirheumatic drug (csDMARDS), or biologics (bDMARDS). JAKi are now also commonly used in other diseases such as psoriatic arthritis, ankylosing spondylitis, and ulcerative colitis. They have also shown promising results in clinical trials for the treatment of other autoimmune conditions. We present here their mechanisms of action, and the main data about JAKi use on systemic and autoimmune diseases.
Collapse
Affiliation(s)
- Liticia Chikhoune
- CHU de Lille, Service de Médecine Interne et Immunologie Clinique, Centre de référence des Maladies Auto-Immunes et Auto-inflammatoires Systémiques rares de l'Adulte du Nord, Nord-Ouest, Méditerranée et Guadeloupe (CeRAINOM), 59000 Lille, France
| | - Claire Poggi
- CHU de Lille, Service de Médecine Interne et Immunologie Clinique, Centre de référence des Maladies Auto-Immunes et Auto-inflammatoires Systémiques rares de l'Adulte du Nord, Nord-Ouest, Méditerranée et Guadeloupe (CeRAINOM), 59000 Lille, France
| | - Julie Moreau
- CHU de Lille, Service de Médecine Interne et Immunologie Clinique, Centre de référence des Maladies Auto-Immunes et Auto-inflammatoires Systémiques rares de l'Adulte du Nord, Nord-Ouest, Méditerranée et Guadeloupe (CeRAINOM), 59000 Lille, France
| | - Sylvain Dubucquoi
- Institut d'Immunologie, Pôle de Biologie Pathologie Génétique Médicale, CHU de Lille, 59000 Lille, France; U1286-INFINITE-Institute for Translational Research in Inflammation, Université de Lille, 59000 Lille, France
| | - Eric Hachulla
- CHU de Lille, Service de Médecine Interne et Immunologie Clinique, Centre de référence des Maladies Auto-Immunes et Auto-inflammatoires Systémiques rares de l'Adulte du Nord, Nord-Ouest, Méditerranée et Guadeloupe (CeRAINOM), 59000 Lille, France; U1286-INFINITE-Institute for Translational Research in Inflammation, Université de Lille, 59000 Lille, France; Inserm, 59000 Lille, France
| | - Aurore Collet
- Institut d'Immunologie, Pôle de Biologie Pathologie Génétique Médicale, CHU de Lille, 59000 Lille, France; U1286-INFINITE-Institute for Translational Research in Inflammation, Université de Lille, 59000 Lille, France
| | - David Launay
- CHU de Lille, Service de Médecine Interne et Immunologie Clinique, Centre de référence des Maladies Auto-Immunes et Auto-inflammatoires Systémiques rares de l'Adulte du Nord, Nord-Ouest, Méditerranée et Guadeloupe (CeRAINOM), 59000 Lille, France; U1286-INFINITE-Institute for Translational Research in Inflammation, Université de Lille, 59000 Lille, France; Inserm, 59000 Lille, France.
| |
Collapse
|
6
|
Fan W, Wu S, Zhang Y, Huang J, Chen X. Healing of the Toe Ulcers in Systemic Sclerosis. Int J Rheum Dis 2025; 28:e70147. [PMID: 39973109 DOI: 10.1111/1756-185x.70147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 01/15/2025] [Accepted: 02/13/2025] [Indexed: 02/21/2025]
Affiliation(s)
- Wei Fan
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Shufan Wu
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Yi Zhang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Jinmei Huang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Xuyan Chen
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| |
Collapse
|
7
|
Gillesberg FS, Pehrsson M, Bay-Jensen AC, Frederiksen P, Karsdal M, Deleuran BW, Kragstrup TW, Kubo S, Tanaka Y, Mortensen JH. Regulation of fibronectin and collagens type I, III and VI by TNF-α, TGF-β, IL-13, and tofacitinib. Sci Rep 2025; 15:1087. [PMID: 39774197 PMCID: PMC11707072 DOI: 10.1038/s41598-024-84151-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
Understanding how inflammatory cytokines influence profibrogenic wound healing responses in fibroblasts is important for understanding the pathogenesis of fibrosis. TNF-α and IL-13 are key cytokines in Th1 and Th2 immune responses, respectively, while TGF-β1 is the principal pro-fibrotic mediator. We show that 12-day fibroblast culture with TNF-α or IL-13 induces fibrogenesis, marked by progressively increasing type III and VI collagen formation, and that TGF-β1 co-stimulation amplifies these effects. Tofacitinib substantially reduced the formation of ECM proteins in response to IL-13, while fibrogenesis in response to TNF-α or TGF-β1 was marginally inhibited. The in vitro findings were supported by clinical observations in patients with active rheumatoid arthritis, which had elevated serum type III collagen formation, indicating ongoing fibrogenesis during inflammation. After 48-60 weeks of tofacitinib treatment, type III collagen degradation, aswell as formation, were significantly decreased compared to baseline, highlighting dual anti-inflammatory and anti-fibrogenic effects of tofacitinib. In contrast, other anti-inflammatory treatments including methotrexate, adalimumab and tocilizumab demonstrated anti-inflammatory effects only. Our results highlight fibro-inflammatory profiles associated with TNF-α or IL-13 stimulation, both alone and in combination with TGF-β1, and support the use of tofacitinib as an anti-fibrogenic treatment in chronic inflammatory conditions.
Collapse
Affiliation(s)
- Frederik S Gillesberg
- Nordic Bioscience, Immunoscience, Herlev Hovedgade 205-207, Herlev, 2730, Denmark.
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, Aarhus C, 8000, Denmark.
| | - Martin Pehrsson
- Nordic Bioscience, Immunoscience, Herlev Hovedgade 205-207, Herlev, 2730, Denmark
| | | | - Peder Frederiksen
- Nordic Bioscience, Immunoscience, Herlev Hovedgade 205-207, Herlev, 2730, Denmark
| | - Morten Karsdal
- Nordic Bioscience, Immunoscience, Herlev Hovedgade 205-207, Herlev, 2730, Denmark
| | - Bent W Deleuran
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, Aarhus C, 8000, Denmark
- Department of Rheumatology, Århus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus N, 8200, Denmark
| | - Tue W Kragstrup
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, Aarhus C, 8000, Denmark
- Department of Rheumatology, Århus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus N, 8200, Denmark
- Diagnostic Center, Regional Hospital Silkeborg, Falkevej 1, Silkeborg, 8600, Denmark
| | - Satoshi Kubo
- The First Department of Internal Medicine, School of Medicine, University of Occupational & Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi, 807-8555, Kitakyushu, Japan
| | - Yoshiya Tanaka
- The First Department of Internal Medicine, School of Medicine, University of Occupational & Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi, 807-8555, Kitakyushu, Japan
| | - Joachim H Mortensen
- Nordic Bioscience, Immunoscience, Herlev Hovedgade 205-207, Herlev, 2730, Denmark
| |
Collapse
|
8
|
Ke BJ, Dragoni G, Matteoli G. Fibroblast Heterogeneity in Inflammatory Bowel Disease. Int J Mol Sci 2024; 25:13008. [PMID: 39684719 DOI: 10.3390/ijms252313008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/15/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Intestinal fibroblasts are pivotal players in maintaining tissue homeostasis and orchestrating responses to injury and inflammation within the gastrointestinal (GI) tract. Fibroblasts contribute significantly to the pathogenesis of inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis (UC), by secreting pro-inflammatory cytokines, modulating immune cell activity, and promoting fibrosis. In addition, fibroblasts play crucial roles in tissue repair and regeneration following acute injury or chronic inflammation. The dysregulation of fibroblast functions can lead to fibrotic complications, such as intestinal strictures and obstruction, which are common in advanced stages of IBD. Understanding the complex interplay between fibroblasts and other cell types in the intestine is essential to elucidate the underlying mechanisms of intestinal diseases and identify novel therapeutic targets. Future research aimed at deciphering the heterogeneity of intestinal fibroblasts and their dynamic roles in disease progression holds promise for the development of precision therapies to mitigate fibrosis and inflammation in intestinal disorders.
Collapse
Affiliation(s)
- Bo-Jun Ke
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium
| | - Gabriele Dragoni
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium
- Gastroenterology Research Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Gianluca Matteoli
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
9
|
Jeong HY, Park JS, Choi JW, Lee KH, Yang SC, Kang HY, Cho SH, Lee SY, Lee AR, Park Y, Park SH, Cho ML. GRIM-19-mediated induction of mitochondrial STAT3 alleviates systemic sclerosis by inhibiting fibrosis and Th2/Th17 cells. Exp Mol Med 2024; 56:2739-2746. [PMID: 39643607 DOI: 10.1038/s12276-024-01366-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 08/14/2024] [Accepted: 09/24/2024] [Indexed: 12/09/2024] Open
Abstract
The gene associated with the retinoid-IFN-induced mortality-19 (GRIM-19) protein is a regulator of a cell death regulatory protein that inhibits STAT3, which is a critical transcription factor for interleukin (IL)-17-producing T (Th17) cells and a key integrator of extracellular matrix accumulation in systemic sclerosis (SSc). This protein is also a component of mitochondrial complex I, where it directly binds to STAT3 and recruits STAT3 to the mitochondria via the mitochondrial importer Tom20. In this study, the role of GRIM19 and its relationship with STAT3 in SSc development was investigated using a murine model of SSc. We observed a decrease in the level of GRIM-19 in the lesional skin of mice with bleomycin-induced SSc, which was negatively correlated with the level of STAT3. Overexpression of GRIM-19 reduced dermal thickness and fibrosis and the frequency of Th2 and Th17 cells in SSc mice. Mitophagic dysfunction promoted fibrosis in mice lacking PINK1, which is a mitophagy inducer. In an in vitro system, the overexpression of GRIM-19 increased the level of mitochondrial STAT3 (mitoSTAT3), induced mitophagy, and alleviated fibrosis progression. MitoSTAT3 overexpression hindered the development of bleomycin-induced SSc by reducing fibrosis. These results suggest that GRIM-19 is an effective therapeutic target for alleviating the development of SSc by increasing mitophagy.
Collapse
Affiliation(s)
- Ha Yeon Jeong
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Jin-Sil Park
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Jeong Won Choi
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Kun Hee Lee
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Seung Cheon Yang
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Hye Yeon Kang
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
- Department of Medical Sciences, Graduate School of The Catholic University of Korea, Seoul, 06591, South Korea
| | - Sang Hee Cho
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
- Department of Medical Sciences, Graduate School of The Catholic University of Korea, Seoul, 06591, South Korea
| | - Seon-Yeong Lee
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - A Ram Lee
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Youngjae Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Sung-Hwan Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea.
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea.
| | - Mi-La Cho
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea.
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea.
- Department of Medical Sciences, Graduate School of The Catholic University of Korea, Seoul, 06591, South Korea.
| |
Collapse
|
10
|
Naik A, Stratton RJ, Leask A. Digital ulcers associated with scleroderma: A major unmet medical need. Wound Repair Regen 2024; 32:949-959. [PMID: 39323322 DOI: 10.1111/wrr.13224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024]
Abstract
Scleroderma or systemic sclerosis (SSc)-associated digital ischaemic complications, such as digital ulcers (SSc-DUs), appear relatively early during the disease course and are a major burden with substantial deterioration of quality of life. Expert rheumatologist and wound specialists have defined a DU; however, international application of the definition is still disorganised. Appearance of SSc-DUs is secondary to the onset of Raynaud's phenomenon and as a consequence, recommended first-line of treatment mainly includes vasodilators; however, many DUs are refractory to this treatment. Despite important practical issues, such as a lack of well-characterised SSc-wound healing animal model, significant efforts are needed to mechanistically understand the pathogenesis of SSc-DUs for developing clinically targetable disease modifying therapies.
Collapse
Affiliation(s)
- Angha Naik
- College of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Richard J Stratton
- Centre for Rheumatology and Connective Tissue Disease, University College London (Royal Free Campus), London, UK
| | - Andrew Leask
- College of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
11
|
Shirley SN, Watson AE, Yusuf N. Pathogenesis of Inflammation in Skin Disease: From Molecular Mechanisms to Pathology. Int J Mol Sci 2024; 25:10152. [PMID: 39337637 PMCID: PMC11431851 DOI: 10.3390/ijms251810152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Many skin diseases begin with inflammatory changes on a molecular level. To develop a more thorough understanding of skin pathology and to identify new targets for therapeutic advancements, molecular mechanisms of inflammation in the context of skin disease should be studied. Current research efforts to better understand skin disease have focused on examining the role of molecular processes at several stages of the inflammatory response such as the dysregulation of innate immunity sensors, disruption of both transcriptional and post-transcriptional regulation, and crosstalk between immune and neuronal processes (neuro-immune crosstalk). This review seeks to summarize recent developments in our understanding of inflammatory processes in skin disease and to highlight opportunities for therapeutic advancements. With a focus on publications within the past 5 years (2019-2024), the databases PubMed and EBSCOhost were used to search for peer-reviewed papers regarding inflammatory molecular mechanisms and skin disease. Several themes of research interest regarding inflammatory processes in skin disease were determined through extensive review and were included based on their relative representation in current research and their focus on therapeutic potential. Several skin diseases such as psoriasis, atopic dermatitis, hidradenitis suppurativa, and scleroderma were described in the paper to demonstrate the widespread influence of inflammation in skin disease.
Collapse
Affiliation(s)
- Simona N Shirley
- Heersink School of Medicine, University of Alabama-Birmingham, Birmingham, AL 35233, USA
| | - Abigail E Watson
- College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Nabiha Yusuf
- Heersink School of Medicine, University of Alabama-Birmingham, Birmingham, AL 35233, USA
- Department of Dermatology, University of Alabama-Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
12
|
Rijal H, Bouadi N, Piguet V, Mukovozov I. Treatment Outcomes of Scleroderma With Janus Kinase Inhibitors: A Systematic Review. J Cutan Med Surg 2024; 28:489-490. [PMID: 38859662 DOI: 10.1177/12034754241260021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Affiliation(s)
- Hibo Rijal
- Queen's University School of Medicine, Kingston, ON, Canada
| | - Naïla Bouadi
- Faculty of Medicine, Université Laval, Québec City, QC, Canada
| | - Vincent Piguet
- Division of Dermatology, Department of Medicine; University of Toronto, Toronto, ON, Canada
- Division of Dermatology, Women's College Hospital, Toronto, ON, Canada
| | | |
Collapse
|
13
|
何 珊, 陈 炘, 程 琦, 朱 灵, 张 培, 童 淑, 薛 静, 杜 燕. [Tofacitinib inhibits the transformation of lung fibroblasts into myofibroblasts through JAK/STAT3 pathway]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2024; 56:505-511. [PMID: 38864137 PMCID: PMC11167539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Indexed: 06/13/2024]
Abstract
OBJECTIVE To investigate the effect of tofacitinib, a pan-Janus kinase (JAK) inhibitor, on transforming growth factor-beta 1 (TGF-β1)-induced fibroblast to myofibroblast transition (FMT) and to explore its mechanism. To provide a theoretical basis for the clinical treatment of connective tissue disease-related interstitial lung disease (CTD-ILD). METHODS (1) Human fetal lung fibroblast 1 (HFL-1) were cultured in vitro, and 6 groups were established: DMSO blank control group, TGF-β1 induction group, and TGF-β1 with different concentrations of tofacitinib (0.5, 1.0, 2.0, 5.0 μmol/L) drug intervention experimental groups. CCK-8 was used to measure the cell viability, and wound-healing assay was performed to measure cell migration ability. After 48 h of combined treatment, quantitative real-time PCR (RT-PCR) and Western blotting were used to detect the gene and protein expression levels of α-smooth muscle actin (α-SMA), fibronectin (FN), and collagen type Ⅰ (COL1). (2) RT-PCR and enzyme-linked immunosorbnent assay (ELISA) were used to detect the interleukin-6 (IL-6) gene and protein expression changes, respectively. (3) DMSO carrier controls, 1.0 μmol/L and 5.0 μmol/L tofacitinib were added to the cell culture media of different groups for pre-incubation for 30 min, and then TGF-β1 was added to treat for 1 h, 6 h and 24 h. The phosphorylation levels of Smad2/3 and signal transducer and activator of transcription 3 (STAT3) protein were detected by Western blotting. RESULTS (1) Tofacitinib inhibited the viability and migration ability of HFL-1 cells after TGF-β1 induction. (2) The expression of α-SMA, COL1A1 and FN1 genes of HFL-1 in the TGF-β1-induced groups was significantly up-regulated compared with the blank control group (P < 0.05). Compared with the TGF-β1 induction group, α-SMA expression in the 5.0 μmol/L tofacitinib intervention group was significantly inhi-bited (P < 0.05). Compared with the TGF-β1-induced group, FN1 gene was significantly inhibited in each intervention group at a concentration of 0.5-5.0 μmol/L (P < 0.05). Compared with the TGF-β1-induced group, the COL1A1 gene expression in each intervention group did not change significantly. (3) Western blotting results showed that the protein levels of α-SMA and FN1 in the TGF-β1-induced group were significantly higher than those in the control group (P < 0.05), and there was no significant difference in the expression of COL1A1. Compared with the TGF-β1-induced group, the α-SMA protein level in the intervention groups with different concentrations decreased. And the differences between the TGF-β1-induced group and 2.0 μmol/L or 5.0 μmol/L intervention groups were statistically significant (P < 0.05). Compared with the TGF-β1-induced group, the FN1 protein levels in the intervention groups with different concentrations showed a downward trend, but the difference was not statistically significant. There was no difference in COL1A1 protein expression between the intervention groups compared with the TGF-β1-induced group. (4) After TGF-β1 acted on HFL-1 cells for 48 h, the gene expression of the IL-6 was up-regulated and IL-6 in culture supernatant was increased, the intervention with tofacitinib partly inhibited the TGF-β1-induced IL-6 gene expression and IL-6 in culture supernatant. TGF-β1 induced the increase of Smad2/3 protein phosphorylation in HFL-1 cells for 1 h and 6 h, STAT3 protein phosphorylation increased at 1 h, 6 h and 24 h, the pre-intervention with tofacitinib inhibited the TGF-β1-induced Smad2/3 phosphorylation at 6 h and inhibited TGF-β1-induced STAT3 phosphorylation at 1 h, 6 h and 24 h. CONCLUSION Tofacitinib can inhibit the transformation of HFL-1 cells into myofibroblasts induced by TGF-β1, and the mechanism may be through inhibiting the classic Smad2/3 pathway as well as the phosphorylation of STAT3 induced by TGF-β1, thereby protecting the disease progression of pulmonary fibrosis.
Collapse
Affiliation(s)
- 珊 何
- 浙江大学医学院附属第二医院风湿免疫科, 杭州 310009Department of Rheumatology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- 浙江大学医学院附属金华医院风湿免疫科, 浙江金华 321000Department of Rheumatology, the Affiliated Jinhua Hospital of Zhejiang University School of Medicine, Jinhua, 321000, Zhejiang, China
| | - 炘 陈
- 浙江大学医学院附属第二医院风湿免疫科, 杭州 310009Department of Rheumatology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- 浙江大学医学院附属金华医院风湿免疫科, 浙江金华 321000Department of Rheumatology, the Affiliated Jinhua Hospital of Zhejiang University School of Medicine, Jinhua, 321000, Zhejiang, China
| | - 琦 程
- 浙江大学医学院附属第二医院风湿免疫科, 杭州 310009Department of Rheumatology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - 灵江 朱
- 浙江大学医学院附属第二医院风湿免疫科, 杭州 310009Department of Rheumatology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - 培玉 张
- 浙江大学医学院附属第二医院风湿免疫科, 杭州 310009Department of Rheumatology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - 淑婷 童
- 浙江大学医学院附属第二医院风湿免疫科, 杭州 310009Department of Rheumatology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - 静 薛
- 浙江大学医学院附属第二医院风湿免疫科, 杭州 310009Department of Rheumatology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - 燕 杜
- 浙江大学医学院附属第二医院风湿免疫科, 杭州 310009Department of Rheumatology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| |
Collapse
|
14
|
Gumkowska-Sroka O, Kotyla K, Kotyla P. Immunogenetics of Systemic Sclerosis. Genes (Basel) 2024; 15:586. [PMID: 38790215 PMCID: PMC11121022 DOI: 10.3390/genes15050586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Systemic sclerosis (SSc) is a rare autoimmune connective tissue disorder characterized by massive fibrosis, vascular damage, and immune imbalance. Advances in rheumatology and immunology over the past two decades have led to a redefinition of systemic sclerosis, shifting from its initial perception as primarily a "hyperfibrotic" state towards a recognition of systemic sclerosis as an immune-mediated disease. Consequently, the search for genetic markers has transitioned from focusing on fibrotic mechanisms to exploring immune regulatory pathways. Immunogenetics, an emerging field at the intersection of immunology, molecular biology, and genetics has provided valuable insights into inherited factors that influence immunity. Data from genetic studies conducted thus far indicate that alterations in genetic messages can significantly impact disease risk and progression. While certain genetic variations may confer protective effects, others may exacerbate disease susceptibility. This paper presents a comprehensive review of the most relevant genetic changes that influence both the risk and course of systemic sclerosis. Special emphasis is placed on factors regulating the immune response, recognizing their pivotal role in the pathogenesis of the disease.
Collapse
Affiliation(s)
| | | | - Przemysław Kotyla
- Department of Rheumatology and Clinical Immunology, Medical University of Silesia, Voivodeship Hospital No. 5, 41-200 Sosnowiec, Poland; (O.G.-S.); (K.K.)
| |
Collapse
|
15
|
Wei Y, Wang D, Wu J, Zhang J. JAK2 inhibitors improve RA combined with pulmonary fibrosis in rats by downregulating SMAD3 phosphorylation. Int J Rheum Dis 2024; 27:e15164. [PMID: 38706209 DOI: 10.1111/1756-185x.15164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/01/2024] [Accepted: 04/14/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND JAK inhibitors are well known for the treatment of rheumatoid arthritis (RA), but whether they can be used to treat pulmonary fibrosis, a common extra-articular disease of RA, remains to be clarified. METHODS A jak2 inhibitor, CEP33779 (CEP), was administered to a rat model of RA-associated interstitial lung disease to observe the degree of improvement in both joint swelling and pulmonary fibrosis. HFL1 cells were stimulated with TGF-β1 to observe the expression of p-JAK2. Then, different concentrations of related gene inhibitors (JAK2, TGFβ-R1/2, and p-STAT3) or silencers (STAT3, JAK2) were administered to HFL1 cells, and the expression levels of related proteins were detected to explore the underlying mechanisms of action. RESULTS CEP not only reduced the degree of joint swelling and inflammation in rats but also improved lung function, inhibited the pro-inflammatory factors IL-1β and IL-6, reduced lung inflammation and collagen deposition, and alleviated lung fibrosis. CEP decreased the expression levels of TGFβ-R2, p-SMAD, p-STAT3, and ECM proteins in rat lung tissues. TGF-β1 induced HFL1 cells to highly express p-JAK2, with the most pronounced expression at 48 h. The levels of p-STAT3, p-SMAD3, and ECM-related proteins were significantly reduced after inhibition of either JAK2 or STAT3. CONCLUSION JAK2 inhibitors may be an important and novel immunotherapeutic drug that can improve RA symptoms while also delaying or blocking the development of associated pulmonary fibrotic disease. The mechanism may be related to the downregulation of p-STAT3 protein via inhibition of the JAK2/STAT signaling pathway, which affects the phosphorylation of SMAD3.
Collapse
Affiliation(s)
- Yimei Wei
- Department of Geriatrics, Chongqing Medical University, Chongqing, China
- Department Geriatrics, Chongqing General Hospital, Chongqing, China
| | - Dandan Wang
- Department Geriatrics, Chongqing General Hospital, Chongqing, China
- Department of Pulmonary Department of Respiratory and Critical Care Medicine, Southwest Medical University, Luzhou, China
| | - Juan Wu
- Department Geriatrics, Chongqing General Hospital, Chongqing, China
| | - Jie Zhang
- Department Geriatrics, Chongqing General Hospital, Chongqing, China
| |
Collapse
|
16
|
O'Reilly S. Emerging therapeutic targets in systemic sclerosis. J Mol Med (Berl) 2024; 102:465-478. [PMID: 38386070 DOI: 10.1007/s00109-024-02424-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/16/2024] [Accepted: 01/25/2024] [Indexed: 02/23/2024]
Abstract
Systemic sclerosis is an autoimmune connective tissue disease which is characterised by vascular perturbations, inflammation, and fibrosis. Although huge progress recently into the underlying molecular pathways that are perturbed in the disease, currently no therapy exists that targets the fibrosis element of the disease and consequently there is a huge unmet medical need. Emerging studies reveal new dimensions of complexity, and multiple aberrant pathways have been uncovered that have shed light on disturbed signalling in the disease, primarily in inflammatory pathways that can be targeted with repurposed drugs. Pre-clinical animal models using these inhibitors have yielded proof of concept for targeting these signalling systems and progressing to clinical trials. This review will examine the recent evidence of new perturbed pathways in SSc and how these can be targeted with new or repurposed drugs to target a currently intractable disease.
Collapse
Affiliation(s)
- Steven O'Reilly
- Department of Biosciences, Durham University, South Road, Durham, UK.
| |
Collapse
|
17
|
Gülle S, Çelik A, Birlik M, Yılmaz O. Skin and lung fibrosis induced by bleomycin in mice: a systematic review. Reumatismo 2024; 76. [PMID: 38523580 DOI: 10.4081/reumatismo.2024.1642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 12/02/2023] [Indexed: 03/26/2024] Open
Abstract
OBJECTIVE Scleroderma, or systemic sclerosis (SSc), is a chronic autoimmune connective disease with an unknown etiology and poorly understood pathogenesis. The striking array of autoimmune, vascular, and fibrotic changes that develop in almost all patients makes SSc unique among connective tissue diseases. Although no animal model developed for SSc to date fully represents all features of human disease, some animal models that demonstrate features of SSc may help to better understand the pathogenesis of the disease and to develop new therapeutic options. In this review, we aimed to evaluate skin fibrosis and lung involvement in a bleomycin (BLM)-induced mouse model and to evaluate the differences between studies. METHODS A systematic literature review (PRISMA guideline) on PubMed and EMBASE (until May 2023, without limits) was performed. A primary literature search was conducted using the PubMed and EMBASE databases for all articles published from 1990 to May 2023. Review articles, human studies, and non-dermatological studies were excluded. Of the 38 non-duplicated studies, 20 articles were included. RESULTS Among inducible animal models, the BLM-induced SSc is still the most widely used. In recent years, the measurement of tissue thickness between the epidermal-dermal junction and the dermal-adipose tissue junction (dermal layer) has become more widely accepted. CONCLUSIONS In animal studies, it is important to simultaneously evaluate lung tissues in addition to skin fibrosis induced in mice by subcutaneous BLM application, following the 3R (replacement, reduction, and refinement) principle to avoid cruelty to animals.
Collapse
Affiliation(s)
- S Gülle
- Division of Rheumatology, Department of Internal Medicine, Dokuz Eylul University School of Medicine, Izmir; Department of Laboratory Animal Science, Dokuz Eylul University School of Medicine, Izmir.
| | - A Çelik
- Department of Laboratory Animal Science, Dokuz Eylul University School of Medicine, Izmir.
| | - M Birlik
- Division of Rheumatology, Department of Internal Medicine, Dokuz Eylul University School of Medicine, Izmir.
| | - O Yılmaz
- Department of Laboratory Animal Science, Dokuz Eylul University School of Medicine, Izmir.
| |
Collapse
|
18
|
Labrandero Hoyos C, Peñuelas Leal R, Echevarría AG, Lorca Spröhnle J, Magdaleno Tapial J, Finello M, Imbernon DB, Pérez Ferriols A, Zaragoza Ninet V. JAK-STAT pathway is involved in cutaneous sclerosis processes: Generalized morphea successfully treated with baricitinib. J Dermatol 2023; 50:e424-e425. [PMID: 37605841 DOI: 10.1111/1346-8138.16933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/31/2023] [Accepted: 08/10/2023] [Indexed: 08/23/2023]
Affiliation(s)
| | | | | | | | | | - Malena Finello
- Dermatology department, Consorcio Hospital General Universitario, Valencia, Spain
| | | | | | | |
Collapse
|
19
|
Muruganandam M, Ariza-Hutchinson A, Patel RA, Sibbitt WL. Biomarkers in the Pathogenesis, Diagnosis, and Treatment of Systemic Sclerosis. J Inflamm Res 2023; 16:4633-4660. [PMID: 37868834 PMCID: PMC10590076 DOI: 10.2147/jir.s379815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 09/27/2023] [Indexed: 10/24/2023] Open
Abstract
Systemic sclerosis (SSc) is a complex autoimmune disease characterized by vascular damage, vasoinstability, and decreased perfusion with ischemia, inflammation, and exuberant fibrosis of the skin and internal organs. Biomarkers are analytic indicators of the biological and disease processes within an individual that can be accurately and reproducibly measured. The field of biomarkers in SSc is complex as recent studies have implicated at least 240 pathways and dysregulated proteins in SSc pathogenesis. Anti-nuclear antibodies (ANA) are classical biomarkers with well-described clinical classifications and are present in more than 90% of SSc patients and include anti-centromere, anti-Th/To, anti-RNA polymerase III, and anti-topoisomerase I antibodies. Transforming growth factor-β (TGF-β) is central to the fibrotic process of SSc and is intimately intertwined with other biomarkers. Tyrosine kinases, interferon-1 signaling, IL-6 signaling, endogenous thrombin, peroxisome proliferator-activated receptors (PPARs), lysophosphatidic acid receptors, and amino acid metabolites are new biomarkers with the potential for developing new therapeutic agents. Other biomarkers implicated in SSc-ILD include signal transducer and activator of transcription 4 (STAT4), CD226 (DNAX accessory molecule 1), interferon regulatory factor 5 (IRF5), interleukin-1 receptor-associated kinase-1 (IRAK1), connective tissue growth factor (CTGF), pyrin domain containing 1 (NLRP1), T-cell surface glycoprotein zeta chain (CD3ζ) or CD247, the NLR family, SP-D (surfactant protein), KL-6, leucine-rich α2-glycoprotein-1 (LRG1), CCL19, genetic factors including DRB1 alleles, the interleukins (IL-1, IL-4, IL-6, IL-8, IL-10 IL-13, IL-16, IL-17, IL-18, IL-22, IL-32, and IL-35), the chemokines CCL (2,3,5,13,20,21,23), CXC (8,9,10,11,16), CX3CL1 (fractalkine), and GDF15. Adiponectin (an indicator of PPAR activation) and maresin 1 are reduced in SSc patients. A new trend has been the use of biomarker panels with combined complex multifactor analysis, machine learning, and artificial intelligence to determine disease activity and response to therapy. The present review is an update of the various biomarker molecules, pathways, and receptors involved in the pathology of SSc.
Collapse
Affiliation(s)
- Maheswari Muruganandam
- Department of Internal Medicine, Division of Rheumatology and School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Angie Ariza-Hutchinson
- Department of Internal Medicine, Division of Rheumatology and School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Rosemina A Patel
- Department of Internal Medicine, Division of Rheumatology and School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Wilmer L Sibbitt
- Department of Internal Medicine, Division of Rheumatology and School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| |
Collapse
|
20
|
Junfei Z, Meihua G, Shuai Z, Xiangting L, Zhidan L, Tianming C, Yajing L, Chu T, Lipu S. Retrospective comparative study of the efficacy of JAK inhibitor (tofacitinib) in the treatment of systemic sclerosis-associated interstitial lung disease. Clin Rheumatol 2023; 42:2823-2832. [PMID: 37335409 DOI: 10.1007/s10067-023-06660-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 04/05/2023] [Accepted: 06/01/2023] [Indexed: 06/21/2023]
Abstract
The oral Janus kinases inhibitor (JAKi) has improved the management of skin manifestations in systemic sclerosis (SSc), and our study aimed to explore the efficacy of non-selective JAKi tofacitinib in ameliorating interstitial lung disease (ILD) in the patients with SSc. The hospitalization data of the SSc-ILD patients from April 2019 to April 2021 were collected, and the changes of pulmonary function and the radiological findings in pulmonary high-resolution CT (HRCT) from the 9 patients who received tofacitinib for at least 6 months and a matched group of 35 SSc-ILD patients treated with conventional immunosuppressants or glucocorticoids, were compared and analyzed. There were no significant differences in demographic data and clinical characteristics between the tofacitinib-treated group (tofa-group) and the matched group. However, in the tofa-group, the changes in serum lactate dehydrogenase (LDH) concentration and serum interleukin-6 levels were significantly lower than those in the matched group. Moreover, the tofa-group showed amelioration in decreased diffusing capacity of the lung for carbon monoxide (DLCO) (62.05 ± 9.47 vs. 66.61 ± 12.39, p = 0.046), reductions in ground-glass attenuation involvement (1.00 ± 0.86 vs. 0.33 ± 0.50, p = 0.024) and irregular pleural thickening (1.33 ± 0.50 vs. 0.67 ± 0.51, p = 0.004) in pulmonary HRCTs, alleviated modified Rodnan skin score (mRSS) of skin sclerosis (9.22 ± 3.81 vs. 7.11 ± 3.92, p = 0.048), and reduced HRCT scores of pulmonary fibrosis (15.00 ± 3.87 vs. 12.66 ± 4.92, p = 0.009). Logistic regression analysis showed that the involvement of ground-glass attenuation (OR 11.43) and the add-on therapy of tofacitinib (OR 9.98) were the relevant factors in the amelioration of HRCT. Our results indicate that the use of JAKi (tofacitinib) may be relevant to significant improvement of the sclerosis and early radiological abnormalities in SSc-ILD patients. Further studies are needed to confirm these findings and to explore its efficacy more precisely. Key Points • The currently available therapies for SSc-ILD have limited therapeutic benefits. • The add-on therapy of the oral JAK inhibitor is available in the real world. • The tofacitinib was promising in the improvement of the sclerosis and early radiological abnormalities in SSc-ILD patients.
Collapse
Affiliation(s)
- Zhou Junfei
- Department of Rheumatology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No. 7, Weiwu Road, Zhengzhou, 450000, China.
| | - Gao Meihua
- Department of Geriatrics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Zhang Shuai
- Department of Dermatology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Lu Xiangting
- Department of Dermatology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Lei Zhidan
- Department of Radiology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Cheng Tianming
- Department of Radiology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Liu Yajing
- Department of Respiratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Tianshu Chu
- Department of Rheumatology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No. 7, Weiwu Road, Zhengzhou, 450000, China.
| | - Shi Lipu
- Department of Rheumatology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No. 7, Weiwu Road, Zhengzhou, 450000, China
| |
Collapse
|
21
|
Lin H, Liu J, Li N, Zhang B, Nguyen VD, Yao P, Feng J, Liu Q, Chen Y, Li G, Zhou Y, Zhou L. NETosis promotes chronic inflammation and fibrosis in systemic lupus erythematosus and COVID-19. Clin Immunol 2023; 254:109687. [PMID: 37419296 DOI: 10.1016/j.clim.2023.109687] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 06/10/2023] [Accepted: 06/17/2023] [Indexed: 07/09/2023]
Abstract
Pulmonary fibrosis, a serious complication of systemic lupus erythematosus (SLE) and coronavirus disease 2019 (COVID-19), leads to irreversible lung damage. However, the underlying mechanism of this condition remains unclear. In this study, we revealed the landscape of transcriptional changes in lung biopsies from individuals with SLE, COVID-19-induced pulmonary fibrosis, and idiopathic pulmonary fibrosis (IPF) using histopathology and RNA sequencing, respectively. Despite the diverse etiologies of these diseases, lung expression of matrix metalloproteinase genes in these diseases showed similar patterns. Particularly, the differentially expressed genes were significantly enriched in the pathway of neutrophil extracellular trap formation, showing similar enrichment signature between SLE and COVID-19. The abundance of Neutrophil extracellular traps (NETs) was much higher in the lungs of individuals with SLE and COVID-19 compared to those with IPF. In-depth transcriptome analyses revealed that NETs formation pathway promotes epithelial-mesenchymal transition (EMT). Furthermore, stimulation with NETs significantly up-regulated α-SMA, Twist, Snail protein expression, while decreasing the expression of E-cadherin protein in vitro. This indicates that NETosis promotes EMT in lung epithelial cells. Given drugs that are efficacious in degrading damaged NETs or inhibiting NETs production, we identified a few drug targets that were aberrantly expressed in both SLE and COVID-19. Among these targets, the JAK2 inhibitor Tofacitinib could effectively disrupted the process of NETs and reversed NET-induced EMT in lung epithelial cells. These findings support that the NETs/EMT axis, activated by SLE and COVID-19, contributes to the progression of pulmonary fibrosis. Our study also highlights that JAK2 as a potential target for the treatment of fibrosis in these diseases.
Collapse
Affiliation(s)
- Huiqing Lin
- State Key Laboratory of Virology, Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Jiejie Liu
- State Key Laboratory of Virology, Modern Virology Research Center, RNA Institute, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ning Li
- State Key Laboratory of Virology, Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Birong Zhang
- Systems Immunity Research Institute, Cardiff University, Cardiff CF14 4XN, UK; Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Van Dien Nguyen
- Systems Immunity Research Institute, Cardiff University, Cardiff CF14 4XN, UK; Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Peipei Yao
- State Key Laboratory of Virology, Modern Virology Research Center, RNA Institute, College of Life Sciences, Wuhan University, Wuhan 430072, China; Institute for Vaccine Research, Animal Bio-Safety Level III Laboratory at Center for Animal Experiments, Wuhan University School of Medicine, Wuhan 430071, China
| | - Jiangpeng Feng
- State Key Laboratory of Virology, Modern Virology Research Center, RNA Institute, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Qianyun Liu
- State Key Laboratory of Virology, Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Yu Chen
- State Key Laboratory of Virology, Modern Virology Research Center, RNA Institute, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Guang Li
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China.
| | - You Zhou
- Systems Immunity Research Institute, Cardiff University, Cardiff CF14 4XN, UK; Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK.
| | - Li Zhou
- State Key Laboratory of Virology, Modern Virology Research Center, RNA Institute, College of Life Sciences, Wuhan University, Wuhan 430072, China; Institute for Vaccine Research, Animal Bio-Safety Level III Laboratory at Center for Animal Experiments, Wuhan University School of Medicine, Wuhan 430071, China.
| |
Collapse
|
22
|
Bale S, Verma P, Yalavarthi B, Scarneo SA, Hughes P, Amin MA, Tsou PS, Khanna D, Haystead TA, Bhattacharyya S, Varga J. Pharmacological inhibition of TAK1 prevents and induces regression of experimental organ fibrosis. JCI Insight 2023; 8:e165358. [PMID: 37306632 PMCID: PMC10443806 DOI: 10.1172/jci.insight.165358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 05/31/2023] [Indexed: 06/13/2023] Open
Abstract
Multiorgan fibrosis in systemic sclerosis (SSc) accounts for substantial mortality and lacks effective therapies. Lying at the crossroad of TGF-β and TLR signaling, TGF-β-activated kinase 1 (TAK1) might have a pathogenic role in SSc. We therefore sought to evaluate the TAK1 signaling axis in patients with SSc and to investigate pharmacological TAK1 blockade using a potentially novel drug-like selective TAK1 inhibitor, HS-276. Inhibiting TAK1 abrogated TGF-β1 stimulation of collagen synthesis and myofibroblasts differentiation in healthy skin fibroblasts, and it ameliorated constitutive activation of SSc skin fibroblasts. Moreover, treatment with HS-276 prevented dermal and pulmonary fibrosis and reduced the expression of profibrotic mediators in bleomycin-treated mice. Importantly, initiating HS-276 treatment even after fibrosis was already established prevented its progression in affected organs. Together, these findings implicate TAK1 in the pathogenesis of SSc and identify targeted TAK1 inhibition using a small molecule as a potential strategy for the treatment of SSc and other fibrotic diseases.
Collapse
Affiliation(s)
- Swarna Bale
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Priyanka Verma
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Bharath Yalavarthi
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Philip Hughes
- EydisBio Inc., Durham, North Carolina, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - M. Asif Amin
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Pei-Suen Tsou
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Dinesh Khanna
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Timothy A.J. Haystead
- EydisBio Inc., Durham, North Carolina, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Swati Bhattacharyya
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - John Varga
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
23
|
Farina N, Campochiaro C, Lescoat A, Benanti G, De Luca G, Khanna D, Dagna L, Matucci-Cerinic M. Drug development and novel therapeutics to ensure a personalized approach in the treatment of systemic sclerosis. Expert Rev Clin Immunol 2023; 19:1131-1142. [PMID: 37366065 DOI: 10.1080/1744666x.2023.2230370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
INTRODUCTION Systemic sclerosis (SSc) is a systemic disease encompassing autoimmunity, vasculopathy, and fibrosis. SSc is still burdened by high mortality and morbidity rates. Recent advances in understanding the pathogenesis of SSc have identified novel potential therapeutic targets. Several clinical trials have been subsequently designed to evaluate the efficacy of a number of new drugs. The aim of this review is to provide clinicians with useful information about these novel molecules. AREA COVERED In this narrative review, we summarize the available evidence regarding the most promising targeted therapies currently under investigation for the treatment of SSc. These medications include kinase inhibitors, B-cell depleting agents, and interleukin inhibitors. EXPERT OPINION Over the next five years, several new, targeted drugs will be introduced in clinical practice for the treatment of SSc. Such pharmacological agents will expand the existing pharmacopoeia and enable a more personalized and effective approach to patients with SSc. Thus, it will not only possible to target a specific disease domain, but also different stages of the disease.
Collapse
Affiliation(s)
- N Farina
- Unit of Immunology, Rheumatology, Allergy and Rare diseases, IRCCS San Raffaele Hospital, Milan, Italy
| | - C Campochiaro
- Unit of Immunology, Rheumatology, Allergy and Rare diseases, IRCCS San Raffaele Hospital, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - A Lescoat
- Department of Internal Medicine and Clinical Immunology, Rennes University Hospital, Rennes, France
| | - G Benanti
- Unit of Immunology, Rheumatology, Allergy and Rare diseases, IRCCS San Raffaele Hospital, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - G De Luca
- Unit of Immunology, Rheumatology, Allergy and Rare diseases, IRCCS San Raffaele Hospital, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - D Khanna
- Department of Internal Medicine, University of Michigan, Ann Arbor, USA
| | - L Dagna
- Unit of Immunology, Rheumatology, Allergy and Rare diseases, IRCCS San Raffaele Hospital, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - M Matucci-Cerinic
- Unit of Immunology, Rheumatology, Allergy and Rare diseases, IRCCS San Raffaele Hospital, Milan, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
24
|
Colic J, Campochiaro C, Hughes M, Matucci Cerinic M, Dagna L. Investigational drugs for the treatment of scleroderma: what's new? Expert Opin Investig Drugs 2023; 32:601-614. [PMID: 37526079 DOI: 10.1080/13543784.2023.2242762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/26/2023] [Indexed: 08/02/2023]
Abstract
INTRODUCTION Systemic sclerosis (SSc) is an orphan, chronic, autoimmune, fibrotic disease with unknown etiology characterized by progressive fibrosis of the skin and internal organs. SSc has the highest mortality, the deadliest among the connective tissue diseases, despite the introduction of new treatment options in the past decades. AREAS COVERED The aim of the current systematic review was to investigate new targeted therapy and their impact on disease progression, mainly focusing on phase I and II clinical trials within the past three years. EXPERT OPINION Despite recent groundbreaking advancements in understanding SSc pathophysiology, early diagnosis and early introduction of effective targeted treatments within the optimal window of opportunity to prevent irreversible disease damage still represents a significant clinical challenge. Ongoing significant research for new molecular and epigenetics pathways is of fundamental importance to offer new perspectives on disease phenotype and for the development of personalized treatment strategies.
Collapse
Affiliation(s)
- Jelena Colic
- Department of Rheumatology, Institute of Rheumatology, Belgrade, Serbia
| | - Corrado Campochiaro
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Hospital, Milano, Italy
- Vita-Salute San Raffaele University, Milano, Italy
| | - Michael Hughes
- Division of Musculoskeletal and Dermatological Sciences, The University of Manchester, Manchester, England
| | - Marco Matucci Cerinic
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Hospital, Milano, Italy
- Division of Rheumatology, Department of Experimental and Clinical Medicine, Azienda Ospedaliero-Universitaria Careggi (AOUC) and Denothe Centre, University of Florence, Florence, Italy
| | - Lorenzo Dagna
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Hospital, Milano, Italy
- Vita-Salute San Raffaele University, Milano, Italy
| |
Collapse
|
25
|
Lescoat A, Roofeh D, Kuwana M, Lafyatis R, Allanore Y, Khanna D. Therapeutic Approaches to Systemic Sclerosis: Recent Approvals and Future Candidate Therapies. Clin Rev Allergy Immunol 2023; 64:239-261. [PMID: 34468946 PMCID: PMC9034469 DOI: 10.1007/s12016-021-08891-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 02/06/2023]
Abstract
Systemic sclerosis is the rheumatic disease with the highest individual mortality. The severity of the disease is determined by the extent of fibrotic changes to cutaneous and internal organ tissues, the most life-threatening visceral manifestations being interstitial lung disease, SSc-associated-pulmonary arterial hypertension and myocardial involvement. The heterogeneity of the disease has initially hindered the design of successful clinical trials, but considerations on classification criteria have improved patient selection in trials, allowing the identification of more homogeneous groups of patients based on progressive visceral manifestations or the extent of skin involvement with a focus of patients with early disease. Two major subsets of systemic sclerosis are classically described: limited cutaneous systemic sclerosis characterized by distal skin fibrosis and the diffuse subset with distal and proximal skin thickening. Beyond this dichotomic subgrouping of systemic sclerosis, new phenotypic considerations based on antibody subtypes have provided a better understanding of the heterogeneity of the disease, anti-Scl70 antibodies being associated with progressive interstitial lung disease regardless of cutaneous involvement. Two targeted therapies, tocilizumab (a monoclonal antibody targeting interleukin-6 receptors (IL-6R)) and nintedanib (a tyrosine kinase inhibitor), have recently been approved by the American Food & Drug Administration to limit the decline of lung function in patients with SSc-associated interstitial lung disease, demonstrating that such better understanding of the disease pathogenesis with the identification of key targets can lead to therapeutic advances in the management of some visceral manifestations of the disease. This review will provide a brief overview of the pathogenesis of SSc and will present a selection of therapies recently approved or evaluated in this context. Therapies evaluated and approved in SSc-ILD will be emphasized and a review of recent phase II trials in diffuse cutaneous systemic sclerosis will be proposed. We will also discuss selected therapeutic pathways currently under investigation in systemic sclerosis that still lack clinical data in this context but that may show promising results in the future based on preclinical data.
Collapse
Affiliation(s)
- Alain Lescoat
- Department of Internal Medicine and Clinical Immunology, Rennes University Hospital, Rennes, France
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes, France
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Michigan Scleroderma Program, University of Michigan, Ann Arbor, MI, USA
| | - David Roofeh
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Michigan Scleroderma Program, University of Michigan, Ann Arbor, MI, USA
| | - Masataka Kuwana
- Department of Allergy and Rheumatology, Nippon Medical School Graduate School of Medicine, Tokyo, Japan
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yannick Allanore
- INSERM U1016 and CNRS UMR8104, Institut Cochin, Paris, France
- Université de Paris, Université Paris Descartes, Paris, France
- Service de Rhumatologie, Hôpital Cochin, AP-HP.CUP, Paris, France
| | - Dinesh Khanna
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
- Michigan Scleroderma Program, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
26
|
MV P, Maikap D, Padhan P. Successful Use of Tofacitinib in Scleroderma Arthropathy. Mediterr J Rheumatol 2023; 34:266-268. [PMID: 37654646 PMCID: PMC10466352 DOI: 10.31138/mjr.34.2.266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/07/2023] [Accepted: 01/30/2023] [Indexed: 09/02/2023] Open
Abstract
Musculoskeletal manifestations of systemic sclerosis (SSc) are frequent and may be one of the early manifestations of the disease. However, arthralgia, pain and stiffness without frank arthritis usually constitute the clinical picture, while overlap syndromes such as rheumatoid-like polyarthritis can dominate when the arthritis is erosive. Hereby, we report a case of primary SSc presenting as frank erosive arthritis involving small and large joints mimicking rheumatoid arthritis, unresponsive to methotrexate, which was successfully treated with tofacitinib.
Collapse
Affiliation(s)
- Prakashini MV
- Department of Clinical Immunology and Rheumatology, Kalinga Institute of Medical Sciences, KIIT University, Bhubaneswar, Odisha, India
| | - Debashis Maikap
- Department of Clinical Immunology and Rheumatology, Kalinga Institute of Medical Sciences, KIIT University, Bhubaneswar, Odisha, India
| | - Prasanta Padhan
- Department of Clinical Immunology and Rheumatology, Kalinga Institute of Medical Sciences, KIIT University, Bhubaneswar, Odisha, India
| |
Collapse
|
27
|
Papanikolaou V, Kyrodimos E, Mastronikolis N, Asimakopoulos AD, Papanastasiou G, Tsiambas E, Spyropoulou D, Katsinis S, Manoli A, Papouliakos S, Pantos P, Ragos V, Peschos D, Chrysovergis A. Anti-EGFR/BRAF-Tyrosine Kinase Inhibitors in Thyroid Carcinoma. CANCER DIAGNOSIS & PROGNOSIS 2023; 3:151-156. [PMID: 36875315 PMCID: PMC9949544 DOI: 10.21873/cdp.10194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/06/2023] [Indexed: 03/07/2023]
Abstract
Alterations in significant genes located on chromosome 7 - including epidermal growth factor receptor (EGFR) and also v-Raf murine sarcoma viral oncogene homolog B (BRAF) as a mitogen-activated protein kinase (MAPK) - combined or not with numerical imbalances of the whole chromosome (aneuploidy-polysomy) are crucial genetic events involved in the development and progression of malignancies. Identification of EGFR/BRAF-dependent specific somatic mutations and other mechanisms of deregulation (i.e., amplification) is critical for applying targeted therapeutic approaches [tyrosine kinase inhibitors (TKIs] or monoclonal antibodies (mAbs). Thyroid carcinoma is a specific pathological entity characterized by a variety of histological sub-types. Follicular thyroid carcinoma (FTC), papillary thyroid carcinoma (PTC), medullary thyroid carcinoma (MTC), and anaplastic thyroid carcinoma (ATC) represent its main sub-types. In the current review, we explore the role of EGFR/BRAF alterations in thyroid carcinoma in conjunction with the corresponding anti-EGFR/BRAF TKI-based novel therapeutic strategies for patients with specific genetic signatures.
Collapse
Affiliation(s)
- Vasileios Papanikolaou
- 1st Department of Otorhinolaryngology, Hippocration Hospital, University of Athens, Athens, Greece
| | - Efthymios Kyrodimos
- 1st Department of Otorhinolaryngology, Hippocration Hospital, University of Athens, Athens, Greece
| | | | | | - George Papanastasiou
- Department of Maxillofacial, Medical School, University of Ioannina, Ioannina, Greece
| | - Evangelos Tsiambas
- Department of Cytology, 417 Veterans Army Hospital (NIMTS), Athens, Greece
| | - Despoina Spyropoulou
- Department of Radiation Oncology, Medical School, University of Patras, Patras, Greece
| | - Spyros Katsinis
- Department of Otorhinolaryngology, Pamakaristos General Hospital, Athens, Greece
| | - Arezina Manoli
- Department of Otorhinolaryngology, Thoracic Diseases General Hospital Sotiria, Athens, Greece
| | - Sotirios Papouliakos
- Department of Otorhinolaryngology, General Hospital "Gennimatas", Athens, Greece
| | - Pavlos Pantos
- 1st Department of Otorhinolaryngology, Hippocration Hospital, University of Athens, Athens, Greece
| | - Vasileios Ragos
- Department of Maxillofacial, Medical School, University of Ioannina, Ioannina, Greece
| | - Dimitrios Peschos
- Department of Physiology, Medical School, University of Ioannina, Ioannina, Greece
| | - Aristeidis Chrysovergis
- 1st Department of Otorhinolaryngology, Hippocration Hospital, University of Athens, Athens, Greece
| |
Collapse
|
28
|
Chebli de Abreu N, Didier Maciel F, do Rosário E Souza EJ, Batista Perdigão Mendes AJ, Lyon S. A rare and challenging presentation of adult-onset pansclerotic morphea. J Eur Acad Dermatol Venereol 2023; 37:e218-e220. [PMID: 35971896 DOI: 10.1111/jdv.18522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 08/05/2022] [Indexed: 01/19/2023]
Affiliation(s)
| | | | | | | | - Sandra Lyon
- Department of Dermatology, Hospital Eduardo de Menezes, Belo Horizonte, Brazil
| |
Collapse
|
29
|
Cerro Chiang G, Parimon T. Understanding Interstitial Lung Diseases Associated with Connective Tissue Disease (CTD-ILD): Genetics, Cellular Pathophysiology, and Biologic Drivers. Int J Mol Sci 2023; 24:ijms24032405. [PMID: 36768729 PMCID: PMC9917355 DOI: 10.3390/ijms24032405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023] Open
Abstract
Connective tissue disease-associated interstitial lung disease (CTD-ILD) is a collection of systemic autoimmune disorders resulting in lung interstitial abnormalities or lung fibrosis. CTD-ILD pathogenesis is not well characterized because of disease heterogeneity and lack of pre-clinical models. Some common risk factors are inter-related with idiopathic pulmonary fibrosis, an extensively studied fibrotic lung disease, which includes genetic abnormalities and environmental risk factors. The primary pathogenic mechanism is that these risk factors promote alveolar type II cell dysfunction triggering many downstream profibrotic pathways, including inflammatory cascades, leading to lung fibroblast proliferation and activation, causing abnormal lung remodeling and repairs that result in interstitial pathology and lung fibrosis. In CTD-ILD, dysregulation of regulator pathways in inflammation is a primary culprit. However, confirmatory studies are required. Understanding these pathogenetic mechanisms is necessary for developing and tailoring more targeted therapy and provides newly discovered disease biomarkers for early diagnosis, clinical monitoring, and disease prognostication. This review highlights the central CTD-ILD pathogenesis and biological drivers that facilitate the discovery of disease biomarkers.
Collapse
Affiliation(s)
- Giuliana Cerro Chiang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Correspondence:
| | - Tanyalak Parimon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
30
|
Liu J, Wang F, Luo F. The Role of JAK/STAT Pathway in Fibrotic Diseases: Molecular and Cellular Mechanisms. Biomolecules 2023; 13:biom13010119. [PMID: 36671504 PMCID: PMC9855819 DOI: 10.3390/biom13010119] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/25/2022] [Accepted: 12/27/2022] [Indexed: 01/11/2023] Open
Abstract
There are four members of the JAK family and seven of the STAT family in mammals. The JAK/STAT molecular pathway could be activated by broad hormones, cytokines, growth factors, and more. The JAK/STAT signaling pathway extensively mediates various biological processes such as cell proliferation, differentiation, migration, apoptosis, and immune regulation. JAK/STAT activation is closely related to growth and development, homeostasis, various solid tumors, inflammatory illness, and autoimmune diseases. Recently, with the deepening understanding of the JAK/STAT pathway, the relationship between JAK/STAT and the pathophysiology of fibrotic diseases was noticed, including the liver, renal, heart, bone marrow, and lung. JAK inhibitor has been approved for myelofibrosis, and subsequently, JAK/STAT may serve as a promising target for fibrosis in other organs. Therefore, this article reviews the roles and mechanisms of the JAK/STAT signaling pathway in fibrotic diseases.
Collapse
Affiliation(s)
- Jia Liu
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Faping Wang
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fengming Luo
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
- Correspondence: ; Tel.: +86-18980601355
| |
Collapse
|
31
|
Fiorentini E, Bonomi F, Peretti S, Orlandi M, Lepri G, Matucci Cerinic M, Bellando Randone S, Guiducci S. Potential Role of JAK Inhibitors in the Treatment of Systemic Sclerosis-Associated Interstitial Lung Disease: A Narrative Review from Pathogenesis to Real-Life Data. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122101. [PMID: 36556466 PMCID: PMC9785277 DOI: 10.3390/life12122101] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/03/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Systemic sclerosis-associated interstitial lung disease (SSc-ILD) is one of the most relevant complications of SSc and the major cause of death. The pathogenesis of SSc-ILD involves a complex interplay of multiple cell types and different molecular pathways, with both inflammation and fibrosis as pathological hallmarks. To date, there are no treatments able to target both components of the disease. Janus kinase inhibitors (JAKinibs) represent an interesting therapeutic option because they exert both anti-inflammatory and anti-fibrotic properties. METHODS Here, we performed a narrative review concerning the potential role of JAKinibs in SSc-ILD to define the state of art and to evaluate the pathogenetic rationale behind this type of treatment. RESULTS Currently, few studies investigated SSc-ILD response to JAKinibs treatment. Data were analyzed from three clinical studies and four case reports and progression of SSc-ILD was not evident in 93.5% of patients treated with JAKinibs. CONCLUSIONS Available evidence of efficacy of JAKinibs in SSc-ILD is sparse but promising. JAKinibs could be an interesting treatment in SSc-ILD because of their potential inhibition of the fibrotic processes combined with their anti-inflammatory action. Moreover, JAKinibs were also shown in some studies to have a potential effect on pulmonary arterial hypertension (PAH), another threatening complication in SSc. More data are necessary to define JAKinibs role in SSc-ILD treatment.
Collapse
Affiliation(s)
- Elisa Fiorentini
- Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy
| | - Francesco Bonomi
- Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy
- Correspondence:
| | - Silvia Peretti
- Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy
| | - Martina Orlandi
- Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy
| | - Gemma Lepri
- Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy
| | - Marco Matucci Cerinic
- Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases (UnIRAR), IRCCS San Raffaele Hospital, 20132 Milan, Italy
| | - Silvia Bellando Randone
- Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy
| | - Serena Guiducci
- Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy
| |
Collapse
|
32
|
Aung WW, Hamaguchi Y, Matsushita T. Targeting cytokines and potentiality of
JAK–STAT
inhibition in systemic sclerosis. JOURNAL OF CUTANEOUS IMMUNOLOGY AND ALLERGY 2022. [DOI: 10.1002/cia2.12288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Wah Wah Aung
- Department of Dermatology, Institute of Medical, Pharmaceutical and Health Sciences, Faculty of Medicine Kanazawa University Kanazawa Ishikawa Japan
| | - Yasuhito Hamaguchi
- Department of Dermatology, Institute of Medical, Pharmaceutical and Health Sciences, Faculty of Medicine Kanazawa University Kanazawa Ishikawa Japan
| | - Takashi Matsushita
- Department of Dermatology, Institute of Medical, Pharmaceutical and Health Sciences, Faculty of Medicine Kanazawa University Kanazawa Ishikawa Japan
| |
Collapse
|
33
|
Pandey A, Mishra AK. Immunomodulation, Toxicity, and Therapeutic Potential of Nanoparticles. BIOTECH 2022; 11:42. [PMID: 36134916 PMCID: PMC9497228 DOI: 10.3390/biotech11030042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/24/2022] [Accepted: 09/06/2022] [Indexed: 11/24/2022] Open
Abstract
Altered immune responses associated with human disease conditions, such as inflammatory and infectious diseases, cancers, and autoimmune diseases, are among the primary causes of morbidity across the world. A wealth of studies has demonstrated the efficiency of nanoparticles (NPs)-based immunotherapy strategies in different laboratory model systems. Nanoscale dimensions (<100 nm) enable NPs to have increased surface area to volume ratio, surface charge, and reactivity. Physicochemical properties along with the shapes, sizes, and elasticity influence the immunomodulatory response induced by NPs. In recent years, NPs-based immunotherapy strategies have attained significant focus in the context of cancers and autoimmune diseases. This rapidly growing field of nanomedicine has already introduced ~50 nanotherapeutics in clinical practices. Parallel to wide industrial applications of NPs, studies have raised concerns about their potential threat to the environment and human health. In past decades, a wealth of in vivo and in vitro studies has demonstrated the immunotoxicity potential of various NPs. Given that the number of engineered/designed NPs in biomedical applications is continuing to increase, it is pertinent to establish the toxicity profile for their safe and intelligent use in biomedical applications. The review is intended to summarize the NPs-induced immunomodulation pertaining to toxicity and therapeutic development in human health.
Collapse
Affiliation(s)
- Ashutosh Pandey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Abhinava K. Mishra
- Molecular, Cellular and Developmental Biology Department, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
34
|
Khanna D, Padilla C, Tsoi LC, Nagaraja V, Khanna PP, Tabib T, Kahlenberg JM, Young A, Huang S, Gudjonsson JE, Fox DA, Lafyatis R. Tofacitinib blocks IFN-regulated biomarker genes in skin fibroblasts and keratinocytes in a systemic sclerosis trial. JCI Insight 2022; 7:e159566. [PMID: 35943798 PMCID: PMC9536259 DOI: 10.1172/jci.insight.159566] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUNDSystemic sclerosis (SSc) is an autoimmune, connective tissue disease characterized by vasculopathy and fibrosis of the skin and internal organs.METHODSWe randomized 15 participants with early diffuse cutaneous SSc to tofacitinib 5 mg twice a day or matching placebo in a phase I/II double-blind, placebo-controlled trial. The primary outcome measure was safety and tolerability at or before week 24. To understand the changes in gene expression associated with tofacitinib treatment in each skin cell population, we compared single-cell gene expression in punch skin biopsies obtained at baseline and 6 weeks following the initiation of treatment.RESULTSTofacitinib was well tolerated; no participants experienced grade 3 or higher adverse events before or at week 24. Trends in efficacy outcome measures favored tofacitnib. Baseline gene expression in fibroblast and keratinocyte subpopulations indicated IFN-activated gene expression. Tofacitinib inhibited IFN-regulated gene expression in SFRP2/DPP4 fibroblasts (progenitors of myofibroblasts) and in MYOC/CCL19, representing adventitial fibroblasts (P < 0.05), as well as in the basal and keratinized layers of the epidermis. Gene expression in macrophages and DCs indicated inhibition of STAT3 by tofacitinib (P < 0.05). No clinically meaningful inhibition of T cells and endothelial cells in the skin tissue was observed.CONCLUSIONThese results indicate that mesenchymal and epithelial cells of a target organ in SSc, not the infiltrating lymphocytes, may be the primary focus for therapeutic effects of a Janus kinase inhibitor.TRIAL REGISTRATIONClinicalTrials.gov NCT03274076.FUNDINGPfizer, NIH/National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) R01 AR070470, NIH/NIAMS K24 AR063120, Taubman Medical Research Institute and NIH P30 AR075043, and NIH/NIAMS K01 AR072129.
Collapse
Affiliation(s)
- Dinesh Khanna
- Division of Rheumatology, Department of Internal Medicine, and
- University of Michigan Scleroderma Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Cristina Padilla
- Division of Rheumatology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Lam C Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Vivek Nagaraja
- Division of Rheumatology, Department of Internal Medicine, and
- University of Michigan Scleroderma Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Puja P Khanna
- Division of Rheumatology, Department of Internal Medicine, and
- VA Medical Center, Ann Arbor, Michigan, USA
| | - Tracy Tabib
- Division of Rheumatology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Amber Young
- Division of Rheumatology, Department of Internal Medicine, and
| | - Suiyuan Huang
- University of Michigan Scleroderma Program, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | | | - David A Fox
- Division of Rheumatology, Department of Internal Medicine, and
| | - Robert Lafyatis
- Division of Rheumatology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
35
|
Wong LS, Yen YT. Autoimmune Connective Tissue Diseases-Related Pruritus: Proper Diagnosis and Possible Mechanisms. Diagnostics (Basel) 2022; 12:diagnostics12071772. [PMID: 35885674 PMCID: PMC9317505 DOI: 10.3390/diagnostics12071772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/05/2022] [Accepted: 07/20/2022] [Indexed: 11/23/2022] Open
Abstract
Pruritus is a well-known bothersome symptom among skin disorders, especially inflammatory skin disorders. Lately, a high prevalence of pruritus in patients with autoimmune connective tissue diseases (ACTDs) has been revealed. Patients with ACTDs may suffer from varying degrees of pruritus, which affect their quality of life. However, it is rarely recognized both by patients and physicians. Meanwhile, pruritus is not only a symptom but is also related to the disease severity of some ACTDs. The pathophysiology of ACTD related pruritus is ambiguous. This review summarizes the features and possible mechanisms of ACTD-related pruritus, which might lead to proper diagnosis and treatment.
Collapse
Affiliation(s)
- Lai-San Wong
- Department of Dermatology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan;
| | - Yu-Ta Yen
- Department of Dermatology, Fooying University Hospital, Pentong 928, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 80420, Taiwan
- Correspondence: ; Tel.: +886-8-8323146
| |
Collapse
|
36
|
Noviani M, Chellamuthu VR, Albani S, Low AHL. Toward Molecular Stratification and Precision Medicine in Systemic Sclerosis. Front Med (Lausanne) 2022; 9:911977. [PMID: 35847779 PMCID: PMC9279904 DOI: 10.3389/fmed.2022.911977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/06/2022] [Indexed: 01/01/2023] Open
Abstract
Systemic sclerosis (SSc), a complex multi-systemic disease characterized by immune dysregulation, vasculopathy and fibrosis, is associated with high mortality. Its pathogenesis is only partially understood. The heterogenous pathological processes that define SSc and its stages present a challenge to targeting appropriate treatment, with differing treatment outcomes of SSc patients despite similar initial clinical presentations. Timing of the appropriate treatments targeted at the underlying disease process is critical. For example, immunomodulatory treatments may be used for patients in a predominantly inflammatory phase, anti-fibrotic treatments for those in the fibrotic phase, or combination therapies for those in the fibro-inflammatory phase. In advancing personalized care through precision medicine, groups of patients with similar disease characteristics and shared pathological processes may be identified through molecular stratification. This would improve current clinical sub-setting systems and guide personalization of therapies. In this review, we will provide updates in SSc clinical and molecular stratification in relation to patient outcomes and treatment responses. Promises of molecular stratification through advances in high-dimensional tools, including omic-based stratification (transcriptomics, genomics, epigenomics, proteomics, cytomics, microbiomics) and machine learning will be discussed. Innovative and more granular stratification systems that integrate molecular characteristics to clinical phenotypes would potentially improve therapeutic approaches through personalized medicine and lead to better patient outcomes.
Collapse
Affiliation(s)
- Maria Noviani
- Department of Rheumatology and Immunology, Singapore General Hospital, Singapore, Singapore
- Duke–National University of Singapore Medical School, Singapore, Singapore
| | | | - Salvatore Albani
- Duke–National University of Singapore Medical School, Singapore, Singapore
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Andrea Hsiu Ling Low
- Department of Rheumatology and Immunology, Singapore General Hospital, Singapore, Singapore
- Duke–National University of Singapore Medical School, Singapore, Singapore
- *Correspondence: Andrea Hsiu Ling Low
| |
Collapse
|
37
|
Couette N, Jarjour W, Brammer JE, Simon Meara A. Pathogenesis and Treatment of T-Large Granular Lymphocytic Leukemia (T-LGLL) in the Setting of Rheumatic Disease. Front Oncol 2022; 12:854499. [PMID: 35747794 PMCID: PMC9209697 DOI: 10.3389/fonc.2022.854499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022] Open
Abstract
A complex relationship exists between rheumatic diseases and cancer. This delicate balance between chronic inflammation and malignant cell transformation in hematologic neoplasms has been observed, but is not well defined. Large Granular Lymphocyte (LGL) leukemia is at the intersection of a clonal lymphoproliferative disease, chronic inflammation, and autoimmunity. The association between rheumatoid arthritis (RA) and the spectrum of Felty’s Syndrome is well-known. Other rheumatic disorders have been reported including systemic lupus erythematosus (SLE), Sjogren’s Syndrome (SS), vasculitis, Behcet’s Disease (BD) and systemic sclerosis. The association between T-LGLL and rheumatic disease pathogenesis has been hypothesized, but has not yet been fully understood. Components of a shared pathogenesis includes chronic antigen stimulation, JAK-STAT pathway activation and overlap of various cytokines. We will summarize current knowledge on the molecular understanding between T-LGLL and rheumatic disease. There are many potential areas of research to help meet this need and lead to development of targeted therapeutic options.
Collapse
|
38
|
Wang XH, Zhang JQ, Kong Q, Tu WZ, Chen LM, Zhao YH. Application of integrated traditional chinese and western medicine in treatment of systemic sclerosis: A case report. Explore (NY) 2022; 19:463-468. [PMID: 35697584 DOI: 10.1016/j.explore.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/06/2022] [Indexed: 11/25/2022]
Affiliation(s)
- Xiao-Han Wang
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China
| | - Jia-Qian Zhang
- Department of Rheumatism, Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, 230 Baoding Road, Hongkou District, Shanghai 200082, China
| | - Qi Kong
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Wen-Zhen Tu
- Department of Rheumatism, Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, 230 Baoding Road, Hongkou District, Shanghai 200082, China
| | - Li-Ming Chen
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 230 Baoding Road, Hongkou District, Shanghai 200082, China.
| | - Yin-Huan Zhao
- Department of Rheumatism, Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, 230 Baoding Road, Hongkou District, Shanghai 200082, China.
| |
Collapse
|
39
|
Karatas A, Oz B, Celik C, Akar ZA, Akkoc RF, Etem EO, Dagli AF, Koca SS. Tofacitinib and metformin reduce the dermal thickness and fibrosis in mouse model of systemic sclerosis. Sci Rep 2022; 12:2553. [PMID: 35169250 PMCID: PMC8847622 DOI: 10.1038/s41598-022-06581-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 12/15/2021] [Indexed: 12/13/2022] Open
Abstract
Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway is important in the process of inflammation and fibrosis. The adenosine 5'-monophosphate-activated protein kinase (AMPK) enzyme can affect JAK/STAT pathway. Tofacitinib is a pan-JAK inhibitör. Metformin activates AMPK enzyme. We aimed to investigate the therapeutic efficacy of tofacitinib and metformin on IL-17 and TGF-β cytokines, skin fibrosis and inflammation in mouse model of systemic sclerosis (SSc). 40 Balb/c female mice were divided into 4 groups: (control, sham (BLM), tofacitinib and metformin). The mice in the tofacitinib group received oral tofacitinib (20 mg/kg/daily) and mice in the metformin group received oral metformin (50 mg/kg/day) for 28 days. At the end of 4th week, all groups of mice were decapitated and tissue samples were taken for analysis. Histopathological analysis of skin tissue was performed, and mRNA expressions of collagen 3A, IL-17 and TGF-β were assessed by real-time PCR and ELISA. Repeated BLM injections had induced dermal fibrosis. Moreover, the tissue levels of collagen 3A, IL-17 and TGF-β were elevated in the BLM group. Tofacitinib and metformin mitigated dermal fibrosis. They reduced dermal thickness and tissue collagen 3A, IL-17 and TGF-β levels. Tofacitinib and metformin demonstrated anti-inflammatory and anti-fibrotic effects in the mouse model of SSc.
Collapse
Affiliation(s)
- Ahmet Karatas
- Department of Rheumatology, Firat University School of Medicine, Elazig, Turkey.
| | - Burak Oz
- Department of Rheumatology, Fethi Sekin City Hospital, Elazig, Turkey
| | - Cigdem Celik
- Department of Internal Medicine, Gemlik State Hospital, Bursa, Turkey
| | - Zeynel Abidin Akar
- Department of Rheumatology, Gazi Yasargil Egitim ve Arastirma Hastanesi, Diyarbakir, Turkey
| | | | - Ebru Onalan Etem
- Department of Medical Biology, Firat University School of Medicine, Elazig, Turkey
| | - Adile Ferda Dagli
- Department of Pathology, Firat University School of Medicine, Elazig, Turkey
| | | |
Collapse
|
40
|
Papadimitriou TI, van Caam A, van der Kraan PM, Thurlings RM. Therapeutic Options for Systemic Sclerosis: Current and Future Perspectives in Tackling Immune-Mediated Fibrosis. Biomedicines 2022; 10:316. [PMID: 35203525 PMCID: PMC8869277 DOI: 10.3390/biomedicines10020316] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 02/01/2023] Open
Abstract
Systemic sclerosis (SSc) is a severe auto-immune, rheumatic disease, characterized by excessive fibrosis of the skin and visceral organs. SSc is accompanied by high morbidity and mortality rates, and unfortunately, few disease-modifying therapies are currently available. Inflammation, vasculopathy, and fibrosis are the key hallmarks of SSc pathology. In this narrative review, we examine the relationship between inflammation and fibrosis and provide an overview of the efficacy of current and novel treatment options in diminishing SSc-related fibrosis based on selected clinical trials. To do this, we first discuss inflammatory pathways of both the innate and acquired immune systems that are associated with SSc pathophysiology. Secondly, we review evidence supporting the use of first-line therapies in SSc patients. In addition, T cell-, B cell-, and cytokine-specific treatments that have been utilized in SSc are explored. Finally, the potential effectiveness of tyrosine kinase inhibitors and other novel therapeutic approaches in reducing fibrosis is highlighted.
Collapse
Affiliation(s)
- Theodoros-Ioannis Papadimitriou
- Department of Rheumatic Diseases, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (A.v.C.); (P.M.v.d.K.); (R.M.T.)
| | | | | | | |
Collapse
|
41
|
Benfaremo D, Svegliati S, Paolini C, Agarbati S, Moroncini G. Systemic Sclerosis: From Pathophysiology to Novel Therapeutic Approaches. Biomedicines 2022; 10:biomedicines10010163. [PMID: 35052842 PMCID: PMC8773282 DOI: 10.3390/biomedicines10010163] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 12/30/2022] Open
Abstract
Systemic sclerosis (SSc) is a systemic, immune-mediated chronic disorder characterized by small vessel alterations and progressive fibrosis of the skin and internal organs. The combination of a predisposing genetic background and triggering factors that causes a persistent activation of immune system at microvascular and tissue level is thought to be the pathogenetic driver of SSc. Endothelial alterations with subsequent myofibroblast activation, excessive extracellular matrix (ECM) deposition, and unrestrained tissue fibrosis are the pathogenetic steps responsible for the clinical manifestations of this disease, which can be highly heterogeneous according to the different entity of each pathogenic step in individual subjects. Although substantial progress has been made in the management of SSc in recent years, disease-modifying therapies are still lacking. Several molecular pathways involved in SSc pathogenesis are currently under evaluation as possible therapeutic targets in clinical trials. These include drugs targeting fibrotic and metabolic pathways (e.g., TGF-β, autotaxin/LPA, melanocortin, and mTOR), as well as molecules and cells involved in the persistent activation of the immune system (e.g., IL4/IL13, IL23, JAK/STAT, B cells, and plasma cells). In this review, we provide an overview of the most promising therapeutic targets that could improve the future clinical management of SSc.
Collapse
Affiliation(s)
- Devis Benfaremo
- Clinica Medica, Department of Internal Medicine, Ospedali Riuniti “Umberto I-G.M. Lancisi-G. Salesi”, 60126 Ancona, Italy;
| | - Silvia Svegliati
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, 60126 Ancona, Italy; (S.S.); (C.P.); (S.A.)
| | - Chiara Paolini
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, 60126 Ancona, Italy; (S.S.); (C.P.); (S.A.)
| | - Silvia Agarbati
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, 60126 Ancona, Italy; (S.S.); (C.P.); (S.A.)
| | - Gianluca Moroncini
- Clinica Medica, Department of Internal Medicine, Ospedali Riuniti “Umberto I-G.M. Lancisi-G. Salesi”, 60126 Ancona, Italy;
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, 60126 Ancona, Italy; (S.S.); (C.P.); (S.A.)
- Correspondence:
| |
Collapse
|
42
|
The Immunogenetics of Systemic Sclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1367:259-298. [DOI: 10.1007/978-3-030-92616-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Wu M, Assassi S. Dysregulation of Type 1 Interferon Signaling in Systemic Sclerosis: a Promising Therapeutic Target? CURRENT TREATMENT OPTIONS IN RHEUMATOLOGY 2021; 7:349-360. [PMID: 35694218 PMCID: PMC9187215 DOI: 10.1007/s40674-021-00188-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2021] [Indexed: 01/06/2023]
Abstract
Purpose of review There are several lines of evidence at the genetic and gene expression levels linking type I interferon (IFN) activation to systemic sclerosis (SSc) pathogenesis. Herein, we summarize the potential role of type I IFN signaling components as therapeutic targets. Recent findings All type I IFN cytokines signal through the interferon-α/β receptor (IFNAR). Early phase studies indicate that anifrolumab (a human monoclonal antibody against IFNAR subunit 1) has an acceptable safety profile and can attenuate transforming growth factor beta (TGF-β)-mediated fibrosis in SSc skin, supporting its further clinical development. Janus kinase (JAK) signaling pathways are downstream from IFNAR. Building on their efficacy in hereditary interferonopathies, JAK inhibitors have the potential to block the deleterious IFN and other profibrotic cytokine activation in SSc and are promising drug targets. Moreover, interferon regulator factor (IRF) 5, 7, and 8 have been linked to the profibrotic response in SSc preclinical studies, underscoring their potential as therapeutic targets. Lastly, depletion of plasmacytoid dendritic cells (pDCs) attenuates the IFN activation and fibrotic response in vitro and murine model experiments and can be studied as a viable drug target in future clinical studies. Summary There is increasing evidence linking the prominent type I IFN activation to the observed exaggerated fibrotic response in SSc. Key components of type I IFN signaling are druggable therapeutic targets that can be pursued in future randomized clinical trials, in order to develop more effective therapeutic options for SSc.
Collapse
Affiliation(s)
- Minghua Wu
- Division of Rheumatology, Department of Internal medicine, The University of Texas McGovern Medical School at Houston, 6431 Fannin St, Houston, TX, 77030, USA
| | - Shervin Assassi
- Division of Rheumatology, Department of Internal medicine, The University of Texas McGovern Medical School at Houston, 6431 Fannin St, Houston, TX, 77030, USA
| |
Collapse
|
44
|
Contribution of monocytes and macrophages to the pathogenesis of systemic sclerosis: recent insights and therapeutic implications. Curr Opin Rheumatol 2021; 33:463-470. [PMID: 34506339 DOI: 10.1097/bor.0000000000000835] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW To discuss recent studies addressing the role of monocytes and macrophages in the pathogenesis of systemic sclerosis (SSc) based on human and mouse models. RECENT FINDINGS Studies indicate that monocyte adhesion could be increased in SSc secondary to an interferon-dependent loss of CD52, and chemotaxis up-regulated through the CCR3/CCL24 pathway. Beyond the conventional M1/M2 paradigm of macrophage subpopulations, new subpopulations of macrophages have been recently described in skin and lung biopsies from SSc patients. Notably, single-cell ribonucleic acid sequencing has provided evidence for SPP1+ lung macrophages or FCGR3A+ skin macrophages in SSc. Impaired pro-resolving capacities of macrophages such as efferocytosis, i.e. the ability to phagocyte apoptotic cells, could also participate in the inflammatory and autoimmune features in SSc. SUMMARY Through their potential pro-fibrotic and pro-inflammatory properties, macrophages are at the cross-road of key SSc pathogenic processes and associated manifestations. Investigative drugs targeting macrophage polarization, such as pan-janus kinase inhibitors (tofacitinib or ruxolitinib) impacting both M1 and M2 activations, or Romilkimab inhibiting IL-4 and IL-13, have shown promising results in preclinical models or phase I/II clinical trials in SSc and other fibro-inflammatory disorders. Macrophage-based cellular therapy may also represent an innovative approach for the treatment of SSc, as initial training of macrophages may modulate the severity of fibrotic and autoimmune manifestations of the disease.
Collapse
|
45
|
Karalilova RV, Batalov ZA, Sapundzhieva TL, Matucci-Cerinic M, Batalov AZ. Tofacitinib in the treatment of skin and musculoskeletal involvement in patients with systemic sclerosis, evaluated by ultrasound. Rheumatol Int 2021; 41:1743-1753. [PMID: 34313812 PMCID: PMC8390399 DOI: 10.1007/s00296-021-04956-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/18/2021] [Indexed: 11/30/2022]
Abstract
Systemic sclerosis (SSc) is a rare autoimmune connective tissue disease characterized by fibrosis of the skin and internal organs, autoimmunity-driven damage and vasculopathy. The current approved disease-modifying treatments have limited efficacy, and treatment is guided toward alleviating organ complications. Thus, there is an unmet need for discovering new effective treatment options. There is recent evidence that the JAK/STAT signaling pathway is markedly activated in SSc patients. To assess the efficacy and safety of tofacitinib (TOF) on skin and musculoskeletal involvement as compared to methotrexate (MTX) in systemic sclerosis (SSc). In this 52-week pilot study, 66 patients with SSc were enrolled: 33 patients received 5 mg of oral TOF twice a day; 33 received 10 mg of MTX weekly. The proportion of dcSSc and lcSSc patients was similar (dcSSc: 42% TOF group and 36% MTX group; lcSSc: 58% TOF group and 64% MTX group). The primary outcome was the change in the modified Rodnan skin score (mRSS). Secondary outcomes included ultrasound (US) skin thickness and musculoskeletal involvement (US10SSc score). Digital ulcers (DUs) and adverse events (AEs) were documented through the treatment. Both groups had similar characteristics and medians on the outcome measures at baseline. At week 52, the TOF median mRSS was significantly lower than the MTX (p < 0.001) with a mean reduction of 13 points versus MTX 2.57. The mean percent improvement in the TOF group was 44% higher than in the MTX group. TOF median US skin thickness was significantly lower than MTX (p < 0.001), with a mean reduction of 0.31 mm versus 0.075 mm in the MTX group. The US10SSc median score was significantly lower in the TOF group (p = 0.002); mean reduction of 10.21 versus 5.27 in the MTX group. Healing of DUs with no new occurrences was observed in the TOF group. There was no significant difference between the groups in the number of AEs from baseline to week 52. TOF showed greater efficacy than MTX in reducing mRSS, skin thickness and musculoskeletal involvement in SSc and a satisfactory safety profile.
Collapse
Affiliation(s)
- Rositsa Valerieva Karalilova
- Department of Internal Diseases, Medical University of Plovdiv, Plovdiv, Bulgaria
- Rheumatology Clinic, University Hospital “Kaspela”, Plovdiv, Bulgaria
| | - Zguro Anastasov Batalov
- Department of Internal Diseases, Medical University of Plovdiv, Plovdiv, Bulgaria
- Rheumatology Clinic, University Hospital “Kaspela”, Plovdiv, Bulgaria
| | - Tanya Lyubomirova Sapundzhieva
- Department of Internal Diseases, Medical University of Plovdiv, Plovdiv, Bulgaria
- Rheumatology Clinic, University Hospital “Kaspela”, Plovdiv, Bulgaria
| | - Marco Matucci-Cerinic
- Department of Experimental and Clinical Medicine, University of Florence, Rheumatology Section, Florence, Italy
| | - Anastas Zgurov Batalov
- Department of Internal Diseases, Medical University of Plovdiv, Plovdiv, Bulgaria
- Rheumatology Clinic, University Hospital “Kaspela”, Plovdiv, Bulgaria
| |
Collapse
|
46
|
Assar S, Khazaei H, Naseri M, El-Senduny F, Momtaz S, Farzaei MH, Echeverría J. Natural Formulations: Novel Viewpoint for Scleroderma Adjunct Treatment. J Immunol Res 2021; 2021:9920416. [PMID: 34258301 PMCID: PMC8253639 DOI: 10.1155/2021/9920416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/27/2021] [Accepted: 06/08/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Scleroderma is a complex disease involving autoimmune, vascular, and connective tissues, with unknown etiology that can progress through any organ systems. OBJECTIVE Yet, no cure is available; the thorough treatment of scleroderma and current treatments are based on controlling inflammation. Nowadays, medicinal plants/natural-based formulations are emerging as important regulators of many diseases, including autoimmune diseases. Here, we provided an overview of scleroderma, also focused on recent studies on medicinal plants/natural-based formulations that are beneficial in scleroderma treatment/prevention. METHODS This study is the result of a search in PubMed, Scopus, and Cochrane Library with "scleroderma", "systemic sclerosis", "plant", "herb", and "phytochemical" keywords. Finally, 22 articles were selected from a total of 1513 results entered in this study. RESULTS Natural products can modulate the inflammatory and/or oxidative mediators, regulate the production or function of the immune cells, and control the collagen synthesis, thereby attenuating the experimental and clinical manifestation of the disease. CONCLUSION Natural compounds can be considered an adjunct treatment for scleroderma to improve the quality of life of patients suffering from this disease.
Collapse
Affiliation(s)
- Shirin Assar
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hosna Khazaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Maryam Naseri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Fardous El-Senduny
- Biochemistry Division, Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
- Gastrointestinal Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
47
|
Romano E, Rosa I, Fioretto BS, Matucci-Cerinic M, Manetti M. New Insights into Profibrotic Myofibroblast Formation in Systemic Sclerosis: When the Vascular Wall Becomes the Enemy. Life (Basel) 2021; 11:610. [PMID: 34202703 PMCID: PMC8307837 DOI: 10.3390/life11070610] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 12/14/2022] Open
Abstract
In systemic sclerosis (SSc), abnormalities in microvessel morphology occur early and evolve into a distinctive vasculopathy that relentlessly advances in parallel with the development of tissue fibrosis orchestrated by myofibroblasts in nearly all affected organs. Our knowledge of the cellular and molecular mechanisms underlying such a unique relationship between SSc-related vasculopathy and fibrosis has profoundly changed over the last few years. Indeed, increasing evidence has suggested that endothelial-to-mesenchymal transition (EndoMT), a process in which profibrotic myofibroblasts originate from endothelial cells, may take center stage in SSc pathogenesis. While in arterioles and small arteries EndoMT may lead to the accumulation of myofibroblasts within the vessel wall and development of fibroproliferative vascular lesions, in capillary vessels it may instead result in vascular destruction and formation of myofibroblasts that migrate into the perivascular space with consequent tissue fibrosis and microvessel rarefaction, which are hallmarks of SSc. Besides endothelial cells, other vascular wall-resident cells, such as pericytes and vascular smooth muscle cells, may acquire a myofibroblast-like synthetic phenotype contributing to both SSc-related vascular dysfunction and fibrosis. A deeper understanding of the mechanisms underlying the differentiation of myofibroblasts inside the vessel wall provides the rationale for novel targeted therapeutic strategies for the treatment of SSc.
Collapse
Affiliation(s)
- Eloisa Romano
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, 50134 Florence, Italy; (E.R.); (B.S.F.); (M.M.-C.)
| | - Irene Rosa
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, 50134 Florence, Italy;
| | - Bianca Saveria Fioretto
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, 50134 Florence, Italy; (E.R.); (B.S.F.); (M.M.-C.)
| | - Marco Matucci-Cerinic
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, 50134 Florence, Italy; (E.R.); (B.S.F.); (M.M.-C.)
| | - Mirko Manetti
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, 50134 Florence, Italy;
| |
Collapse
|
48
|
Montero P, Milara J, Roger I, Cortijo J. Role of JAK/STAT in Interstitial Lung Diseases; Molecular and Cellular Mechanisms. Int J Mol Sci 2021; 22:6211. [PMID: 34207510 PMCID: PMC8226626 DOI: 10.3390/ijms22126211] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 02/07/2023] Open
Abstract
Interstitial lung diseases (ILDs) comprise different fibrotic lung disorders characterized by cellular proliferation, interstitial inflammation, and fibrosis. The JAK/STAT molecular pathway is activated under the interaction of a broad number of profibrotic/pro-inflammatory cytokines, such as IL-6, IL-11, and IL-13, among others, which are increased in different ILDs. Similarly, several growth factors over-expressed in ILDs, such as platelet-derived growth factor (PDGF), transforming growth factor β1 (TGF-β1), and fibroblast growth factor (FGF) activate JAK/STAT by canonical or non-canonical pathways, which indicates a predominant role of JAK/STAT in ILDs. Between the different JAK/STAT isoforms, it appears that JAK2/STAT3 are predominant, initiating cellular changes observed in ILDs. This review analyzes the expression and distribution of different JAK/STAT isoforms in ILDs lung tissue and different cell types related to ILDs, such as lung fibroblasts and alveolar epithelial type II cells and analyzes JAK/STAT activation. The effect of JAK/STAT phosphorylation on cellular fibrotic processes, such as proliferation, senescence, autophagy, endoplasmic reticulum stress, or epithelial/fibroblast to mesenchymal transition will be described. The small molecules directed to inhibit JAK/STAT activation were assayed in vitro and in in vivo models of pulmonary fibrosis, and different JAK inhibitors are currently approved for myeloproliferative disorders. Recent evidence indicates that JAK inhibitors or monoclonal antibodies directed to block IL-6 are used as compassionate use to attenuate the excessive inflammation and lung fibrosis related to SARS-CoV-2 virus. These altogether indicate that JAK/STAT pathway is an attractive target to be proven in future clinical trials of lung fibrotic disorders.
Collapse
Affiliation(s)
- Paula Montero
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; (I.R.); (J.C.)
| | - Javier Milara
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; (I.R.); (J.C.)
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Health Institute Carlos III, 28029 Madrid, Spain
- Pharmacy Unit, University General Hospital Consortium of Valencia, 46014 Valencia, Spain
| | - Inés Roger
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; (I.R.); (J.C.)
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Health Institute Carlos III, 28029 Madrid, Spain
| | - Julio Cortijo
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; (I.R.); (J.C.)
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Health Institute Carlos III, 28029 Madrid, Spain
- Research and Teaching Unit, University General Hospital Consortium, 46014 Valencia, Spain
| |
Collapse
|
49
|
Campochiaro C, Allanore Y. An update on targeted therapies in systemic sclerosis based on a systematic review from the last 3 years. Arthritis Res Ther 2021; 23:155. [PMID: 34074331 PMCID: PMC8168022 DOI: 10.1186/s13075-021-02536-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 05/19/2021] [Indexed: 11/10/2022] Open
Abstract
New molecular mechanisms that can be targeted with specific drugs have recently emerged for the treatment of systemic sclerosis (SSc) patients. Over the past 3 years, the achievement of one large phase 3 trial has led to the approval by drug agencies of the first drug licenced for SSc-related interstitial lung disease. Given this exciting time in the SSc field, we aimed to perform a systemic literature review of phase 1, phase 2 and phase 3 clinical trials and large observational studies about targeted therapies in SSc. We searched MEDLINE/PubMed, EMBASE, and ClinicalTrials.gov for clinical studies from 2016 with targeted therapies as the primary treatment in patients with SSc for skin or lung involvement as the primary clinical outcome measure. Details on the study characteristics, the trial drug used, the molecular target engaged by the trial drug, the inclusion criteria of the study, the treatment dose, the possibility of concomitant immunosuppression, the endpoints of the study, the duration of the study and the results obtained were reviewed. Of the 973 references identified, 21 (4 conference abstracts and 17 articles) were included in the systematic review. A total of 15 phase 1/phase 2 clinical trials, 2 phase 3 clinical trials and 2 observation studies were analysed. The drugs studied in phase 1/phase 2 studies included the following: inebilizumab, dabigatran, C-82, pomalidomide, rilonacept, romilkimab, tocilizumab, tofacitinib, pirfenidone, lenabasum, abatacept, belimumab, riociguat, SAR100842 and lanifibranor. All but 3 studies were performed in early diffuse SSc patients with different inclusion criteria, while 3 studies were performed in SSc patients with interstitial lung disease (ILD). Phase 3 clinical trials investigated nintedanib and tocilizumab. Nintedanib was investigated in SSc-ILD patients whereas tocilizumab focused on early diffuse SSc patients with inflammatory features. Two observational studies including > 50 patients with rituximab as the targeted drug were also evaluated. All these studies offer a real hope for SSc patients. The future challenges will be to customize patient-specific therapeutics with the goal to develop precision medicine for SSc.
Collapse
Affiliation(s)
- Corrado Campochiaro
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases (UnIRAR) IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, Via Olgettina 60, 20132, Milan, Italy
| | - Yannick Allanore
- Service de Rhumatologie, Hôpital Cochin, Université de Paris, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France.
| |
Collapse
|
50
|
Lescoat A, Varga J, Matucci-Cerinic M, Khanna D. New promising drugs for the treatment of systemic sclerosis: pathogenic considerations, enhanced classifications, and personalized medicine. Expert Opin Investig Drugs 2021; 30:635-652. [PMID: 33909517 PMCID: PMC8292968 DOI: 10.1080/13543784.2021.1923693] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023]
Abstract
Introduction: Systemic sclerosis (SSc), also known as scleroderma, is a complex orphan disease characterized by early inflammatory features, vascular hyper-reactivity, and fibrosis of the skin and internal organs. Although substantial progress has been made in the understanding of the pathogenesis of SSc, there is still no disease-modifying drug that could significantly impact the natural history of the disease.Areas covered: This review discusses the rationale, preclinical evidence, first clinical eevidence,and pending issues concerning new promising therapeutic options that are under investigation in SSc. The search strategy was based on PubMed database and clinical trial.gov, highlighting recent key pathogenic aspects and phase I or II trials of investigational drugs in SSc.Expert opinion: The identification of new molecular entities that potentially impact inflammation and fibrosis may constitute promising options for a disease modifying-agent in SSc. The early combinations of antifibrotic drugs (such as pirfenidone) with immunomodulatory agents (such as mycophenolate mofetil) may also participate to achieve such a goal. A more refined stratification of patients, based on clinical features, molecular signatures, and identification of subpopulations with distinct clinical trajectories, may also improve management strategies in the future.
Collapse
Affiliation(s)
- Alain Lescoat
- Department of Internal Medicine and Clinical Immunology, Rennes University Hospital, Rennes, France
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes, France
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Michigan Scleroderma Program, University of Michigan, Ann Arbor, Michigan, USA
| | - John Varga
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Michigan Scleroderma Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Marco Matucci-Cerinic
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence, Italy
| | - Dinesh Khanna
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Michigan Scleroderma Program, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|