1
|
Oubraim S, Hausknecht K, Micov V, Shen RY, Haj-Dahmane S. Chemogenetic inhibition of prefrontal cortex inputs to dorsal raphe reduces anxiety behaviors in male rat model of fetal alcohol spectrum disorder. Sci Rep 2025; 15:14397. [PMID: 40275074 PMCID: PMC12022358 DOI: 10.1038/s41598-025-99181-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 04/17/2025] [Indexed: 04/26/2025] Open
Abstract
Prenatal ethanol exposure (PE) causes Fetal Alcohol Spectrum Disorders (FASD), characterized by cognitive, behavioral, and emotional deficits, including anxiety and depression. PE-induced alteration in the function of dorsal raphe nucleus (DRN) serotonin (5-HT) neurons is thought to be major contributing factor for increased anxiety. However, the precise neuronal circuits involved are unknown. Using electrophysiology, optogenetics, chemogenetics, and behavioral approaches, we find that PE preferentially potentiates medial prefrontal cortex (mPFC) glutamatergic inputs, but not lateral habenula (LHb), to DRN 5-HT neurons projecting to mPFC. Additionally, PE also increases the strength of LHb but not mPFC excitatory inputs to DRN 5-HT neurons projecting to central amygdala (Ce). This input and target selective effect of PE was mediated by a circuit-specific increase in nitric oxide (NO) signaling. Importantly, chemogenetic inhibition of mPFC-DRN neuronal circuit blunted anxiety-like behaviors in PE rats. As such, our results unraveled the DRN neuronal circuitries affected by PE, which gate FASD-induced anxiety-like behaviors.
Collapse
Affiliation(s)
- Saida Oubraim
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, USA
| | - Kathryn Hausknecht
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, USA
| | - Veronika Micov
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, USA
| | - Roh-Yu Shen
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, USA
- University at Buffalo Neuroscience Program, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 1021 Main Street, Buffalo, NY, 14203, USA
| | - Samir Haj-Dahmane
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, USA.
- University at Buffalo Neuroscience Program, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 1021 Main Street, Buffalo, NY, 14203, USA.
| |
Collapse
|
2
|
Zou X, Tang Q, Wang S, Huang Y, Gui J, Tao Y, Jiang Y. Symptomatic Pathways of Comorbid Depression, Anxiety, and Stress Among Adolescents Exposed to Childhood Trauma-Insights from the Network Approach. Psychol Res Behav Manag 2025; 18:673-688. [PMID: 40123656 PMCID: PMC11930026 DOI: 10.2147/prbm.s492807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 02/21/2025] [Indexed: 03/25/2025] Open
Abstract
Background Childhood trauma can have a long-lasting influence on individuals and contribute to mental disorders, including depression and anxiety. Depression, anxiety, and stress are highly comorbid among adolescents with the trauma experience. Yet, the evolution of comorbidity remains unclear. To fill this gap, the current study aimed to explore the symptomatic and changing patterns of depression, anxiety, and stress among adolescents exposed to childhood trauma. Methods A total of 1548 college students (females = 782 (50.98%), Meanage = 19.59, SDage = 1.14) in China completed the Childhood Trauma Questionnaire (CTQ) and the Depression, Anxiety, and Stress Scales (DASS-21), and 942 students (Females = 516 (54.78%), Meanage = 19.57, SDage = 1.16) met the selection standard based on the cut-off scores of the CTQ. The symptomatic network and directed acyclic graph (DAG) network approaches were used. Results The results revealed that males reported experiencing significantly more physical abuse, physical neglect, emotional neglect, and sexual abuse compared to females. However, females scored significantly higher than males on "Worried" (DASS9), "Agitated" (DASS11), "Panic" (DASS15), and "Scared" (DASS20). No significant difference between genders was observed in the network structure and global strength. Meanwhile, among all participants, "Down-hearted" and "Agitated" appeared to be the most interconnected symptoms, the bridge symptoms in the symptom network, as well as the most vital symptoms in the directed acyclic graph network. Apart from that, "Panic" also served as the most prominent symptom in the directed acyclic graph network. Conclusion The results suggested that intervention targeted at assisting adolescents in developing more adaptive coping strategies with stress and regulating emotion could benefit the alleviation of comorbid depression, anxiety, and stress.
Collapse
Affiliation(s)
- Xinyuan Zou
- Faculty of Psychology, Beijing Normal University, Beijing, People’s Republic of China
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experiment Psychology Education, Beijing, People’s Republic of China
| | - Qihui Tang
- Faculty of Psychology, Beijing Normal University, Beijing, People’s Republic of China
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experiment Psychology Education, Beijing, People’s Republic of China
| | - Shujian Wang
- Faculty of Psychology, Beijing Normal University, Beijing, People’s Republic of China
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experiment Psychology Education, Beijing, People’s Republic of China
| | - Yulin Huang
- Department of Neuroscience, City University of Hong Kong, Hong Kong, People’s Republic of China
| | - Jie Gui
- Faculty of Architectural Decoration and Art, Jiangsu Vocational College of Electronics and Information, Huaian, People’s Republic of China
| | - Yanqiang Tao
- Faculty of Psychology, Beijing Normal University, Beijing, People’s Republic of China
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experiment Psychology Education, Beijing, People’s Republic of China
| | - Yulu Jiang
- College of Education for the Future, Beijing Normal University at Zhuhai, Zhuhai, People’s Republic of China
| |
Collapse
|
3
|
Lukow PB, Lowther M, Pike AC, Yamamori Y, Chavanne AV, Gormley S, Aylward J, McCloud T, Goble T, Rodriguez-Sanchez J, Tuominen EW, Buehler SK, Kirk P, Robinson OJ. Amygdala activity after subchronic escitalopram administration in healthy volunteers: A pharmaco-functional magnetic resonance imaging study. J Psychopharmacol 2024; 38:1071-1082. [PMID: 39364684 PMCID: PMC11531087 DOI: 10.1177/02698811241286773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
BACKGROUND Selective serotonin reuptake inhibitors (SSRIs) are used for the treatment of several conditions including anxiety disorders, but the basic neurobiology of serotonin function remains unclear. The amygdala and prefrontal cortex are strongly innervated by serotonergic projections and have been suggested to play an important role in anxiety expression. However, serotonergic function in behaviour and SSRI-mediated neurobiological changes remain incompletely understood. AIMS To investigate the neural correlates of subchronic antidepressant administration. METHODS We investigated whether the 2- to 3-week administration of a highly selective SSRI (escitalopram) would alter brain activation on a task robustly shown to recruit the bilateral amygdala and frontal cortices in a large healthy volunteer sample. Participants performed the task during a functional magnetic resonance imaging acquisition before (n = 96) and after subchronic escitalopram (n = 46, days of administration mean (SD) = 15.7 (2.70)) or placebo (n = 40 days of administration mean (SD) = 16.2 (2.90)) self-administration. RESULTS Compared to placebo, we found an elevation in right amygdala activation to the task after escitalopram administration without significant changes in mood. This effect was not seen in the left amygdala, the dorsomedial region of interest, the subgenual anterior cingulate cortex or the right fusiform area. There were no significant changes in connectivity between the dorsomedial cortex and amygdala or the subgenual anterior cingulate cortex after escitalopram administration. CONCLUSIONS To date, this most highly powered study of subchronic SSRI administration indicates that, contrary to effects often seen in patients with anxiety disorders, subchronic SSRI treatment may increase amygdala activation in healthy controls. This finding highlights important gaps in our understanding of the functional role of serotonin.
Collapse
Affiliation(s)
- Paulina B Lukow
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Millie Lowther
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Alexandra C Pike
- Institute of Cognitive Neuroscience, University College London, London, UK
- Department of Psychology & York Biomedical Research Institute, University of York, York, UK
| | - Yumeya Yamamori
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Alice V Chavanne
- Institute of Cognitive Neuroscience, University College London, London, UK
- Université Paris-Saclay, Institut National de la Santé et de la Recherche Médicale, INSERM U1299 “Trajectoires Développementales Psychiatrie,” Ecole Normale Supérieure Paris-Saclay, CNRS UMR 9010, Centre Borelli, Gif-sur-Yvette, France
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Siobhan Gormley
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Jessica Aylward
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Tayla McCloud
- Institute of Cognitive Neuroscience, University College London, London, UK
- UCL Division of Psychiatry, Maple House, London, UK
| | - Talya Goble
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Julia Rodriguez-Sanchez
- Institute of Cognitive Neuroscience, University College London, London, UK
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
| | - Ella W Tuominen
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Sarah K Buehler
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Peter Kirk
- Institute of Cognitive Neuroscience, University College London, London, UK
- Emotion and Development Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Oliver J Robinson
- Institute of Cognitive Neuroscience, University College London, London, UK
| |
Collapse
|
4
|
Merino del Portillo M, Clemente-Suárez VJ, Ruisoto P, Jimenez M, Ramos-Campo DJ, Beltran-Velasco AI, Martínez-Guardado I, Rubio-Zarapuz A, Navarro-Jiménez E, Tornero-Aguilera JF. Nutritional Modulation of the Gut-Brain Axis: A Comprehensive Review of Dietary Interventions in Depression and Anxiety Management. Metabolites 2024; 14:549. [PMID: 39452930 PMCID: PMC11509786 DOI: 10.3390/metabo14100549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
Mental health is an increasing topic of focus since more than 500 million people in the world suffer from depression and anxiety. In this multifactorial disorder, parameters such as inflammation, the state of the microbiota and, therefore, the patient's nutrition are receiving more attention. In addition, food products are the source of many essential ingredients involved in the regulation of mental processes, including amino acids, neurotransmitters, vitamins, and others. For this reason, this narrative review was carried out with the aim of analyzing the role of nutrition in depression and anxiety disorders. To reach the review aim, a critical review was conducted utilizing both primary sources, such as scientific publications and secondary sources, such as bibliographic indexes, web pages, and databases. The search was conducted in PsychINFO, MedLine (Pubmed), Cochrane (Wiley), Embase, and CinAhl. The results show a direct relationship between what we eat and the state of our nervous system. The gut-brain axis is a complex system in which the intestinal microbiota communicates directly with our nervous system and provides it with neurotransmitters for its proper functioning. An imbalance in our microbiota due to poor nutrition will cause an inflammatory response that, if sustained over time and together with other factors, can lead to disorders such as anxiety and depression. Changes in the functions of the microbiota-gut-brain axis have been linked to several mental disorders. It is believed that the modulation of the microbiome composition may be an effective strategy for a new treatment of these disorders. Modifications in nutritional behaviors and the use of ergogenic components are presented as important non-pharmacological interventions in anxiety and depression prevention and treatment. It is desirable that the choice of nutritional and probiotic treatment in individual patients be based on the results of appropriate biochemical and microbiological tests.
Collapse
Affiliation(s)
- Mariana Merino del Portillo
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (M.M.d.P.); (V.J.C.-S.); (A.R.-Z.); (J.F.T.-A.)
| | - Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (M.M.d.P.); (V.J.C.-S.); (A.R.-Z.); (J.F.T.-A.)
- Grupo de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
- Studies Centre in Applied Combat (CESCA), 45007 Toledo, Spain
| | - Pablo Ruisoto
- Department of Health Sciences, Public University of Navarre, 31006 Pamplona, Spain;
| | - Manuel Jimenez
- Departamento de Didáctica de la Educación Física y Salud, Universidad Internacional de La Rioja, 26006 Logroño, Spain;
| | - Domingo Jesús Ramos-Campo
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Science-INEF, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
| | - Ana Isabel Beltran-Velasco
- Department of Psychology, Faculty of Life and Natural Sciences, University of Nebrija, 28240 Madrid, Spain
| | - Ismael Martínez-Guardado
- BRABE Group, Department of Psychology, Faculty of Life and Natural Sciences, University of Nebrija, C/del Hostal, 28248 Madrid, Spain;
| | - Alejandro Rubio-Zarapuz
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (M.M.d.P.); (V.J.C.-S.); (A.R.-Z.); (J.F.T.-A.)
| | | | - José Francisco Tornero-Aguilera
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (M.M.d.P.); (V.J.C.-S.); (A.R.-Z.); (J.F.T.-A.)
- Studies Centre in Applied Combat (CESCA), 45007 Toledo, Spain
| |
Collapse
|
5
|
Roberts AC, Mulvihill KG. Multiple faces of anxiety: a frontal lobe perspective. Trends Neurosci 2024; 47:708-721. [PMID: 39127569 DOI: 10.1016/j.tins.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/20/2024] [Accepted: 07/11/2024] [Indexed: 08/12/2024]
Abstract
Marked dysregulation of the human prefrontal cortex (PFC) and anterior cingulate cortex (ACC) characterises a variety of anxiety disorders, and its amelioration is a key feature of treatment success. Overall treatment response, however, is highly variable, and about a third of patients are resistant to treatment. In this review we hypothesise that a major contributor to this variation in treatment response are the multiple faces of anxiety induced by distinct forms of frontal cortex dysregulation. Comparison of findings from humans and non-human primates reveals marked similarity in the functional organisation of threat regulation across the frontal lobes. This organisation is discussed in relation to the 'predatory imminence continuum' model of threat and the differential engagement of executive functions at the core of both emotion generation and regulation strategies.
Collapse
Affiliation(s)
- Angela C Roberts
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, UK.
| | - Kevin G Mulvihill
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|
6
|
Tassone VK, Gholamali Nezhad F, Demchenko I, Rueda A, Bhat V. Amygdala biomarkers of treatment response in major depressive disorder: An fMRI systematic review of SSRI antidepressants. Psychiatry Res Neuroimaging 2024; 338:111777. [PMID: 38183847 DOI: 10.1016/j.pscychresns.2023.111777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/04/2023] [Accepted: 12/28/2023] [Indexed: 01/08/2024]
Abstract
Functional neuroimaging studies have demonstrated abnormal activity and functional connectivity (FC) of the amygdala among individuals with major depressive disorder (MDD), which may be rectified with selective serotonin reuptake inhibitor (SSRI) treatment. This systematic review aimed to identify changes in the amygdala on functional magnetic resonance imaging (fMRI) scans among individuals with MDD who received SSRIs. A search for fMRI studies examining amygdala correlates of SSRI response via fMRI was conducted through OVID (MEDLINE, PsycINFO, and Embase). The end date was April 4th, 2023. In total, 623 records were screened, and 16 studies were included in this review. While the search pertained to SSRIs broadly, the included studies were escitalopram-, citalopram-, fluoxetine-, sertraline-, and paroxetine-specific. Decreases in event-related amygdala activity were found following 6-to-12-week SSRI treatment, particularly in response to negative stimuli. Eight-week courses of SSRI pharmacotherapy were associated with increased event-related amygdala FC (i.e., with the prefrontal [PFC] and anterior cingulate cortices, insula, thalamus, caudate nucleus, and putamen) and decreased resting-state effective connectivity (i.e., amygdala-PFC). Preliminary evidence suggests that SSRIs may alter amygdala activity and FC in MDD. Additional studies are needed to corroborate findings. Future research should employ long-term follow-ups to determine whether effects persist after treatment termination.
Collapse
Affiliation(s)
- Vanessa K Tassone
- Interventional Psychiatry Program, St. Michael's Hospital, 193 Yonge Street 6-013, Toronto, Ontario M5B 1M8, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Medical Sciences Building, Toronto, Ontario M5S 1A8, Canada
| | - Fatemeh Gholamali Nezhad
- Interventional Psychiatry Program, St. Michael's Hospital, 193 Yonge Street 6-013, Toronto, Ontario M5B 1M8, Canada
| | - Ilya Demchenko
- Interventional Psychiatry Program, St. Michael's Hospital, 193 Yonge Street 6-013, Toronto, Ontario M5B 1M8, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Medical Sciences Building, Toronto, Ontario M5S 1A8, Canada
| | - Alice Rueda
- Interventional Psychiatry Program, St. Michael's Hospital, 193 Yonge Street 6-013, Toronto, Ontario M5B 1M8, Canada
| | - Venkat Bhat
- Interventional Psychiatry Program, St. Michael's Hospital, 193 Yonge Street 6-013, Toronto, Ontario M5B 1M8, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Medical Sciences Building, Toronto, Ontario M5S 1A8, Canada; Neuroscience Research Program, St. Michael's Hospital, 193 Yonge Street 6-013, Toronto, Ontario M5B 1M8, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, 250 College Street, Toronto, Ontario M5T 1R8, Canada.
| |
Collapse
|
7
|
Yamamori Y, Robinson OJ, Roiser JP. Approach-avoidance reinforcement learning as a translational and computational model of anxiety-related avoidance. eLife 2023; 12:RP87720. [PMID: 37963085 PMCID: PMC10645421 DOI: 10.7554/elife.87720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023] Open
Abstract
Although avoidance is a prevalent feature of anxiety-related psychopathology, differences in the measurement of avoidance between humans and non-human animals hinder our progress in its theoretical understanding and treatment. To address this, we developed a novel translational measure of anxiety-related avoidance in the form of an approach-avoidance reinforcement learning task, by adapting a paradigm from the non-human animal literature to study the same cognitive processes in human participants. We used computational modelling to probe the putative cognitive mechanisms underlying approach-avoidance behaviour in this task and investigated how they relate to subjective task-induced anxiety. In a large online study (n = 372), participants who experienced greater task-induced anxiety avoided choices associated with punishment, even when this resulted in lower overall reward. Computational modelling revealed that this effect was explained by greater individual sensitivities to punishment relative to rewards. We replicated these findings in an independent sample (n = 627) and we also found fair-to-excellent reliability of measures of task performance in a sub-sample retested 1 week later (n = 57). Our findings demonstrate the potential of approach-avoidance reinforcement learning tasks as translational and computational models of anxiety-related avoidance. Future studies should assess the predictive validity of this approach in clinical samples and experimental manipulations of anxiety.
Collapse
Affiliation(s)
- Yumeya Yamamori
- Institute of Cognitive Neuroscience, University College LondonLondonUnited Kingdom
| | - Oliver J Robinson
- Institute of Cognitive Neuroscience, University College LondonLondonUnited Kingdom
- Research Department of Clinical, Educational and Health Psychology, University College LondonLondonUnited Kingdom
| | - Jonathan P Roiser
- Institute of Cognitive Neuroscience, University College LondonLondonUnited Kingdom
| |
Collapse
|
8
|
Webb EK, Timmer-Murillo SC, Huggins AA, Tomas CW, deRoon-Cassini TA, Larson CL. Attributional negativity bias and acute stress disorder symptoms mediate the association between trauma history and future posttraumatic stress disorder. J Trauma Stress 2023; 36:785-795. [PMID: 37339014 PMCID: PMC10528836 DOI: 10.1002/jts.22942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 06/22/2023]
Abstract
Individuals who have experienced more trauma throughout their life have a heightened risk of developing posttraumatic stress disorder (PTSD) following injury. Although trauma history cannot be retroactively modified, identifying the mechanism(s) by which preinjury life events influence future PTSD symptoms may help clinicians mitigate the detrimental effects of past adversity. The current study proposed attributional negativity bias, the tendency to perceive stimuli/events as negative, as a potential intermediary in PTSD development. We hypothesized an association between trauma history and PTSD symptom severity following a new index trauma via heightened negativity bias and acute stress disorder (ASD) symptoms. Recent trauma survivors (N =189, 55.5% women, 58.7% African American/Black) completed assessments of ASD, negativity bias, and lifetime trauma 2-weeks postinjury; PTSD symptoms were assessed 6 months later. A parallel mediation model was tested with bootstrapping (10,000 resamples). Both negativity bias, Path b1 : β = -.24, t(187) = -2.88, p = .004, and ASD symptoms, Path b2 : β = .30, t(187) = 3.71, p < .001, fully mediated the association between trauma history and 6-month PTSD symptoms, full model: F(6, 182) = 10.95, p < .001, R 2 = .27; Path c': β = .04, t(187) = 0.54, p = .587. These results suggest that negativity bias may reflect an individual cognitive difference that can be further activated by acute trauma. Moreover, negativity bias may be an important, modifiable treatment target, and interventions addressing both acute symptoms and negativity bias in the early posttrauma period may weaken the link between trauma history and new-onset PTSD.
Collapse
Affiliation(s)
- E Kate Webb
- Division of Depression and Anxiety, McLean Hospital, Belmont, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Massachusetts, USA
| | - Sydney C Timmer-Murillo
- Division of Trauma & Acute Care Surgery, Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Ashley A Huggins
- Brain Imaging and Analysis Center, Duke University, Durham, North Carolina, USA
| | - Carissa W Tomas
- Division of Epidemiology and Social Sciences, Institute for Health Equity, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Terri A deRoon-Cassini
- Division of Trauma & Acute Care Surgery, Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Christine L Larson
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| |
Collapse
|
9
|
Tali E, Potharst ES, de Bruin EI, Utens EMWJ. Self-Compassion and Anxiety in Adolescents with and without Anxiety Disorder. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1181. [PMID: 37508678 PMCID: PMC10378593 DOI: 10.3390/children10071181] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023]
Abstract
Previous studies have linked self-compassion to mental health, specifically anxiety, in non-clinical adolescents, suggesting that self-compassion can be a protective factor against anxiety. This study compared the overall level of self-compassion and (un)compassionate self-responding in adolescents with and without an anxiety disorder and assessed the association between self-compassion and anxiety. This cross-sectional study included adolescents (12-19 years) with an anxiety disorder (N = 23) and a reference group (N = 28). Participants completed the Self-Compassion Scale (SCS) and State Trait Anxiety Inventory (STAI). Results showed that overall self-compassion and uncompassionate self-responding were significantly lower and higher in the clinical than the reference group, respectively, while compassionate self-responding did not differ between groups. In the clinical group, only uncompassionate self-responding was significantly associated with higher anxiety. In the reference group, uncompassionate self-responding showed a significant positive association with anxiety, and compassionate self-responding showed a significant negative association with anxiety. Although the results suggest that low uncompassionate self-responding may buffer against anxiety, the role of compassionate and uncompassionate self-responding remains unclear. An alternative explanation is that the uncompassionate self-responding items measure the presence of psychopathology in adolescents with an anxiety disorder. More research on the construct validity of the SCS uncompassionate self-responding scale is needed.
Collapse
Affiliation(s)
- Edibe Tali
- Levvel, Rijksstraatweg 145, 1115 AP Duivendrecht, The Netherlands
| | - Eva S Potharst
- UvA Minds, Academic Outpatient (Child and Adolescent) Treatment Centre, University of Amsterdam, Banstraat 29, 1071 JW Amsterdam, The Netherlands
- Research Institute of Child Development and Education, University of Amsterdam, Nieuwe Achtergracht 127, 1018 WS Amsterdam, The Netherlands
| | - Esther I de Bruin
- UvA Minds, Academic Outpatient (Child and Adolescent) Treatment Centre, University of Amsterdam, Banstraat 29, 1071 JW Amsterdam, The Netherlands
- Research Institute of Child Development and Education, University of Amsterdam, Nieuwe Achtergracht 127, 1018 WS Amsterdam, The Netherlands
| | - Elisabeth M W J Utens
- Research Institute of Child Development and Education, University of Amsterdam, Nieuwe Achtergracht 127, 1018 WS Amsterdam, The Netherlands
- Department of Child and Adolescent Psychiatry, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Department of Child and Adolescent Psychiatry/Psychology, Sophia Children's Hospital, Erasmus Medical Center, Wytemaweg 8, 3015 CN Rotterdam, The Netherlands
| |
Collapse
|
10
|
Alipour M, Tebianian M, Tofigh N, Taheri RS, Mousavi SA, Naseri A, Ahmadi A, Munawar N, Shahpasand K. Active immunotherapy against pathogenic Cis pT231-tau suppresses neurodegeneration in traumatic brain injury mouse models. Neuropeptides 2022; 96:102285. [PMID: 36087426 DOI: 10.1016/j.npep.2022.102285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 10/14/2022]
Abstract
Traumatic brain injury (TBI), characterized by acute neurological impairment, is associated with a higher incidence of neurodegenerative diseases, particularly chronic traumatic encephalopathy (CTE), Alzheimer's disease (AD), and Parkinson's disease (PD), whose hallmarks include hyperphosphorylated tau protein. Recently, phosphorylated tau at Thr231 has been shown to exist in two distinct cis and trans conformations. Moreover, targeted elimination of cis P-tau by passive immunotherapy with an appropriate mAb that efficiently suppresses tau-mediated neurodegeneration in severe TBI mouse models has proven to be a useful tool to characterize the neurotoxic role of cis P-tau as an early driver of the tauopathy process after TBI. Here, we investigated whether active immunotherapy can develop sufficient neutralizing antibodies to specifically target and eliminate cis P-tau in the brain of TBI mouse models. First, we explored the therapeutic efficacy of two different vaccines. C57BL/6 J mice were immunized with either cis or trans P-tau conformational peptides plus adjuvant. After rmTBI in mice, we found that cis peptide administration developed a specific Ab that precisely targeted and neutralized cis P-tau, inhibited the development of neuropathology and brain dysfunction, and restored various structural and functional sequelae associated with TBI in chronic phases. In contrast, trans P-tau peptide application not only lacked neuroprotective properties, but also contributed to a number of neuropathological features, including progressive TBI-induced neuroinflammation, widespread tau-mediated neurodegeneration, worsening functional deficits, and brain atrophy. Taken together, our results suggest that active immunotherapy strategies against pathogenic cis P-tau can halt the process of tauopathy and would have profound clinical implications.
Collapse
Affiliation(s)
- Masoume Alipour
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Faculty of Basic Science and Advanced Medical Technologies, Royan Institute, ACECR, Tehran, Iran
| | - Majid Tebianian
- Biotechnology Department, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Nahid Tofigh
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Reyhaneh Sadat Taheri
- Department of Motor Behavior, Faculty of Physical Education and Sport Sciences, Allameh Tabataba'i University, Tehran, Iran
| | - Sayed Alireza Mousavi
- Department of Biology, Faculty of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Asal Naseri
- Department of Biology, Faculty of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Amin Ahmadi
- Department of Biomedical Sciences, Tabriz Medical University, Tabriz, Iran
| | - Nayla Munawar
- Department of Chemistry, United Arab Emirates University, United Arab Emirates
| | - Koorosh Shahpasand
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
11
|
Kenwood MM, Kalin NH, Barbas H. The prefrontal cortex, pathological anxiety, and anxiety disorders. Neuropsychopharmacology 2022; 47:260-275. [PMID: 34400783 PMCID: PMC8617307 DOI: 10.1038/s41386-021-01109-z] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 02/07/2023]
Abstract
Anxiety is experienced in response to threats that are distal or uncertain, involving changes in one's subjective state, autonomic responses, and behavior. Defensive and physiologic responses to threats that involve the amygdala and brainstem are conserved across species. While anxiety responses typically serve an adaptive purpose, when excessive, unregulated, and generalized, they can become maladaptive, leading to distress and avoidance of potentially threatening situations. In primates, anxiety can be regulated by the prefrontal cortex (PFC), which has expanded in evolution. This prefrontal expansion is thought to underlie primates' increased capacity to engage high-level regulatory strategies aimed at coping with and modifying the experience of anxiety. The specialized primate lateral, medial, and orbital PFC sectors are connected with association and limbic cortices, the latter of which are connected with the amygdala and brainstem autonomic structures that underlie emotional and physiological arousal. PFC pathways that interface with distinct inhibitory systems within the cortex, the amygdala, or the thalamus can regulate responses by modulating neuronal output. Within the PFC, pathways connecting cortical regions are poised to reduce noise and enhance signals for cognitive operations that regulate anxiety processing and autonomic drive. Specialized PFC pathways to the inhibitory thalamic reticular nucleus suggest a mechanism to allow passage of relevant signals from thalamus to cortex, and in the amygdala to modulate the output to autonomic structures. Disruption of specific nodes within the PFC that interface with inhibitory systems can affect the negative bias, failure to regulate autonomic arousal, and avoidance that characterize anxiety disorders.
Collapse
Affiliation(s)
- Margaux M Kenwood
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Neuroscience Training Program at University of Wisconsin-Madison, Madison, USA
| | - Ned H Kalin
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Neuroscience Training Program at University of Wisconsin-Madison, Madison, USA
- Wisconsin National Primate Center, Madison, WI, USA
| | - Helen Barbas
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, MA, USA.
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
12
|
Pasquereau B, Drui G, Saga Y, Richard A, Millot M, Météreau E, Sgambato V, Tobler PN, Tremblay L. Selective serotonin reuptake inhibitor treatment retunes emotional valence in primate ventral striatum. Neuropsychopharmacology 2021; 46:2073-2082. [PMID: 33692476 PMCID: PMC8505611 DOI: 10.1038/s41386-021-00991-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/29/2021] [Accepted: 02/19/2021] [Indexed: 01/31/2023]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are widely used to treat psychiatric disorders with affective biases such as depression and anxiety. How SSRIs exert a beneficial action on emotions associated with life events is still unknown. Here we ask whether and how the effectiveness of the SSRI fluoxetine is underpinned by neural mechanisms in the ventral striatum. To address these issues, we studied the spiking activity of neurons in the ventral striatum of monkeys during an approach-avoidance task in which the valence assigned to sensory stimuli was manipulated. Neural responses to positive and negative events were measured before and during a 4-week treatment with fluoxetine. We conducted PET scans to confirm that fluoxetine binds within the ventral striatum at a therapeutic dose. In our monkeys, fluoxetine facilitated approach of rewards and avoidance of punishments. These beneficial effects were associated with changes in tonic and phasic activities of striatal neurons. Fluoxetine increased the spontaneous firing rate of striatal neurons and amplified the number of cells responding to rewards versus punishments, reflecting a drug-induced positive shift in the processing of emotionally valenced information. These findings reveal how SSRI treatment affects ventral striatum neurons encoding positive and negative valence and striatal signaling of emotional information. In addition to a key role in appetitive processing, our results shed light on the involvement of the ventral striatum in aversive processing. Together, the ventral striatum appears to play a central role in the action of SSRIs on emotion processing biases commonly observed in psychiatric disorders.
Collapse
Affiliation(s)
- Benjamin Pasquereau
- Institut des Sciences Cognitives Marc Jeannerod, UMR 5229, Centre National de la Recherche Scientifique, Bron Cedex, France. .,Université Claude Bernard Lyon 1, Villeurbanne, France.
| | - Guillaume Drui
- grid.465537.6Institut des Sciences Cognitives Marc Jeannerod, UMR 5229, Centre National de la Recherche Scientifique, Bron Cedex, France ,grid.7849.20000 0001 2150 7757Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Yosuke Saga
- grid.465537.6Institut des Sciences Cognitives Marc Jeannerod, UMR 5229, Centre National de la Recherche Scientifique, Bron Cedex, France ,grid.7849.20000 0001 2150 7757Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Augustin Richard
- grid.465537.6Institut des Sciences Cognitives Marc Jeannerod, UMR 5229, Centre National de la Recherche Scientifique, Bron Cedex, France ,grid.7849.20000 0001 2150 7757Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Mathilde Millot
- grid.465537.6Institut des Sciences Cognitives Marc Jeannerod, UMR 5229, Centre National de la Recherche Scientifique, Bron Cedex, France ,grid.7849.20000 0001 2150 7757Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Elise Météreau
- grid.465537.6Institut des Sciences Cognitives Marc Jeannerod, UMR 5229, Centre National de la Recherche Scientifique, Bron Cedex, France ,grid.7849.20000 0001 2150 7757Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Véronique Sgambato
- grid.465537.6Institut des Sciences Cognitives Marc Jeannerod, UMR 5229, Centre National de la Recherche Scientifique, Bron Cedex, France ,grid.7849.20000 0001 2150 7757Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Philippe N. Tobler
- grid.7400.30000 0004 1937 0650Laboratory for Social and Neural Systems Research, Department of Economics, University of Zurich, Zurich, Switzerland
| | - Léon Tremblay
- grid.465537.6Institut des Sciences Cognitives Marc Jeannerod, UMR 5229, Centre National de la Recherche Scientifique, Bron Cedex, France ,grid.7849.20000 0001 2150 7757Université Claude Bernard Lyon 1, Villeurbanne, France
| |
Collapse
|
13
|
Hu P, He Y, Liu X, Ren Z, Liu S. Modulating emotion processing using transcranial alternating current stimulation (tACS) - A sham-controlled study in healthy human participants. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:6667-6670. [PMID: 34892637 DOI: 10.1109/embc46164.2021.9630564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
As an emerging non-invasive neuromodulation technique, transcranial alternating current stimulation(tACS) has been reported to be used in mood regulation, cognitive modulation and brain trauma recovery by applying specific frequency currents. However, the neuromodulatory mechanisms and effects of tACS on emotion processing are unclear. In this study, a single-blind experiment with 44 healthy subjects in 1:1 randomized groups (experimental group given 10 Hz-tACS and control group given sham-stimulation) was conducted. The effects of tACS applied to the prefrontal lobe on the brain's emotional state and emotional cognitive processing in response to emotional stimulation patterns were explored by designing two experimental paradigms of an 8-minute open and closed eye resting task and an emotional face oddball task. Power spectrum and event-related potentials were extracted to explore the effect of tACS on brain rhythm modulation and attention modulation. It was found that the experimental group showed significantly enhanced alpha rhythm in the whole brain range after tACS, especially in the parieto-occipital lobe. The rate of misclassification of neutral emotions into negative emotions was significantly lower and the amplitude of P2 and P3 of event-related potentials were significantly higher when performing the emotional face task after tACS, while the control group did not have this phenomenon. These results suggest that tACS can modulate and enhance alpha rhythm activity by synchronizing alpha oscillations in the frontoparietal attention network, thereby improving subjects' negative emotion cognitive bias and enhancing their emotion processing by increasing early and late levels of emotional attention.
Collapse
|
14
|
Smits FM, Schutter DJLG, van Honk J, Geuze E. Does non-invasive brain stimulation modulate emotional stress reactivity? Soc Cogn Affect Neurosci 2021; 15:23-51. [PMID: 31993648 PMCID: PMC7171378 DOI: 10.1093/scan/nsaa011] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/09/2019] [Accepted: 01/08/2020] [Indexed: 12/14/2022] Open
Abstract
Excessive emotional responses to stressful events can detrimentally affect psychological functioning and mental health. Recent studies have provided evidence that non-invasive brain stimulation (NBS) targeting the prefrontal cortex (PFC) can affect the regulation of stress-related emotional responses. However, the reliability and effect sizes have not been systematically analyzed. In the present study, we reviewed and meta-analyzed the effects of repetitive transcranial magnetic (rTMS) and transcranial direct current stimulation (tDCS) over the PFC on acute emotional stress reactivity in healthy individuals. Forty sham-controlled single-session rTMS and tDCS studies were included. Separate random effects models were performed to estimate the mean effect sizes of emotional reactivity. Twelve rTMS studies together showed no evidence that rTMS over the PFC influenced emotional reactivity. Twenty-six anodal tDCS studies yielded a weak beneficial effect on stress-related emotional reactivity (Hedges’ g = −0.16, CI95% = [−0.33, 0.00]). These findings suggest that a single session of NBS is insufficient to induce reliable, clinically significant effects but also provide preliminary evidence that specific NBS methods can affect emotional reactivity. This may motivate further research into augmenting the efficacy of NBS protocols on stress-related processes.
Collapse
Affiliation(s)
- Fenne M Smits
- Brain Research & Innovation Centre, Ministry of Defence, Lundlaan 1, 3584 EZ, Utrecht, The Netherlands.,Department of Psychiatry, UMC Utrecht Brain Center, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Dennis J L G Schutter
- Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, 3584 CS, Utrecht, The Netherlands
| | - Jack van Honk
- Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, 3584 CS, Utrecht, The Netherlands.,Department of Psychiatry and Mental Health, University of Cape Town, Observatory, 7925, Cape Town, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Elbert Geuze
- Brain Research & Innovation Centre, Ministry of Defence, Lundlaan 1, 3584 EZ, Utrecht, The Netherlands.,Department of Psychiatry, UMC Utrecht Brain Center, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| |
Collapse
|
15
|
Charpentier CJ, Faulkner P, Pool ER, Ly V, Tollenaar MS, Kluen LM, Fransen A, Yamamori Y, Lally N, Mkrtchian A, Valton V, Huys QJM, Sarigiannidis I, Morrow KA, Krenz V, Kalbe F, Cremer A, Zerbes G, Kausche FM, Wanke N, Giarrizzo A, Pulcu E, Murphy S, Kaltenboeck A, Browning M, Paul LK, Cools R, Roelofs K, Pessoa L, Harmer CJ, Chase HW, Grillon C, Schwabe L, Roiser JP, Robinson OJ, O'Doherty JP. How Representative are Neuroimaging Samples? Large-Scale Evidence for Trait Anxiety Differences Between fMRI and Behaviour-Only Research Participants. Soc Cogn Affect Neurosci 2021; 16:1057-1070. [PMID: 33950220 PMCID: PMC8483285 DOI: 10.1093/scan/nsab057] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 03/13/2021] [Accepted: 05/04/2021] [Indexed: 12/15/2022] Open
Abstract
Over the past three decades, functional magnetic resonance imaging (fMRI) has become crucial to study how cognitive processes are implemented in the human brain. However, the question of whether participants recruited into fMRI studies differ from participants recruited into other study contexts has received little to no attention. This is particularly pertinent when effects fail to generalize across study contexts: for example, a behavioural effect discovered in a non-imaging context not replicating in a neuroimaging environment. Here, we tested the hypothesis, motivated by preliminary findings (N = 272), that fMRI participants differ from behaviour-only participants on one fundamental individual difference variable: trait anxiety. Analysing trait anxiety scores and possible confounding variables from healthy volunteers across multiple institutions (N = 3317), we found robust support for lower trait anxiety in fMRI study participants, consistent with a sampling or self-selection bias. The bias was larger in studies that relied on phone screening (compared with full in-person psychiatric screening), recruited at least partly from convenience samples (compared with community samples), and in pharmacology studies. Our findings highlight the need for surveying trait anxiety at recruitment and for appropriate screening procedures or sampling strategies to mitigate this bias.
Collapse
Affiliation(s)
- Caroline J Charpentier
- California Institute of Technology, Pasadena, CA, USA.,Institute of Cognitive Neuroscience, University College London, London, UK
| | | | - Eva R Pool
- University of Geneva, Geneva, Switzerland
| | - Verena Ly
- Department of Clinical Psychology, Leiden University; Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| | - Marieke S Tollenaar
- Department of Clinical Psychology, Leiden University; Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| | - Lisa M Kluen
- California Institute of Technology, Pasadena, CA, USA
| | - Aniek Fransen
- California Institute of Technology, Pasadena, CA, USA
| | - Yumeya Yamamori
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Níall Lally
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Anahit Mkrtchian
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Vincent Valton
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Quentin J M Huys
- Institute of Cognitive Neuroscience, University College London, London, UK
| | | | | | | | | | | | | | | | | | | | - Erdem Pulcu
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Susannah Murphy
- Department of Psychiatry, University of Oxford, Oxford, UK.,Oxford Health NHS Trust, Oxford, UK
| | - Alexander Kaltenboeck
- Department of Psychiatry, University of Oxford, Oxford, UK.,Department of Psychiatry and Psychotherapy, Clinical Division of Social Psychiatry, Medical University of Vienna, Austria
| | - Michael Browning
- Department of Psychiatry, University of Oxford, Oxford, UK.,Oxford Health NHS Trust, Oxford, UK
| | - Lynn K Paul
- California Institute of Technology, Pasadena, CA, USA
| | - Roshan Cools
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.,Department of Psychiatry, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Karin Roelofs
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Luiz Pessoa
- University of Maryland, College Park, MD, USA
| | - Catherine J Harmer
- Department of Psychiatry, University of Oxford, Oxford, UK.,Oxford Health NHS Trust, Oxford, UK
| | - Henry W Chase
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | - Jonathan P Roiser
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Oliver J Robinson
- Institute of Cognitive Neuroscience, University College London, London, UK
| | | |
Collapse
|
16
|
Deza-Araujo YI, Baez-Lugo S, Vuilleumier P, Chocat A, Chételat G, Poisnel G, Klimecki OM. Whole blood serotonin levels in healthy elderly are negatively associated with the functional activity of emotion-related brain regions. Biol Psychol 2021; 160:108051. [PMID: 33592271 DOI: 10.1016/j.biopsycho.2021.108051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/31/2020] [Accepted: 02/09/2021] [Indexed: 11/19/2022]
Abstract
Understanding the role of neuromodulators of socio-affective processing is important to ensure psychological wellbeing during older years. Here, we investigated the link between blood serotonin levels and brain and behavioral responses to emotional information in healthy elderly. A priori regions of interest (ROI) were selected due to their role in emotion processing and their dense serotonergic innervation. Correlation analyses were performed between ROI-specific responses to emotional stimuli and whole blood serotonin levels. We found significant negative associations between serotonin and functional activity for the bilateral insula, dorsal anterior cingulate cortex and subgenual gyrus. No association with behavioral measures survived correction for multiple testing. Our results mirror prior pharmacological and genetic work on the link between serotonin and emotional brain reactivity in younger adults. Given the involvement of serotonin in several age-related changes, our study encourages future research to characterize the role of this neuromodulator in emotion processing across the lifespan.
Collapse
Affiliation(s)
- Yacila I Deza-Araujo
- Swiss Center for Affective Sciences, University of Geneva, Geneva, Switzerland; Laboratory for Behavioral Neurology and Imaging of Cognition, Department of Neuroscience, Medical School, University of Geneva, Geneva, Switzerland.
| | - Sebastian Baez-Lugo
- Swiss Center for Affective Sciences, University of Geneva, Geneva, Switzerland; Laboratory for Behavioral Neurology and Imaging of Cognition, Department of Neuroscience, Medical School, University of Geneva, Geneva, Switzerland
| | - Patrik Vuilleumier
- Swiss Center for Affective Sciences, University of Geneva, Geneva, Switzerland; Laboratory for Behavioral Neurology and Imaging of Cognition, Department of Neuroscience, Medical School, University of Geneva, Geneva, Switzerland
| | - Anne Chocat
- Inserm, UMR-S U1237, Université De Caen-Normandie, GIP Cyceron, Caen, France
| | - Gaël Chételat
- Inserm, UMR-S U1237, Université De Caen-Normandie, GIP Cyceron, Caen, France
| | - Géraldine Poisnel
- Inserm, UMR-S U1237, Université De Caen-Normandie, GIP Cyceron, Caen, France
| | - Olga M Klimecki
- Swiss Center for Affective Sciences, University of Geneva, Geneva, Switzerland; Clinical Psychology and Behavioral Neuroscience, Faculty of Psychology, Technische Universität Dresden, 01187, Dresden, Germany
| |
Collapse
|
17
|
Piguet C, Mihailov A, Grigis A, Laidi C, Duchesnay E, Houenou J. Irritability Is Associated With Decreased Cortical Surface Area and Anxiety With Decreased Gyrification During Brain Development. Front Psychiatry 2021; 12:744419. [PMID: 34630188 PMCID: PMC8492928 DOI: 10.3389/fpsyt.2021.744419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/25/2021] [Indexed: 11/14/2022] Open
Abstract
Background: Brain development is of utmost importance for the emergence of psychiatric disorders, as the most severe of them arise before 25 years old. However, little is known regarding how early transdiagnostic symptoms, in a dimensional framework, are associated with cortical development. Anxiety and irritability are central vulnerability traits for subsequent mood and anxiety disorders. In this study, we investigate how these dimensions are related to structural changes in the brain to understand how they may increase the transition risk to full-blown disorders. Methods: We used the opportunity of an open access developmental cohort, the Healthy Brain Network, to investigate associations between cortical surface markers and irritability and anxiety scores as measured by parents and self-reports. Results: We found that in 658 young people (with a mean age of 11.6) the parental report of irritability is associated with decreased surface area in the bilateral rostral prefrontal cortex and the precuneus. Furthermore, parental reports of anxiety were associated with decreased local gyrification index in the anterior cingulate cortex and dorsomedial prefrontal cortex. Conclusions: These results are consistent with current models of emotion regulation network maturation, showing decreased surface area or gyrification index in regions associated with impaired affective control in mood and anxiety disorders. Our results highlight how dimensional traits may increase vulnerability for these disorders.
Collapse
Affiliation(s)
- Camille Piguet
- NeuroSpin, CEA, University Paris Saclay, Gif-sur-Yvette, France.,Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Antoine Grigis
- NeuroSpin, CEA, University Paris Saclay, Gif-sur-Yvette, France
| | - Charles Laidi
- NeuroSpin, CEA, University Paris Saclay, Gif-sur-Yvette, France.,Université Paris Est Créteil, INSERM, IMRB, Translational Neuropsychiatry, Fondation FondaMental, Créteil, France.,Assistance Publique-Hôpitaux de Paris (AP-HP), DMU IMPACT, Mondor University Hospitals, Créteil, France
| | | | - Josselin Houenou
- NeuroSpin, CEA, University Paris Saclay, Gif-sur-Yvette, France.,Université Paris Est Créteil, INSERM, IMRB, Translational Neuropsychiatry, Fondation FondaMental, Créteil, France.,Assistance Publique-Hôpitaux de Paris (AP-HP), DMU IMPACT, Mondor University Hospitals, Créteil, France
| |
Collapse
|
18
|
Galli G, Miniussi C, Pellicciari MC. Transcranial electric stimulation as a neural interface to gain insight on human brain functions: current knowledge and future perspective. Soc Cogn Affect Neurosci 2020; 17:4-14. [PMID: 32756871 DOI: 10.1093/scan/nsaa099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/12/2020] [Accepted: 07/11/2020] [Indexed: 11/12/2022] Open
Abstract
The use of brain-stimulation approaches in social and affective science has greatly increased over the last two decades. The interest in social factors has grown along with technological advances in brain research. Transcranial electric stimulation (tES) is a research tool that allows scientists to establish contributory causality between brain functioning and social behaviour, therefore deepening our understanding of the social mind. Preliminary evidence is also starting to demonstrate that tES, either alone or in combination with pharmacological or behavioural interventions, can alleviate the symptomatology of individuals with affective or social cognition disorders. This review offers an overview of the application of tES in the field of social and affective neuroscience. We discuss issues and challenges related to this application and suggest avenue for future basic and translational research.
Collapse
Affiliation(s)
- Giulia Galli
- Department of Psychology, Kingston University, Penrhyn Road, Kingston Upon Thames, KT1 2EE, United Kingdom
| | - Carlo Miniussi
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Corso Bettini, 31, 38068 Rovereto, TN Italy
| | - Maria Concetta Pellicciari
- UniCamillus - Saint Camillus International University of Health Sciences, via di Sant'Alessandro 8, 00131, Rome, Italy
| |
Collapse
|
19
|
Barbour T, Holmes AJ, Farabaugh AH, DeCross SN, Coombs G, Boeke EA, Wolthusen RPF, Nyer M, Pedrelli P, Fava M, Holt DJ. Elevated Amygdala Activity in Young Adults With Familial Risk for Depression: A Potential Marker of Low Resilience. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 5:194-202. [PMID: 31948836 PMCID: PMC7448615 DOI: 10.1016/j.bpsc.2019.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 10/25/2019] [Accepted: 10/25/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND Amygdala overactivity has been frequently observed in patients with depression, as well as in nondepressed relatives of patients with depression. A remaining unanswered question is whether elevated amygdala activity in those with familial risk for depression is related to the presence of subthreshold symptoms or to a trait-level vulnerability for illness. METHODS To examine this question, functional magnetic resonance imaging data were collected in nondepressed young adults with (family history [FH+]) (n = 27) or without (FH-) (n = 45) a first-degree relative with a history of depression while they viewed images of "looming" or withdrawing stimuli (faces and cars) that varied in salience by virtue of their apparent proximity to the subject. Activation of the amygdala and 2 other regions known to exhibit responses to looming stimuli, the dorsal intraparietal sulcus (DIPS) and ventral premotor cortex (PMv), were measured, as well as levels of resilience, anxiety, and psychotic and depressive symptoms. RESULTS Compared with the FH- group, the FH+ group exhibited significantly greater responses of the amygdala, but not the dorsal intraparietal sulcus or ventral premotor cortex, to looming face stimuli. Moreover, amygdala responses in the FH+ group were negatively correlated with levels of resilience and unrelated to levels of subthreshold symptoms of psychopathology. CONCLUSIONS These findings indicate that elevated amygdala activity in nondepressed young adults with a familial history of depression is more closely linked to poor resilience than to current symptom state.
Collapse
Affiliation(s)
- Tracy Barbour
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts.
| | - Avram J Holmes
- Department of Psychology, Yale University, New Haven, Connecticut
| | - Amy H Farabaugh
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Stephanie N DeCross
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Garth Coombs
- Department of Psychology, Harvard University, Cambridge, Massachusetts
| | - Emily A Boeke
- Department of Psychology, New York University, New York, New York
| | - Rick P F Wolthusen
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts; Translational Developmental Neuroscience Section, Department of Child and Adolescent Psychiatry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Maren Nyer
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Paola Pedrelli
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Maurizio Fava
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Daphne J Holt
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts
| |
Collapse
|
20
|
Marcus DJ, Bedse G, Gaulden AD, Ryan JD, Kondev V, Winters ND, Rosas-Vidal LE, Altemus M, Mackie K, Lee FS, Delpire E, Patel S. Endocannabinoid Signaling Collapse Mediates Stress-Induced Amygdalo-Cortical Strengthening. Neuron 2020; 105:1062-1076.e6. [PMID: 31948734 DOI: 10.1016/j.neuron.2019.12.024] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 11/25/2019] [Accepted: 12/18/2019] [Indexed: 11/27/2022]
Abstract
Functional coupling between the amygdala and the dorsomedial prefrontal cortex (dmPFC) has been implicated in the generation of negative affective states; however, the mechanisms by which stress increases amygdala-dmPFC synaptic strength and generates anxiety-like behaviors are not well understood. Here, we show that the mouse basolateral amygdala (BLA)-prelimbic prefrontal cortex (plPFC) circuit is engaged by stress and activation of this pathway in anxiogenic. Furthermore, we demonstrate that acute stress exposure leads to a lasting increase in synaptic strength within a reciprocal BLA-plPFC-BLA subcircuit. Importantly, we identify 2-arachidonoylglycerol (2-AG)-mediated endocannabinoid signaling as a key mechanism limiting glutamate release at BLA-plPFC synapses and the functional collapse of multimodal 2-AG signaling as a molecular mechanism leading to persistent circuit-specific synaptic strengthening and anxiety-like behaviors after stress exposure. These data suggest that circuit-specific impairment in 2-AG signaling could facilitate functional coupling between the BLA and plPFC and the translation of environmental stress to affective pathology.
Collapse
Affiliation(s)
- David J Marcus
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA; The Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA
| | - Gaurav Bedse
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Andrew D Gaulden
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - James D Ryan
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA; Sackler Institute for Developmental Psychobiology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Veronika Kondev
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA; The Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA
| | - Nathan D Winters
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA; The Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA
| | - Luis E Rosas-Vidal
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Megan Altemus
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ken Mackie
- Gill Center for Biomolecular Science, Indiana University, Bloomington, IN 47405, USA; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Francis S Lee
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA; Sackler Institute for Developmental Psychobiology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sachin Patel
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA; The Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA; Departments of Pharmacology and Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Nashville, TN 37232, USA.
| |
Collapse
|
21
|
Abstract
Regions of the prefrontal and cingulate cortices play important roles in the regulation of behaviors elicited by threat. Dissecting out their differential involvement will greatly increase our understanding of the varied etiology of symptoms of anxiety. I review evidence for altered activity within the major divisions of the prefrontal cortex, including orbitofrontal, ventrolateral, dorsolateral, and ventromedial sectors, along with the anterior cingulate cortex in patients with clinical anxiety. This review is integrated with a discussion of current knowledge about the causal role of these different prefrontal and cingulate regions in threat-elicited behaviors from experimental studies in rodents and monkeys. I highlight commonalities and inconsistencies between species and discuss the current state of our translational success in relating findings across species. Finally, I identify key issues that, if addressed, may improve that success in the future.
Collapse
Affiliation(s)
- Angela C. Roberts
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom;
| |
Collapse
|
22
|
Aylward J, Valton V, Ahn WY, Bond RL, Dayan P, Roiser JP, Robinson OJ. Altered learning under uncertainty in unmedicated mood and anxiety disorders. Nat Hum Behav 2019; 3:1116-1123. [PMID: 31209369 PMCID: PMC6790140 DOI: 10.1038/s41562-019-0628-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 05/09/2019] [Indexed: 02/01/2023]
Abstract
Anxiety is characterized by altered responses under uncertain conditions, but the precise mechanism by which uncertainty changes the behaviour of anxious individuals is unclear. Here we probe the computational basis of learning under uncertainty in healthy individuals and individuals suffering from a mix of mood and anxiety disorders. Participants were asked to choose between four competing slot machines with fluctuating reward and punishment outcomes during safety and stress. We predicted that anxious individuals under stress would learn faster about punishments and exhibit choices that were more affected by those punishments, thus formalizing our predictions as parameters in reinforcement learning accounts of behaviour. Overall, the data suggest that anxious individuals are quicker to update their behaviour in response to negative outcomes (increased punishment learning rates). When treating anxiety, it may therefore be more fruitful to encourage anxious individuals to integrate information over longer horizons when bad things happen, rather than try to blunt their responses to negative outcomes.
Collapse
Affiliation(s)
- Jessica Aylward
- Neuroscience and Mental Health group, Institute of Cognitive Neuroscience, University College London, London, UK
| | - Vincent Valton
- Neuroscience and Mental Health group, Institute of Cognitive Neuroscience, University College London, London, UK
| | - Woo-Young Ahn
- Department of Psychology, Seoul National University, Seoul, Korea
| | - Rebecca L Bond
- Neuroscience and Mental Health group, Institute of Cognitive Neuroscience, University College London, London, UK
| | - Peter Dayan
- Gatsby Computational Neuroscience Unit, University College London, London, UK
| | - Jonathan P Roiser
- Neuroscience and Mental Health group, Institute of Cognitive Neuroscience, University College London, London, UK
| | - Oliver J Robinson
- Neuroscience and Mental Health group, Institute of Cognitive Neuroscience, University College London, London, UK.
- Research Department of Clinical, Educational and Health Psychology, University College London, London, UK.
| |
Collapse
|
23
|
Sartori SB, Singewald N. Novel pharmacological targets in drug development for the treatment of anxiety and anxiety-related disorders. Pharmacol Ther 2019; 204:107402. [PMID: 31470029 DOI: 10.1016/j.pharmthera.2019.107402] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/19/2019] [Indexed: 12/24/2022]
Abstract
Current medication for anxiety disorders is suboptimal in terms of efficiency and tolerability, highlighting the need for improved drug treatments. In this review an overview of drugs being studied in different phases of clinical trials for their potential in the treatment of fear-, anxiety- and trauma-related disorders is presented. One strategy followed in drug development is refining and improving compounds interacting with existing anxiolytic drug targets, such as serotonergic and prototypical GABAergic benzodiazepines. A more innovative approach involves the search for compounds with novel mechanisms of anxiolytic action using the growing knowledge base concerning the relevant neurocircuitries and neurobiological mechanisms underlying pathological fear and anxiety. The target systems evaluated in clinical trials include glutamate, endocannabinoid and neuropeptide systems, as well as ion channels and targets derived from phytochemicals. Examples of promising novel candidates currently in clinical development for generalised anxiety disorder, social anxiety disorder, panic disorder, obsessive compulsive disorder or post-traumatic stress disorder include ketamine, riluzole, xenon with one common pharmacological action of modulation of glutamatergic neurotransmission, as well as the neurosteroid aloradine. Finally, compounds such as D-cycloserine, MDMA, L-DOPA and cannabinoids have shown efficacy in enhancing fear-extinction learning in humans. They are thus investigated in clinical trials as an augmentative strategy for speeding up and enhancing the long-term effectiveness of exposure-based psychotherapy, which could render chronic anxiolytic drug treatment dispensable for many patients. These efforts are indicative of a rekindled interest and renewed optimism in the anxiety drug discovery field, after decades of relative stagnation.
Collapse
Affiliation(s)
- Simone B Sartori
- Institute of Pharmacy, Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck (CMBI), Leopold Franzens University Innsbruck, Innsbruck, Austria
| | - Nicolas Singewald
- Institute of Pharmacy, Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck (CMBI), Leopold Franzens University Innsbruck, Innsbruck, Austria.
| |
Collapse
|
24
|
Reliability of Fronto-Amygdala Coupling during Emotional Face Processing. Brain Sci 2019; 9:brainsci9040089. [PMID: 31010224 PMCID: PMC6523743 DOI: 10.3390/brainsci9040089] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/04/2019] [Accepted: 04/09/2019] [Indexed: 11/16/2022] Open
Abstract
One of the most exciting translational prospects for brain imaging research is the potential use of functional magnetic resonance imaging (fMRI) 'biomarkers' to predict an individual's risk of developing a neuropsychiatric disorder or the likelihood of responding to a particular intervention. This proposal depends critically on reliable measurements at the level of the individual. Several previous studies have reported relatively poor reliability of amygdala activation during emotional face processing, a key putative fMRI 'biomarker'. However, the reliability of amygdala connectivity measures is much less well understood. Here, we assessed the reliability of task-modulated coupling between three seed regions (left and right amygdala and the subgenual anterior cingulate cortex) and the dorsomedial frontal/cingulate cortex (DMFC), measured using a psychophysiological interaction analysis in 29 healthy individuals scanned approximately two weeks apart. We performed two runs on each day of three different emotional face-processing tasks: emotion identification, emotion matching, and gender classification. We tested both between-day reliability and within-day (between-run) reliability. We found good-to-excellent within-subject reliability of amygdala-DMFC coupling, both between days (in two tasks), and within day (in one task). This suggests that disorder-relevant regional coupling may be sufficiently reliable to be used as a predictor of treatment response or clinical risk in future clinical studies.
Collapse
|
25
|
Mental disorders and the risk of adult violent and psychological victimisation: a prospective, population-based study. Epidemiol Psychiatr Sci 2019; 29:e13. [PMID: 30651151 PMCID: PMC8061251 DOI: 10.1017/s2045796018000768] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
AIMS Psychiatric patients are at increased risk to become victim of violence. It remains unknown whether subjects of the general population with mental disorders are at risk of victimisation as well. In addition, it remains unclear whether the risk of victimisation differs across specific disorders. This study aimed to determine whether a broad range of mood, anxiety and substance use disorders at baseline predict adult violent (physical and/or sexual) and psychological victimisation at 3-year follow-up, also after adjustment for childhood trauma. Furthermore, this study aimed to examine whether specific types of childhood trauma predict violent and psychological victimisation at follow-up, after adjustment for mental disorder. Finally, this study aimed to examine whether the co-occurrence of childhood trauma and any baseline mental disorder leads to an incrementally increased risk of future victimisation. METHODS Data were derived from the first two waves of the Netherlands Mental Health Survey and Incidence Study-2 (NEMESIS-2): a psychiatric epidemiological cohort study among a nationally representative adult population. Mental disorders were assessed using the Composite International Diagnostic Interview version 3.0. Longitudinal associations between 12 mental disorders at baseline and violent and psychological victimisation at 3-year follow-up (n = 5303) were studied using logistic regression analyses, with adjustment for sociodemographic characteristics and childhood trauma. Furthermore, the moderating effect of childhood trauma on these associations was examined. RESULTS Associations with victimisation varied considerably across specific mental disorders. Only alcohol dependence predicted both violent and psychological victimisation after adjustment for sociodemographic characteristics and childhood trauma. Depression, panic disorder, social phobia, generalised anxiety disorder and alcohol dependence predicted subsequent psychological victimisation in the fully adjusted models. All types of childhood trauma independently predicted violent and psychological victimisation after adjustment for any mental disorder. The presence of any childhood trauma moderated the association between any anxiety disorder and psychological victimisation, whereas no interaction between mental disorder and childhood trauma on violent victimisation existed. CONCLUSIONS The current study shows that members of the general population with mental disorders are at increased risk of future victimisation. However, the associations with violent and psychological victimisation vary considerably across specific disorders. Clinicians should be aware of the increased risk of violent and psychological victimisation in individuals with these mental disorders - especially those with alcohol dependence - and individuals with a history of childhood trauma. Violence prevention programmes should be developed for people at risk. These programmes should not only address violent victimisation, but also psychological victimisation.
Collapse
|