1
|
Davyson E, Shen X, Huider F, Adams MJ, Borges K, McCartney DL, Barker LF, van Dongen J, Boomsma DI, Weihs A, Grabe HJ, Kühn L, Teumer A, Völzke H, Zhu T, Kaprio J, Ollikainen M, David FS, Meinert S, Stein F, Forstner AJ, Dannlowski U, Kircher T, Tapuc A, Czamara D, Binder EB, Brückl T, Kwong ASF, Yousefi P, Wong CCY, Arseneault L, Fisher HL, Mill J, Cox SR, Redmond P, Russ TC, van den Oord EJCG, Aberg KA, Penninx BWJH, Marioni RE, Wray NR, McIntosh AM. Insights from a methylome-wide association study of antidepressant exposure. Nat Commun 2025; 16:1908. [PMID: 39994233 PMCID: PMC11850842 DOI: 10.1038/s41467-024-55356-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 12/09/2024] [Indexed: 02/26/2025] Open
Abstract
This study tests the association of whole-blood DNA methylation and antidepressant exposure in 16,531 individuals from Generation Scotland (GS), using self-report and prescription-derived measures. We identify 8 associations and a high concordance of results between self-report and prescription-derived measures. Sex-stratified analyses observe nominally significant increased effect estimates in females for four CpGs. There is observed enrichment for genes expressed in the Amygdala and annotated to synaptic vesicle membrane ontology. Two CpGs (cg15071067; DGUOK-AS1 and cg26277237; KANK1) show correlation between DNA methylation with the time in treatment. There is a significant overlap in the top 1% of CpGs with another independent methylome-wide association study of antidepressant exposure. Finally, a methylation profile score trained on this sample shows a significant association with antidepressant exposure in a meta-analysis of eight independent external datasets. In this large investigation of antidepressant exposure and DNA methylation, we demonstrate robust associations which warrant further investigation to inform on the design of more effective and tolerated treatments for depression.
Collapse
Affiliation(s)
- E Davyson
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - X Shen
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - F Huider
- Complex Trait Genetics, Center of Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- Department of Biological Psychiatry, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - M J Adams
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - K Borges
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - D L McCartney
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - L F Barker
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
| | - J van Dongen
- Complex Trait Genetics, Center of Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- Department of Biological Psychiatry, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development, Research Institute, Amsterdam, The Netherlands
| | - D I Boomsma
- Complex Trait Genetics, Center of Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development, Research Institute, Amsterdam, The Netherlands
| | - A Weihs
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475, Greifswald, Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, 17489, Greifswald, Germany
| | - H J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475, Greifswald, Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, 17489, Greifswald, Germany
| | - L Kühn
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475, Greifswald, Germany
| | - A Teumer
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475, Greifswald, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 17489, Greifswald, Germany
| | - H Völzke
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 17489, Greifswald, Germany
- Department SHIP/Clinical-Epidemiological Research, Institute for Community Medicine, University Medicine Greifswald, 17475, Greifswald, Germany
| | - T Zhu
- Institute for Molecular Medicine Finland FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - J Kaprio
- Institute for Molecular Medicine Finland FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
| | - M Ollikainen
- Institute for Molecular Medicine Finland FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - F S David
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - S Meinert
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Institute for Translational Neuroscience, University of Münster, Münster, Germany
| | - F Stein
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - A J Forstner
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
- Center for Human Genetics, University of Marburg, Marburg, Germany
| | - U Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - T Kircher
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - A Tapuc
- Max Planck School of Cognition, Leipzig, Germany
- Max-Planck-Institute of Psychiatry, Department Genes and Environment, Munich, Germany
| | - D Czamara
- Max-Planck-Institute of Psychiatry, Department Genes and Environment, Munich, Germany
| | - E B Binder
- Max-Planck-Institute of Psychiatry, Department Genes and Environment, Munich, Germany
| | - T Brückl
- Max-Planck-Institute of Psychiatry, Department Genes and Environment, Munich, Germany
| | - A S F Kwong
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Bristol, UK
| | - P Yousefi
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Bristol, UK
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
- NIHR Bristol Biomedical Research Centre, University Hospitals Bristol and Weston NHS Foundation Trust and University of Bristol, Bristol, UK
| | - C C Y Wong
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - L Arseneault
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - H L Fisher
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- ESRC Centre for Society and Mental Health, King's College London, London, UK
| | - J Mill
- Department of Clinical & Biomedical Sciences, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - S R Cox
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - P Redmond
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - T C Russ
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh, UK
- Neuroprogressive and Dementia Network, NHS Research Scotland, Scotland, UK
| | - E J C G van den Oord
- Center for Biomarker Research and Precision Medicine (BPM), Virginia Commonwealth University, Virginia, USA
| | - K A Aberg
- Center for Biomarker Research and Precision Medicine (BPM), Virginia Commonwealth University, Virginia, USA
| | - B W J H Penninx
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - R E Marioni
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - N R Wray
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - A M McIntosh
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
2
|
Davyson E, Shen X, Huider F, Adams M, Borges K, McCartney D, Barker L, Van Dongen J, Boomsma D, Weihs A, Grabe H, Kühn L, Teumer A, Völzke H, Zhu T, Kaprio J, Ollikainen M, David FS, Meinert S, Stein F, Forstner AJ, Dannlowski U, Kircher T, Tapuc A, Czamara D, Binder EB, Brückl T, Kwong A, Yousefi P, Wong C, Arseneault L, Fisher HL, Mill J, Cox S, Redmond P, Russ TC, van den Oord E, Aberg KA, Penninx B, Marioni RE, Wray NR, McIntosh AM. Antidepressant Exposure and DNA Methylation: Insights from a Methylome-Wide Association Study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.01.24306640. [PMID: 38746357 PMCID: PMC11092700 DOI: 10.1101/2024.05.01.24306640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Importance Understanding antidepressant mechanisms could help design more effective and tolerated treatments. Objective Identify DNA methylation (DNAm) changes associated with antidepressant exposure. Design Case-control methylome-wide association studies (MWAS) of antidepressant exposure were performed from blood samples collected between 2006-2011 in Generation Scotland (GS). The summary statistics were tested for enrichment in specific tissues, gene ontologies and an independent MWAS in the Netherlands Study of Depression and Anxiety (NESDA). A methylation profile score (MPS) was derived and tested for its association with antidepressant exposure in eight independent cohorts, alongside prospective data from GS. Setting Cohorts; GS, NESDA, FTC, SHIP-Trend, FOR2107, LBC1936, MARS-UniDep, ALSPAC, E-Risk, and NTR. Participants Participants with DNAm data and self-report/prescription derived antidepressant exposure. Main Outcomes and Measures Whole-blood DNAm levels were assayed by the EPIC/450K Illumina array (9 studies, N exposed = 661, N unexposed = 9,575) alongside MBD-Seq in NESDA (N exposed = 398, N unexposed = 414). Antidepressant exposure was measured by self- report and/or antidepressant prescriptions. Results The self-report MWAS (N = 16,536, N exposed = 1,508, mean age = 48, 59% female) and the prescription-derived MWAS (N = 7,951, N exposed = 861, mean age = 47, 59% female), found hypermethylation at seven and four DNAm sites (p < 9.42x10 -8 ), respectively. The top locus was cg26277237 ( KANK1, p self-report = 9.3x10 -13 , p prescription = 6.1x10 -3 ). The self-report MWAS found a differentially methylated region, mapping to DGUOK-AS1 ( p adj = 5.0x10 -3 ) alongside significant enrichment for genes expressed in the amygdala, the "synaptic vesicle membrane" gene ontology and the top 1% of CpGs from the NESDA MWAS (OR = 1.39, p < 0.042). The MPS was associated with antidepressant exposure in meta-analysed data from external cohorts (N studies = 9, N = 10,236, N exposed = 661, f3 = 0.196, p < 1x10 -4 ). Conclusions and Relevance Antidepressant exposure is associated with changes in DNAm across different cohorts. Further investigation into these changes could inform on new targets for antidepressant treatments. 3 Key Points Question: Is antidepressant exposure associated with differential whole blood DNA methylation?Findings: In this methylome-wide association study of 16,536 adults across Scotland, antidepressant exposure was significantly associated with hypermethylation at CpGs mapping to KANK1 and DGUOK-AS1. A methylation profile score trained on this sample was significantly associated with antidepressant exposure (pooled f3 [95%CI]=0.196 [0.105, 0.288], p < 1x10 -4 ) in a meta-analysis of external datasets. Meaning: Antidepressant exposure is associated with hypermethylation at KANK1 and DGUOK-AS1 , which have roles in mitochondrial metabolism and neurite outgrowth. If replicated in future studies, targeting these genes could inform the design of more effective and better tolerated treatments for depression.
Collapse
|
3
|
Konsman JP. Expanding the notion of mechanism to further understanding of biopsychosocial disorders? Depression and medically-unexplained pain as cases in point. STUDIES IN HISTORY AND PHILOSOPHY OF SCIENCE 2024; 103:123-136. [PMID: 38157672 DOI: 10.1016/j.shpsa.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/24/2023] [Accepted: 12/16/2023] [Indexed: 01/03/2024]
Abstract
Evidence-Based Medicine has little consideration for mechanisms and philosophers of science and medicine have recently made pleas to increase the place of mechanisms in the medical evidence hierarchy. However, in this debate the notions of mechanisms seem to be limited to 'mechanistic processes' and 'complex-systems mechanisms,' understood as 'componential causal systems'. I believe that this will not do full justice to how mechanisms are used in biological, psychological and social sciences and, consequently, in a more biopsychosocial approach to medicine. Here, I propose, following (Kuorikoski, 2009), to pay more attention to 'abstract forms of interaction' mechanisms. The present work scrutinized review articles on depression and medically unexplained pain, which are considered to be of multifactorial pathogenesis, for their use of mechanisms. In review articles on these disorders there seemed to be a range of uses between more 'abstract forms of interaction' and 'componential causal system' mechanisms. I therefore propose to expand the notions of mechanisms considered in medicine to include that of more 'abstract forms of interaction' to better explain and manage biopsychosocial disorders.
Collapse
Affiliation(s)
- Jan Pieter Konsman
- ImmunoConcEpT, CNRS UMR 5164, University of Bordeaux, 33076, Bordeaux, France.
| |
Collapse
|
4
|
Davyson E, Shen X, Gadd DA, Bernabeu E, Hillary RF, McCartney DL, Adams M, Marioni R, McIntosh AM. Metabolomic Investigation of Major Depressive Disorder Identifies a Potentially Causal Association With Polyunsaturated Fatty Acids. Biol Psychiatry 2023; 94:630-639. [PMID: 36764567 PMCID: PMC10804990 DOI: 10.1016/j.biopsych.2023.01.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023]
Abstract
BACKGROUND Metabolic differences have been reported between individuals with and without major depressive disorder (MDD), but their consistency and causal relevance have been unclear. METHODS We conducted a metabolome-wide association study of MDD with 249 metabolomic measures available in the UK Biobank (n = 29,757). We then applied two-sample bidirectional Mendelian randomization and colocalization analysis to identify potentially causal relationships between each metabolite and MDD. RESULTS A total of 191 metabolites tested were significantly associated with MDD (false discovery rate-corrected p < .05), which decreased to 129 after adjustment for likely confounders. Lower abundance of omega-3 fatty acid measures and a higher omega-6 to omega-3 ratio showed potentially causal effects on liability to MDD. There was no evidence of a causal effect of MDD on metabolite levels. Furthermore, genetic signals associated with docosahexaenoic acid colocalized with loci associated with MDD within the fatty acid desaturase gene cluster. Post hoc Mendelian randomization of gene-transcript abundance within the fatty acid desaturase cluster demonstrated a potentially causal association with MDD. In contrast, colocalization analysis did not suggest a single causal variant for both transcript abundance and MDD liability, but rather the likely existence of two variants in linkage disequilibrium with one another. CONCLUSIONS Our findings suggest that decreased docosahexaenoic acid and increased omega-6 to omega-3 fatty acids ratio may be causally related to MDD. These findings provide further support for the causal involvement of fatty acids in MDD.
Collapse
Affiliation(s)
- Eleanor Davyson
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom; Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Xueyi Shen
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Danni A Gadd
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Elena Bernabeu
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Robert F Hillary
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Daniel L McCartney
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Mark Adams
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Riccardo Marioni
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew M McIntosh
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom; Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
5
|
Shuey MM, Lee KM, Keaton J, Khankari NK, Breeyear JH, Walker VM, Miller DR, Heberer KR, Reaven PD, Clarke SL, Lee J, Lynch JA, Vujkovic M, Edwards TL. A genetically supported drug repurposing pipeline for diabetes treatment using electronic health records. EBioMedicine 2023; 94:104674. [PMID: 37399599 PMCID: PMC10328805 DOI: 10.1016/j.ebiom.2023.104674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND The identification of new uses for existing drug therapies has the potential to identify treatments for comorbid conditions that have the added benefit of glycemic control while also providing a rapid, low-cost approach to drug (re)discovery. METHODS We developed and tested a genetically-informed drug-repurposing pipeline for diabetes management. This approach mapped genetically-predicted gene expression signals from the largest genome-wide association study for type 2 diabetes mellitus to drug targets using publicly available databases to identify drug-gene pairs. These drug-gene pairs were then validated using a two-step approach: 1) a self-controlled case-series (SCCS) using electronic health records from a discovery and replication population, and 2) Mendelian randomization (MR). FINDINGS After filtering on sample size, 20 candidate drug-gene pairs were validated and various medications demonstrated evidence of glycemic regulation including two anti-hypertensive classes: angiotensin-converting enzyme inhibitors as well as calcium channel blockers (CCBs). The CCBs demonstrated the strongest evidence of glycemic reduction in both validation approaches (SCCS HbA1c and glucose reduction: -0.11%, p = 0.01 and -0.85 mg/dL, p = 0.02, respectively; MR: OR = 0.84, 95% CI = 0.81, 0.87, p = 5.0 x 10-25). INTERPRETATION Our results support CCBs as a strong candidate medication for blood glucose reduction in addition to cardiovascular disease reduction. Further, these results support the adaptation of this approach for use in future drug-repurposing efforts for other conditions. FUNDING National Institutes of Health, Medical Research Council Integrative Epidemiology Unit at the University of Bristol, UK Medical Research Council, American Heart Association, and Department of Veterans Affairs (VA) Informatics and Computing Infrastructure and VA Cooperative Studies Program.
Collapse
Affiliation(s)
- Megan M Shuey
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kyung Min Lee
- VA Informatics and Computer Infrastructure, VA Salt Lake City Health Care System, Salt Lake City, UT, USA
| | - Jacob Keaton
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA; Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nikhil K Khankari
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joseph H Breeyear
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA; Nashville VA Medical Center, Nashville, TN, USA
| | - Venexia M Walker
- Medical Research Council, Integrative Epidemiology Unit, University of Bristol, Bristol, UK; Bristol Medical School, UK; Population Health Sciences, University of Bristol, Bristol, UK; Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Donald R Miller
- Center for Healthcare Organization and Implementation Research, Bedford VA Healthcare System, Bedford, MA, USA; Center for Population Health, Department of Biomedical and Nutritional Sciences, University of Massachusetts, Lowell, MA, USA
| | - Kent R Heberer
- VA Palo Alto Health Care System, Palo Alto, CA, USA; Departments of Medicine and Endocrinology, Stanford University School of Medicine, Stanford, CA, USA
| | - Peter D Reaven
- Phoenix VA Health Care System, Phoenix, AZ, USA; College of Medicine, University of Arizona, Phoenix, AZ, USA
| | - Shoa L Clarke
- Departments of Medicine and Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Jennifer Lee
- VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Julie A Lynch
- VA Informatics and Computer Infrastructure, VA Salt Lake City Health Care System, Salt Lake City, UT, USA; School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Marijana Vujkovic
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA; Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Todd L Edwards
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA; Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Nashville VA Medical Center, Nashville, TN, USA.
| |
Collapse
|
6
|
Yip SW, Barch DM, Chase HW, Flagel S, Huys QJ, Konova AB, Montague R, Paulus M. From Computation to Clinic. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:319-328. [PMID: 37519475 PMCID: PMC10382698 DOI: 10.1016/j.bpsgos.2022.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/25/2022] [Accepted: 03/22/2022] [Indexed: 12/12/2022] Open
Abstract
Theory-driven and data-driven computational approaches to psychiatry have enormous potential for elucidating mechanism of disease and providing translational linkages between basic science findings and the clinic. These approaches have already demonstrated utility in providing clinically relevant understanding, primarily via back translation from clinic to computation, revealing how specific disorders or symptoms map onto specific computational processes. Nonetheless, forward translation, from computation to clinic, remains rare. In addition, consensus regarding specific barriers to forward translation-and on the best strategies to overcome these barriers-is limited. This perspective review brings together expert basic and computationally trained researchers and clinicians to 1) identify challenges specific to preclinical model systems and clinical translation of computational models of cognition and affect, and 2) discuss practical approaches to overcoming these challenges. In doing so, we highlight recent evidence for the ability of computational approaches to predict treatment responses in psychiatric disorders and discuss considerations for maximizing the clinical relevance of such models (e.g., via longitudinal testing) and the likelihood of stakeholder adoption (e.g., via cost-effectiveness analyses).
Collapse
Affiliation(s)
- Sarah W. Yip
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Deanna M. Barch
- Departments of Psychological & Brain Sciences, Psychiatry, and Radiology, Washington University, St. Louis, Missouri
| | - Henry W. Chase
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shelly Flagel
- Department of Psychiatry and Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan
| | - Quentin J.M. Huys
- Division of Psychiatry and Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Institute of Neurology, University College London, London, United Kingdom
- Camden and Islington NHS Foundation Trust, London, United Kingdom
| | - Anna B. Konova
- Department of Psychiatry and Brain Health Institute, Rutgers University, Piscataway, New Jersey
| | - Read Montague
- Fralin Biomedical Research Institute and Department of Physics, Virginia Tech, Blacksburg, Virginia
| | - Martin Paulus
- Laureate Institute for Brain Research, Tulsa, Oklahoma
| |
Collapse
|
7
|
Bespalov A, van Gaalen M, Steckler T. Back to the Future of Neuropsychopharmacology. ADVANCES IN NEUROBIOLOGY 2023; 30:207-224. [PMID: 36928852 DOI: 10.1007/978-3-031-21054-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Disappointments in translating preclinical findings into clinical efficacy have triggered a number of changes in neuroscience drug discovery ranging from investments diverted to other therapeutic areas to reduced reliance on efficacy claims derived from preclinical models. In this chapter, we argue that there are several existing examples that teach us on what needs to be done to improve the success rate. We advocate the reverse engineering approach that shifts the focus from preclinical efforts to "model" human disease states to pharmacodynamic activity as a common denominator in the journey to translate clinically validated phenomena to preclinical level and then back to humans. Combined with the research rigor, openness, and transparency, this reverse engineering approach is well set to bring new effective and safe medications to patients in need.
Collapse
|
8
|
Correia DT. New Advances in Psychopharmacology: From Basic Science to Clinical Research. Curr Top Med Chem 2022; 22:1235. [DOI: 10.2174/156802662215220706154308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Diogo Telles Correia
- Clínica Universitária de Psiquiatria e Psicologia Médica, Faculdade de Medicina
Universidade de Lisboa
| |
Collapse
|
9
|
Van den Eynde V, Gillman PK, Blackwell BB. The Prescriber's Guide to the MAOI Diet-Thinking Through Tyramine Troubles. PSYCHOPHARMACOLOGY BULLETIN 2022; 52:73-116. [PMID: 35721816 PMCID: PMC9172554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
This review article features comprehensive discussions on the dietary restrictions issued to patients taking a classic monoamine oxidase inhibitor (phenelzine, tranylcypromine, isocarboxazid), or high-dose (oral or transdermal) selegiline. It equips doctors with the knowledge to explain to their patients which dietary precautions are necessary, and why that is so: MAOIs alter the capacity to metabolize certain monoamines, like tyramine, which causes dose-related blood pressure elevations. Modern food production and hygiene standards have resulted in large reductions of tyramine concentrations in most foodstuffs and beverages, including many cheeses. Thus, the risk of consequential blood pressure increases is considerably reduced-but some caution remains warranted. The effects of other relevant biogenic amines (histamine, dopamine), and of the amino acids L-dopa and L-tryptophan are also discussed. The tables of tyramine data usually presented in MAOI diet guides are by nature unhelpful and imprecise, because tyramine levels vary widely within foods of the same category. For this reason, it is vital that doctors understand the general principles outlined in this guide; that way, they can tailor their instructions and advice to the individual, to his/her lifestyle and situation. This is important because the pressor response is characterized by significant interpatient variability. When all factors are weighed and balanced, the conclusion is that the MAOI diet is not all that difficult. Minimizing the intake of the small number of risky foods is all that is required. Many patients may hardly need to change their diet at all.
Collapse
Affiliation(s)
- Vincent Van den Eynde
- Van den Eynde, External Research Consultant for PsychoTropical Research, NeuraWell Therapeutics, Aristo Pharma GmbH. Gillman, Director of PsychoTropical Research and MAOI Expert Group Convener. Blackwell, Retired Professor and Chair of Psychiatry at the Milwaukee Campus of the University of Wisconsin School of Medicine
| | - Peter Kenneth Gillman
- Van den Eynde, External Research Consultant for PsychoTropical Research, NeuraWell Therapeutics, Aristo Pharma GmbH. Gillman, Director of PsychoTropical Research and MAOI Expert Group Convener. Blackwell, Retired Professor and Chair of Psychiatry at the Milwaukee Campus of the University of Wisconsin School of Medicine
| | - Barry B Blackwell
- Van den Eynde, External Research Consultant for PsychoTropical Research, NeuraWell Therapeutics, Aristo Pharma GmbH. Gillman, Director of PsychoTropical Research and MAOI Expert Group Convener. Blackwell, Retired Professor and Chair of Psychiatry at the Milwaukee Campus of the University of Wisconsin School of Medicine
| |
Collapse
|
10
|
López-Muñoz F, D’Ocón P, Romero A, Guerra JA, Álamo C. Role of serendipity in the discovery of classical antidepressant drugs: Applying operational criteria and patterns of discovery. World J Psychiatry 2022; 12:588-602. [PMID: 35582332 PMCID: PMC9048453 DOI: 10.5498/wjp.v12.i4.588] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/22/2021] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
The role played by serendipity in the origin of modern psychopharmacology has proven to be controversial in scientific literature. In its original meaning (Walpole), serendipity refers to discoveries made through a combination of accidents and sagacity. We have implemented an operational definition of serendipity based on finding something unexpected or unintended, regardless of the systematic process that led to the accidental observation, and we have established four different patterns of serendipitous attributability. In this paper, we have analyzed the role of serendipity in the discovery and development of classical antidepressant drugs, tricyclic antidepressants and monoamine oxidase inhibitors as well as heterocyclic, “atypical” or “second generation” antidepressants. The discovery of the antidepressant properties of imipramine and iproniazid, the prototypes of tricyclic antidepressants and monoamine oxidase inhibitors, respectively, fits the mixed type II pattern; initial serendipitous discoveries (imipramine was an antipsychotic and iproniazid was an anti-tuberculosis agent) led secondarily to non-serendipitous discoveries. But the other components of these two families of drugs were developed specifically as antidepressants, modifying the chemical structure of the series leaders, thereby allowing all of them to be included in the type IV pattern, characterized by the complete absence of serendipity. Among the heterocyclic drugs, mianserin (originally developed as an antihistamine) also falls into the type II pattern.
Collapse
Affiliation(s)
- Francisco López-Muñoz
- Faculty of Health, University Camilo José Cela, Villanueva de la Cañada 28692, Madrid, Spain
- “Hospital 12 de Octubre” Research Institute (i+12), Avda. de Córdoba, s/n, Madrid 28041, Spain
| | - Pilar D’Ocón
- Department of Pharmacology, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andres Estelles, s/n, Valencia 46100, Spain
| | - Alejandro Romero
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University, Avda. Puerta de Hierro, s/n, Madrid 28040, Spain
| | - José A Guerra
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Complutense University, Pl. de Ramón y Cajal, s/n, Madrid 28040, Spain
| | - Cecilio Álamo
- Department of Biomedical Sciences (Pharmacology Area), Faculty of Medicine and Health Sciences, University of Alcalá, Campus Científico-Tecnológico, Crta. de Madrid-Barcelona, Alcalá de Henares 28871, Madrid, Spain
| |
Collapse
|
11
|
Iglesias LP, Aguiar DC, Moreira FA. TRPV1 blockers as potential new treatments for psychiatric disorders. Behav Pharmacol 2022; 33:2-14. [PMID: 33136616 DOI: 10.1097/fbp.0000000000000603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The transient receptor potential vanilloid-1 channel (TRPV1) is responsible for decoding physical and chemical stimuli. TRPV1 is activated by capsaicin (a compound from chili peppers), heat (above 43°C) and acid environment, playing a major role in pain, inflammation and body temperature. Molecular and histological studies have suggested TRPV1 expression in specific brain regions, where it can be activated primarily by the endocannabinoid anandamide, fostering studies on its potential role in psychiatric disorders. TRPV1 blockers are effective in various animal models predictive of anxiolytic and antipanic activities, in addition to reducing conditioned fear. In models of antidepressant activity, these compounds reduce behavioral despair and promote active stress-coping behavior. TRPV1 blockers also reduce the effects of certain drugs of abuse and revert behavioral changes in animal models of neurodevelopmental disorders. The main limiting factor in developing TRPV1 blockers as therapeutic agents concerns their effects on body temperature, particularly hyperthermia. New compounds, which block specific states of the channel, could represent an alternative. Moreover, compounds blocking both TRPV1 and the anandamide-hydrolyzing enzyme, fatty acid amide hydrolase (FAAH), termed dual TRPV1/FAAH blockers, have been investigated with promising results. Overall, preclinical studies yield favorable results with TRPV1 blockers in animal models of psychiatric disorders.
Collapse
Affiliation(s)
- Lia P Iglesias
- Department of Pharmacology, Graduate School of Neuroscience
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gera, Brazil
| | - Daniele C Aguiar
- Department of Pharmacology, Graduate School of Neuroscience
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gera, Brazil
| | - Fabrício A Moreira
- Department of Pharmacology, Graduate School of Neuroscience
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gera, Brazil
| |
Collapse
|
12
|
Zoccali C, Ortiz A, Blumbyte IA, Rudolf S, Beck-Sickinger AG, Malyszko J, Spasovski G, Carriazo S, Viggiano D, Kurganaite J, Sarkeviciene V, Rastenyte D, Figurek A, Rroji M, Mayer C, Arici M, Martino G, Tedeschi G, Bruchfeld A, Spoto B, Rychlik I, Wiecek A, Okusa M, Remuzzi G, Mallamaci F. Neuropeptide Y as a risk factor for cardiorenal disease and cognitive dysfunction in CKD: translational opportunities and challenges. Nephrol Dial Transplant 2021; 37:ii14-ii23. [PMID: 34724060 PMCID: PMC8713155 DOI: 10.1093/ndt/gfab284] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Indexed: 11/13/2022] Open
Abstract
Neuropeptide Y (NPY) is a 36-amino-acid peptide member of a family also including peptide YY and pancreatic polypeptide, which are all ligands to Gi/Go coupled receptors. NPY regulates several fundamental biologic functions including appetite/satiety, sex and reproduction, learning and memory, cardiovascular and renal function and immune functions. The mesenteric circulation is a major source of NPY in the blood in man and this peptide is considered a key regulator of gut–brain cross talk. A progressive increase in circulating NPY accompanies the progression of chronic kidney disease (CKD) toward kidney failure and NPY robustly predicts cardiovascular events in this population. Furthermore, NPY is suspected as a possible player in accelerated cognitive function decline and dementia in patients with CKD and in dialysis patients. In theory, interfering with the NPY system has relevant potential for the treatment of diverse diseases from cardiovascular and renal diseases to diseases of the central nervous system. Pharmaceutical formulations for effective drug delivery and cost, as well as the complexity of diseases potentially addressable by NPY/NPY antagonists, have been a problem until now. This in part explains the slow progress of knowledge about the NPY system in the clinical arena. There is now renewed research interest in the NPY system in psychopharmacology and in pharmacology in general and new studies and a new breed of clinical trials may eventually bring the expected benefits in human health with drugs interfering with this system.
Collapse
Affiliation(s)
- Carmine Zoccali
- Renal Research Institute, New York,USA and Associazione Ipertensione Nefrologia Trapianto Renale (IPNET) Reggio Cal., Italy c/o CNR-IFC, Ospedali Riuniti, Reggio Calabria, Italy
| | - Alberto Ortiz
- Institute of Biochemistry, Leipzig University, Faculty of Life Sciences, Leipzig, Germany
| | - Inga Arune Blumbyte
- Lithuanian University of Health Sciences, Nephrology Department, Kaunas, Lithuania
| | - Sarina Rudolf
- Institute of Biochemistry, Leipzig University, Faculty of Life Sciences, Leipzig, Germany
| | | | - Jolanta Malyszko
- Department of Nephrology, Dialysis and Internal Medicine, Warsaw Medical University, Warsaw, Poland
| | - Goce Spasovski
- Department of Nephrology, University "Sts. Cyril and Methodius", Skopje, MK, Republic of Macedonia
| | - Sol Carriazo
- Institute of Biochemistry, Leipzig University, Faculty of Life Sciences, Leipzig, Germany
| | - Davide Viggiano
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy. and Biogem Scarl, Ariano Irpino, Italy
| | - Justina Kurganaite
- Lithuanian University of Health Sciences, Nephrology Department, Kaunas, Lithuania
| | - Vaiva Sarkeviciene
- Lithuanian University of Health Sciences, Nephrology Department, Kaunas, Lithuania
| | - Daiva Rastenyte
- Lithuanian University of Health Sciences, Neurology Department, Kaunas, Lithuania
| | - Andreja Figurek
- Department of Nephrology, University "Sts. Cyril and Methodius", Skopje, MK, Republic of Macedonia
| | - Merita Rroji
- Department of Nephrology, University "Sts. Cyril and Methodius", Skopje, MK, Republic of Macedonia
| | - Christopher Mayer
- Health and Bioresources, Biomedical Systems, Austrian Institute of Technology, Vienna, Austria
| | - Mustapha Arici
- Department of Nephrology, Hacettepe University School of Medicine, Ankara, Turkey
| | - Gianvito Martino
- Neurology Department, San Raffaele Scientific Institute and Vita-Salute University San Raffaele, Milan, Italy
| | - Gioacchino Tedeschi
- Department of Advanced Medical and Surgical Sciences, and 3T-MRI Research Center, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Annette Bruchfeld
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden and Department of Renal Medicine, CLINTEC Karolinska Institutet, Stockholm, Sweden
| | | | - Ivan Rychlik
- Department of Medicine, Third Faculty of Medicine, Charles University and Faculty Hospital Kralovske Vinohrady,Prague, Czech Republic
| | - Andrzej Wiecek
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia in Katowice, Katowice, Poland
| | - Mark Okusa
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Aldo & Cele Daccò Clinical Research Center for Rare Diseases, Bergamo, Italy
| | - Francesca Mallamaci
- Nephrology and Transplantation Unit, Grande Ospedale Metropolitano and CNR-IFC, Reggio Cal, Italy
| | | |
Collapse
|