1
|
Human endothelial progenitor cells rescue cortical neurons from oxygen-glucose deprivation induced death. Neurosci Lett 2016; 631:50-55. [PMID: 27521752 DOI: 10.1016/j.neulet.2016.08.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 07/12/2016] [Accepted: 08/09/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND AIM Cerebral ischemia is characterized by both acute and delayed neuronal injuries. Neuro-protection is a major issue that should be properly addressed from a pharmacological point of view, and cell-based treatment approaches are of interest due to their potential pleiotropic effects. Endothelial progenitor cells have the advantage of being mobilized from the bone marrow into the circulation, but have been less studied than other stem cells, such as mesenchymal stem cells. Therefore, the comparison between human endothelial progenitor cells (hEPC) and human mesenchymal progenitor cells (hMSC) in terms of efficacy in rescuing neurons from cell death after transitory ischemia is the aim of the current study, in the effort to address further directions. MATERIALS AND METHODS In vitro model of oxygen-glucose deprivation (OGD) on a primary culture of rodent cortical neurons was set up with different durations of exposure: 1, 2 and 3hrs with assessment of neuron survival. The 2hrs OGD was chosen for the subsequent experiments. After 2hrs OGD neurons were either placed in indirect co-culture with hMSC or hEPC or cultured in hMSC or hEPC conditioned medium and cell viability was evaluated by MTT assay. RESULTS At day 2 after 2hrs OGD exposure, mean neuronal survival was 47.9±24.2%. In contrast, after treatment with hEPC and hMSC indirect co-culture was 74.1±27.3%; and 69.4±18.8%, respectively. In contrast, treatment with conditioned medium did not provide any advantage in terms of survival to OGD neurons CONCLUSION The study shows the efficacy of hEPC in indirect co-culture to rescue neurons from cell death after OGD, comparable to that of hMSC. hEPC deserve further studies given their potential interest for ischemia.
Collapse
|
2
|
In Situ Pluripotency Factor Expression Promotes Functional Recovery From Cerebral Ischemia. Mol Ther 2016; 24:1538-49. [PMID: 27455881 PMCID: PMC5113101 DOI: 10.1038/mt.2016.124] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/11/2016] [Indexed: 12/25/2022] Open
Abstract
Recovery from ischemic tissue injury can be promoted by cell proliferation and neovascularization. Transient expression of four pluripotency factors (Pou5f1, Sox2, Myc, and Klf4) has been used to convert cell types but never been tested as a means to promote functional recovery from ischemic injury. Here we aimed to determine whether transient in situ pluripotency factor expression can improve neurobehavioral function. Cerebral ischemia was induced by transient bilateral common carotid artery occlusion, after which the four pluripotency factors were expressed through either doxycycline administration into the lateral ventricle in transgenic mice in which the four factors are expressed in a doxycycline-inducible manner. Histologic evaluation showed that this transient expression induced the proliferative generation of astrocytes and/or neural progenitors, but not neurons or glial scar, and increased neovascularization with upregulation of angiogenic factors. Furthermore, in vivo pluripotency factor expression caused neuroprotective effects such as increased numbers of mature neurons and levels of synaptic markers in the striatum. Dysplasia or tumor development was not observed. Importantly, neurobehavioral evaluations such as rotarod and ladder walking tests showed that the expression of the four factors dramatically promoted functional restoration from ischemic injury. These results provide a basis for novel therapeutic modality development for cerebral ischemia.
Collapse
|
3
|
Abstract
Stroke is a leading cause of death, long-term disability, and socioeconomic costs, highlighting the urgent need for more effective treatments. Intravenous administration of tissue plasminogen activator (t-PA) is the only FDA-approved therapy to re-establish cerebral blood flow. However, because of increased risk of hemorrhage beyond 3 h post stroke, few stroke patients (1-2%) benefit from t-PA; t-PA, which has neurotoxic effects, can also aggravate the extent of reperfusion injury by increasing blood-brain barrier permeability. An alternative strategy is needed to extend the window of intervention, minimize damage from reperfusion injury, and promote brain repair leading to neurological recovery. Reactive oxygen species (ROS), generated soon after ischemia and during reperfusion and thereafter, are considered the main mediators of ischemic injury. Antioxidant enzymes such as catalase, superoxide dismutase, etc. can neutralize ROS-mediated injury but their effective delivery to the brain remains a challenge. In this article, we review various therapeutic approaches including surgical interventions, and discuss the potential of nanoparticle-mediated delivery of antioxidants for stroke therapy.
Collapse
Affiliation(s)
- Hayder Jaffer
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | | | | | | |
Collapse
|
4
|
Chen L, Xi H, Huang H, Zhang F, Liu Y, Chen D, Xiao J. Multiple cell transplantation based on an intraparenchymal approach for patients with chronic phase stroke. Cell Transplant 2013; 22 Suppl 1:S83-91. [PMID: 23992950 DOI: 10.3727/096368913x672154] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Stroke is the third leading cause of death worldwide and a huge perpetrator in adult disability. This pilot clinical study investigates the possible benefits of transplanting multiple cells in chronic stroke. A total of 10 consecutive stroke patients were treated by combination cell transplantation on the basis of an intraparenchymal approach from November 2003 to April 2011. There were six males and four females. Their age ranged from 42 to 87 years, and the course of disease varied from 6 months to 20 years. Six patients suffered cerebral infarction, and four patients suffered a brain hemorrhage. The olfactory ensheathing cells, neural progenitor cells, umbilical cord mesenchymal cells, and Schwann cells were injected through selected routes including intracranial parenchymal implantation, intrathecal implantation, and intravenous administration, respectively. The clinical neurological function was assessed carefully and independently before treatment and during a long-term follow-up using the Clinic Neurologic Impairment Scale and the Barthel index. All patients were followed up successfully from 6 months to 2 years after cell transplantation. Every subject achieved neurological function amelioration including improved speech, muscle strength, muscular tension, balance, pain, and breathing; most patients had an increased Barthel index score and Clinic Neurologic Impairment Scale score. These preliminary results demonstrate the novel strategy of combined multiple cell therapy based on intraparenchymal delivery: it appears to be relatively clinically safe and at least initially beneficial for chronic stroke patients. This manuscript is published as part of the International Association of Neurorestoratology (IANR) supplement issue of Cell Transplantation.
Collapse
|
5
|
Chua JY, Pendharkar AV, Wang N, Choi R, Andres RH, Gaeta X, Zhang J, Moseley ME, Guzman R. Intra-arterial injection of neural stem cells using a microneedle technique does not cause microembolic strokes. J Cereb Blood Flow Metab 2011; 31:1263-71. [PMID: 21157474 PMCID: PMC3099630 DOI: 10.1038/jcbfm.2010.213] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Intra-arterial (IA) injection represents an experimental avenue for minimally invasive delivery of stem cells to the injured brain. It has however been reported that IA injection of stem cells carries the risk of reduction in cerebral blood flow (CBF) and microstrokes. Here we evaluate the safety of IA neural progenitor cell (NPC) delivery to the brain. Cerebral blood flow of rats was monitored during IA injection of single cell suspensions of NPCs after stroke. Animals received 1 × 10(6) NPCs either injected via a microneedle (microneedle group) into the patent common carotid artery (CCA) or via a catheter into the proximally ligated CCA (catheter group). Controls included saline-only injections and cell injections into non-stroked sham animals. Cerebral blood flow in the microneedle group remained at baseline, whereas in the catheter group a persistent (15 minutes) decrease to 78% of baseline occurred (P<0.001). In non-stroked controls, NPCs injected via the catheter method resulted in higher levels of Iba-1-positive inflammatory cells (P=0.003), higher numbers of degenerating neurons as seen in Fluoro-Jade C staining (P<0.0001) and ischemic changes on diffusion weighted imaging. With an appropriate technique, reduction in CBF and microstrokes do not occur with IA transplantation of NPCs.
Collapse
Affiliation(s)
- Joshua Y Chua
- Department of Neurosurgery, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Ramos-Cabrer P, Justicia C, Wiedermann D, Hoehn M. Stem cell mediation of functional recovery after stroke in the rat. PLoS One 2010; 5:e12779. [PMID: 20877642 PMCID: PMC2943902 DOI: 10.1371/journal.pone.0012779] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 08/21/2010] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Regenerative strategies of stem cell grafting have been demonstrated to be effective in animal models of stroke. In those studies, the effectiveness of stem cells promoting functional recovery was assessed by behavioral testing. These behavioral studies do, however, not provide access to the understanding of the mechanisms underlying the observed functional outcome improvement. METHODOLOGY/PRINCIPAL FINDINGS In order to address the underlying mechanisms of stem cell mediated functional improvement, this functional improvement after stroke in the rat was investigated for six months after stroke by use of fMRI, somatosensory evoked potentials by electrophysiology, and sensorimotor behavior testing. Stem cells were grafted ipsilateral to the ischemic lesion. Rigorous exclusion of spontaneous recovery as confounding factor permitted to observe graft-related functional improvement beginning after 7 weeks and continuously increasing during the 6-month observation period. The major findings were i) functional improvement causally related to the stem cells grafting; ii) tissue replacement can be excluded as dominant factor for stem cell mediated functional improvement; iii) functional improvement occurs by exclusive restitution of the function in the original representation field, without clear contributions from reorganization processes, and iv) stem cells were not detectable any longer after six months. CONCLUSIONS/SIGNIFICANCE A delayed functional improvement due to stem cell implantation has been documented by electrophysiology, fMRI and behavioral testing. This functional improvement occurred without cells acting as a tissue replacement for the necrotic tissue after the ischemic event. Combination of disappearance of grafted cells after six months on histological sections with persistent functional recovery was interpreted as paracrine effects by the grafted stem cells being the dominant mechanism of cell activity underlying the observed functional restitution of the original activation sites. Future studies will have to investigate whether the stem cell mediated improvement reactivates the original representation target field by using original connectivity pathways or by generating/activating new ones for the stimulus.
Collapse
Affiliation(s)
- Pedro Ramos-Cabrer
- In-vivo-NMR Laboratory, Max Planck Institute for Neurological Research, Cologne, Germany
| | - Carles Justicia
- In-vivo-NMR Laboratory, Max Planck Institute for Neurological Research, Cologne, Germany
| | - Dirk Wiedermann
- In-vivo-NMR Laboratory, Max Planck Institute for Neurological Research, Cologne, Germany
| | - Mathias Hoehn
- In-vivo-NMR Laboratory, Max Planck Institute for Neurological Research, Cologne, Germany
- * E-mail:
| |
Collapse
|
7
|
Ono T, Hashimoto E, Ukai W, Ishii T, Saito T. The role of neural stem cells for in vitro models of schizophrenia: neuroprotection via Akt/ERK signal regulation. Schizophr Res 2010; 122:239-47. [PMID: 20627457 DOI: 10.1016/j.schres.2010.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2009] [Revised: 05/05/2010] [Accepted: 05/06/2010] [Indexed: 01/06/2023]
Abstract
Recent neuroimaging studies have revealed progressive morphological brain changes during the course of schizophrenia, and the neurotrophic and neurogenetic effects of atypical antipsychotics are believed to prevent or retard these brain volume reductions. In addition to drug-induced neural stem cell (NSC) activation, transplantation of exogenous NSCs has been proposed as a possible approach to repair the damaged brain in psychiatric disease. NSC transplantation embraces not only neuron replacement but also enhanced neuroprotection of existing neurons with the goal of restoring the impaired brain. However, little is known about the cell-cell interactions of exogenous NSCs with existing neurons, or about their neuroprotective actions especially in psychiatric diseases. In the present study, we used cortical neuron cultures to examine the neurotrophism and neuroprotection of exogenous NSCs against the neuronal damage induced by exposure to the NMDA receptor antagonist, MK-801. We also investigated their role in serum/nutrient deprivation stress. The exogenous NSCs exerted neuroprotective effects against both types of apoptotic injuries considered as in vitro schizophrenic disease models. Exogenous NSCs also altered cellular survival signaling in injured neurons by indirect cell-cell contact in an injury-dependent manner. In MK-801 exposure, NSCs increased phosphorylated Akt (p-Akt) and ERK (p-ERK), both of which were reduced by this stress. While, in serum/nutrient deprivation, NSCs increased p-Akt, but decreased p-ERK which was increased by this damage. Our results demonstrate that exogenous NSCs have anti-apoptotic activities and can rescue cortical neurons by directing cellular survival signaling of neurons into the proper direction, without cell contact.
Collapse
Affiliation(s)
- Takafumi Ono
- Department of Neuropsychiatry, School of Medicine, Sapporo Medical University, South-1, West-16, Chuo-ku, Sapporo 0608543, Japan.
| | | | | | | | | |
Collapse
|
8
|
Li L, Jiang Q, Ding G, Zhang L, Zhang ZG, Li Q, Panda S, Lu M, Ewing JR, Chopp M. Effects of administration route on migration and distribution of neural progenitor cells transplanted into rats with focal cerebral ischemia, an MRI study. J Cereb Blood Flow Metab 2010; 30:653-62. [PMID: 19888287 PMCID: PMC2844252 DOI: 10.1038/jcbfm.2009.238] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We tested the hypotheses that administration routes affect the migration and distribution of grafted neural progenitor cells (NPCs) in the ischemic brain and that the ischemic lesion plays a role in mediating the grafting process. Male Wistar rats (n=41) were subjected to 2-h middle cerebral artery occlusion (MCAo), followed 1 day later by administration of magnetically labeled NPCs. Rats with MCAo were assigned to one of three treatment groups targeted for cell transplantation intra-arterially (IA), intracisternally (IC), or intravenously (IV). MRI measurements consisting of T2-weighted imaging and three-dimensional (3D) gradient echo imaging were performed 24 h after MCAo, 4 h after cell injection, and once a day for 4 days. Prussian blue staining was used to identify the labeled cells, 3D MRI to detect cell migration and distribution, and T2 map to assess lesion volumes. Intra-arterial (IA) administration showed significantly increased migration, a far more diffuse distribution pattern, and a larger number of transplanted NPCs in the target brain than IC or IV administration. However, high mortality with IA delivery (IA: 41%; IC: 17%; IV: 8%) poses a serious concern for using this route of administration. Animals with smaller lesions at the time of transplantation have fewer grafted cells in the parenchyma.
Collapse
Affiliation(s)
- Lian Li
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan 48202, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Zhang P, Li J, Liu Y, Chen X, Kang Q, Zhao J, Li W. Human neural stem cell transplantation attenuates apoptosis and improves neurological functions after cerebral ischemia in rats. Acta Anaesthesiol Scand 2009; 53:1184-91. [PMID: 19650809 DOI: 10.1111/j.1399-6576.2009.02024.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Neuroprotection is a major therapeutic approach for ischemic brain injury. We investigated the neuroprotective effects induced by transplantation of human embryonic neural stem cells (NSCs) into the cortical penumbra 24 h after focal cerebral ischemia. METHODS NSCs were prepared from human embryonic brains obtained at 8 weeks of gestation. Focal cerebral ischemia was induced in adult rats by permanent occlusion of the middle cerebral artery. Animals were randomly divided into two groups: NSCs-grafted group and medium-grafted group (control). Infarct size was assessed 28 days after transplantation by hematoxylin and eosin staining. Neurological severity scores were evaluated before ischemia and at 1, 7, 14, and 28 days after transplantation. The terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay and immunohistochemical analysis of Bcl-2 and Bax were performed at 7, 14, and 28 days after transplantation. RESULTS Physiological parameters of the two groups were comparable, but not significantly different. NSC transplantation significantly improved neurological function (P<0.05) but did not reduce the infarct size significantly (P>0.05). Compared with the control, NSC transplantation significantly reduced the number of TUNEL- and Bax-positive cells in the penumbra at 7 days. Interestingly, the number of Bcl-2-positive cells in the penumbra after NSC transplantation was significantly higher than that after medium transplantation (P<0.05). CONCLUSIONS The results indicate that NSC transplantation has anti-apoptotic activity and can improve the neurological function; these effects are mediated by the up-regulation of Bcl-2 expression in the penumbra.
Collapse
Affiliation(s)
- P Zhang
- Institute of Neurobiology, National Key Academic Subject of Physiology, Xi'an Jiaotong University School of Medicine, Xi'an, China
| | | | | | | | | | | | | |
Collapse
|
10
|
Zhang P, Li J, Liu Y, Chen X, Kang Q. Transplanted human embryonic neural stem cells survive, migrate, differentiate and increase endogenous nestin expression in adult rat cortical peri-infarction zone. Neuropathology 2009; 29:410-21. [PMID: 19170896 DOI: 10.1111/j.1440-1789.2008.00993.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Transplantation of stem cells is a potential therapeutic strategy for stroke damage. The survival, migration, and differentiation of transplanted human embryonic neural stem cells in the acute post-ischemic environment were characterized and endogenous nestin expression after transplantation was investigated. Human embryonic neural stem cells obtained from the temporal lobe cortex were cultured and labeled with fluorescent 1,1'-dioctadecy-6,6'-di (4-sulfopheyl)-3,3,3',3'-tetramethylindocarbocyanin (DiI) in vitro. Labeled cells were transplanted into cortical peri-infarction zones of adult rats 24 h after permanent middle cerebral artery occlusion. Survival, migration, and differentiation of grafted cells were quantified in immunofluorescence-stained sections from rats sacrificed at 7, 14, and 28 days after transplantation. Endogenous nestin-positive cells in the cortical peri-infarction zone were counted at serial time points. The cells transplanted into the cortical peri-infarction zone displayed the morphology of living cells and became widely located around the ischemic area. Moreover, some of the transplanted cells expressed nestin, GFAP, or NeuN in the peri-infarction zone. Furthermore, compared with the control group, endogenous nestin-positive cells in the peri-infarction zone had increased significantly 7 days after cell transplantation. These results confirm the survival, migration, and differentiation of transplanted cells in the acute post-ischemic environment and enhanced endogenous nestin expression within a brief time window. These findings indicate that transplantation of neural stem cells into the peri-infarction zone may be performed as early as 24 h after ischemia.
Collapse
Affiliation(s)
- Pengbo Zhang
- Institute of Neurobiology, National Key Academic Subject of Physiology, Xi'an Jiaotong University School of Medicine, Xi'an, China
| | | | | | | | | |
Collapse
|
11
|
Abstract
Noninvasive cellular imaging allows the real-time tracking of grafted cells as well as the monitoring of their migration. Several techniques for in vivo cellular imaging are available that permit the characterization of transplanted cells in a living organism, including magnetic resonance imaging (MRI), bioluminescence, positron emission tomography, and multiple photon microscopy. All of these methods, based on different principles, provide distinctive, usually complementary information. In this review, we will focus on cell tracking using MRI, since MRI is noninvasive, clinically transferable, and displays good resolution, ranging from 50microm in animal experiments up to 300microm using whole body clinical scanners. In addition to information about grafted cells, MRI provides information about the surrounding tissue (i.e., lesion size, edema, inflammation), which may negatively affect graft survival or the functional recovery of the tissue. Transplanted cells are labeled with MR contrast agents in vitro prior to transplantation in order to visualize them in the host tissue. The chapter will focus on the use of superparamagnetic iron oxide nanoparticles (SPIO), because they have strong effects on T2 relaxation yet do not affect cell viability, and will provide an overview of different modifications of SPIO and their use in MR tracking in living organisms.
Collapse
|
12
|
Sykova E, Jendelova P. In vivo tracking of stem cells in brain and spinal cord injury. PROGRESS IN BRAIN RESEARCH 2007; 161:367-83. [PMID: 17618991 DOI: 10.1016/s0079-6123(06)61026-1] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cellular magnetic resonance (MR) imaging is a rapidly growing field that aims to visualize and track cells in living organisms. Superparamagnetic iron oxide (SPIO) nanoparticles offer a sufficient signal for T2 weighted MR images. We followed the fate of embryonic stem cells (ESCs) and bone marrow mesenchymal stem cells (MSCs) labeled with iron oxide nanoparticles (Endorem) and human CD34+ cells labeled with magnetic MicroBeads (Miltenyi) in rats with a cortical or spinal cord lesion, models of stroke and spinal cord injury (SCI), respectively. Cells were either grafted intracerebrally, contralaterally to a cortical photochemical lesion, or injected intravenously. During the first post-transplantation week, grafted MSCs or ESCs migrated to the lesion site in the cortex as well as in the spinal cord and were visible in the lesion on MR images as a hypointensive signal, persisting for more than 30 days. In rats with an SCI, we found an increase in functional recovery after the implantation of MSCs or a freshly prepared mononuclear fraction of bone marrow cells (BMCs) or after an injection of granulocyte colony stimulating factor (G-CSF). Morphometric measurements in the center of the lesions showed an increase in white matter volume in cell-treated animals. Prussian blue staining confirmed a large number of iron-positive cells, and the lesions were considerably smaller than in control animals. Additionally, we implanted hydrogels based on poly-hydroxypropylmethacrylamide (HPMA) seeded with nanoparticle-labeled MSCs into hemisected rat spinal cords. Hydrogels seeded with MSCs were visible on MR images as hypointense areas, and subsequent Prussian blue histological staining confirmed positively stained cells within the hydrogels. To obtain better results with cell labeling, new polycation-bound iron oxide superparamagnetic nanoparticles (PC-SPIO) were developed. In comparison with Endorem, PC-SPIO demonstrated a more efficient intracellular uptake into MSCs, with no decrease in cell viability. Our studies demonstrate that magnetic resonance imaging (MRI) of grafted adult as well as ESCs labeled with iron oxide nanoparticles is a useful method for evaluating cellular migration toward a lesion site.
Collapse
Affiliation(s)
- Eva Sykova
- Institute of Experimental Medicine ASCR, EU Centre of Excellence, Prague, Czech Republic.
| | | |
Collapse
|
13
|
Abstract
Over the past decades, great progress has been made in clinical as well as experimental stroke research. Disappointingly, however, hundreds of clinical trials testing neuroprotective agents have failed despite efficacy in experimental models. Recently, several systematic reviews have exposed a number of important deficits in the quality of preclinical stroke research. Many of the issues raised in these reviews are not specific to experimental stroke research, but apply to studies of animal models of disease in general. It is the aim of this article to review some quality-related sources of bias with a particular focus on experimental stroke research. Weaknesses discussed include, among others, low statistical power and hence reproducibility, defects in statistical analysis, lack of blinding and randomization, lack of quality-control mechanisms, deficiencies in reporting, and negative publication bias. Although quantitative evidence for quality problems at present is restricted to preclinical stroke research, to spur discussion and in the hope that they will be exposed to meta-analysis in the near future, I have also included some quality-related sources of bias, which have not been systematically studied. Importantly, these may be also relevant to mechanism-driven basic stroke research. I propose that by a number of rather simple measures reproducibility of experimental results, as well as the step from bench to bedside in stroke research may be made more successful. However, the ultimate proof for this has to await successful phase III stroke trials, which were built on basic research conforming to the criteria as put forward in this article.
Collapse
Affiliation(s)
- Ulrich Dirnagl
- Department of Experimental Neurology, Center for Stroke Research, Humboldt-Universität Berlin, Universitätsklinikum Charite, Berlin, Germany.
| |
Collapse
|
14
|
Duffau H. Brain plasticity: From pathophysiological mechanisms to therapeutic applications. J Clin Neurosci 2006; 13:885-97. [PMID: 17049865 DOI: 10.1016/j.jocn.2005.11.045] [Citation(s) in RCA: 228] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Accepted: 11/10/2005] [Indexed: 11/30/2022]
Abstract
Cerebral plasticity, which is the dynamic potential of the brain to reorganize itself during ontogeny, learning, or following damage, has been widely studied in the last decade, in vitro, in animals, and also in humans since the development of functional neuroimaging. In the first part of this review, the main hypotheses about the pathophysiological mechanisms underlying plasticity are presented. At a microscopic level, modulations of synaptic efficacy, unmasking of latent connections, phenotypic modifications and neurogenesis have been identified. At a macroscopic level, diaschisis, functional redundancies, sensory substitution and morphological changes have been described. In the second part, the behavioral consequences of such cerebral phenomena in physiology, namely the "natural" plasticity, are analyzed in humans. The review concludes on the therapeutic implications provided by a better understanding of these mechanisms of brain reshaping. Indeed, this plastic potential might be 'guided' in neurological diseases, using rehabilitation, pharmacological drugs, transcranial magnetic stimulation, neurosurgical methods, and even new techniques of brain-computer interface - in order to improve the quality of life of patients with damaged nervous systems.
Collapse
Affiliation(s)
- Hugues Duffau
- Department of Neurosurgery, Inserm U678, Hôpital Gui de Chaulic, CHU de Montpellier, 80 avenue Augustin Fliche, 34295 Montpellier, Cedex 5, France.
| |
Collapse
|
15
|
Hossmann KA. Pathophysiology and therapy of experimental stroke. Cell Mol Neurobiol 2006; 26:1057-83. [PMID: 16710759 PMCID: PMC11520628 DOI: 10.1007/s10571-006-9008-1] [Citation(s) in RCA: 311] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Accepted: 01/23/2006] [Indexed: 12/28/2022]
Abstract
1. Stroke is the neurological evidence of a critical reduction of cerebral blood flow in a circumscribed part of the brain, resulting from the sudden or gradually progressing obstruction of a large brain artery. Treatment of stroke requires the solid understanding of stroke pathophysiology and involves a broad range of hemodynamic and molecular interventions. This review summarizes research that has been carried out in many laboratories over a long period of time, but the main focus will be on own experimental research. 2. The first chapter deals with the hemodynamics of focal ischemia with particular emphasis on the collateral circulation of the brain, the regulation of blood flow and the microcirculation. In the second chapter the penumbra concept of ischemia is discussed, providing a detailed list of the physiological, biochemical and structural viability thresholds of ischemia and examples of how these thresholds can be applied for imaging the penumbra. The third chapter summarizes the pathophysiology of infarct progression, focusing on the role of peri-infarct depolarisation, the multitude of putative molecular injury pathways, brain edema and inflammation. Finally, the fourth chapter provides an overview of currently discussed therapeutic approaches, notably the effect of mechanical or thrombolytic reperfusion, arteriogenesis, pharmacological neuroprotection, ischemic preconditioning and regeneration. 3. The main emphasis of the review is placed on the balanced differentiation between hemodynamic and molecular factors contributing to the manifestation of ischemic injury in order to provide a rational basis for future therapeutic interventions.
Collapse
|
16
|
An Y, Tsang KKS, Zhang H. Potential of stem cell based therapy and tissue engineering in the regeneration of the central nervous system. Biomed Mater 2006; 1:R38-44. [PMID: 18460755 DOI: 10.1088/1748-6041/1/2/r02] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The insufficiency of self-repair and regeneration of the central nervous system (CNS) leads to difficulty of rehabilitation of the injured brain. In the past few decades, the significant progress in cell therapy and tissue engineering has contributed to the functional recovery of the CNS to a great extent. The present review focuses on the potential role of stem cell based therapy and tissue engineering in the regeneration of the CNS.
Collapse
Affiliation(s)
- Yihua An
- Department of Neural Stem Cell, Beijing Neurosurgical Institute affiliated to Capital University of Medical Sciences, Beijing 100050, People's Republic of China
| | | | | |
Collapse
|
17
|
Bentley P, Sharma P. Pharmacological treatment of ischemic stroke. Pharmacol Ther 2005; 108:334-52. [PMID: 16135384 DOI: 10.1016/j.pharmthera.2005.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Accepted: 05/07/2005] [Indexed: 11/17/2022]
Abstract
Current pharmacological strategies for acute ischemic stroke largely mirror those employed in acute coronary syndromes. However, important differences in the effectiveness and versatility of the principal agents have emerged between these 2 clinical settings. In general, the level of success achieved with drugs in acute coronary syndromes has not carried over to the same extent when the same drug types are used in stroke. The principal reason is that reperfusion or anticoagulant therapies in the setting of brain infarction run a significant risk of hemorrhagic transformation that has no direct equivalent in myocardial infarction. Consequently, a significant challenge in acute stroke therapeutics is the ability to select patients for drugs where only a narrow therapeutic margin exists and to identify methods that can minimize hemorrhage risk. Other brain-specific vascular factors also pertain in explaining differences in outcome of drugs generally regarded as having a broad cardiovascular remit. The relatively limited efficacy of antiplatelets in stroke might relate to the composition and heterogeneity of the cerebrovascular lesion, while the poor outcome associated with acute anti-hypertensive use is partly due to loss of cerebrovascular autoregulation. Finally, downstream consequences of arterial occlusion within the brain such as excitotoxicity and plasticity are organ specific and, as such, deserve their own pharmacological approaches. In this review, we describe the general mechanism of each drug class used in ischemic stroke and then report on the clinical experience and application for each.
Collapse
Affiliation(s)
- Paul Bentley
- Hammersmith Hospitals Acute Stroke Unit (HHASU), Imperial College, Fulham Palace Road, London W6 8RF, United Kingdom
| | | |
Collapse
|