1
|
Malojirao VH, Vasquez V, Kodavati M, Mitra J, Provasek V, Voh ATT, Liopo AV, Derry PJ, Mikheev AM, Rostomily RC, Horner PJ, Tour JM, Britz GW, Kent TA, Hegde ML. Hemin-induced transient senescence via DNA damage response: a neuroprotective mechanism against ferroptosis in intracerebral hemorrhage. Commun Biol 2025; 8:622. [PMID: 40247121 PMCID: PMC12006456 DOI: 10.1038/s42003-025-07983-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 03/17/2025] [Indexed: 04/19/2025] Open
Abstract
Intracerebral hemorrhage (ICH) poses acute fatality and long-term neurological risks, in part due to hemin and iron accumulation from hemoglobin breakdown. We observed that hemin induces DNA double-strand breaks (DSBs), prompting a senescence-like phenotype in neurons, necessitating a deeper exploration of cellular responses. Using experimental ICH models and human ICH patient tissue, we elucidate hemin-mediated DNA damage response (DDR) inducing transient senescence and delayed expression of heme oxygenase (HO-1). HO-1 co-localizes with senescence-associated β-Galactosidase (SA-β-Gal) in ICH patient tissues, emphasizing the clinical relevance of inducible HO-1 expression in senescent cells. We reveal a reversible senescence state protective against acute cell death by hemin, while repeat exposure leads to long-lasting senescence. Inhibiting early senescence expression increases cell death, supporting the protective role of senescence against hemin toxicity. Hemin-induced senescence is attenuated by a pleiotropic carbon nanoparticle that is a catalytic mimic of superoxide dismutase, but this treatment increased lipid peroxidation, consistent with ferroptosis from hemin breakdown released iron. When coupled with iron chelator deferoxamine (DEF), the nanoparticle reduces hemin-induced senescence and upregulates factors protecting against ferroptosis. Our study suggests transient senescence induced by DDR as an early potential neuroprotective mechanism in ICH, but the risk of iron-related toxicity supports a multi-pronged therapeutic approach.
Collapse
Affiliation(s)
- Vikas H Malojirao
- Division of DNA Repair Research within the Houston Methodist Research Institute, Houston, TX, 77030, USA
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Velmarini Vasquez
- Division of DNA Repair Research within the Houston Methodist Research Institute, Houston, TX, 77030, USA
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Manohar Kodavati
- Division of DNA Repair Research within the Houston Methodist Research Institute, Houston, TX, 77030, USA
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Joy Mitra
- Division of DNA Repair Research within the Houston Methodist Research Institute, Houston, TX, 77030, USA
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Vincent Provasek
- Division of DNA Repair Research within the Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Anh Tran Tram Voh
- Center for Genomics and Precision Medicine, Department of Translational Medical Sciences, Institute of Biosciences and Technology, College of Medicine, Texas A&M Health Science Center, Houston, TX, 77030, USA
| | - Anton V Liopo
- Center for Genomics and Precision Medicine, Department of Translational Medical Sciences, Institute of Biosciences and Technology, College of Medicine, Texas A&M Health Science Center, Houston, TX, 77030, USA
| | - Paul J Derry
- Center for Genomics and Precision Medicine, Department of Translational Medical Sciences, Institute of Biosciences and Technology, College of Medicine, Texas A&M Health Science Center, Houston, TX, 77030, USA
| | - Andrei M Mikheev
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Robert C Rostomily
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Neuroscience, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Philip J Horner
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Neuroscience, Weill Cornell Medical College, New York, NY, 10065, USA
| | - James M Tour
- NanoCarbon Center and the Rice Institute for Advanced Materials, Department of Chemistry, Rice University, Houston, TX, 77030, USA
| | - Gavin W Britz
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Thomas A Kent
- Center for Genomics and Precision Medicine, Department of Translational Medical Sciences, Institute of Biosciences and Technology, College of Medicine, Texas A&M Health Science Center, Houston, TX, 77030, USA.
- Stanley Appel Department of Neurology and Department of Radiology, Houston Methodist Institute of Academic Medicine and Research Institute, Houston, TX, 77030, USA.
- Department of Chemistry, Rice University, Houston, TX, 77005, USA.
| | - Muralidhar L Hegde
- Division of DNA Repair Research within the Houston Methodist Research Institute, Houston, TX, 77030, USA.
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, 77030, USA.
- Department of Neuroscience, Weill Cornell Medical College, New York, NY, 10065, USA.
| |
Collapse
|
2
|
Jia G, Yang X, Yu Y, Li Y, Zhang Z, Tang X, Wang Q, Zheng H, Xiao Y, Li S, Wang Y. Quercetin carbon quantum dots: dual-target therapy for intracerebral hemorrhage in mice. Mol Brain 2025; 18:17. [PMID: 40033442 DOI: 10.1186/s13041-024-01159-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/12/2024] [Indexed: 03/05/2025] Open
Abstract
Following intracerebral hemorrhage, mitigating oxidative stress and removing excess iron are critical strategies for reducing secondary brain injury and improving neurological outcomes. In vitro, we synthesized quercetin-ethylenediamine carbon quantum dots (QECQDs) with diameters of 2-11 nm and found that QECQDs effectively scavenge ABTS+· and DPPH· free radicals, defending HT22 cells against hemin-induced oxidative stress. In vivo, QECQDs predominantly accumulate in the pia mater, subarachnoid space, and dura mater after intrathecal injection. Compared to the ICH injury group, QECQDs treatment effectively improves cerebral blood flow, inhibits oxidative stress damage, and reduces neuron death. Importantly, QECQDs treatment reduced hemorrhage volume, alleviated edema, and improved neurological function. This lays a foundation for developing multi-target drugs for treating ICH.
Collapse
Affiliation(s)
- Guangyu Jia
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang, Jiangxi, 330006, China
- JXHC Key Laboratory of Neurological Medicine, Nanchang, Jiangxi, 330006, China
| | - Xinyu Yang
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang, Jiangxi, 330006, China
- JXHC Key Laboratory of Neurological Medicine, Nanchang, Jiangxi, 330006, China
| | - Yamei Yu
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang, Jiangxi, 330006, China
- JXHC Key Laboratory of Neurological Medicine, Nanchang, Jiangxi, 330006, China
| | - Yuanyuan Li
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang, Jiangxi, 330006, China
- JXHC Key Laboratory of Neurological Medicine, Nanchang, Jiangxi, 330006, China
| | - Zhe Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang, Jiangxi, 330006, China
- JXHC Key Laboratory of Neurological Medicine, Nanchang, Jiangxi, 330006, China
| | - Xiaolong Tang
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang, Jiangxi, 330006, China
- JXHC Key Laboratory of Neurological Medicine, Nanchang, Jiangxi, 330006, China
| | - Qi Wang
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang, Jiangxi, 330006, China
- JXHC Key Laboratory of Neurological Medicine, Nanchang, Jiangxi, 330006, China
| | - Heqing Zheng
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang, Jiangxi, 330006, China
- JXHC Key Laboratory of Neurological Medicine, Nanchang, Jiangxi, 330006, China
| | - Yao Xiao
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China.
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, 330006, China.
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang, Jiangxi, 330006, China.
- JXHC Key Laboratory of Neurological Medicine, Nanchang, Jiangxi, 330006, China.
| | - Shiyong Li
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China.
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, 330006, China.
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang, Jiangxi, 330006, China.
- JXHC Key Laboratory of Neurological Medicine, Nanchang, Jiangxi, 330006, China.
| | - Ye Wang
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China.
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, 330006, China.
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang, Jiangxi, 330006, China.
- JXHC Key Laboratory of Neurological Medicine, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
3
|
Cao J, Yan H, Ye B, Shen Y, Liu L. Spectroscopy-based analysis of the effect of Maillard reaction products on oxidative stability of carp myoglobin. J Food Sci 2024; 89:9186-9197. [PMID: 39592248 DOI: 10.1111/1750-3841.17557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024]
Abstract
As a pro-oxidant, myoglobin (Mb) can induce lipid oxidation in meat. In this study, Fourier-transform infrared spectroscopy (FTIR), circular dichroism (CD), fluorescence spectroscopy, UV-vis spectrophotometry, and fluorescence microscopy were used to evaluate the impact of Maillard reaction products (MRPs) formed from glucose and lysine on the oxidative stability of carp Mb. MRPs were found to inhibit the auto-oxidation of Mb, reducing MetMb production by 8.45%. The static quenching of fluorescence indicated that MRPs interacted with Mb through hydrogen bonding and van der Waals forces, thereby enhancing the α-helical content by 11.57% and reducing the random coil content by 2.72%. The enhanced stability of this advanced structure helps to minimize the exposure of amino acid in the side chain and prevent the formation of MetMb. Fluorescence microscopy showed that MRPs reduce porphyrin ring degradation, consequently decreasing heme iron release. It is evident that MRPs play a crucial role in maintaining Mb structure stability and inhibiting its oxidation.
Collapse
Affiliation(s)
- Jiarong Cao
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Haixia Yan
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Bo Ye
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Liaoning Modern Agricultural Engineering Center, Shenyang, Liaoning, China
| | - Yixiao Shen
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Ling Liu
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| |
Collapse
|
4
|
Fontes MAP, Dos Santos Machado LR, Viana ACR, Cruz MH, Nogueira ÍS, Oliveira MGL, Neves CB, Godoy ACV, Henderson LA, Macefield VG. The insular cortex, autonomic asymmetry and cardiovascular control: looking at the right side of stroke. Clin Auton Res 2024; 34:549-560. [PMID: 39316247 DOI: 10.1007/s10286-024-01066-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024]
Abstract
PURPOSE Evidence from animal and human studies demonstrates that cortical regions play a key role in autonomic modulation with a differential role for some brain regions located in the left and right brain hemispheres. Known as autonomic asymmetry, this phenomenon has been demonstrated by clinical observations, by experimental models, and currently by combined neuroimaging and direct recordings of sympathetic nerve activity. Previous studies report peculiar autonomic-mediated cardiovascular alterations following unilateral damage to the left or right insula, a multifunctional key cortical region involved in emotional processing linked to autonomic cardiovascular control and featuring asymmetric characteristics. METHODS Based on clinical studies reporting specific damage to the insular cortex, this review aims to provide an overview of the prognostic significance of unilateral (left or right hemisphere) post-insular stroke cardiac alterations. In addition, we review experimental data aiming to unravel the central mechanisms involved in post-insular stroke cardiovascular complications. RESULTS AND CONCLUSION Current clinical and experimental data suggest that stroke of the right insula can present a worse cardiovascular prognosis.
Collapse
Affiliation(s)
- Marco Antônio Peliky Fontes
- Hypertension Laboratory, Department of Physiology and Biophysics - Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, 31270 901, Brazil.
| | - Liliane Ramos Dos Santos Machado
- Hypertension Laboratory, Department of Physiology and Biophysics - Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, 31270 901, Brazil
| | - Ana Clara Rocha Viana
- Hypertension Laboratory, Department of Physiology and Biophysics - Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, 31270 901, Brazil
| | - Matheus Henrique Cruz
- Hypertension Laboratory, Department of Physiology and Biophysics - Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, 31270 901, Brazil
| | - Ícaro Santos Nogueira
- Hypertension Laboratory, Department of Physiology and Biophysics - Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, 31270 901, Brazil
| | - Marcela Gondim Lima Oliveira
- Hypertension Laboratory, Department of Physiology and Biophysics - Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, 31270 901, Brazil
| | - Christiane Braga Neves
- Hypertension Laboratory, Department of Physiology and Biophysics - Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, 31270 901, Brazil
| | - Ana Caroline Ventris Godoy
- Hypertension Laboratory, Department of Physiology and Biophysics - Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, 31270 901, Brazil
| | | | - Vaughan G Macefield
- Department of Neuroscience, Monash University, Melbourne, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Australia
| |
Collapse
|
5
|
Yang F, Xu W, Tang X, Yang Y, Ku BA, Zhang Y, Yang X, Xie W, Hui X. The efficacy of neuroendoscopic surgery treating patients with thalamic hemorrhage accompanied by intraventricular hematoma. Front Surg 2024; 11:1472830. [PMID: 39530013 PMCID: PMC11551124 DOI: 10.3389/fsurg.2024.1472830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Objective Neuroendoscopic surgery (NES) has been proven to be safe and effective in hematoma evacuation for cerebral hemorrhage. However, its efficacy for thalamic hemorrhage accompanied by intraventricular hematoma (THAVH) remains unclear. The aim of this study is to determine the efficacy of NES in treating THAVH. Method A retrospective study was carried out. The data of patients diagnosed with THAVH were collected from January 1st, 2019, to January 1st, 2022. Patients received the NES or external ventricle drainage (EVD) treatment were assigned to the NES or EVD group, respectively. As primary outcomes, the hematoma evacuation volume, residual hematoma volume, and hematoma clearance rate were separately calculated based on the hematoma site; and the 180-day-mRS score was assessed. As secondary outcomes, the length of stay in the ICU and hospital, and the adverse events were also compared. Results Thirty-five patients, aged 66.37 ± 6.62 years, were in the NES group; and 40 patients, aged 68.75 ± 7.22 years, were in the EVD group. The baseline characteristics in the two groups were similar (P > 0.05). The gross hematoma evacuation volume, volume of hematoma evacuated in the thalamus or the ventricle, and the hematoma clearance rate were greater in the NES group than in the EVD group on the 1st day after surgery (P < 0.05). The patients had a better rank of mRS in the NES group (P < 0.05). Compared with patients with mRS > 3, the mean residual hematoma volume in the thalamus of patients with mRS ≤3 on the 1st and 7th day were less in each group (P < 0.05), respectively. A residual hematoma volume in the ventricle of patients with mRS ≤3 was less than that of patients with mRS >3 in the EVD group on the 1st day after surgery (P < 0.05). GCS score on the 3rd day was greater in the NES group (P < 0.05). The incidence of lung infection was lower in the NES group (P < 0.05). The length of stay in the ICU and hospitalization duration were shorter in the NES group (P < 0.05). Conclusions Neuroendoscopic surgery has a greater hematoma clearance rate, a lower lung infection rate and a shorter duration in the hospital. Neuroendoscopic surgery might improve patients' prognosis. Neuroendoscopic surgery is a safe and effective procedure for treating thalamic hemorrhage accompanied by intraventricular hematoma.
Collapse
Affiliation(s)
- Feilong Yang
- Department of Neurosurgery, Santai Hospital Affiliated to North Sichuan Medical College, Mian Yang, Sichuan, China
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wuhuan Xu
- Department of Neurology, Santai Hospital Affiliated to North Sichuan Medical College, Mian Yang, Sichuan, China
| | - Xielin Tang
- Department of Neurosurgery, Santai Hospital Affiliated to North Sichuan Medical College, Mian Yang, Sichuan, China
| | - Yan Yang
- Department of Neurosurgery, Santai Hospital Affiliated to North Sichuan Medical College, Mian Yang, Sichuan, China
| | - Buqian A. Ku
- Department of Neurosurgery, Traditional Chinese Medicine Hospital, Le Shan, Sichuan, China
| | - Yiping Zhang
- Department of Neurosurgery, Santai Hospital Affiliated to North Sichuan Medical College, Mian Yang, Sichuan, China
| | - Xiaoli Yang
- Department of Neurosurgery, Santai Hospital Affiliated to North Sichuan Medical College, Mian Yang, Sichuan, China
| | - Wei Xie
- Department of Neurosurgery, Santai Hospital Affiliated to North Sichuan Medical College, Mian Yang, Sichuan, China
| | - Xuhui Hui
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Sahebi K, Foroozand H, Amirsoleymani M, Eslamzadeh S, Negahdaripour M, Tajbakhsh A, Rahimi Jaberi A, Savardashtaki A. Advancing stroke recovery: unlocking the potential of cellular dynamics in stroke recovery. Cell Death Discov 2024; 10:321. [PMID: 38992073 PMCID: PMC11239950 DOI: 10.1038/s41420-024-02049-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 07/13/2024] Open
Abstract
Stroke stands as a predominant cause of mortality and morbidity worldwide, and there is a pressing need for effective therapies to improve outcomes and enhance the quality of life for stroke survivors. In this line, effective efferocytosis, the clearance of apoptotic cells, plays a crucial role in neuroprotection and immunoregulation. This process involves specialized phagocytes known as "professional phagocytes" and consists of four steps: "Find-Me," "Eat-Me," engulfment/digestion, and anti-inflammatory responses. Impaired efferocytosis can lead to secondary necrosis and inflammation, resulting in adverse outcomes following brain pathologies. Enhancing efferocytosis presents a potential avenue for improving post-stroke recovery. Several therapeutic targets have been identified, including osteopontin, cysteinyl leukotriene 2 receptor, the µ opioid receptor antagonist β-funaltrexamine, and PPARγ and RXR agonists. Ferroptosis, defined as iron-dependent cell death, is now emerging as a novel target to attenuate post-stroke tissue damage and neuronal loss. Additionally, several biomarkers, most importantly CD163, may serve as potential biomarkers and therapeutic targets for acute ischemic stroke, aiding in stroke diagnosis and prognosis. Non-pharmacological approaches involve physical rehabilitation, hypoxia, and hypothermia. Mitochondrial dysfunction is now recognized as a major contributor to the poor outcomes of brain stroke, and medications targeting mitochondria may exhibit beneficial effects. These strategies aim to polarize efferocytes toward an anti-inflammatory phenotype, limit the ingestion of distressed but viable neurons, and stimulate efferocytosis in the late phase of stroke to enhance post-stroke recovery. These findings highlight promising directions for future research and development of effective stroke recovery therapies.
Collapse
Affiliation(s)
- Keivan Sahebi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Foroozand
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Saghi Eslamzadeh
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manica Negahdaripour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Abbas Rahimi Jaberi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
7
|
Geraghty JR, Butler M, Maharathi B, Tate AJ, Lung TJ, Balasubramanian G, Testai FD, Loeb JA. Diffuse microglial responses and persistent EEG changes correlate with poor neurological outcome in a model of subarachnoid hemorrhage. Sci Rep 2024; 14:13618. [PMID: 38871799 PMCID: PMC11176397 DOI: 10.1038/s41598-024-64631-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024] Open
Abstract
The mechanism by which subarachnoid hemorrhage (SAH) leads to chronic neurologic deficits is unclear. One possibility is that blood activates microglia to drive inflammation that leads to synaptic loss and impaired brain function. Using the endovascular perforation model of SAH in rats, we investigated short-term effects on microglia together with long-term effects on EEG and neurologic function for up to 3 months. Within the first week, microglia were increased both at the site of injury and diffusely across the cortex (2.5-fold increase in SAH compared to controls, p = 0.012). Concomitantly, EEGs from SAH animals showed focal increases in slow wave activity and diffuse reduction in fast activity. When expressed as a fast-slow spectral ratio, there were significant interactions between group and time (p < 0.001) with less ipsilateral recovery over time. EEG changes were most pronounced during the first week and correlated with neurobehavioral impairment. In vitro, the blood product hemin was sufficient to increase microglia phagocytosis nearly six-fold (p = 0.032). Immunomodulatory treatment with fingolimod after SAH reduced microglia, improved neurological function, and increased survival. These findings, which parallel many of the EEG changes seen in patients, suggest that targeting neuroinflammation could reduce long-term neurologic dysfunction following SAH.
Collapse
Affiliation(s)
- Joseph R Geraghty
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, 3400 Spruce St, Philadelphia, PA, 19104, USA
- Department of Neurology & Rehabilitation, University of Illinois College of Medicine, 912 S Wood St, NPI Suite 174N, Chicago, IL, 60612, USA
| | - Mitchell Butler
- Department of Neurology & Rehabilitation, University of Illinois College of Medicine, 912 S Wood St, NPI Suite 174N, Chicago, IL, 60612, USA
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, 851 S Morgan St, Chicago, IL, 60607, USA
| | - Biswajit Maharathi
- Department of Neurology & Rehabilitation, University of Illinois College of Medicine, 912 S Wood St, NPI Suite 174N, Chicago, IL, 60612, USA
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, 851 S Morgan St, Chicago, IL, 60607, USA
| | - Alexander J Tate
- Department of Neurology & Rehabilitation, University of Illinois College of Medicine, 912 S Wood St, NPI Suite 174N, Chicago, IL, 60612, USA
- Neuroscience Doctoral Program, Medical College of Wisconsin, Suite H2200, 8701 Watertown Plank Rd, Milwaukee, WI, 53226, USA
| | - Tyler J Lung
- Department of Neurology & Rehabilitation, University of Illinois College of Medicine, 912 S Wood St, NPI Suite 174N, Chicago, IL, 60612, USA
- The Ohio State University School of Medicine, 1645 Neil Ave, Columbus, OH, 43210, USA
| | - Giri Balasubramanian
- Department of Neurology & Rehabilitation, University of Illinois College of Medicine, 912 S Wood St, NPI Suite 174N, Chicago, IL, 60612, USA
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, 851 S Morgan St, Chicago, IL, 60607, USA
| | - Fernando D Testai
- Department of Neurology & Rehabilitation, University of Illinois College of Medicine, 912 S Wood St, NPI Suite 174N, Chicago, IL, 60612, USA
| | - Jeffrey A Loeb
- Department of Neurology & Rehabilitation, University of Illinois College of Medicine, 912 S Wood St, NPI Suite 174N, Chicago, IL, 60612, USA.
- Department of Neurology and Rehabilitation, University of Illinois at Chicago, NPI North Bldg., Room 657, M/C 796, 912 S. Wood Street, Chicago, IL, 60612, USA.
| |
Collapse
|
8
|
Tang Y, Wu X, Li J, Li Y, Xu X, Li G, Zhang P, Qin C, Wu LJ, Tang Z, Tian DS. The Emerging Role of Microglial Hv1 as a Target for Immunomodulation in Myelin Repair. Aging Dis 2024; 15:1176-1203. [PMID: 38029392 PMCID: PMC11081154 DOI: 10.14336/ad.2023.1107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023] Open
Abstract
In the central nervous system (CNS), the myelin sheath ensures efficient interconnection between neurons and contributes to the regulation of the proper function of neuronal networks. The maintenance of myelin and the well-organized subtle process of myelin plasticity requires cooperation among myelin-forming cells, glial cells, and neural networks. The process of cooperation is fragile, and the balance is highly susceptible to disruption by microenvironment influences. Reactive microglia play a critical and complicated role in the demyelination and remyelination process. Recent studies have shown that the voltage-gated proton channel Hv1 is selectively expressed in microglia in CNS, which regulates intracellular pH and is involved in the production of reactive oxygen species, underlying multifaceted roles in maintaining microglia function. This paper begins by examining the molecular mechanisms of demyelination and emphasizes the crucial role of the microenvironment in demyelination. It focuses specifically on the role of Hv1 in myelin repair and its therapeutic potential in CNS demyelinating diseases.
Collapse
Affiliation(s)
- Yingxin Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xuan Wu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jiarui Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yuanwei Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiaoxiao Xu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Gaigai Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ping Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Chuan Qin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Dai-Shi Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
9
|
Mikhailova DM, Skverchinskaya E, Sudnitsyna J, Butov KR, Koltsova EM, Mindukshev IV, Gambaryan S. Hematin- and Hemin-Induced Spherization and Hemolysis of Human Erythrocytes Are Independent of Extracellular Calcium Concentration. Cells 2024; 13:554. [PMID: 38534398 PMCID: PMC10969559 DOI: 10.3390/cells13060554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/10/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
Pathologies such as malaria, hemorrhagic stroke, sickle cell disease, and thalassemia are characterized by the release of hemoglobin degradation products from damaged RBCs. Hematin (liganded with OH-) and hemin (liganded with Cl-)-are the oxidized forms of heme with toxic properties due to their hydrophobicity and the presence of redox-active Fe3. In the present study, using the original LaSca-TM laser particle analyzer, flow cytometry, and confocal microscopy, we showed that both hematin and hemin induce dose-dependent RBC spherization and hemolysis with ghost formation. Hematin and hemin at nanomolar concentrations increased [Ca2+]i in RBC; however, spherization and hemolysis occurred in the presence and absence of calcium, indicating that both processes are independent of [Ca2+]i. Both compounds triggered acute phosphatidylserine exposure on the membrane surface, reversible after 60 min of incubation. A comparison of hematin and hemin effects on RBCs revealed that hematin is a more reactive toxic metabolite than hemin towards human RBCs. The toxic effects of heme derivatives were reduced and even reversed in the presence of albumin, indicating the presence in RBCs of the own recovery system against the toxic effects of heme derivatives.
Collapse
Affiliation(s)
- Diana M. Mikhailova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez Ave., 194223 Saint Petersburg, Russia; (D.M.M.); (E.S.); (J.S.); (I.V.M.)
- Department of Cytology and Histology, Saint Petersburg State University, 7/9 Universitetskaya Emb., 199034 Saint Petersburg, Russia
| | - Elisaveta Skverchinskaya
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez Ave., 194223 Saint Petersburg, Russia; (D.M.M.); (E.S.); (J.S.); (I.V.M.)
| | - Julia Sudnitsyna
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez Ave., 194223 Saint Petersburg, Russia; (D.M.M.); (E.S.); (J.S.); (I.V.M.)
| | - Kirill R. Butov
- Department of Molecular Biology and Medical Biotechnology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117997 Moscow, Russia;
| | - Ekaterina M. Koltsova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117997 Moscow, Russia;
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 30 Srednyaya Kalitnikovskaya st., 109029 Moscow, Russia
| | - Igor V. Mindukshev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez Ave., 194223 Saint Petersburg, Russia; (D.M.M.); (E.S.); (J.S.); (I.V.M.)
| | - Stepan Gambaryan
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez Ave., 194223 Saint Petersburg, Russia; (D.M.M.); (E.S.); (J.S.); (I.V.M.)
| |
Collapse
|
10
|
Cadena AJ, Rincon F. Hypothermia and temperature modulation for intracerebral hemorrhage (ICH): pathophysiology and translational applications. Front Neurosci 2024; 18:1289705. [PMID: 38440392 PMCID: PMC10910040 DOI: 10.3389/fnins.2024.1289705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/07/2024] [Indexed: 03/06/2024] Open
Abstract
Background Intracerebral hemorrhage (ICH) still poses a substantial challenge in clinical medicine because of the high morbidity and mortality rate that characterizes it. This review article expands into the complex pathophysiological processes underlying primary and secondary neuronal death following ICH. It explores the potential of therapeutic hypothermia as an intervention to mitigate these devastating effects. Methods A comprehensive literature review to gather relevant studies published between 2000 and 2023. Discussion Primary brain injury results from mechanical damage caused by the hematoma, leading to increased intracranial pressure and subsequent structural disruption. Secondary brain injury encompasses a cascade of events, including inflammation, oxidative stress, blood-brain barrier breakdown, cytotoxicity, and neuronal death. Initial surgical trials failed to demonstrate significant benefits, prompting a shift toward molecular mechanisms driving secondary brain injury as potential therapeutic targets. With promising preclinical outcomes, hypothermia has garnered attention, but clinical trials have yet to establish its definitive effectiveness. Localized hypothermia strategies are gaining interest due to their potential to minimize systemic complications and improve outcomes. Ongoing and forthcoming clinical trials seek to clarify the role of hypothermia in ICH management. Conclusion Therapeutic hypothermia offers a potential avenue for intervention by targeting the secondary injury mechanisms. The ongoing pursuit of optimized cooling protocols, localized cooling strategies, and rigorous clinical trials is crucial to unlocking the potential of hypothermia as a therapeutic tool for managing ICH and improving patient outcomes.
Collapse
Affiliation(s)
- Angel J. Cadena
- Department of Neurology, Columbia University, New York, NY, United States
| | - Fred Rincon
- Department of Neurology, Division of Neurocritical Care, Cooper University, Camden, NJ, United States
| |
Collapse
|
11
|
Endo M, Tanaka Y, Fukuoka M, Suzuki H, Minami Y. Wnt5a/Ror2 promotes Nrf2-mediated tissue protective function of astrocytes after brain injury. Glia 2024; 72:411-432. [PMID: 37904612 DOI: 10.1002/glia.24483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 11/01/2023]
Abstract
Astrocytes, a type of glial cells, play critical roles in promoting the protection and repair of damaged tissues after brain injury. Inflammatory cytokines and growth factors can affect gene expression in astrocytes in injured brains, but signaling pathways and transcriptional mechanisms that regulate tissue protective functions of astrocytes are still poorly understood. In this study, we investigated the molecular mechanisms regulating the function of reactive astrocytes induced in mouse models of stab wound (SW) brain injury and collagenase-induced intracerebral hemorrhage (ICH). We show that basic fibroblast growth factor (bFGF), whose expression is up-regulated in mouse brains after SW injury and ICH, acts synergistically with inflammatory cytokines to activate E2F1-mediated transcription of a gene encoding the Ror-family protein Ror2, a receptor for Wnt5a, in cultured astrocytes. We also found that subsequent activation of Wnt5a/Ror2 signaling in astrocytes results in nuclear accumulation of antioxidative transcription factor Nrf2 at least partly by increased expression of p62/Sqstm1, leading to promoted expression of several Nrf2 target genes, including heme oxygenase 1. Finally, we provide evidence demonstrating that enhanced activation of Wnt5a/Ror2 signaling in astrocytes reduces cellular damage caused by hemin, a degradation product of hemoglobin, and promotes repair of the damaged blood brain barrier after brain hemorrhage.
Collapse
Affiliation(s)
- Mitsuharu Endo
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Yuki Tanaka
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Mayo Fukuoka
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Hayata Suzuki
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Yasuhiro Minami
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| |
Collapse
|
12
|
Stone J, Mitrofanis J, Johnstone DM, Robinson SR. The Catastrophe of Intracerebral Hemorrhage Drives the Capillary-Hemorrhage Dementias, Including Alzheimer's Disease. J Alzheimers Dis 2024; 97:1069-1081. [PMID: 38217606 DOI: 10.3233/jad-231202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Abstract
This review advances an understanding of several dementias, based on four premises. One is that capillary hemorrhage is prominent in the pathogenesis of the dementias considered (dementia pugilistica, chronic traumatic encephalopathy, traumatic brain damage, Alzheimer's disease). The second premise is that hemorrhage introduces four neurotoxic factors into brain tissue: hypoxia of the tissue that has lost its blood supply, hemoglobin and its breakdown products, excitotoxic levels of glutamate, and opportunistic pathogens that can infect brain cells and induce a cytotoxic immune response. The third premise is that where organisms evolve molecules that are toxic to itself, like the neurotoxicity ascribed to hemoglobin, amyloid- (A), and glutamate, there must be some role for the molecule that gives the organism a selection advantage. The fourth is the known survival-advantage roles of hemoglobin (oxygen transport), of A (neurotrophic, synaptotrophic, detoxification of heme, protective against pathogens) and of glutamate (a major neurotransmitter). From these premises, we propose 1) that the brain has evolved a multi-factor response to intracerebral hemorrhage, which includes the expression of several protective molecules, including haptoglobin, hemopexin and A; and 2) that it is logical, given these premises, to posit that the four neurotoxic factors set out above, which are introduced into the brain by hemorrhage, drive the progression of the capillary-hemorrhage dementias. In this view, A expressed at the loci of neuronal death in these dementias functions not as a toxin but as a first responder, mitigating the toxicity of hemoglobin and the infection of the brain by opportunistic pathogens.
Collapse
Affiliation(s)
- Jonathan Stone
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - John Mitrofanis
- Université Grenoble Alpes, Fonds de Dotation, Clinatec, Grenoble, France
- Institute of Ophthalmology, University College London, London, UK
| | - Daniel M Johnstone
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- School of Medical Sciences, The University of Sydney, Sydney, Australia
| | - Stephen R Robinson
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Australia
- Institute for Breathing and Sleep, Austin Health, Heidelberg, Australia
| |
Collapse
|
13
|
Stone J, Mitrofanis J, Johnstone DM, Robinson SR. Twelve protections evolved for the brain, and their roles in extending its functional life. Front Neuroanat 2023; 17:1280275. [PMID: 38020212 PMCID: PMC10657866 DOI: 10.3389/fnana.2023.1280275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
As human longevity has increased, we have come to understand the ability of the brain to function into advanced age, but also its vulnerability with age, apparent in the age-related dementias. Against that background of success and vulnerability, this essay reviews how the brain is protected by (by our count) 12 mechanisms, including: the cranium, a bony helmet; the hydraulic support given by the cerebrospinal fluid; the strategically located carotid body and sinus, which provide input to reflexes that protect the brain from blood-gas imbalance and extremes of blood pressure; the blood brain barrier, an essential sealing of cerebral vessels; the secretion of molecules such as haemopexin and (we argue) the peptide Aβ to detoxify haemoglobin, at sites of a bleed; autoregulation of the capillary bed, which stabilises metabolites in extracellular fluid; fuel storage in the brain, as glycogen; oxygen storage, in the haemoprotein neuroglobin; the generation of new neurones, in the adult, to replace cells lost; acquired resilience, the stress-induced strengthening of cell membranes and energy production found in all body tissues; and cognitive reserve, the ability of the brain to maintain function despite damage. Of these 12 protections, we identify 5 as unique to the brain, 3 as protections shared with all body tissues, and another 4 as protections shared with other tissues but specialised for the brain. These protections are a measure of the brain's vulnerability, of its need for protection. They have evolved, we argue, to maintain cognitive function, the ability of the brain to function despite damage that accumulates during life. Several can be tools in the hands of the individual, and of the medical health professional, for the lifelong care of our brains.
Collapse
Affiliation(s)
- Jonathan Stone
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia
| | - John Mitrofanis
- Grenoble and Institute of Ophthalmology, Fonds de Dotation Clinatec, Université Grenoble Alpes, University College London, London, United Kingdom
| | - Daniel M. Johnstone
- School of Biomedical Sciences and Pharmacy, University of Newcastle and School of Medical Sciences, The University of Sydney, Camperdown, NSW, Australia
| | - Stephen R. Robinson
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
- Institute for Breathing and Sleep, Austin Health, Heidelberg, VIC, Australia
| |
Collapse
|
14
|
Yu M, Wang Z, Wang D, Aierxi M, Ma Z, Wang Y. Oxidative stress following spinal cord injury: From molecular mechanisms to therapeutic targets. J Neurosci Res 2023; 101:1538-1554. [PMID: 37272728 DOI: 10.1002/jnr.25221] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 06/06/2023]
Abstract
Spinal cord injury (SCI) is a medical condition that results from severe trauma to the central nervous system; it imposes great psychological and economic burdens on affected patients and their families. The dynamic balance between reactive oxygen species (ROS) and antioxidants is essential for maintaining normal cellular physiological functions. As important intracellular signaling molecules, ROS regulate numerous physiological activities, including vascular reactivity and neuronal function. However, excessive ROS can cause damage to cellular macromolecules, including DNA, lipids, and proteins; this damage eventually leads to cell death. This review discusses the mechanisms of oxidative stress in SCI and describes some signaling pathways that regulate oxidative injury after injury, with the aim of providing guidance for the development of novel SCI treatment strategies.
Collapse
Affiliation(s)
- Mengsi Yu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Zhiying Wang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Dongmin Wang
- Medical College of Northwest Minzu University, Lanzhou, China
| | - Milikemu Aierxi
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Zhanjun Ma
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université Catholique de Louvain, UCLouvain, Brussels, Belgium
| | - Yonggang Wang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
15
|
Wang Y, Wu S, Li Q, Sun H, Wang H. Pharmacological Inhibition of Ferroptosis as a Therapeutic Target for Neurodegenerative Diseases and Strokes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300325. [PMID: 37341302 PMCID: PMC10460905 DOI: 10.1002/advs.202300325] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 05/23/2023] [Indexed: 06/22/2023]
Abstract
Emerging evidence suggests that ferroptosis, a unique regulated cell death modality that is morphologically and mechanistically different from other forms of cell death, plays a vital role in the pathophysiological process of neurodegenerative diseases, and strokes. Accumulating evidence supports ferroptosis as a critical factor of neurodegenerative diseases and strokes, and pharmacological inhibition of ferroptosis as a therapeutic target for these diseases. In this review article, the core mechanisms of ferroptosis are overviewed and the roles of ferroptosis in neurodegenerative diseases and strokes are described. Finally, the emerging findings in treating neurodegenerative diseases and strokes through pharmacological inhibition of ferroptosis are described. This review demonstrates that pharmacological inhibition of ferroptosis by bioactive small-molecule compounds (ferroptosis inhibitors) could be effective for treatments of these diseases, and highlights a potential promising therapeutic avenue that could be used to prevent neurodegenerative diseases and strokes. This review article will shed light on developing novel therapeutic regimens by pharmacological inhibition of ferroptosis to slow down the progression of these diseases in the future.
Collapse
Affiliation(s)
- Yumin Wang
- Department of Respiratory and Critical Care MedicineAerospace Center HospitalPeking University Aerospace School of Clinical MedicineBeijing100049P. R. China
| | - Shuang Wu
- Department of NeurologyZhongnan Hospital of Wuhan UniversityWuhan430000P. R. China
| | - Qiang Li
- Department of NeurologyThe Affiliated Hospital of Chifeng UniversityChifeng024005P. R. China
| | - Huiyan Sun
- Chifeng University Health Science CenterChifeng024000P. R. China
| | - Hongquan Wang
- Tianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerTianjin's Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjin300060P. R. China
| |
Collapse
|
16
|
De Caro S, De Soricellis G, Dell'Acqua S, Monzani E, Nicolis S. Biological Oxidations and Nitrations Promoted by the Hemin-Aβ 16 Complex. Antioxidants (Basel) 2023; 12:1319. [PMID: 37507859 PMCID: PMC10376006 DOI: 10.3390/antiox12071319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Both β-amyloid (Aβ) peptides and oxidative stress conditions play key roles in Alzheimer's disease. Hemin contributes to the development of the disease as it possesses redox properties and its level increases in pathological conditions or traumatic brain injuries. The aim of this work was to deepen the investigation of the reactivity of the hemin-Aβ16 complex, considering its ability to catalyze oxidation and nitration reactions. We performed kinetic studies in the presence of hydrogen peroxide and nitrite with phenolic and catechol substrates, as well as mass spectrometry studies to investigate the modifications occurring on the peptide itself. The kinetic constants were similar for oxidation and nitration reactions, and their values suggest that the hemin-Aβ16 complex binds negatively charged substrates with higher affinity. Mass spectrometry studies showed that tyrosine residue is the endogenous target of nitration. Hemin degradation analysis showed that hemin bleaching is only partly prevented by the coordinated peptide. In conclusion, hemin has rich reactivity, both in oxidation and nitration reactions on aromatic substrates, that could contribute to redox equilibrium in neurons. This reactivity is modulated by the coordination of the Aβ16 peptide and is only partly quenched when oxidative and nitrative conditions lead to hemin degradation.
Collapse
Affiliation(s)
- Silvia De Caro
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
- IUSS School for Advanced Studies of Pavia, Piazza della Vittoria 15, 27100 Pavia, Italy
| | - Giulia De Soricellis
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Simone Dell'Acqua
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Enrico Monzani
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Stefania Nicolis
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
17
|
Abstract
Ferric heme b (= ferric protoporphyrin IX = hemin) is an important prosthetic group of different types of enzymes, including the intensively investigated and widely applied horseradish peroxidase (HRP). In HRP, hemin is present in monomeric form in a hydrophobic pocket containing among other amino acid side chains the two imidazoyl groups of His170 and His42. Both amino acids are important for the peroxidase activity of HRP as an axial ligand of hemin (proximal His170) and as an acid/base catalyst (distal His42). A key feature of the peroxidase mechanism of HRP is the initial formation of compound I under heterolytic cleavage of added hydrogen peroxide as a terminal oxidant. Investigations of free hemin dispersed in aqueous solution showed that different types of hemin dimers can form, depending on the experimental conditions, possibly resulting in hemin crystallization. Although it has been recognized already in the 1970s that hemin aggregation can be prevented in aqueous solution by using micelle-forming amphiphiles, it remains a challenge to prepare hemin-containing micellar and vesicular systems with peroxidase-like activities. Such systems are of interest as cheap HRP-mimicking catalysts for analytical and synthetic applications. Some of the key concepts on which research in this fascinating and interdisciplinary field is based are summarized, along with major accomplishments and possible directions for further improvement. A systematic analysis of the physico-chemical properties of hemin in aqueous micellar solutions and vesicular dispersions must be combined with a reliable evaluation of its catalytic activity. Future studies should show how well the molecular complexity around hemin in HRP can be mimicked by using micelles or vesicles. Because of the importance of heme b in virtually all biological systems and the fact that porphyrins and hemes can be obtained under potentially prebiotic conditions, ideas exist about the possible role of heme-containing micellar and vesicular systems in prebiotic times.
Collapse
|
18
|
External Hemin as an Inhibitor of Mitochondrial Large-Conductance Calcium-Activated Potassium Channel Activity. Int J Mol Sci 2022; 23:ijms232113391. [DOI: 10.3390/ijms232113391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
The mitochondrial large-conductance calcium-activated potassium channel (mitoBKCa) is located in the inner mitochondrial membrane and seems to play a crucial role in cytoprotection. The mitoBKCa channel is regulated by many modulators, including activators, such as calcium ions and inhibitors, such as heme and its oxidized form hemin. Heme/hemin binds to the heme-binding motif (CXXCH) located between two RCK domains present in the mitochondrial matrix. In the present study, we used the patch-clamp technique in the outside-out configuration to record the activity of mitoBKCa channels. This allowed for the application of channel modulators to the intermembrane-space side of the mitoBKCa. We found that hemin applied in this configuration inhibits the activity of mitoBKCa. In addition, we proved that the observed hemin effect is specific and it is not due to its interaction with the inner mitochondrial membrane. Our data suggest the existence of a new potential heme/hemin binding site in the structure of the mitoBKCa channel located on the mitochondrial intermembrane space side, which could constitute a new way for the regulation of mitoBKCa channel activity.
Collapse
|
19
|
Caffes N, Hendricks K, Bradley JS, Twenhafel NA, Simard JM. Anthrax Meningoencephalitis and Intracranial Hemorrhage. Clin Infect Dis 2022; 75:S451-S458. [PMID: 36251558 PMCID: PMC9649421 DOI: 10.1093/cid/ciac521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The neurological sequelae of Bacillus anthracis infection include a rapidly progressive fulminant meningoencephalitis frequently associated with intracranial hemorrhage, including subarachnoid and intracerebral hemorrhage. Higher mortality than other forms of bacterial meningitis suggests that antimicrobials and cardiopulmonary support alone may be insufficient and that strategies targeting the hemorrhage might improve outcomes. In this review, we describe the toxic role of intracranial hemorrhage in anthrax meningoencephalitis. We first examine the high incidence of intracranial hemorrhage in patients with anthrax meningoencephalitis. We then review common diseases that present with intracranial hemorrhage, including aneurysmal subarachnoid hemorrhage and spontaneous intracerebral hemorrhage, postulating applicability of established and potential neurointensive treatments to the multimodal management of hemorrhagic anthrax meningoencephalitis. Finally, we examine the therapeutic potential of minocycline, an antimicrobial that is effective against B. anthracis and that has been shown in preclinical studies to have neuroprotective properties, which thus might be repurposed for this historically fatal disease.
Collapse
Affiliation(s)
- Nicholas Caffes
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Katherine Hendricks
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - John S Bradley
- Department of Pediatrics, San Diego School of Medicine and Rady Children’s Hospital, University of California, San Diego, California, USA
| | - Nancy A Twenhafel
- Division of Pathology, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - J Marc Simard
- Correspondence: J. M. Simard, Department of Neurosurgery, University of Maryland School of Medicine, 22 S Greene St, Suite S12D, Baltimore, MD 21201, USA ()
| |
Collapse
|
20
|
C3d(g), iron nanoparticles, hemin and cytochrome c may induce oxidative cytotoxicity in tumors and reduce tumor-associated myeloid cells-mediated immunosuppression. Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Gidda R, Bandyopadhyay S, Peter N, Lakhoo K. Decompressive Craniectomy for Pediatric Traumatic Brain Injury in Low-and-Middle Income and High Income Countries. World Neurosurg 2022; 166:251-260.e1. [PMID: 35872132 DOI: 10.1016/j.wneu.2022.07.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 12/15/2022]
Abstract
Traumatic brain injury is one of the leading causes of mortality and morbidity in children worldwide. In severe cases, high intracranial pressure is the most frequent cause of death. When first-line medical management fails, the neurosurgical procedure of decompressive craniectomy (DC) has been proposed for controlling intracranial pressure and improving the long-term outcomes for children with severe traumatic brain injury. However, the use of this procedure is controversial. The evidence from clinical trials shows some promise for the use of DC as an effective second-line treatment. However, it is limited by conflicting trial results, a lack of trials, and a high risk of bias. Furthermore, most research comes from retrospective observational studies and case series. This narrative review considers the strength of evidence for the use of DC in both a high income country and low-and-middle income country setting and examine how we can improve study design to better assess the efficacy of this procedure and increase the clinical translatability of results to centers worldwide. Specifically, we argue for a need for further studies with higher pediatric participant numbers, multicenter collaboration, and the use of a more consistent methodology to enable comparability of results among settings.
Collapse
Affiliation(s)
- Ryan Gidda
- Oxford University Global Surgery Group, Nuffield Department of Surgical Sciences, Medical Sciences Division, University of Oxford, Oxford, United Kingdom.
| | - Soham Bandyopadhyay
- Oxford University Global Surgery Group, Nuffield Department of Surgical Sciences, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Noel Peter
- Oxford University Global Surgery Group, Nuffield Department of Surgical Sciences, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Kokila Lakhoo
- Oxford University Global Surgery Group, Nuffield Department of Surgical Sciences, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
22
|
Chen W, Du W, Zhang H, Cheng L, Song L, Ma X, Hu Y, Wang J. Hemin-loaded black phosphorus-based nanosystem for enhanced photodynamic therapy and a synergistic photothermally/photodynamically activated inflammatory immune response. BIOMATERIALS ADVANCES 2022; 140:213091. [PMID: 36041322 DOI: 10.1016/j.bioadv.2022.213091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/12/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
The biocompatible nanosystem integrating hemin into black phosphorus nanosheets was ingeniously constructed through the easy modified strategy. Taking advantage of the enhanced permeability and retention (EPR) effect, the designed nanosystem could accumulate into the tumor location, leading to attractive cytotoxicity through the enhanced photodynamic therapy (PDT) ascribing to the catalytic oxygen supply and GSH depletion of hemin. Simultaneously, combining PDT and photothermal therapy (PTT) showed an apparent promotion in anti-tumor effect. Moreover, inflammatory response and immune activation amplified anti-tumor effect, which could compensate limitations of exogenous therapy (i.e., limited tissue depth and intensity-dependent curation effect) and potentiate the efficiency of the endogenous immune-activating behavior. Especially, the designed nanosystem degraded followed by being metabolized in the blood circulation. By and large, this constructed nanosystem provides the new insight into designing biocompatible nanomaterials and paves the ideal way for anti-tumor therapy. STATEMENT OF SIGNIFICANCE: Biocompatible nanomaterials-based synergistic tumor therapy offers the potential application prospect. Taking advantage of degradable black phosphorus, the nanosystem integrating hemin into black phosphorus for the enhanced photodynamic therapy and synergistic photothermal-photodynamic activating inflammation-immune response was developed and the results demonstrate that tumor growth was inhibited followed by activating inflammatory factors and leading to satisfactory immune response.
Collapse
Affiliation(s)
- Weijian Chen
- School of Chemistry and Materials Science, University of Science and Technology of China, Jinzhai Road 96, Hefei, Anhui, PR China; Department of thyroid and breast Surgery, The First Affiliated Hospital of USTC, Tian'ehu Road 1, Hefei, Anhui, PR China; State Key Laboratory of Fire Science, University of Science and Technology of China, Huangshan Road 443, Hefei, Anhui, PR China
| | - Wenxiang Du
- School of Chemistry and Materials Science, University of Science and Technology of China, Jinzhai Road 96, Hefei, Anhui, PR China; Department of thyroid and breast Surgery, The First Affiliated Hospital of USTC, Tian'ehu Road 1, Hefei, Anhui, PR China; State Key Laboratory of Fire Science, University of Science and Technology of China, Huangshan Road 443, Hefei, Anhui, PR China
| | - Hongjie Zhang
- School of Chemistry and Materials Science, University of Science and Technology of China, Jinzhai Road 96, Hefei, Anhui, PR China; Department of thyroid and breast Surgery, The First Affiliated Hospital of USTC, Tian'ehu Road 1, Hefei, Anhui, PR China; State Key Laboratory of Fire Science, University of Science and Technology of China, Huangshan Road 443, Hefei, Anhui, PR China
| | - Liang Cheng
- State Key Laboratory of Fire Science, University of Science and Technology of China, Huangshan Road 443, Hefei, Anhui, PR China
| | - Lei Song
- State Key Laboratory of Fire Science, University of Science and Technology of China, Huangshan Road 443, Hefei, Anhui, PR China
| | - Xiaopeng Ma
- Division of Life Sciences and Medicine, University of Science and Technology of China, Huangshan Road 443, Hefei, Anhui, PR China; Department of thyroid and breast Surgery, The First Affiliated Hospital of USTC, Tian'ehu Road 1, Hefei, Anhui, PR China
| | - Yuan Hu
- School of Chemistry and Materials Science, University of Science and Technology of China, Jinzhai Road 96, Hefei, Anhui, PR China; State Key Laboratory of Fire Science, University of Science and Technology of China, Huangshan Road 443, Hefei, Anhui, PR China.
| | - Jing Wang
- Department of thyroid and breast Surgery, The First Affiliated Hospital of USTC, Tian'ehu Road 1, Hefei, Anhui, PR China; State Key Laboratory of Fire Science, University of Science and Technology of China, Huangshan Road 443, Hefei, Anhui, PR China.
| |
Collapse
|
23
|
Baldacchino K, Peveler WJ, Lemgruber L, Smith RS, Scharler C, Hayden L, Komarek L, Lindsay SL, Barnett SC, Edgar JM, Linington C, Thümmler K. Myelinated axons are the primary target of hemin-mediated oxidative damage in a model of the central nervous system. Exp Neurol 2022; 354:114113. [PMID: 35569511 DOI: 10.1016/j.expneurol.2022.114113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/29/2022] [Accepted: 05/08/2022] [Indexed: 12/01/2022]
Abstract
Iron released from oligodendrocytes during demyelination or derived from haemoglobin breakdown products is believed to amplify oxidative tissue injury in multiple sclerosis (MS). However, the pathophysiological significance of iron-containing haemoglobin breakdown products themselves is rarely considered in the context of MS and their cellular specificity and mode of action remain unclear. Using myelinating cell cultures, we now report the cytotoxic potential of hemin (ferriprotoporphyrin IX chloride), a major degradation product of haemoglobin, is 25-fold greater than equimolar concentrations of free iron in myelinating cultures; a model that reproduces the complex multicellular environment of the CNS. At low micro molar concentrations (3.3 - 10 μM) we observed hemin preferentially binds to myelin and axons to initiate a complex detrimental response that results in targeted demyelination and axonal loss but spares neuronal cell bodies, astrocytes and the majority of oligodendroglia. Demyelination and axonal loss in this context are executed by a combination of mechanisms that include iron-dependent peroxidation by reactive oxygen species (ROS) and ferroptosis. These effects are microglial-independent, do not require any initiating inflammatory insult and represent a direct effect that compromises the structural integrity of myelinated axons in the CNS. Our data identify hemin-mediated demyelination and axonal loss as a novel mechanism by which intracerebral degradation of haemoglobin may contribute to lesion development in MS.
Collapse
Affiliation(s)
- Karl Baldacchino
- Institute of Infection, Immunity and Inflammation, University of Glasgow, G12 8TA Glasgow, United Kingdom
| | - William J Peveler
- WestCHEM, School of Chemistry, University of Glasgow, Joseph Black Building, G12 8QQ Glasgow, UK
| | - Leandro Lemgruber
- Glasgow Imaging Facility, Institute of Infection, Immunity and Inflammation, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - Rebecca Sherrard Smith
- Institute of Infection, Immunity and Inflammation, University of Glasgow, G12 8TA Glasgow, United Kingdom
| | - Cornelia Scharler
- Institute of Experimental and Clinical Cell Therapy, Paracelsus Medical University, Salzburg, Austria
| | - Lorna Hayden
- Institute of Infection, Immunity and Inflammation, University of Glasgow, G12 8TA Glasgow, United Kingdom
| | - Lina Komarek
- Institute of Infection, Immunity and Inflammation, University of Glasgow, G12 8TA Glasgow, United Kingdom
| | - Susan L Lindsay
- Institute of Infection, Immunity and Inflammation, University of Glasgow, G12 8TA Glasgow, United Kingdom
| | - Susan C Barnett
- Institute of Infection, Immunity and Inflammation, University of Glasgow, G12 8TA Glasgow, United Kingdom
| | - Julia M Edgar
- Institute of Infection, Immunity and Inflammation, University of Glasgow, G12 8TA Glasgow, United Kingdom
| | - Christopher Linington
- Institute of Infection, Immunity and Inflammation, University of Glasgow, G12 8TA Glasgow, United Kingdom
| | - Katja Thümmler
- Institute of Infection, Immunity and Inflammation, University of Glasgow, G12 8TA Glasgow, United Kingdom.
| |
Collapse
|
24
|
Wendimu MY, Hooks SB. Microglia Phenotypes in Aging and Neurodegenerative Diseases. Cells 2022; 11:2091. [PMID: 35805174 PMCID: PMC9266143 DOI: 10.3390/cells11132091] [Citation(s) in RCA: 149] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 02/08/2023] Open
Abstract
Neuroinflammation is a hallmark of many neurodegenerative diseases (NDs) and plays a fundamental role in mediating the onset and progression of disease. Microglia, which function as first-line immune guardians of the central nervous system (CNS), are the central drivers of neuroinflammation. Numerous human postmortem studies and in vivo imaging analyses have shown chronically activated microglia in patients with various acute and chronic neuropathological diseases. While microglial activation is a common feature of many NDs, the exact role of microglia in various pathological states is complex and often contradictory. However, there is a consensus that microglia play a biphasic role in pathological conditions, with detrimental and protective phenotypes, and the overall response of microglia and the activation of different phenotypes depends on the nature and duration of the inflammatory insult, as well as the stage of disease development. This review provides a comprehensive overview of current research on the various microglia phenotypes and inflammatory responses in health, aging, and NDs, with a special emphasis on the heterogeneous phenotypic response of microglia in acute and chronic diseases such as hemorrhagic stroke (HS), Alzheimer's disease (AD), and Parkinson's disease (PD). The primary focus is translational research in preclinical animal models and bulk/single-cell transcriptome studies in human postmortem samples. Additionally, this review covers key microglial receptors and signaling pathways that are potential therapeutic targets to regulate microglial inflammatory responses during aging and in NDs. Additionally, age-, sex-, and species-specific microglial differences will be briefly reviewed.
Collapse
Affiliation(s)
| | - Shelley B. Hooks
- Hooks Lab, Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
25
|
Shao L, Chen S, Ma L. Secondary Brain Injury by Oxidative Stress After Cerebral Hemorrhage: Recent Advances. Front Cell Neurosci 2022; 16:853589. [PMID: 35813506 PMCID: PMC9262401 DOI: 10.3389/fncel.2022.853589] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/16/2022] [Indexed: 11/25/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a clinical syndrome in which blood accumulates in the brain parenchyma because of a nontraumatic rupture of a blood vessel. Because of its high morbidity and mortality rate and the lack of effective therapy, the treatment of ICH has become a hot research topic. Meanwhile, Oxidative stress is one of the main causes of secondary brain injury(SBI) after ICH. Therefore, there is a need for an in-depth study of oxidative stress after ICH. This review will discuss the pathway and effects of oxidative stress after ICH and its relationship with inflammation and autophagy, as well as the current antioxidant therapy for ICH with a view to deriving better therapeutic tools or targets for ICH.
Collapse
|
26
|
Zhang Y, Khan S, Liu Y, Wu G, Yong VW, Xue M. Oxidative Stress Following Intracerebral Hemorrhage: From Molecular Mechanisms to Therapeutic Targets. Front Immunol 2022; 13:847246. [PMID: 35355999 PMCID: PMC8959663 DOI: 10.3389/fimmu.2022.847246] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 02/18/2022] [Indexed: 12/18/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a highly fatal disease with mortality rate of approximately 50%. Oxidative stress (OS) is a prominent cause of brain injury in ICH. Important sources of reactive oxygen species after hemorrhage are mitochondria dysfunction, degradated products of erythrocytes, excitotoxic glutamate, activated microglia and infiltrated neutrophils. OS harms the central nervous system after ICH mainly through impacting inflammation, killing brain cells and exacerbating damage of the blood brain barrier. This review discusses the sources and the possible molecular mechanisms of OS in producing brain injury in ICH, and anti-OS strategies to ameliorate the devastation of ICH.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Suliman Khan
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Yang Liu
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Guofeng Wu
- Department of Emergency, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - V Wee Yong
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
27
|
Lin CH, Wu JS, Hsieh PC, Chiu V, Lan CC, Kuo CY. Wild Bitter Melon Extract Abrogates Hypoxia-Induced Cell Death via the Regulation of Ferroptosis, ER Stress, and Apoptosis in Microglial BV2 Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:1072600. [PMID: 35449822 PMCID: PMC9017512 DOI: 10.1155/2022/1072600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 11/17/2022]
Abstract
Microglial cells are well-known phagocytic cells that are resistant to the central nervous system (CNS) and play an important role in the maintenance of CNS homeostasis. Activated microglial cells induce neuroinflammation under hypoxia and typically cause neuronal damage in CNS diseases. In this study, we propose that wild bitter melon extract (WBM) has a protective effect on hypoxia-induced cell death via regulation of ferroptosis, ER stress, and apoptosis. The results demonstrated that hypoxia caused microglial BV-2 the accumulation of lipid ROS, ferroptosis, ER stress, and apoptosis. In this study, we investigated the pharmacological effects of WBM on BV-2 cells following hypoxia-induced cell death. The results indicated that WBM reversed hypoxia-downregulated antiferroptotic molecules Gpx4 and SLC7A11, as well as upregulated the ER stress markers CHOP and Bip. Moreover, WBM alleviated hypoxia-induced apoptosis via the regulation of cleaved-caspase 3, Bax, and Bcl-2. Our results suggest that WBM may be a good candidate for preventing CNS disorders in the future.
Collapse
Affiliation(s)
- Chih-Hung Lin
- Department of Internal Medicine, Cathay General Hospital, Taipei 106, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
- Ph.D. Program in Nutrition and Food Science, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Jiunn-Sheng Wu
- Division of Infectious Diseases, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
| | - Po-Chun Hsieh
- Department of Chinese Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
| | - Valeria Chiu
- Division of Physical Medicine and Rehabilitation, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
- School of Medicine, Tzu-Chi University, Hualien 970, Taiwan
| | - Chou-Chin Lan
- School of Medicine, Tzu-Chi University, Hualien 970, Taiwan
- Division of Pulmonary Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
| | - Chan-Yen Kuo
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
- Department of Nursing, Cardinal Tien College of Healthcare and Management, New Taipei City 231, Taiwan
| |
Collapse
|
28
|
Zille M, Oses-Prieto JA, Savage SR, Karuppagounder SS, Chen Y, Kumar A, Morris JH, Scheidt KA, Burlingame AL, Ratan RR. Hemin-Induced Death Models Hemorrhagic Stroke and Is a Variant of Classical Neuronal Ferroptosis. J Neurosci 2022; 42:2065-2079. [PMID: 34987108 PMCID: PMC8916756 DOI: 10.1523/jneurosci.0923-20.2021] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 11/12/2021] [Accepted: 12/02/2021] [Indexed: 11/21/2022] Open
Abstract
Ferroptosis is a caspase-independent, iron-dependent form of regulated necrosis extant in traumatic brain injury, Huntington disease, and hemorrhagic stroke. It can be activated by cystine deprivation leading to glutathione depletion, the insufficiency of the antioxidant glutathione peroxidase-4, and the hemolysis products hemoglobin and hemin. A cardinal feature of ferroptosis is extracellular signal-regulated kinase (ERK)1/2 activation culminating in its translocation to the nucleus. We have previously confirmed that the mitogen-activated protein (MAP) kinase kinase (MEK) inhibitor U0126 inhibits persistent ERK1/2 phosphorylation and ferroptosis. Here, we show that hemin exposure, a model of secondary injury in brain hemorrhage and ferroptosis, activated ERK1/2 in mouse neurons. Accordingly, MEK inhibitor U0126 protected against hemin-induced ferroptosis. Unexpectedly, U0126 prevented hemin-induced ferroptosis independent of its ability to inhibit ERK1/2 signaling. In contrast to classical ferroptosis in neurons or cancer cells, chemically diverse inhibitors of MEK did not block hemin-induced ferroptosis, nor did the forced expression of the ERK-selective MAP kinase phosphatase (MKP)3. We conclude that hemin or hemoglobin-induced ferroptosis, unlike glutathione depletion, is ERK1/2-independent. Together with recent studies, our findings suggest the existence of a novel subtype of neuronal ferroptosis relevant to bleeding in the brain that is 5-lipoxygenase-dependent, ERK-independent, and transcription-independent. Remarkably, our unbiased phosphoproteome analysis revealed dramatic differences in phosphorylation induced by two ferroptosis subtypes. As U0126 also reduced cell death and improved functional recovery after hemorrhagic stroke in male mice, our analysis also provides a template on which to build a search for U0126's effects in a variant of neuronal ferroptosis.SIGNIFICANCE STATEMENT Ferroptosis is an iron-dependent mechanism of regulated necrosis that has been linked to hemorrhagic stroke. Common features of ferroptotic death induced by diverse stimuli are the depletion of the antioxidant glutathione, production of lipoxygenase-dependent reactive lipids, sensitivity to iron chelation, and persistent activation of extracellular signal-regulated kinase (ERK) signaling. Unlike classical ferroptosis induced in neurons or cancer cells, here we show that ferroptosis induced by hemin is ERK-independent. Paradoxically, the canonical MAP kinase kinase (MEK) inhibitor U0126 blocks brain hemorrhage-induced death. Altogether, these data suggest that a variant of ferroptosis is unleashed in hemorrhagic stroke. We present the first, unbiased phosphoproteomic analysis of ferroptosis as a template on which to understand distinct paths to cell death that meet the definition of ferroptosis.
Collapse
Affiliation(s)
- Marietta Zille
- Burke Neurological Institute, White Plains, New York 10605
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Vienna 1090, Austria
| | - Juan A Oses-Prieto
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158
| | - Sara R Savage
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030
| | - Saravanan S Karuppagounder
- Burke Neurological Institute, White Plains, New York 10605
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| | - Yingxin Chen
- Burke Neurological Institute, White Plains, New York 10605
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| | - Amit Kumar
- Burke Neurological Institute, White Plains, New York 10605
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| | - John H Morris
- Resource on Biocomputing, Visualization, and Informatics, University of California, San Francisco, California 94158
| | - Karl A Scheidt
- Department of Chemistry, Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, Illinois 60208
| | - Alma L Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158
| | - Rajiv R Ratan
- Burke Neurological Institute, White Plains, New York 10605
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| |
Collapse
|
29
|
Inhibiting BTB domain and CNC homolog 1 (Bach1) as an alternative to increase Nrf2 activation in chronic diseases. Biochim Biophys Acta Gen Subj 2022; 1866:130129. [DOI: 10.1016/j.bbagen.2022.130129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/25/2022] [Accepted: 03/09/2022] [Indexed: 12/15/2022]
|
30
|
Chen R, Wen D, Fu W, Xing L, Ma L, Liu Y, Li H, You C, Lin Y. Treatment effect of DNA framework nucleic acids on diffuse microvascular endothelial cell injury after subarachnoid hemorrhage. Cell Prolif 2022; 55:e13206. [PMID: 35187748 PMCID: PMC9055902 DOI: 10.1111/cpr.13206] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 02/05/2023] Open
Abstract
Objectives The purpose of this study was to investigate the treatment effect and molecular mechanism of tetrahedral framework nucleic acids (tFNAs), novel self‐assembled nucleic acid nanomaterials, in diffuse BMEC injury after SAH. Materials and Methods tFNAs were synthesized from four ssDNAs. The effects of tFNAs on SAH‐induced diffuse BMEC injury were explored by a cytotoxicity model induced by hemin, a breakdown product of hemoglobin, in vitro and a mouse model of SAH via internal carotid artery puncture in vivo. Cell viability assays, wound healing assays, transwell assays, and tube formation assays were performed to explore cellular function like angiogenesis. Results In vitro cellular function assays demonstrated that tFNAs could alleviate hemin‐induced injury, promote angiogenesis, and inhibit apoptosis in hemin cytotoxicity model. In vivo study using H&E and TEM results jointly indicated that the tFNAs attenuate the damage caused by SAH in situ, showing restored number of BMECs in the endothelium layer and more tight intercellular connectivity. Histological examination of SAH model animals confirmed the results of the in vitro study, as tFNAs exhibited treatment effects against diffuse BMEC injury in the cerebral microvascular bed. Conclusions Our study suggests the potential of tFNAs in ameliorating diffuse injury to BMECs after SAH, which laid theoretical foundation for the further study and use of these nucleic acid nanomaterials for tissue engineering vascularization.
Collapse
Affiliation(s)
- Ruiqi Chen
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Dingke Wen
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Fu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Xing
- Department of Gynecological Nursing, West China Second University Hospital, West China School of Nursing, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), Sichuan University, Chengdu, China
| | - Lu Ma
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Liu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Li
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Chao You
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,College of Biomedical Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
31
|
Topological Relationships Cytoskeleton-Membrane Nanosurface-Morphology as a Basic Mechanism of Total Disorders of RBC Structures. Int J Mol Sci 2022; 23:ijms23042045. [PMID: 35216154 PMCID: PMC8876224 DOI: 10.3390/ijms23042045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 11/22/2022] Open
Abstract
The state of red blood cells (RBCs) and their functional possibilities depend on the structural organization of the membranes. Cell morphology and membrane nanostructure are compositionally and functionally related to the cytoskeleton network. In this work, the influence of agents (hemin, endogenous oxidation during storage of packed RBCs, ultraviolet (UV) radiation, temperature, and potential of hydrogen (pH) changes) on the relationships between cytoskeleton destruction, membrane nanostructure, and RBC morphology was observed by atomic force microscope. It was shown that the influence of factors of a physical and biochemical nature causes structural rearrangements in RBCs at all levels of organization, forming a unified mechanism of disturbances in relationships “cytoskeleton-membrane nanosurface-cell morphology”. Filament ruptures and, consequently, large cytoskeleton pores appeared. The pores caused membrane topological defects in the form of separate grain domains. Increasing loading doses led to an increase in the number of large cytoskeleton pores and defects and their fusion at the membrane nanosurfaces. This caused the changes in RBC morphology. Our results can be used in molecular cell biology, membrane biophysics, and in fundamental and practical medicine.
Collapse
|
32
|
Loh D, Reiter RJ. Melatonin: Regulation of Prion Protein Phase Separation in Cancer Multidrug Resistance. Molecules 2022; 27:705. [PMID: 35163973 PMCID: PMC8839844 DOI: 10.3390/molecules27030705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 12/13/2022] Open
Abstract
The unique ability to adapt and thrive in inhospitable, stressful tumor microenvironments (TME) also renders cancer cells resistant to traditional chemotherapeutic treatments and/or novel pharmaceuticals. Cancer cells exhibit extensive metabolic alterations involving hypoxia, accelerated glycolysis, oxidative stress, and increased extracellular ATP that may activate ancient, conserved prion adaptive response strategies that exacerbate multidrug resistance (MDR) by exploiting cellular stress to increase cancer metastatic potential and stemness, balance proliferation and differentiation, and amplify resistance to apoptosis. The regulation of prions in MDR is further complicated by important, putative physiological functions of ligand-binding and signal transduction. Melatonin is capable of both enhancing physiological functions and inhibiting oncogenic properties of prion proteins. Through regulation of phase separation of the prion N-terminal domain which targets and interacts with lipid rafts, melatonin may prevent conformational changes that can result in aggregation and/or conversion to pathological, infectious isoforms. As a cancer therapy adjuvant, melatonin could modulate TME oxidative stress levels and hypoxia, reverse pH gradient changes, reduce lipid peroxidation, and protect lipid raft compositions to suppress prion-mediated, non-Mendelian, heritable, but often reversible epigenetic adaptations that facilitate cancer heterogeneity, stemness, metastasis, and drug resistance. This review examines some of the mechanisms that may balance physiological and pathological effects of prions and prion-like proteins achieved through the synergistic use of melatonin to ameliorate MDR, which remains a challenge in cancer treatment.
Collapse
Affiliation(s)
- Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
33
|
Lin J, Tan B, Li Y, Feng H, Chen Y. Sepsis-Exacerbated Brain Dysfunction After Intracerebral Hemorrhage. Front Cell Neurosci 2022; 15:819182. [PMID: 35126060 PMCID: PMC8814659 DOI: 10.3389/fncel.2021.819182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 12/27/2021] [Indexed: 12/28/2022] Open
Abstract
Sepsis susceptibility is significantly increased in patients with intracerebral hemorrhage (ICH), owing to immunosuppression and intestinal microbiota dysbiosis. To date, ICH with sepsis occurrence is still difficult for clinicians to deal with, and the mortality, as well as long-term cognitive disability, is still increasing. Actually, intracerebral hemorrhage and sepsis are mutually exacerbated via similar pathophysiological mechanisms, mainly consisting of systemic inflammation and circulatory dysfunction. The main consequence of these two processes is neural dysfunction and multiple organ damages, notably, via oxidative stress and neurotoxic mediation under the mediation of central nervous system activation and blood-brain barrier disruption. Besides, the comorbidity-induced multiple organ damages will produce numerous damage-associated molecular patterns and consequently exacerbate the severity of the disease. At present, the prospective views are about operating artificial restriction for the peripheral immune system and achieving cross-tolerance among organs via altering immune cell composition to reduce inflammatory damage.
Collapse
Affiliation(s)
- Jie Lin
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, China
| | - Binbin Tan
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, China
| | - Yuhong Li
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, China
| | - Hua Feng
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, China
| | - Yujie Chen
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, China
| |
Collapse
|
34
|
Quilapi AM, Vargas-Lagos C, Martínez D, Muñoz JL, Spies J, Esperguel I, Tapia J, Oyarzún-Salazar R, Vargas-Chacoff L. Brain immunity response of fish Eleginops maclovinus to infection with Francisella noatunensis. FISH & SHELLFISH IMMUNOLOGY 2022; 120:695-705. [PMID: 34808359 DOI: 10.1016/j.fsi.2021.11.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
The brain's immune system is selective and hermetic in most species, including fish, favoring immune responses mediated by soluble immunomodulatory factors such as serotonin and the availability of nutrients against infectious processes. Francisella noatunensis coexist with fish such as Eleginops maclovinus, which raises questions about the susceptibility and immune response of the brain of E. maclovinus against Francisella. In this study, we inoculated fish with different doses of Francisella and took samples for 28 days. We detected bacteria in the brain of fish injected with a high concentration of Francisella at all time points. qPCR analysis of immune genes indicated a response mainly in the medium-dose and early expression of genes involved in iron metabolism. Finally, brain serotonin levels were higher than in uninfected fish in all conditions, suggesting possible immunomodulatory participation in an infectious process.
Collapse
Affiliation(s)
- Ana María Quilapi
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Universidad Santo Tomás, Osorno, Chile; Magister en Ciencias Mención Microbiología, Universidad Austral de Chile, Valdivia, Chile.
| | - Carolina Vargas-Lagos
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP-IDEAL, Universidad Austral de Chile, Valdivia, Chile
| | - Danixa Martínez
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - Jose Luis Muñoz
- Centro de Investigación y Desarrollo i ∼ mar, Universidad de los Lagos, Casilla 557, Puerto Montt, Chile
| | - Johana Spies
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - Ivan Esperguel
- Magister en Ciencias Mención Microbiología, Universidad Austral de Chile, Valdivia, Chile
| | - Jaime Tapia
- Institute of Chemistry and Natural Resources, Universidad de Talca, Chile
| | | | - Luis Vargas-Chacoff
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP-IDEAL, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
35
|
Lu C, Tan C, Ouyang H, Chen Z, Yan Z, Zhang M. Ferroptosis in Intracerebral Hemorrhage: A Panoramic Perspective of the Metabolism, Mechanism and Theranostics. Aging Dis 2022; 13:1348-1364. [PMID: 36186133 PMCID: PMC9466971 DOI: 10.14336/ad.2022.01302] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/30/2022] [Indexed: 11/22/2022] Open
Abstract
Iron is one of the most crucial elements in the human body. In recent years, a kind of programmed, non-apoptotic cell death closely related to iron metabolism-called ferroptosis- has aroused much interest among many scientists. Ferroptosis also interacts with other pathways involved in cell death including iron abnormality, the cystine/glutamate antiporter and lipid peroxidation. Together these pathological pathways exert great impacts on intracerebral hemorrhage (ICH), a lethal cerebrovascular disease with a high incidence rate and mortality rate. Furthermore, the ferroptosis also affects different brain cells (neurons and neuroglial cells) and different organelles (mitochondria and endoplasmic reticulum). Clinical treatments for ferroptosis in ICH have been closely investigated recently. This perspective provides a comprehensive summary of ferroptosis mechanisms after ICH and its interaction with other cell death patterns. Understanding the role of ferroptosis in ICH will open new windows for the future treatments and preventions for ICH and other intracerebral diseases.
Collapse
Affiliation(s)
- Chenxiao Lu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Xiangya School of Medicine, Central South University, Changsha, 410031, China
| | - Changwu Tan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Xiangya School of Medicine, Central South University, Changsha, 410031, China
| | - Hongfei Ouyang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Xiangya School of Medicine, Central South University, Changsha, 410031, China
| | - Zhuohui Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.
| | - Zhouyi Yan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Mengqi Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Correspondence should be addressed to: Dr. Mengqi Zhang, Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China. ..
| |
Collapse
|
36
|
Banesh S, Layek S, Trivedi DV. Hemin acts as CD36 ligand to activate down-stream signalling to disturb immune responses and cytokine secretion from macrophages. Immunol Lett 2022; 243:1-18. [DOI: 10.1016/j.imlet.2022.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 11/28/2022]
|
37
|
Pan R, Yu S, Zhang H, Timmins GS, Weaver J, Yang Y, Zhou X, Liu KJ. Endogenous zinc protoporphyrin formation critically contributes to hemorrhagic stroke-induced brain damage. J Cereb Blood Flow Metab 2021; 41:3232-3247. [PMID: 34187233 PMCID: PMC8669275 DOI: 10.1177/0271678x211028475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hemorrhagic stroke is a leading cause of death. The causes of intracerebral hemorrhage (ICH)-induced brain damage are thought to include lysis of red blood cells, hemin release and iron overload. These mechanisms, however, have not proven very amenable to therapeutic intervention, and so other mechanistic targets are being sought. Here we report that accumulation of endogenously formed zinc protoporphyrin (ZnPP) also critically contributes to ICH-induced brain damage. ICH caused a significant accumulation of ZnPP in brain tissue surrounding hematoma, as evidenced by fluorescence microscopy of ZnPP, and further confirmed by fluorescence spectroscopy and supercritical fluid chromatography-mass spectrometry. ZnPP formation was dependent upon both ICH-induced hypoxia and an increase in free zinc accumulation. Notably, inhibiting ferrochelatase, which catalyzes insertion of zinc into protoporphyrin, greatly decreased ICH-induced endogenous ZnPP generation. Moreover, a significant decrease in brain damage was observed upon ferrochelatase inhibition, suggesting that endogenous ZnPP contributes to the damage in ICH. Our findings reveal a novel mechanism of ICH-induced brain damage through ferrochelatase-mediated formation of ZnPP in ICH tissue. Since ferrochelatase can be readily inhibited by small molecules, such as protein kinase inhibitors, this may provide a promising new and druggable target for ICH therapy.
Collapse
Affiliation(s)
- Rong Pan
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, USA
| | - Song Yu
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, USA
| | - Haikun Zhang
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, USA
| | - Graham S Timmins
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, USA
| | - John Weaver
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, USA
| | - Yirong Yang
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, USA
| | - Xixi Zhou
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, USA
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, USA
| |
Collapse
|
38
|
Ahuja M, Ammal Kaidery N, Attucks OC, McDade E, Hushpulian DM, Gaisin A, Gaisina I, Ahn YH, Nikulin S, Poloznikov A, Gazaryan I, Yamamoto M, Matsumoto M, Igarashi K, Sharma SM, Thomas B. Bach1 derepression is neuroprotective in a mouse model of Parkinson's disease. Proc Natl Acad Sci U S A 2021; 118:e2111643118. [PMID: 34737234 PMCID: PMC8694049 DOI: 10.1073/pnas.2111643118] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2021] [Indexed: 12/30/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative movement disorder characterized by the loss of nigrostriatal dopaminergic neurons. Mounting evidence suggests that Nrf2 is a promising target for neuroprotective interventions in PD. However, electrophilic chemical properties of the canonical Nrf2-based drugs cause irreversible alkylation of cysteine residues on cellular proteins resulting in side effects. Bach1 is a known transcriptional repressor of the Nrf2 pathway. We report that Bach1 levels are up-regulated in PD postmortem brains and preclinical models. Bach1 knockout (KO) mice were protected against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurotoxicity and associated oxidative damage and neuroinflammation. Functional genomic analysis demonstrated that the neuroprotective effects in Bach1 KO mice was due to up-regulation of Bach1-targeted pathways that are associated with both Nrf2-dependent antioxidant response element (ARE) and Nrf2-independent non-ARE genes. Using a proprietary translational technology platform, a drug library screen identified a substituted benzimidazole as a Bach1 inhibitor that was validated as a nonelectrophile. Oral administration of the Bach1 inhibitor attenuated MPTP neurotoxicity in pre- and posttreatment paradigms. Bach1 inhibitor-induced neuroprotection was associated with the up-regulation of Bach1-targeted pathways in concurrence with the results from Bach1 KO mice. Our results suggest that genetic deletion as well as pharmacologic inhibition of Bach1 by a nonelectrophilic inhibitor is a promising therapeutic approach for PD.
Collapse
Affiliation(s)
- Manuj Ahuja
- Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC 29425
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425
| | - Navneet Ammal Kaidery
- Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC 29425
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425
| | | | | | - Dmitry M Hushpulian
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Moscow 109028, Russia
| | - Arsen Gaisin
- Integrated Molecular Structure Education and Research Center, Northwestern University, IL 60208
| | - Irina Gaisina
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, IL 60612
| | - Young Hoon Ahn
- Department of Chemistry, Wayne State University, Detroit, MI 48202
| | - Sergey Nikulin
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Moscow 109028, Russia
| | - Andrey Poloznikov
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Moscow 109028, Russia
| | - Irina Gazaryan
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Moscow 109028, Russia
- Department of Chemical Enzymology, M. V. Lomonosov Moscow State University, Moscow 119991, Russia
- Department of Chemistry and Physical Sciences, Pace University, Pleasantville, NY 10570
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- Tohoku Medical Megabank Organization, Tohoku University Graduate School of Medicine, Sendai 980-8573, Japan
| | - Mitsuyo Matsumoto
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Sudarshana M Sharma
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425
| | - Bobby Thomas
- Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC 29425;
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425
- Department of Drug Discovery, Medical University of South Carolina, Charleston, SC 29425
| |
Collapse
|
39
|
Palumbo A, Grüning P, Landt SK, Heckmann LE, Bartram L, Pabst A, Flory C, Ikhsan M, Pietsch S, Schulz R, Kren C, Koop N, Boltze J, Madany Mamlouk A, Zille M. Deep Learning to Decipher the Progression and Morphology of Axonal Degeneration. Cells 2021; 10:cells10102539. [PMID: 34685519 PMCID: PMC8534012 DOI: 10.3390/cells10102539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/19/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
Axonal degeneration (AxD) is a pathological hallmark of many neurodegenerative diseases. Deciphering the morphological patterns of AxD will help to understand the underlying mechanisms and develop effective therapies. Here, we evaluated the progression of AxD in cortical neurons using a novel microfluidic device together with a deep learning tool that we developed for the enhanced-throughput analysis of AxD on microscopic images. The trained convolutional neural network (CNN) sensitively and specifically segmented the features of AxD including axons, axonal swellings, and axonal fragments. Its performance exceeded that of the human evaluators. In an in vitro model of AxD in hemorrhagic stroke induced by the hemolysis product hemin, we detected a time-dependent degeneration of axons leading to a decrease in axon area, while axonal swelling and fragment areas increased. Axonal swellings preceded axon fragmentation, suggesting that swellings may be reliable predictors of AxD. Using a recurrent neural network (RNN), we identified four morphological patterns of AxD (granular, retraction, swelling, and transport degeneration). These findings indicate a morphological heterogeneity of AxD in hemorrhagic stroke. Our EntireAxon platform enables the systematic analysis of axons and AxD in time-lapse microscopy and unravels a so-far unknown intricacy in which AxD can occur in a disease context.
Collapse
Affiliation(s)
- Alex Palumbo
- Fraunhofer Research and Development Center for Marine and Cellular Biotechnology EMB, 23562 Lübeck, Germany; (A.P.); (S.K.L.); (L.E.H.); (L.B.); (A.P.); (C.F.); (M.I.); (S.P.); (J.B.)
- Institute for Medical and Marine Biotechnology, University of Lübeck, 23562 Lübeck, Germany
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, 23562 Lübeck, Germany
| | - Philipp Grüning
- Institute for Neuro- and Bioinformatics, University of Lübeck, 23562 Lübeck, Germany; (P.G.); (A.M.M.)
| | - Svenja Kim Landt
- Fraunhofer Research and Development Center for Marine and Cellular Biotechnology EMB, 23562 Lübeck, Germany; (A.P.); (S.K.L.); (L.E.H.); (L.B.); (A.P.); (C.F.); (M.I.); (S.P.); (J.B.)
- Institute for Medical and Marine Biotechnology, University of Lübeck, 23562 Lübeck, Germany
| | - Lara Eleen Heckmann
- Fraunhofer Research and Development Center for Marine and Cellular Biotechnology EMB, 23562 Lübeck, Germany; (A.P.); (S.K.L.); (L.E.H.); (L.B.); (A.P.); (C.F.); (M.I.); (S.P.); (J.B.)
- Institute for Medical and Marine Biotechnology, University of Lübeck, 23562 Lübeck, Germany
| | - Luisa Bartram
- Fraunhofer Research and Development Center for Marine and Cellular Biotechnology EMB, 23562 Lübeck, Germany; (A.P.); (S.K.L.); (L.E.H.); (L.B.); (A.P.); (C.F.); (M.I.); (S.P.); (J.B.)
| | - Alessa Pabst
- Fraunhofer Research and Development Center for Marine and Cellular Biotechnology EMB, 23562 Lübeck, Germany; (A.P.); (S.K.L.); (L.E.H.); (L.B.); (A.P.); (C.F.); (M.I.); (S.P.); (J.B.)
- Institute for Medical and Marine Biotechnology, University of Lübeck, 23562 Lübeck, Germany
| | - Charlotte Flory
- Fraunhofer Research and Development Center for Marine and Cellular Biotechnology EMB, 23562 Lübeck, Germany; (A.P.); (S.K.L.); (L.E.H.); (L.B.); (A.P.); (C.F.); (M.I.); (S.P.); (J.B.)
- Institute for Medical and Marine Biotechnology, University of Lübeck, 23562 Lübeck, Germany
| | - Maulana Ikhsan
- Fraunhofer Research and Development Center for Marine and Cellular Biotechnology EMB, 23562 Lübeck, Germany; (A.P.); (S.K.L.); (L.E.H.); (L.B.); (A.P.); (C.F.); (M.I.); (S.P.); (J.B.)
- Institute for Medical and Marine Biotechnology, University of Lübeck, 23562 Lübeck, Germany
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, 23562 Lübeck, Germany
- Faculty of Medicine, Malikussaleh University, Lhokseumawe 24355, Indonesia
| | - Sören Pietsch
- Fraunhofer Research and Development Center for Marine and Cellular Biotechnology EMB, 23562 Lübeck, Germany; (A.P.); (S.K.L.); (L.E.H.); (L.B.); (A.P.); (C.F.); (M.I.); (S.P.); (J.B.)
- Institute for Medical and Marine Biotechnology, University of Lübeck, 23562 Lübeck, Germany
- Department of Neonatology, Universitätsklinikum Leipzig, 04103 Leipzig, Germany
| | - Reinhard Schulz
- Wissenschaftliche Werkstätten, University of Lübeck, 23562 Lübeck, Germany;
| | - Christopher Kren
- Medical Laser Center Lübeck GmbH, 23562 Lübeck, Germany; (C.K.); (N.K.)
| | - Norbert Koop
- Medical Laser Center Lübeck GmbH, 23562 Lübeck, Germany; (C.K.); (N.K.)
| | - Johannes Boltze
- Fraunhofer Research and Development Center for Marine and Cellular Biotechnology EMB, 23562 Lübeck, Germany; (A.P.); (S.K.L.); (L.E.H.); (L.B.); (A.P.); (C.F.); (M.I.); (S.P.); (J.B.)
- Institute for Medical and Marine Biotechnology, University of Lübeck, 23562 Lübeck, Germany
- School of Life Sciences, The University of Warwick, Gibbet Hill Campus, Coventry CV4 7AL, UK
| | - Amir Madany Mamlouk
- Institute for Neuro- and Bioinformatics, University of Lübeck, 23562 Lübeck, Germany; (P.G.); (A.M.M.)
| | - Marietta Zille
- Fraunhofer Research and Development Center for Marine and Cellular Biotechnology EMB, 23562 Lübeck, Germany; (A.P.); (S.K.L.); (L.E.H.); (L.B.); (A.P.); (C.F.); (M.I.); (S.P.); (J.B.)
- Institute for Medical and Marine Biotechnology, University of Lübeck, 23562 Lübeck, Germany
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, 23562 Lübeck, Germany
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, 1090 Vienna, Austria
- Correspondence:
| |
Collapse
|
40
|
Juhász T, Quemé-Peña M, Kővágó B, Mihály J, Ricci M, Horváti K, Bősze S, Zsila F, Beke-Somfai T. Interplay between membrane active host defense peptides and heme modulates their assemblies and in vitro activity. Sci Rep 2021; 11:18328. [PMID: 34526616 PMCID: PMC8443738 DOI: 10.1038/s41598-021-97779-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/28/2021] [Indexed: 02/08/2023] Open
Abstract
In the emerging era of antimicrobial resistance, the susceptibility to co-infections of patients suffering from either acquired or inherited hemolytic disorders can lead to dramatic increase in mortality rates. Closely related, heme liberated during hemolysis is one of the major sources of iron, which is vital for both host and invading microorganisms. While recent intensive research in the field has demonstrated that heme exerts diverse local effects including impairment of immune cells functions, it is almost completely unknown how it may compromise key molecules of our innate immune system, such as antimicrobial host defense peptides (HDPs). Since HDPs hold great promise as natural therapeutic agents against antibiotic-resistant microbes, understanding the effects that may modulate their action in microbial infection is crucial. Here we explore how hemin can interact directly with selected HDPs and influence their structure and membrane activity. It is revealed that induced helical folding, large assembly formation, and altered membrane activity is promoted by hemin. However, these effects showed variations depending mainly on peptide selectivity toward charged lipids, and the affinity of the peptide and hemin to lipid bilayers. Hemin-peptide complexes are sought to form semi-folded co-assemblies, which are present even with model membranes resembling mammalian or bacterial lipid compositions. In vitro cell-based toxicity assays supported that toxic effects of HDPs could be attenuated due to their assembly formation. These results are in line with our previous findings on peptide-lipid-small molecule systems suggesting that small molecules present in the complex in vivo milieu can regulate HDP function. Inversely, diverse effects of endogenous compounds could also be manipulated by HDPs.
Collapse
Affiliation(s)
- Tünde Juhász
- grid.425578.90000 0004 0512 3755Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Mayra Quemé-Peña
- grid.425578.90000 0004 0512 3755Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, Hungary ,grid.5591.80000 0001 2294 6276Hevesy György PhD School of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Bence Kővágó
- grid.425578.90000 0004 0512 3755Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Judith Mihály
- grid.425578.90000 0004 0512 3755Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Maria Ricci
- grid.425578.90000 0004 0512 3755Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Kata Horváti
- grid.5591.80000 0001 2294 6276ELKH-ELTE Research Group of Peptide Chemistry, Eötvös Loránd University, Budapest, Hungary ,grid.5591.80000 0001 2294 6276Department of Organic Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Szilvia Bősze
- grid.5591.80000 0001 2294 6276ELKH-ELTE Research Group of Peptide Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Ferenc Zsila
- grid.425578.90000 0004 0512 3755Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Tamás Beke-Somfai
- grid.425578.90000 0004 0512 3755Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
41
|
Human Milk Oligosaccharide 2'-Fucosyllactose Induces Neuroprotection from Intracerebral Hemorrhage Stroke. Int J Mol Sci 2021; 22:ijms22189881. [PMID: 34576050 PMCID: PMC8467359 DOI: 10.3390/ijms22189881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 11/17/2022] Open
Abstract
Intracerebral hemorrhage (ICH) occurs when brain blood vessels rupture, causing inflammation and cell death. 2-Fucosyllactose (2FL), a human milk oligosaccharide, has potent antiapoptotic and anti-inflammatory effects. The purpose of this study was to examine the protective effect of 2FL in cellular and rodent models of ICH. Hemin was added to a primary rat cortical neuronal and BV2 microglia coculture to simulate ICH in vitro. IBA1 and MAP2 immunoreactivities were used to determine inflammation and neuronal survival. Hemin significantly increased IBA1, while it reduced MAP2 immunoreactivity. 2FL significantly antagonized both responses. The protective effect of 2FL was next examined in a rat ICH model. Intracerebral administration of type VII collagenase reduced open-field locomotor activity. Early post-treatment with 2FL significantly improved locomotor activity. Brain tissues were collected for immunohistochemistry and qRT-PCR analysis. 2FL reduced IBA1 and CD4 immunoreactivity in the lesioned striatum. 2FL downregulated the expression of ER stress markers (PERK and CHOP), while it upregulated M2 macrophage markers (CD206 and TGFβ) in the lesioned brain. Taken together, our data support that 2FL has a neuroprotective effect against ICH through the inhibition of neuroinflammation and ER stress. 2FL may have clinical implications for the treatment of ICH.
Collapse
|
42
|
Frase S, Steimer M, Selzner L, Kaiser S, Foit NA, Niesen WD, Schallner N. Temporal Expression Pattern of Hemoxygenase-1 Expression and Its Association with Vasospasm and Delayed Cerebral Ischemia After Aneurysmal Subarachnoid Hemorrhage. Neurocrit Care 2021; 36:279-291. [PMID: 34312792 PMCID: PMC8813853 DOI: 10.1007/s12028-021-01299-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 06/11/2021] [Indexed: 12/01/2022]
Abstract
Background Red blood cell-induced cerebral inflammation and toxicity has been shown to be attenuated by induction of the heme-catalyzing enzyme, hemoxygenase-1 (HO-1), in animal models of subarachnoid hemorrhage (SAH). Although inflammatory mechanisms leading to secondary neuronal injury in SAH are becoming increasingly well understood, markers of cerebral inflammation have so far not been implemented in clinical prediction models of SAH. Methods In this biomarker observational study, HO-1 messenger ribonucleic acid (mRNA) expression levels were determined in cerebrospinal fluid (CSF) and blood of 66 patients with aneurysmal SAH on days 1, 7, and 14 after the SAH event. HO-1 mRNA expression was determined via real time polymerase chain reaction (PCR), and relative expression changes were quantified in comparison with expression levels in nonhemorrhagic control CSF. Subarachnoid blood burden, as well as presence of vasospasm and delayed cerebral ischemia (DCI), were recorded. Short and long-term clinical outcomes were assessed using the Modified Rankin Scale at discharge and 1 year after the SAH event. Results CSF HO-1 expression levels showed a significant increase over the 14-day observation period (p < 0.001, F = 22.53) and correlated with intracranial hematoma burden (ρ = 0.349, p = 0.025). In multivariate analyses, CSF HO-1 expression levels did not reach significance as independent predictors of outcome. Vasospasm on computed tomographic angiography was associated with lower CSF HO-1 expression levels on day 7 after SAH (n = 53, p = 0.010), whereas patients with DCI showed higher CSF HO-1 expression levels on day 14 after SAH (n = 21, p = 0.009). Conclusions HO-1 expression in CSF in patients with SAH follows a distinct temporal induction pattern and is dependent on intracranial hematoma burden. CSF HO-1 expression was unable to predict functional outcome. Associations of early low HO-1 expression with vasospasm and late elevated HO-1 expression with DCI may point to detrimental effects of late HO-1 induction, warranting the need for further investigation in a larger study population.
Collapse
Affiliation(s)
- Sibylle Frase
- Department of Neurology and Neuroscience, Medical Center - University of Freiburg, Freiburg, Germany.
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Matti Steimer
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Anesthesiology and Critical Care, Medical Center - University of Freiburg, Freiburg, Germany
| | - Lisa Selzner
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Anesthesiology and Critical Care, Medical Center - University of Freiburg, Freiburg, Germany
| | - Sandra Kaiser
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Anesthesiology and Critical Care, Medical Center - University of Freiburg, Freiburg, Germany
| | - Niels Alexander Foit
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
| | - Wolf-Dirk Niesen
- Department of Neurology and Neuroscience, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nils Schallner
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Anesthesiology and Critical Care, Medical Center - University of Freiburg, Freiburg, Germany
| |
Collapse
|
43
|
Chen J, Chen F, Zhang L, Yang Z, Deng T, Zhao Y, Zheng T, Gan X, Zhong H, Geng Y, Fu X, Wang Y, Yu C. Self-Assembling Porphyrins as a Single Therapeutic Agent for Synergistic Cancer Therapy: A One Stone Three Birds Strategy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:27856-27867. [PMID: 34110146 DOI: 10.1021/acsami.1c04868] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Combining photodynamic therapy (PDT), chemodynamic therapy (CDT), and ferroptosis is a valuable means for an enhanced anticancer effect. However, traditional combination of PDT/CDT/ferroptosis faces several hurdles, including excess glutathione (GSH) neutralization and preparation complexity. In this work, a versatile multifunctional nanoparticle (HCNP) self-assembled from two porphyrin molecules, chlorin e6 and hemin, is developed. The as-constructed HCNPs exhibit a peroxidase-mimic catalytic activity, which can lead to the in situ generation of endogenous O2, thereby enhancing the efficacy of PDT. Furthermore, the generation of hydroxyl radicals (•OH) in the tumor environment in reaction to the high level of H2O2 and the simultaneous disruption of intracellular GSH endow the HCNPs with the capacity of enhanced CDT, resulting in a more effective therapeutic outcome in combination with PDT. More importantly, GSH depletion further leads to the inactivation of GSH peroxide 4 and induced ferroptosis. Both in vitro and in vivo results showed that the combination of PDT/CDT/ferroptosis realizes highest antitumor efficacy significantly under laser irradiation. Therefore, by integrating the superiorities of O2 and •OH generation capacity, GSH-depletion effect, and bioimaging into a single nanosystem, the HCNPs are a promising single therapeutic agent for tumor PDT/CDT/ferroptosis combination therapy.
Collapse
Affiliation(s)
- Jun Chen
- Pharmaceutical Engineering Research Center, College of Pharmacy, Chongqing Medical University, Chongqing 400000, China
| | - Feng Chen
- Pharmaceutical Engineering Research Center, College of Pharmacy, Chongqing Medical University, Chongqing 400000, China
| | - Lei Zhang
- Pharmaceutical Engineering Research Center, College of Pharmacy, Chongqing Medical University, Chongqing 400000, China
| | - Zhangyou Yang
- Pharmaceutical Engineering Research Center, College of Pharmacy, Chongqing Medical University, Chongqing 400000, China
| | - Tao Deng
- Pharmaceutical Engineering Research Center, College of Pharmacy, Chongqing Medical University, Chongqing 400000, China
| | - Yunfei Zhao
- Pharmaceutical Engineering Research Center, College of Pharmacy, Chongqing Medical University, Chongqing 400000, China
| | - Tianye Zheng
- Pharmaceutical Engineering Research Center, College of Pharmacy, Chongqing Medical University, Chongqing 400000, China
| | - Xuelan Gan
- Pharmaceutical Engineering Research Center, College of Pharmacy, Chongqing Medical University, Chongqing 400000, China
| | - Hangtian Zhong
- Joint International Research Laboratory of Reproduction and Development, School of Public Health, Chongqing Medical University, Chongqing 400000, China
| | - Yanqing Geng
- Joint International Research Laboratory of Reproduction and Development, School of Basic Medicine, Chongqing Medical University, Chongqing 400000, China
| | - Xinwei Fu
- Pharmaceutical Engineering Research Center, College of Pharmacy, Chongqing Medical University, Chongqing 400000, China
| | - Yuanqiang Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400000, China
| | - Chao Yu
- Pharmaceutical Engineering Research Center, College of Pharmacy, Chongqing Medical University, Chongqing 400000, China
| |
Collapse
|
44
|
Nicotine Improves Survivability, Hypotension, and Impaired Adenosinergic Renal Vasodilations in Endotoxic Rats: Role of α7-nAChRs/HO-1 Pathway. Shock 2021; 53:503-513. [PMID: 31135706 DOI: 10.1097/shk.0000000000001384] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The nicotinic/cholinergic antiinflammatory pathway protects against acute kidney injury and other end-organ damages induced by endotoxemia. In this study, we tested the hypothesis that functional α7-nAChRs/heme oxygenase-1 (HO-1) pathway is imperative for the nicotine counteraction of hemodynamic and renovascular dysfunction caused by acute endotoxemia in rats. Renal vasodilations were induced by cumulative bolus injections of acetylcholine (ACh, 0.01 nmol-7.29 nmol) or ethylcarboxamidoadenosine (NECA, adenosine receptor agonist, 1.6 nmol-100 nmol) in isolated phenylephrine-preconstricted perfused kidneys. The data showed that 6-h treatment with lipopolysaccharide (LPS, 5 mg/kg i.p.) decreased systolic blood pressure and renal vasodilations caused by NECA but not Ach. The endotoxic insult also increased the mortality rate and elevated serum urea and creatinine. These LPS effects were sex-unrelated, except hypotension, and enhanced mortality which were more evident in male rodents, and abrogated after co-administration of nicotine (0.5, 1 mg/kg and 2 mg/kg) in a dose-dependent fashion. The advantageous effects of nicotine on NECA vasodilations, survivability, and kidney biomarkers in endotoxic male rats disappeared upon concurrent exposure to methyllycaconitine citrate (α7-nAChR blocker) or zinc protoporphyrin (HO-1 inhibitor) and were reproduced after treatment with bilirubin, but not hemin (HO-1 inducer) or tricarbonyldichlororuthenium (II) dimer (carbon monoxide-releasing molecule). Together, current biochemical and pharmacological evidence suggests key roles for α7-nAChRs and the bilirubin byproduct of the HO-1 signaling in the nicotine counteraction of renal dysfunction and reduced adenosinergic renal vasodilator capacity in endotoxic rats.
Collapse
|
45
|
Intrinsic and Chemotherapeutic Stressors Modulate ABCC-Like Transport in Trypanosoma cruzi. Molecules 2021; 26:molecules26123510. [PMID: 34207619 PMCID: PMC8227891 DOI: 10.3390/molecules26123510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 11/17/2022] Open
Abstract
Trypanosoma cruzi is the etiologic agent for Chagas disease, which affects 6-7 million people worldwide. The biological diversity of the parasite reflects on inefficiency of benznidazole, which is a first choice chemotherapy, on chronic patients. ABC transporters that extrude xenobiotics, metabolites, and mediators are overexpressed in resistant cells and contribute to chemotherapy failure. An ABCC-like transport was identified in the Y strain and extrudes thiol-conjugated compounds. As thiols represent a line of defense towards reactive species, we aimed to verify whether ABCC-like transport could participate in the regulation of responses to stressor stimuli. In order to achieve this, ABCC-like activity was measured by flow cytometry using fluorescent substrates. The present study reveals the participation of glutathione and ceramides on ABCC-like transport, which are both implicated in stress. Hemin modulated the ABCC-like efflux which suggests that this protein might be involved in cellular detoxification. Additionally, all strains evaluated exhibited ABCC-like activity, while no ABCB1-like activity was detected. Results suggest that ABCC-like efflux is not associated with natural resistance to benznidazole, since sensitive strains showed higher activity than the resistant ones. Although benznidazole is not a direct substrate, ABCC-like efflux increased after prolonged drug exposure and this indicates that the ABCC-like efflux mediated protection against cell stress depends on the glutathione biosynthesis pathway.
Collapse
|
46
|
Stokum JA, Cannarsa GJ, Wessell AP, Shea P, Wenger N, Simard JM. When the Blood Hits Your Brain: The Neurotoxicity of Extravasated Blood. Int J Mol Sci 2021; 22:5132. [PMID: 34066240 PMCID: PMC8151992 DOI: 10.3390/ijms22105132] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/30/2021] [Accepted: 05/06/2021] [Indexed: 12/15/2022] Open
Abstract
Hemorrhage in the central nervous system (CNS), including intracerebral hemorrhage (ICH), intraventricular hemorrhage (IVH), and aneurysmal subarachnoid hemorrhage (aSAH), remains highly morbid. Trials of medical management for these conditions over recent decades have been largely unsuccessful in improving outcome and reducing mortality. Beyond its role in creating mass effect, the presence of extravasated blood in patients with CNS hemorrhage is generally overlooked. Since trials of surgical intervention to remove CNS hemorrhage have been generally unsuccessful, the potent neurotoxicity of blood is generally viewed as a basic scientific curiosity rather than a clinically meaningful factor. In this review, we evaluate the direct role of blood as a neurotoxin and its subsequent clinical relevance. We first describe the molecular mechanisms of blood neurotoxicity. We then evaluate the clinical literature that directly relates to the evacuation of CNS hemorrhage. We posit that the efficacy of clot removal is a critical factor in outcome following surgical intervention. Future interventions for CNS hemorrhage should be guided by the principle that blood is exquisitely toxic to the brain.
Collapse
Affiliation(s)
- Jesse A. Stokum
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (G.J.C.); (A.P.W.); (P.S.); (N.W.); (J.M.S.)
| | - Gregory J. Cannarsa
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (G.J.C.); (A.P.W.); (P.S.); (N.W.); (J.M.S.)
| | - Aaron P. Wessell
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (G.J.C.); (A.P.W.); (P.S.); (N.W.); (J.M.S.)
| | - Phelan Shea
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (G.J.C.); (A.P.W.); (P.S.); (N.W.); (J.M.S.)
| | - Nicole Wenger
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (G.J.C.); (A.P.W.); (P.S.); (N.W.); (J.M.S.)
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (G.J.C.); (A.P.W.); (P.S.); (N.W.); (J.M.S.)
- Departments of Pathology and Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
47
|
Vasconcellos LRC, Martimiano L, Dantas DP, Fonseca FM, Mata-Santos H, Travassos L, Mendez-Otero R, Bozza MT, Pimentel-Coelho PM. Intracerebral Injection of Heme Induces Lipid Peroxidation, Neuroinflammation, and Sensorimotor Deficits. Stroke 2021; 52:1788-1797. [PMID: 33827248 DOI: 10.1161/strokeaha.120.031911] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Luiz Ricardo C Vasconcellos
- Instituto de Microbiologia Paulo de Góes (L.R.C.V., L.M., F.M.F., M.T.B.), Universidade Federal do Rio de Janeiro, RJ, Brazil.,Instituto de Biofísica Carlos Chagas Filho (L.R.C.V., D.P.D., L.T., R.M.-O., P.M.P.-C.), Universidade Federal do Rio de Janeiro, RJ, Brazil.,Centre for Biochemical Pharmacology, William Harvey Research Institute, Queen Mary University of London, United Kingdom (L.R.C.V.)
| | - Letícia Martimiano
- Instituto de Microbiologia Paulo de Góes (L.R.C.V., L.M., F.M.F., M.T.B.), Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Danillo Pereira Dantas
- Instituto de Biofísica Carlos Chagas Filho (L.R.C.V., D.P.D., L.T., R.M.-O., P.M.P.-C.), Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Filipe Mota Fonseca
- Instituto de Microbiologia Paulo de Góes (L.R.C.V., L.M., F.M.F., M.T.B.), Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Hilton Mata-Santos
- Faculdade de Farmácia (H.M.-S.), Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Leonardo Travassos
- Instituto de Biofísica Carlos Chagas Filho (L.R.C.V., D.P.D., L.T., R.M.-O., P.M.P.-C.), Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Rosalia Mendez-Otero
- Instituto de Biofísica Carlos Chagas Filho (L.R.C.V., D.P.D., L.T., R.M.-O., P.M.P.-C.), Universidade Federal do Rio de Janeiro, RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, RJ, Brazil (R.M.-O., P.M.P.-C.)
| | - Marcelo Torres Bozza
- Instituto de Microbiologia Paulo de Góes (L.R.C.V., L.M., F.M.F., M.T.B.), Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Pedro Moreno Pimentel-Coelho
- Instituto de Biofísica Carlos Chagas Filho (L.R.C.V., D.P.D., L.T., R.M.-O., P.M.P.-C.), Universidade Federal do Rio de Janeiro, RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, RJ, Brazil (R.M.-O., P.M.P.-C.)
| |
Collapse
|
48
|
Activation of Nurr1 with Amodiaquine Protected Neuron and Alleviated Neuroinflammation after Subarachnoid Hemorrhage in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021. [DOI: 10.1155/2021/6669787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background. Nurr1, a member of the nuclear receptor 4A family (NR4A), played a role in neuron protection, anti-inflammation, and antioxidative stress in multidiseases. We explored the role of Nurr1 on subarachnoid hemorrhage (SAH) progression and investigated the feasibility of its agonist (amodiaquine, AQ) as a treatment for SAH. Methods. SAH rat models were constructed by the endovascular perforation technique. AQ was administered intraperitoneally at 2 hours after SAH induction. SAH grade, mortality, weight loss, neurological performance tests, brain water content, western blot, immunofluorescence, Nissl staining, and qPCR were assessed post-SAH. In vitro, hemin was introduced into HT22 cells to develop a model of SAH. Results. Stimulation of Nurr1 with AQ improved the outcomes and attenuated brain edema. Nurr1 was mainly expressed in neuron, and administration of AQ alleviated neuron injury in vivo and enhanced the neuron viability and inhibited neuron apoptosis and necrosis in vitro. Besides, AQ reduced the amount of IL-1β+Iba-1+ cells and inhibited the mRNA level of proinflammatory cytokines (IL-1β and TNF-α) and the M1-like phenotype markers (CD68 and CD86). AQ inhibited the expression of MMP9 in HT22 cells. Furthermore, AQ reduced the expression of nuclear NF-κB and Nurr1 while increased cytoplasmic Nurr1 in vivo and in vitro. Conclusion. Pharmacological activation of Nurr1 with AQ alleviated the neuron injury and neuroinflammation. The mechanism of antineuroinflammation may be associated with the Nurr1/NF-κB/MMP9 pathway in the neuron. The data supported that AQ might be a promising treatment strategy for SAH.
Collapse
|
49
|
Hopp MT, Imhof D. Linking Labile Heme with Thrombosis. J Clin Med 2021; 10:427. [PMID: 33499296 PMCID: PMC7865584 DOI: 10.3390/jcm10030427] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 12/14/2022] Open
Abstract
Thrombosis is one of the leading causes of death worldwide. As such, it also occurs as one of the major complications in hemolytic diseases, like hemolytic uremic syndrome, hemorrhage and sickle cell disease. Under these conditions, red blood cell lysis finally leads to the release of large amounts of labile heme into the vascular compartment. This, in turn, can trigger oxidative stress and proinflammatory reactions. Moreover, the heme-induced activation of the blood coagulation system was suggested as a mechanism for the initiation of thrombotic events under hemolytic conditions. Studies of heme infusion and subsequent thrombotic reactions support this assumption. Furthermore, several direct effects of heme on different cellular and protein components of the blood coagulation system were reported. However, these effects are controversially discussed or not yet fully understood. This review summarizes the existing reports on heme and its interference in coagulation processes, emphasizing the relevance of considering heme in the context of the treatment of thrombosis in patients with hemolytic disorders.
Collapse
Affiliation(s)
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany;
| |
Collapse
|
50
|
Chen KY, Kung WM, Kuo LT, Huang APH. Ultrarapid Endoscopic-Aided Hematoma Evacuation in Patients with Thalamic Hemorrhage. Behav Neurol 2021; 2021:8886004. [PMID: 33542768 PMCID: PMC7843189 DOI: 10.1155/2021/8886004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/04/2020] [Accepted: 01/12/2021] [Indexed: 02/08/2023] Open
Abstract
Thalamic hemorrhage bears the worst outcome among supratentorial intracerebral hemorrhage (ICH). Minimally invasive endoscopic-aided surgery (MIS) has been proved to be safe and effective in evacuating ICH. However, the ideal timing of MIS is still a controversy. In this study, we present our experience in the treatment of patients with thalamic hemorrhage by ultrarapid MIS evacuation. This retrospective analysis enrolled seven patients treated with ultrarapid MIS evacuation of thalamic hemorrhage. Seven patients treated with EVD with similar ICH score were included as match control. Primary endpoints included rebleeding, morbidity, and mortality. Hematoma evacuation rate was evaluated by comparing the pre- and postoperative computed tomography (CT) scans. Glasgow Outcome Scale Extended (GOSE) and modified Rankin Score (mRS) were noted at the 6-month and 1-year postoperative follow-up. Among the seven patients, six were accompanied with intraventricular hemorrhage. All patients received surgery within 6 hours after the onset of stroke. The mean hematoma volume was 35 mL, and the mean operative time was 116.4 minutes. The median hematoma evacuation rate was 74.9%. There was no rebleeding or death reported after the surgery. The median GOSE and mRS were 3 and 5, respectively, at 6 months postoperatively. Further, 1-year postoperative median GOSE and mRS were 3 and 5, respectively. The data suggest that the ultrarapid MIS technique is a safe and effective way in the management of selected cases with thalamic hemorrhage, with favorable long-term functional outcomes. However, a large, prospective, randomized-controlled trial is needed to confirm these findings.
Collapse
Affiliation(s)
- Kuan-Yu Chen
- School of Medicine, National Taiwan University, Taipei, Taiwan
| | - Woon-Man Kung
- Department of Exercise and Health Promotion, College of Kinesiology and Health, Chinese Culture University, Taipei, Taiwan
| | - Lu-Ting Kuo
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Abel Po-Hao Huang
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|