1
|
Elahinejad V, Khorasanian AS, Tehrani‐Doost M, Khosravi‐Darani K, Mirsepasi Z, Effatpanah M, Askari‐Rabori R, Tajadod S, Jazayeri S. Effects of Probiotics as Adjunctive Therapy to Fluoxetine on Depression Severity and Serum Brain-Derived Neurotrophic Factor, Cortisol, and Adrenocorticotropic Hormone in Patients With Major Depressive Disorder: A Randomized, Double-Blind, Placebo-Controlled Trial. Food Sci Nutr 2025; 13:e4698. [PMID: 40177327 PMCID: PMC11961381 DOI: 10.1002/fsn3.4698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/22/2024] [Accepted: 12/03/2024] [Indexed: 04/05/2025] Open
Abstract
Probiotics may improve mood, but their role as adjunctive therapy for major depressive disorder (MDD) is not well understood. This study examines the effects of probiotics on depression severity, brain-derived neurotrophic factor (BDNF), adrenocorticotropic hormone (ACTH), and cortisol levels in MDD patients. Fifty medication-free MDD patients were randomized to receive probiotics with fluoxetine (n = 25) or placebo with fluoxetine (n = 25) for 8 weeks. Depression severity was assessed using the Hamilton Depression Rating Scale (HDRS-24), and fasting blood samples were collected at baseline and study conclusion. Forty-four patients completed the trial. The probiotic group showed a significant reduction in depression severity compared with the placebo group (p = 0.001). No significant differences were observed in serum cortisol (p = 0.46) and ACTH levels (p = 0.44). Plasma BDNF levels increased slightly in the probiotic group but were not statistically significant. Probiotic supplementation with fluoxetine significantly reduces depression severity in MDD patients.
Collapse
Affiliation(s)
- Vajihe Elahinejad
- Department of Nutrition, School of Public HealthIran University of Medical SciencesTehranIran
| | - Atie Sadat Khorasanian
- Department of Nutrition, School of Public HealthIran University of Medical SciencesTehranIran
- Endocrinology and Metabolism Research CenterEndocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical SciencesTehranIran
| | - Mehdi Tehrani‐Doost
- Department of PsychiatryRoozbeh Hospital, Tehran University of Medical SciencesTehranIran
| | - Kianoush Khosravi‐Darani
- Research Department of Food Technology ResearchNational Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical SciencesTehranIran
| | - Zahra Mirsepasi
- Department of PsychiatryRoozbeh Hospital, Tehran University of Medical SciencesTehranIran
| | - Mohammad Effatpanah
- School of MedicineZiaeian Hospital, International Campus, Tehran University of Medical SciencesTehranIran
| | | | - Shirin Tajadod
- Department of Nutrition, School of Public HealthIran University of Medical SciencesTehranIran
| | - Shima Jazayeri
- Department of Nutrition, School of Public HealthIran University of Medical SciencesTehranIran
- Research Center for Nutritional SciencesIran University of Medical SciencesTehranIran
| |
Collapse
|
2
|
Bhatia A, Sharma D, Mehta J, Kumarasamy V, Begum MY, Siddiqua A, Sekar M, Subramaniyan V, Wong LS, Mat Rani NNI. Probiotics and Synbiotics: Applications, Benefits, and Mechanisms for the Improvement of Human and Ecological Health. J Multidiscip Healthc 2025; 18:1493-1510. [PMID: 40092220 PMCID: PMC11910042 DOI: 10.2147/jmdh.s501056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/05/2025] [Indexed: 03/19/2025] Open
Abstract
This review explores the multifaceted roles and applications of probiotics, emphasizing their significance in maintaining and enhancing host health through microbial interactions. It includes the concept of holobionts and the symbiotic relationships between hosts and their microbiomes, illustrating how various microbiota can enhance immunity, support growth, and prevent diseases. It delves into the customization of probiotics using molecular and genomic techniques, focusing Enterococcus, Bifidobacterium, and Lactobacillus species. Furthermore, it discusses the symbiotic effects of symbiotics which aids in enhancing the survivability and beneficial effects of probiotics. The role beneficial microbes in gut is emphasized, noting its impact on preventing diseases and maintaining a stable microbial community. The potential therapeutic value of probiotics includes the ability to treat gastrointestinal diseases, as well as to strengthen the immune system and reduce the number of free radicals that are present in the body. Additionally, it explores secondary metabolites produced by bacteria in the gut, such as bacteriocins and exopolysaccharides, and their effect on the health of human, particularly in the gastrointestinal tract. The review concludes by addressing the use of probiotics in traditional medicine and their potential in novel therapeutic applications, including the treatment of endangered wildlife species and various human ailments.
Collapse
Affiliation(s)
- Ankita Bhatia
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Deeksha Sharma
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Jyoti Mehta
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Vinoth Kumarasamy
- Department of Parasitology & Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur, Malaysia
| | - M Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Ayesha Siddiqua
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Mahendran Sekar
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya, Selangor, Malaysia
| | - Vetriselvan Subramaniyan
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Selangor, Malaysia
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai, Malaysia
| | - Nur Najihah Izzati Mat Rani
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Perak, Malaysia
| |
Collapse
|
3
|
van Baalen M, van der Velden L, van der Gronde T, Pieters T. Developing a translational research framework for MDD: combining biomolecular mechanisms with a spiraling risk factor model. Front Psychiatry 2025; 15:1463929. [PMID: 39839132 PMCID: PMC11747824 DOI: 10.3389/fpsyt.2024.1463929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 12/10/2024] [Indexed: 01/23/2025] Open
Abstract
Objective The global incidence and burden of Major Depressive Disorder (MDD) are increasing annually, with current antidepressant treatments proving ineffective for 30-40% of patients. Biomolecular mechanisms within the microbiota-gut-brain axis (MGBA) may significantly contribute to MDD, potentially paving the way for novel treatment approaches. However, integrating the MGBA with the psychological and environmental aspects of MDD remains challenging. This manuscript aims to: 1) investigate the underlying biomolecular mechanisms of MDD using a modeling approach, and 2) integrate this knowledge into a comprehensive 'spiraling risk factor model' to develop a biopsychosocial translational research framework for the prevention and treatment of MDD. Methods For the first aim, a systematic review (PROSPERO registration) was conducted using PubMed, Embase, and Scopus to query literature published between 2016-2020, with select additional sources. A narrative review was performed for the second aim. Results In addition to genetics and neurobiology, research consistently indicates that hyperactivation of the HPA axis and a pro-inflammatory state are interrelated components of the MGBA and likely underlying mechanisms of MDD. Dysregulation of the MGBA, along with imbalances in mental and physical conditions, lifestyle factors, and pre-existing treatments, can trigger a downward spiral of stress and anxiety, potentially leading to MDD. Conclusions MDD is not solely a brain disorder but a heterogeneous condition involving biomolecular, psychological, and environmental risk factors. Future interdisciplinary research can utilize the integrated biopsychosocial insights from this manuscript to develop more effective lifestyle-focused multimodal treatment interventions, enhance diagnosis, and stimulate early-stage prevention of MDD. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42020215412.
Collapse
Affiliation(s)
- Max van Baalen
- Department of Pharmaceutical Sciences and Freudenthal Institute, Utrecht University, Utrecht, Netherlands
| | - Lars van der Velden
- Department of Pharmaceutical Sciences and Freudenthal Institute, Utrecht University, Utrecht, Netherlands
| | - Toon van der Gronde
- Department of Pharmaceutical Sciences and Freudenthal Institute, Utrecht University, Utrecht, Netherlands
- Late-Stage Development, Oncology Research and Development, AstraZeneca, New York, NY, United States
| | - Toine Pieters
- Department of Pharmaceutical Sciences and Freudenthal Institute, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
4
|
Mallick R, Basak S, Das RK, Banerjee A, Paul S, Pathak S, Duttaroy AK. Roles of the gut microbiota in human neurodevelopment and adult brain disorders. Front Neurosci 2024; 18:1446700. [PMID: 39659882 PMCID: PMC11628544 DOI: 10.3389/fnins.2024.1446700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 11/05/2024] [Indexed: 12/12/2024] Open
Abstract
Growing evidence demonstrates the connection between gut microbiota, neurodevelopment, and adult brain function. Microbial colonization occurs before the maturation of neural systems and its association with brain development. The early microbiome interactions with the gut-brain axis evolved to stimulate cognitive activities. Gut dysbiosis can lead to impaired brain development, growth, and function. Docosahexaenoic acid (DHA) is critically required for brain structure and function, modulates gut microbiota, and impacts brain activity. This review explores how gut microbiota influences early brain development and adult functions, encompassing the modulation of neurotransmitter activity, neuroinflammation, and blood-brain barrier integrity. In addition, it highlights processes of how the gut microbiome affects fetal neurodevelopment and discusses adult brain disorders.
Collapse
Affiliation(s)
- Rahul Mallick
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Sanjay Basak
- Molecular Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Ranjit K. Das
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, United States
| | - Antara Banerjee
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, India
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Queretaro, Mexico
| | - Surajit Pathak
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, India
| | - Asim K. Duttaroy
- Department of Nutrition, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
5
|
Pannerchelvan S, Rios-Solis L, Wasoh H, Sobri MZM, Faizal Wong FW, Mohamed MS, Mohamad R, Halim M. Functional yogurt: a comprehensive review of its nutritional composition and health benefits. Food Funct 2024; 15:10927-10955. [PMID: 39446126 DOI: 10.1039/d4fo03671a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Functional yogurt, renowned for its enhanced nutritional profile and potential health benefits, has emerged as a promising functional food. This review meticulously examines the nutritional composition of functional yogurt, highlighting its enriched content of probiotics, prebiotics, synbiotics, antioxidants, vitamins, minerals, proteins, and other bioactive compounds, which contribute to its health-promoting properties. Functional yogurt has positively affected digestive health, immune function, metabolic health, and mental well-being. It benefits digestive health by alleviating diarrhoeal symptoms, constipation, colon cancer, irritable bowel syndrome (IBS), Helicobacter pylori infection, and digestive-related allergies. Moreover, the immune-boosting properties of functional yogurt play a pivotal role in reducing the risk of infections and inflammation. In addition, functional yogurt has the potential to improve metabolic health, leading to decreased cholesterol levels and enhanced blood sugar regulation. Emerging research also suggests functional yogurt may positively influence mood, behavior, and cognitive function. Functional yogurt is a valuable addition to the human diet, holding significant implications for public health. In addition to its numerous health benefits, functional yogurt also faces limitations, such as the stability of functional compounds, sensory alterations, potential digestive discomfort, and inconsistent efficacy across populations, highlighting the need for further research and optimization.
Collapse
Affiliation(s)
- Sangkaran Pannerchelvan
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Leonardo Rios-Solis
- Department of Biochemical Engineering, University College London, Gower Street, Bernard Katz Building, 6.07, WC1E 6BT, United Kingdom
| | - Helmi Wasoh
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
- Bioprocessing and Biomanufacturing Complex, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Mohamad Zulfazli Mohd Sobri
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
- Bioprocessing and Biomanufacturing Complex, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Fadzlie Wong Faizal Wong
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
- Bioprocessing and Biomanufacturing Complex, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Mohd Shamzi Mohamed
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
- Bioprocessing and Biomanufacturing Complex, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Rosfarizan Mohamad
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
- Bioprocessing and Biomanufacturing Complex, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Murni Halim
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
- Bioprocessing and Biomanufacturing Complex, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
6
|
da Silva TF, Glória RDA, Americo MF, Freitas ADS, de Jesus LCL, Barroso FAL, Laguna JG, Coelho-Rocha ND, Tavares LM, le Loir Y, Jan G, Guédon É, Azevedo VADC. Unlocking the Potential of Probiotics: A Comprehensive Review on Research, Production, and Regulation of Probiotics. Probiotics Antimicrob Proteins 2024; 16:1687-1723. [PMID: 38539008 DOI: 10.1007/s12602-024-10247-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 10/02/2024]
Abstract
This review provides a comprehensive overview of the current state of probiotic research, covering a wide range of topics, including strain identification, functional characterization, preclinical and clinical evaluations, mechanisms of action, therapeutic applications, manufacturing considerations, and future directions. The screening process for potential probiotics involves phenotypic and genomic analysis to identify strains with health-promoting properties while excluding those with any factor that could be harmful to the host. In vitro assays for evaluating probiotic traits such as acid tolerance, bile metabolism, adhesion properties, and antimicrobial effects are described. The review highlights promising findings from in vivo studies on probiotic mitigation of inflammatory bowel diseases, chemotherapy-induced mucositis, dysbiosis, obesity, diabetes, and bone health, primarily through immunomodulation and modulation of the local microbiota in human and animal models. Clinical studies demonstrating beneficial modulation of metabolic diseases and human central nervous system function are also presented. Manufacturing processes significantly impact the growth, viability, and properties of probiotics, and the composition of the product matrix and supplementation with prebiotics or other strains can modify their effects. The lack of regulatory oversight raises concerns about the quality, safety, and labeling accuracy of commercial probiotics, particularly for vulnerable populations. Advancements in multi-omics approaches, especially probiogenomics, will provide a deeper understanding of the mechanisms behind probiotic functionality, allowing for personalized and targeted probiotic therapies. However, it is crucial to simultaneously focus on improving manufacturing practices, implementing quality control standards, and establishing regulatory oversight to ensure the safety and efficacy of probiotic products in the face of increasing therapeutic applications.
Collapse
Affiliation(s)
- Tales Fernando da Silva
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
- UMR1253, INRAE, L'Institut Agro Rennes Angers, STLO, Rennes, France
| | - Rafael de Assis Glória
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Monique Ferrary Americo
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Andria Dos Santos Freitas
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Luis Claudio Lima de Jesus
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda Alvarenga Lima Barroso
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Juliana Guimarães Laguna
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Nina Dias Coelho-Rocha
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Laisa Macedo Tavares
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Yves le Loir
- UMR1253, INRAE, L'Institut Agro Rennes Angers, STLO, Rennes, France
| | - Gwénaël Jan
- UMR1253, INRAE, L'Institut Agro Rennes Angers, STLO, Rennes, France
| | - Éric Guédon
- UMR1253, INRAE, L'Institut Agro Rennes Angers, STLO, Rennes, France
| | - Vasco Ariston de Carvalho Azevedo
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
7
|
Geier TJ, Atkinson SN, Pan AY, Mantz-Wichman M, Jazinski-Chambers K, Hillard CJ, deRoon-Cassini TA. Differences in intestinal bacteria in traumatic injury survivors with and without probable posttraumatic stress disorder. J Affect Disord 2024; 361:528-535. [PMID: 38914163 DOI: 10.1016/j.jad.2024.06.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 06/26/2024]
Abstract
BACKGROUND Posttraumatic stress disorder (PTSD) is a common consequence of traumatic injury, yet certain biological factors contributing to PTSD are poorly understood. The gut microbiome may influence mental health outcomes, but its role in heterogeneous PTSD presentations requires elucidation. METHODS Bacterial composition was examined in adults 2-4 years post-trauma with probable PTSD (n = 24) versus trauma-exposed controls without probable PTSD (n = 24). 16S rRNA sequencing and bioinformatic tools assessed microbial diversity and abundance. Relationships between taxa and PTSD symptom clusters were evaluated. RESULTS No differences were found in overall microbial community structure between groups. The probable PTSD group exhibited significantly reduced Actinobacteriota and increased Verrucomicrobiota phylum abundance compared to controls. Specific taxa showed notable inverse associations with negative mood/cognition versus hyperarousal symptoms. Prevotella and Ruminococcaceae were negatively associated with negative mood but positively associated with hyperarousal. CONCLUSIONS Results demonstrate microbial signatures of probable PTSD subtypes, highlighting the microbiome as a potential mediator of heterogeneous trauma psychopathology. Definition of PTSD microbial correlates provides a foundation for personalized psychobiotic interventions targeting predominant symptom profiles.
Collapse
Affiliation(s)
- Timothy J Geier
- Department of Surgery, Division of Trauma and Acute Care Surgery, Medical College of Wisconsin, Milwaukee, WI, United States of America.
| | - Samantha N Atkinson
- Department of Microbiology and Immunology, Center for Microbiome Research, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Amy Y Pan
- Department of Pediatrics, Division of Quantitative Health Sciences, Center for Microbiome Research, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Margo Mantz-Wichman
- Department of Surgery, Division of Trauma and Acute Care Surgery, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Kelley Jazinski-Chambers
- Department of Surgery, Division of Trauma and Acute Care Surgery, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Cecilia J Hillard
- Department of Pharmacology and Toxicology, Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Terri A deRoon-Cassini
- Department of Surgery, Division of Trauma and Acute Care Surgery, Medical College of Wisconsin, Milwaukee, WI, United States of America; Comprehensive Injury Center, Division of Data Surveillance and Informatics, Medical College of Wisconsin, Milwaukee, WI, United States of America
| |
Collapse
|
8
|
Ullah H, Arbab S, Tian Y, Chen Y, Liu CQ, Li Q, Li K. Crosstalk between gut microbiota and host immune system and its response to traumatic injury. Front Immunol 2024; 15:1413485. [PMID: 39144142 PMCID: PMC11321976 DOI: 10.3389/fimmu.2024.1413485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/04/2024] [Indexed: 08/16/2024] Open
Abstract
Millions of microorganisms make up the complex microbial ecosystem found in the human gut. The immune system's interaction with the gut microbiota is essential for preventing inflammation and maintaining intestinal homeostasis. Numerous metabolic products that can cross-talk between immune cells and the gut epithelium are metabolized by the gut microbiota. Traumatic injury elicits a great and multifaceted immune response in the minutes after the initial offense, containing simultaneous pro- and anti-inflammatory responses. The development of innovative therapies that improve patient outcomes depends on the gut microbiota and immunological responses to trauma. The altered makeup of gut microbes, or gut dysbiosis, can also dysregulate immunological responses, resulting in inflammation. Major human diseases may become more common as a result of chronic dysbiosis and the translocation of bacteria and the products of their metabolism beyond the mucosal barrier. In this review, we briefly summarize the interactions between the gut microbiota and the immune system and human disease and their therapeutic probiotic formulations. We also discuss the immune response to traumatic injury.
Collapse
Affiliation(s)
- Hanif Ullah
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials/Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Safia Arbab
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yali Tian
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials/Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Yuwen Chen
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials/Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Chang-qing Liu
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials/Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Qijie Li
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials/Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Ka Li
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials/Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
9
|
Wang K, Huang K, Wang L, Lin X, Tan M, Su W. Microfluidic Strategies for Encapsulation, Protection, and Controlled Delivery of Probiotics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15092-15105. [PMID: 38920087 DOI: 10.1021/acs.jafc.4c02973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Probiotics are indispensable for maintaining the structure of gut microbiota and promoting human health, yet their survivability is frequently compromised by environmental stressors such as temperature fluctuations, pH variations, and mechanical agitation. In response to these challenges, microfluidic technology emerges as a promising avenue. This comprehensive review delves into the utilization of microfluidic technology for the encapsulation and delivery of probiotics within the gastrointestinal tract, with a focus on mitigating obstacles associated with probiotic viability. Initially, it elucidates the design and application of microfluidic devices, providing a precise platform for probiotic encapsulation. Moreover, it scrutinizes the utilization of carriers fabricated through microfluidic devices, including emulsions, microspheres, gels, and nanofibers, with the intent of bolstering probiotic stability. Subsequently, the review assesses the efficacy of encapsulation methodologies through in vitro gastrointestinal simulations and in vivo experimentation, underscoring the potential of microfluidic technology in amplifying probiotic delivery efficiency and health outcomes. In sum, microfluidic technology represents a pioneering approach to probiotic stabilization, offering avenues to cater to consumer preferences for a diverse array of functional food options.
Collapse
Affiliation(s)
- Kuiyou Wang
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning China
- Academy of Food Interdisciplinary Science, Dalian Key Laboratory for Precision Nutrition, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning China
| | - Kexin Huang
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning China
- Academy of Food Interdisciplinary Science, Dalian Key Laboratory for Precision Nutrition, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning China
| | - Li Wang
- Institutes of Biomedical Sciences and the Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiangsong Lin
- School of Medical Imageology, Wannan Medical College, Wuhu 241002, China
| | - Mingqian Tan
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning China
- Academy of Food Interdisciplinary Science, Dalian Key Laboratory for Precision Nutrition, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning China
| | - Wentao Su
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning China
- Academy of Food Interdisciplinary Science, Dalian Key Laboratory for Precision Nutrition, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning China
| |
Collapse
|
10
|
Hasanian-Langroudi F, Ghasemi A, Hedayati M, Siadat SD, Tohidi M. Novel Insight into the Effect of Probiotics in the Regulation of the Most Important Pathways Involved in the Pathogenesis of Type 2 Diabetes Mellitus. Probiotics Antimicrob Proteins 2024; 16:829-844. [PMID: 37162668 DOI: 10.1007/s12602-023-10056-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2023] [Indexed: 05/11/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is considered one of the most common disorders worldwide. Although several treatment modalities have been developed, the existing interventions have not yielded the desired results. Therefore, researchers have focused on finding treatment choices with low toxicity and few adverse effects that could control T2DM efficiently. Various types of research on the role of gut microbiota in developing T2DM and its related complications have led to the growing interest in probiotic supplementation. Several properties make these organisms unique in terms of human health, including their low cost, high reliability, and good safety profile. Emerging evidence has demonstrated that three of the most important signaling pathways, including nuclear factor kappa B (NF-κB), phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt), and nuclear factor erythroid 2-related factor 2 (Nrf2), which involved in the pathogenesis of T2DM, play key functions in the effects of probiotics on this disease. Hence, we will focus on the clinical applications of probiotics in the management of T2DM. Then, we will also discuss the roles of the involvement of various probiotics in the regulation of the most important signaling pathways (NF-κB, PI3K/Akt, and Nrf2) involved in the pathogenesis of T2DM.
Collapse
Affiliation(s)
- Farzaneh Hasanian-Langroudi
- Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, P.O. Box, Tehran, 19395-4763, Iran
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Maryam Tohidi
- Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, P.O. Box, Tehran, 19395-4763, Iran.
| |
Collapse
|
11
|
Averina OV, Poluektova EU, Zorkina YA, Kovtun AS, Danilenko VN. Human Gut Microbiota for Diagnosis and Treatment of Depression. Int J Mol Sci 2024; 25:5782. [PMID: 38891970 PMCID: PMC11171505 DOI: 10.3390/ijms25115782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Nowadays, depressive disorder is spreading rapidly all over the world. Therefore, attention to the studies of the pathogenesis of the disease in order to find novel ways of early diagnosis and treatment is increasing among the scientific and medical communities. Special attention is drawn to a biomarker and therapeutic strategy through the microbiota-gut-brain axis. It is known that the symbiotic interactions between the gut microbes and the host can affect mental health. The review analyzes the mechanisms and ways of action of the gut microbiota on the pathophysiology of depression. The possibility of using knowledge about the taxonomic composition and metabolic profile of the microbiota of patients with depression to select gene compositions (metagenomic signature) as biomarkers of the disease is evaluated. The use of in silico technologies (machine learning) for the diagnosis of depression based on the biomarkers of the gut microbiota is given. Alternative approaches to the treatment of depression are being considered by balancing the microbial composition through dietary modifications and the use of additives, namely probiotics, postbiotics (including vesicles) and prebiotics as psychobiotics, and fecal transplantation. The bacterium Faecalibacterium prausnitzii is under consideration as a promising new-generation probiotic and auxiliary diagnostic biomarker of depression. The analysis conducted in this review may be useful for clinical practice and pharmacology.
Collapse
Affiliation(s)
- Olga V. Averina
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia; (E.U.P.); (Y.A.Z.); (A.S.K.); (V.N.D.)
| | - Elena U. Poluektova
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia; (E.U.P.); (Y.A.Z.); (A.S.K.); (V.N.D.)
| | - Yana A. Zorkina
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia; (E.U.P.); (Y.A.Z.); (A.S.K.); (V.N.D.)
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Alexey S. Kovtun
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia; (E.U.P.); (Y.A.Z.); (A.S.K.); (V.N.D.)
| | - Valery N. Danilenko
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia; (E.U.P.); (Y.A.Z.); (A.S.K.); (V.N.D.)
| |
Collapse
|
12
|
Jurek JM, Castro-Marrero J. A Narrative Review on Gut Microbiome Disturbances and Microbial Preparations in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Implications for Long COVID. Nutrients 2024; 16:1545. [PMID: 38892479 PMCID: PMC11173566 DOI: 10.3390/nu16111545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Myalgic encephalomyelitis, also known as chronic fatigue syndrome (ME/CFS), and long COVID are complex, multisystemic and long-term disabling conditions characterized by debilitating post-exertional malaise and other core symptoms related to immune dysregulation resultant from post-viral infection, including mitochondrial dysfunction, chronic neuroinflammation and gut dysbiosis. The reported associations between altered microbiota composition and cardinal symptoms of ME/CFS and long COVID suggest that the use of microbial preparations, such as probiotics, by restoring the homeostasis of the brain-immune-gut axis, may help in the management of symptoms in both conditions. Therefore, this review aims to investigate the implications of alerted gut microbiome and assess the evidence supporting use of microbial-based preparations, including probiotics, synbiotics, postbiotics alone and/or in combination with other nutraceuticals in the management of fatigue, inflammation and neuropsychiatric and gastrointestinal symptoms among patients with ME/CFS and long COVID.
Collapse
Affiliation(s)
- Joanna Michalina Jurek
- Unit of Research in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome and Long COVID, Rheumatology Research Division, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain;
- Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43005 Tarragona, Spain
| | - Jesus Castro-Marrero
- Unit of Research in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome and Long COVID, Rheumatology Research Division, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain;
| |
Collapse
|
13
|
Saadh MJ, Ahmed HM, Alani ZK, Al Zuhairi RAH, Almarhoon ZM, Ahmad H, Ubaid M, Alwan NH. The Role of Gut-derived Short-Chain Fatty Acids in Multiple Sclerosis. Neuromolecular Med 2024; 26:14. [PMID: 38630350 DOI: 10.1007/s12017-024-08783-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/08/2024] [Indexed: 04/19/2024]
Abstract
Multiple sclerosis (MS) is a chronic condition affecting the central nervous system (CNS), where the interplay of genetic and environmental factors influences its pathophysiology, triggering immune responses and instigating inflammation. Contemporary research has been notably dedicated to investigating the contributions of gut microbiota and their metabolites in modulating inflammatory reactions within the CNS. Recent recognition of the gut microbiome and dietary patterns as environmental elements impacting MS development emphasizes the potential influence of small, ubiquitous molecules from microbiota, such as short-chain fatty acids (SCFAs). These molecules may serve as vital molecular signals or metabolic substances regulating host cellular metabolism in the intricate interplay between microbiota and the host. A current emphasis lies on optimizing the health-promoting attributes of colonic bacteria to mitigate urinary tract issues through dietary management. This review aims to spotlight recent investigations on the impact of SCFAs on immune cells pivotal in MS, the involvement of gut microbiota and SCFAs in MS development, and the considerable influence of probiotics on gastrointestinal disruptions in MS. Comprehending the gut-CNS connection holds promise for the development of innovative therapeutic approaches, particularly probiotic-based supplements, for managing MS.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | - Hani Moslem Ahmed
- Department of Dental Industry Techniques, Al-Noor University College, Nineveh, Iraq
| | - Zaid Khalid Alani
- College of Health and Medical Technical, Al-Bayan University, Baghdad, Iraq
| | | | - Zainab M Almarhoon
- Department of Chemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Hijaz Ahmad
- Section of Mathematics, International Telematic University Uninettuno, Corso Vittorio Emanuele II, 39, 00186, Rome, Italy.
- Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Mubarak Al-Abdullah, Kuwait.
- Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon.
| | - Mohammed Ubaid
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | | |
Collapse
|
14
|
Dziedzic A, Maciak K, Bliźniewska-Kowalska K, Gałecka M, Kobierecka W, Saluk J. The Power of Psychobiotics in Depression: A Modern Approach through the Microbiota-Gut-Brain Axis: A Literature Review. Nutrients 2024; 16:1054. [PMID: 38613087 PMCID: PMC11013390 DOI: 10.3390/nu16071054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
The microbiota-gut-brain (MGB) axis is a complex communication network linking the gut, microbiota, and brain, influencing various aspects of health and disease. Dysbiosis, a disturbance in the gut microbiome equilibrium, can significantly impact the MGB axis, leading to alterations in microbial composition and function. Emerging evidence highlights the connection between microbiota alterations and neurological and psychiatric disorders, including depression. This review explores the potential of psychobiotics in managing depressive disorders, emphasizing their role in restoring microbial balance and influencing the MGB axis. Psychobiotics exhibit positive effects on the intestinal barrier, immune response, cortisol levels, and the hypothalamic-pituitary-adrenal (HPA) axis. Studies suggest that probiotics may serve as an adjunct therapy for depression, especially in treatment-resistant cases. This review discusses key findings from studies on psychobiotics interventions, emphasizing their impact on the gut-brain axis and mental health. The increasing acceptance of the expanded concept of the MGB axis underscores the importance of microorganisms in mental well-being. As our understanding of the microbiome's role in health and disease grows, probiotics emerge as promising agents for addressing mental health issues, providing new avenues for therapeutic interventions in depressive disorders.
Collapse
Affiliation(s)
- Angela Dziedzic
- University of Lodz, Faculty of Biology and Environmental Protection, Department of General Biochemistry, Pomorska 141/143, 90-236 Lodz, Poland; (K.M.); (W.K.); (J.S.)
| | - Karina Maciak
- University of Lodz, Faculty of Biology and Environmental Protection, Department of General Biochemistry, Pomorska 141/143, 90-236 Lodz, Poland; (K.M.); (W.K.); (J.S.)
| | | | - Małgorzata Gałecka
- Department of Psychotherapy, Medical University of Lodz, Aleksandrowska 159, 91-229 Lodz, Poland;
| | - Weronika Kobierecka
- University of Lodz, Faculty of Biology and Environmental Protection, Department of General Biochemistry, Pomorska 141/143, 90-236 Lodz, Poland; (K.M.); (W.K.); (J.S.)
| | - Joanna Saluk
- University of Lodz, Faculty of Biology and Environmental Protection, Department of General Biochemistry, Pomorska 141/143, 90-236 Lodz, Poland; (K.M.); (W.K.); (J.S.)
| |
Collapse
|
15
|
Merkouris E, Mavroudi T, Miliotas D, Tsiptsios D, Serdari A, Christidi F, Doskas TK, Mueller C, Tsamakis K. Probiotics' Effects in the Treatment of Anxiety and Depression: A Comprehensive Review of 2014-2023 Clinical Trials. Microorganisms 2024; 12:411. [PMID: 38399815 PMCID: PMC10893170 DOI: 10.3390/microorganisms12020411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/11/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024] Open
Abstract
Changes in the gut microbiome can affect cognitive and psychological functions via the microbiota-gut-brain (MGB) axis. Probiotic supplements are thought to have largely positive effects on mental health when taken in sufficient amounts; however, despite extensive research having been conducted, there is a lack of consistent findings on the effects of probiotics on anxiety and depression and the associated microbiome alterations. The aim of our study is to systematically review the most recent literature of the last 10 years in order to clarify whether probiotics could actually improve depression and anxiety symptoms. Our results indicate that the majority of the most recent literature suggests a beneficial role of probiotics in the treatment of depression and anxiety, despite the existence of a substantial number of less positive findings. Given probiotics' potential to offer novel, personalized treatment options for mood disorders, further, better targeted research in psychiatric populations is needed to address concerns about the exact mechanisms of probiotics, dosing, timing of treatment, and possible differences in outcomes depending on the severity of anxiety and depression.
Collapse
Affiliation(s)
- Ermis Merkouris
- Neurology Department, Democritus University of Thrace, 68100 Alexandroupoli, Greece; (E.M.); (T.M.); (D.M.); (D.T.); (F.C.)
| | - Theodora Mavroudi
- Neurology Department, Democritus University of Thrace, 68100 Alexandroupoli, Greece; (E.M.); (T.M.); (D.M.); (D.T.); (F.C.)
| | - Daniil Miliotas
- Neurology Department, Democritus University of Thrace, 68100 Alexandroupoli, Greece; (E.M.); (T.M.); (D.M.); (D.T.); (F.C.)
| | - Dimitrios Tsiptsios
- Neurology Department, Democritus University of Thrace, 68100 Alexandroupoli, Greece; (E.M.); (T.M.); (D.M.); (D.T.); (F.C.)
- 3rd Neurology Department, Aristotle University, 54124 Thessaloniki, Greece
| | - Aspasia Serdari
- Department of Child and Adolescent Psychiatry, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Foteini Christidi
- Neurology Department, Democritus University of Thrace, 68100 Alexandroupoli, Greece; (E.M.); (T.M.); (D.M.); (D.T.); (F.C.)
| | | | - Christoph Mueller
- Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London SE5 8AB, UK;
- Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, London SE5 8AF, UK
| | - Konstantinos Tsamakis
- Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London SE5 8AB, UK;
- Institute of Medical and Biomedical Education, St George’s, University of London, London SW17 0RE, UK
| |
Collapse
|
16
|
Ricart W, Crujeiras AB, Mateos A, Castells-Nobau A, Fernández-Real JM. Is obesity the next step in evolution through brain changes? NEUROSCIENCE APPLIED 2024; 3:103927. [DOI: 10.1016/j.nsa.2023.103927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
17
|
Lin J, Zhang Y, Wang K, Wang J, Kou S, Chen K, Zheng W, Chen R. The effect and safety of probiotics on depression: a systematic review and meta-analysis of randomized controlled trials. Eur J Nutr 2023; 62:2709-2721. [PMID: 37247076 DOI: 10.1007/s00394-023-03184-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
PURPOSE With the escalating social pressures, there has been a continuous rise in the prevalence of depression among the population, leading to substantial healthcare burdens. Moreover, conventional pharmacological interventions still exhibit certain limitations. Therefore, the primary objective of this study is to systematically evaluate the clinical efficacy of probiotics in the treatment of depression. METHODS Randomized controlled trials of probiotics in treating depressive symptoms were retrieved from Pubmed, Cochrane Library, Web of Science, Wan Fang database, and CNKI between the establishment of the database and March 2022. The primary outcome was Beck's depression rating scale (BDI) scores, while the secondary outcomes were depression scores on the DASS-21 scale, biochemical indicators (IL-6, NO, and TNF-α levels), and adverse events. In addition, Revman 5.3 was used for Meta-analysis and quality evaluation, and Stata 17 was used for the Egger test and Begg's test. A total of 776 patients, including 397 and 379 patients in the experimental and control groups, respectively, were included. RESULTS The total BDI score of the experimental group was lower than that of the control group (MD = - 1.98, 95%CI - 3.14 to - 0.82), and the score of DASS (MD = 0.90, 95%CI - 1.17 to 2.98), the IL-6 level (SMD = - 0.55, 95%CI - 0.88 to - 0.23), the NO level (MD = 5.27, 95% CI 2.51 to 8.03), and the TNF-α level (SMD = 0.19, 95% CI - 0.25 to 0.63). CONCLUSION The findings substantiate the therapeutic potential of probiotics in mitigating depressive symptoms by significantly reducing Beck's Depression Inventory (BDI) scores and alleviating the overall manifestation of depression.
Collapse
Affiliation(s)
- Junjie Lin
- School of Public Health, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, China
| | - Yu Zhang
- School of Public Health, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, China
| | - Kunyi Wang
- School of Public Health, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, China
| | - Junping Wang
- School of Public Health, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, China
| | - Shuo Kou
- School of Public Health, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, China
| | - Kan Chen
- School of Public Health, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, China
| | - Weijun Zheng
- School of Public Health, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, China
| | - Rucheng Chen
- School of Public Health, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, China.
| |
Collapse
|
18
|
Xu L, Li Y, He Y. The variation characteristics of fecal microbiota in remission UC patients with anxiety and depression. Front Microbiol 2023; 14:1237256. [PMID: 37744915 PMCID: PMC10517179 DOI: 10.3389/fmicb.2023.1237256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/16/2023] [Indexed: 09/26/2023] Open
Abstract
Background Ulcerative colitis (UC) patients with relapsed disease are most likely to suffer from anxiety and depression. Increasing data indicates that psychological issues can change the composition of intestinal flora. Thus, we aim to seek the variation of intestinal microbiota composition in remission UC patients with anxiety and depression in Northwest China. Results In this study, 45 UC patients in remission were enrolled. The incidence of anxiety was 33.3%, and the prevalence of depression was 22.2%. There was no statistical difference in the alpha diversity of fecal microbiota, while beta diversity had a significant difference between the anxiety group and the non-anxiety group and the depression group and the non-depression group. Species composition analysis results showed that the ratio of Bifidobacterium and Lactobacilales significantly decreased. At the same time, the proportion of Escherichia-Shigella and Proteus_mirabilis increased in the anxiety group, and the ratio of Faecalibacterium and Bifidobacterium significantly decreased. In contrast, Escherichia-Shigella increased in the depression group at the gene levels. Conclusion Anxiety and depression still exist in UC patients even in the remission period. We first identify that the proportion of probiotics decreases while the proportion of pathogens increases in UC patients with anxiety and depression. These findings may provide a new pathophysiological mechanism for the recurrence of disease caused by impaired psychological function and a new method for the treatment strategy of UC patients with psychological issues.
Collapse
Affiliation(s)
- Lingyun Xu
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yingchao Li
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yingli He
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
19
|
Abstract
The multifaceted microbiota characterizing our gut plays a crucial role in maintaining immune, metabolic and tissue homeostasis of the intestine as well as of distal organs, including the central nervous system. Microbial dysbiosis is reported in several inflammatory intestinal diseases characterized by the impairment of the gut epithelial and vascular barriers, defined as leaky gut, and it is reported as a potential danger condition associated with the development of metabolic, inflammatory and neurodegenerative diseases. Recently, we pointed out the strict connection between the gut and the brain via a novel vascular axis. Here we want to deepen our knowledge on the gut-brain axis, with particular emphasis on the connection between microbial dysbiosis, leaky gut, cerebral and gut vascular barriers, and neurodegenerative diseases. The firm association between microbial dysbiosis and impairment of the vascular gut-brain axis will be summarized in the context of protection, amelioration or boosting of Alzheimer, Parkinson, Major depressive and Anxiety disorders. Understanding the relationship between disease pathophysiology, mucosal barrier function and host-microbe interaction will foster the use of the microbiome as biomarker for health and disease as well as a target for therapeutic and nutritional advances.
Collapse
Affiliation(s)
- Sara Carloni
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, 20072 Pieve Emanuele, MI, Italy; IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, MI, Italy.
| | - Maria Rescigno
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, 20072 Pieve Emanuele, MI, Italy; IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, MI, Italy.
| |
Collapse
|
20
|
Shi R, Huang C, Gao Y, Li X, Zhang C, Li M. Gut microbiota axis: potential target of phytochemicals from plant-based foods. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
21
|
Walden KE, Moon JM, Hagele AM, Allen LE, Gaige CJ, Krieger JM, Jäger R, Mumford PW, Pane M, Kerksick CM. A randomized controlled trial to examine the impact of a multi-strain probiotic on self-reported indicators of depression, anxiety, mood, and associated biomarkers. Front Nutr 2023; 10:1219313. [PMID: 37720373 PMCID: PMC10501394 DOI: 10.3389/fnut.2023.1219313] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/18/2023] [Indexed: 09/19/2023] Open
Abstract
Objective To examine the efficacy of supplementing with a multi-strain probiotic (MSP) on changes associated with mood, anxiety, and neurotransmitter levels. Method In a randomized, double-blind, placebo-controlled fashion, 70 healthy men and women (31.0 ± 9.5 years, 173.0 ± 10.4 cm, 73.9 ± 13.8 kg, 24.6 ± 3.5 kg/m2) supplemented with a single capsule of MSP (a total daily dose of 4 × 109 colony forming units [CFU] comprised of a 1 × 109 CFU dose from each of the following strains: Limosilactobacillus fermentum LF16, Lacticaseibacillus rhamnosus LR06, Lactiplantibacillus plantarum LP01, and Bifidobacterium longum 04, Probiotical S.p.A., Novara, Italy) or a maltodextrin placebo (PLA). After 0, 2, 4, and 6 weeks of supplementation and 3 weeks after ceasing supplementation, study participants completed the Beck Depression Inventory (BDI-II), State-Trait Anxiety Inventory (STAI), and Leiden Index of Depression Sensitivity (LEIDS-R) questionnaires and had plasma concentrations of cortisol, dopamine, serotonin, and C-reactive protein determined. Results BDI, STAI, and total LEIDS-R scores were reduced from baseline (p < 0.05) with MSP supplementation after 4 and 6 weeks of supplementation and 3 weeks after supplementation while no changes (p > 0.05) were reported in PLA. When compared to PLA, MSP scores for state anxiety, trait anxiety, and LEIDS-R (hopeless, aggression, rumination, and total score) were significantly lower (p < 0.05) after supplementation. Plasma serotonin concentrations in MSP were increased from baseline after 6 weeks of supplementation and 3 weeks after ceasing supplementation. No changes (p > 0.05) in plasma dopamine, C-reactive protein, or cortisol concentrations were observed between groups. Conclusion MSP supplementation resulted in widespread improvements in several questionnaires evaluating mood, anxiety, and depression in young, healthy men and women. MSP supplementation increased serotonin increased after 6 weeks of MSP supplementation with no change in dopamine, C-reactive protein, or cortisol. Clinical trial registration https://classic.clinicaltrials.gov/ct2/show/NCT05343533, NCT05343533.
Collapse
Affiliation(s)
- Kylie E. Walden
- Exercise and Performance Nutrition Laboratory, Department of Kinesiology, College of Science, Technology, and Health, Lindenwood University, Saint Charles, MO, United States
| | - Jessica M. Moon
- Exercise and Performance Nutrition Laboratory, Department of Kinesiology, College of Science, Technology, and Health, Lindenwood University, Saint Charles, MO, United States
| | - Anthony M. Hagele
- Exercise and Performance Nutrition Laboratory, Department of Kinesiology, College of Science, Technology, and Health, Lindenwood University, Saint Charles, MO, United States
| | - Leah E. Allen
- Exercise and Performance Nutrition Laboratory, Department of Kinesiology, College of Science, Technology, and Health, Lindenwood University, Saint Charles, MO, United States
| | - Connor J. Gaige
- Exercise and Performance Nutrition Laboratory, Department of Kinesiology, College of Science, Technology, and Health, Lindenwood University, Saint Charles, MO, United States
| | - Joesi M. Krieger
- Exercise and Performance Nutrition Laboratory, Department of Kinesiology, College of Science, Technology, and Health, Lindenwood University, Saint Charles, MO, United States
| | - Ralf Jäger
- Increnovo LLC, Milwaukee, WI, United States
| | - Petey W. Mumford
- Exercise and Performance Nutrition Laboratory, Department of Kinesiology, College of Science, Technology, and Health, Lindenwood University, Saint Charles, MO, United States
| | | | - Chad M. Kerksick
- Exercise and Performance Nutrition Laboratory, Department of Kinesiology, College of Science, Technology, and Health, Lindenwood University, Saint Charles, MO, United States
| |
Collapse
|
22
|
Ullah H, Arbab S, Tian Y, Liu CQ, Chen Y, Qijie L, Khan MIU, Hassan IU, Li K. The gut microbiota-brain axis in neurological disorder. Front Neurosci 2023; 17:1225875. [PMID: 37600019 PMCID: PMC10436500 DOI: 10.3389/fnins.2023.1225875] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/07/2023] [Indexed: 08/22/2023] Open
Abstract
The gut microbiota (GM) plays an important role in the physiology and pathology of the host. Microbiota communicate with different organs of the organism by synthesizing hormones and regulating body activity. The interaction of the central nervous system (CNS) and gut signaling pathways includes chemical, neural immune and endocrine routes. Alteration or dysbiosis in the gut microbiota leads to different gastrointestinal tract disorders that ultimately impact host physiology because of the abnormal microbial metabolites that stimulate and trigger different physiologic reactions in the host body. Intestinal dysbiosis leads to a change in the bidirectional relationship between the CNS and GM, which is linked to the pathogenesis of neurodevelopmental and neurological disorders. Increasing preclinical and clinical studies/evidence indicate that gut microbes are a possible susceptibility factor for the progression of neurological disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS) and autism spectrum disorder (ASD). In this review, we discuss the crucial connection between the gut microbiota and the central nervous system, the signaling pathways of multiple biological systems and the contribution of gut microbiota-related neurological disorders.
Collapse
Affiliation(s)
- Hanif Ullah
- Department of Nursing, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, China
| | - Safia Arbab
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, China
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yali Tian
- Department of Nursing, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, China
| | - Chang-qing Liu
- Department of Nursing, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, China
| | - Yuwen Chen
- Department of Nursing, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, China
| | - Li Qijie
- Department of Nursing, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, China
| | - Muhammad Inayat Ullah Khan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Inam Ul Hassan
- Department of Microbiology, Hazara University Mansehra, Mansehra, Pakistan
| | - Ka Li
- Department of Nursing, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, China
| |
Collapse
|
23
|
Lopez-Santamarina A, Mondragon ADC, Cardelle-Cobas A, Santos EM, Porto-Arias JJ, Cepeda A, Miranda JM. Effects of Unconventional Work and Shift Work on the Human Gut Microbiota and the Potential of Probiotics to Restore Dysbiosis. Nutrients 2023; 15:3070. [PMID: 37447396 DOI: 10.3390/nu15133070] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023] Open
Abstract
The work environment is a factor that can significantly influence the composition and functionality of the gut microbiota of workers, in many cases leading to gut dysbiosis that will result in serious health problems. The aim of this paper was to provide a compilation of the different studies that have examined the influence of jobs with unconventional work schedules and environments on the gut microbiota of workers performing such work. As a possible solution, probiotic supplements, via modulation of the gut microbiota, can moderate the effects of sleep disturbance on the immune system, as well as restore the dysbiosis produced. Rotating shift work has been found to be associated with an increase in the risk of various metabolic diseases, such as obesity, metabolic syndrome, and type 2 diabetes. Sleep disturbance or lack of sleep due to night work is also associated with metabolic diseases. In addition, sleep disturbance induces a stress response, both physiologically and psychologically, and disrupts the healthy functioning of the gut microbiota, thus triggering an inflammatory state. Other workers, including military, healthcare, or metallurgy workers, as well as livestock farmers or long-travel seamen, work in environments and schedules that can significantly affect their gut microbiota.
Collapse
Affiliation(s)
- Aroa Lopez-Santamarina
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Alicia Del Carmen Mondragon
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Alejandra Cardelle-Cobas
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Eva Maria Santos
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo km. 4.5, Pachuca 42076, Hidalgo, Mexico
| | - Jose Julio Porto-Arias
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Alberto Cepeda
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Jose Manuel Miranda
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| |
Collapse
|
24
|
Medina-Rodriguez EM, Cruz AA, De Abreu JC, Beurel E. Stress, inflammation, microbiome and depression. Pharmacol Biochem Behav 2023:173561. [PMID: 37148918 DOI: 10.1016/j.pbb.2023.173561] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 09/13/2022] [Accepted: 04/22/2023] [Indexed: 05/08/2023]
Abstract
Psychiatric disorders are mental illnesses involving changes in mood, cognition and behavior. Their prevalence has rapidly increased in the last decades. One of the most prevalent psychiatric disorders is major depressive disorder (MDD), a debilitating disease lacking efficient treatments. Increasing evidence shows that microbial and immunological changes contribute to the pathophysiology of depression and both are modulated by stress. This bidirectional relationship constitutes the brain-gut axis involving various neuroendocrine, immunological, neuroenterocrine and autonomic pathways. The present review covers the most recent findings on the relationships between stress, the gut microbiome and the inflammatory response and their contribution to depression.
Collapse
Affiliation(s)
- Eva M Medina-Rodriguez
- Department of Psychiatry and Behavioral Sciences, United States of America; Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL 33125, United States of America.
| | - Alyssa A Cruz
- Department of Psychiatry and Behavioral Sciences, United States of America
| | | | - Eléonore Beurel
- Department of Psychiatry and Behavioral Sciences, United States of America; Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, United States of America
| |
Collapse
|
25
|
Cichońska P, Kowalska E, Ziarno M. The Survival of Psychobiotics in Fermented Food and the Gastrointestinal Tract: A Review. Microorganisms 2023; 11:microorganisms11040996. [PMID: 37110420 PMCID: PMC10142889 DOI: 10.3390/microorganisms11040996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
In recent years, scientists have been particularly interested in the gut-brain axis, as well as the impact of probiotics on the nervous system. This has led to the creation of the concept of psychobiotics. The present review describes the mechanisms of action of psychobiotics, their use in food products, and their viability and survival during gastrointestinal passage. Fermented foods have a high potential of delivering probiotic strains, including psychobiotic ones. However, it is important that the micro-organisms remain viable in concentrations ranging from about 106 to 109 CFU/mL during processing, storage, and digestion. Reports indicate that a wide variety of dairy and plant-based products can be effective carriers for psychobiotics. Nonetheless, bacterial viability is closely related to the type of food matrix and the micro-organism strain. Studies conducted in laboratory conditions have shown promising results in terms of the therapeutic properties and viability of probiotics. Because human research in this field is still limited, it is necessary to broaden our understanding of the survival of probiotic strains in the human digestive tract, their resistance to gastric and pancreatic enzymes, and their ability to colonize the microbiota.
Collapse
Affiliation(s)
- Patrycja Cichońska
- Department of Food Technology and Assessment, Institute of Food Science, Warsaw University of Life Sciences-SGGW (WULS-SGGW), Nowoursynowska 159c St., 02-776 Warsaw, Poland
| | - Ewa Kowalska
- Department of Food Technology and Assessment, Institute of Food Science, Warsaw University of Life Sciences-SGGW (WULS-SGGW), Nowoursynowska 159c St., 02-776 Warsaw, Poland
| | - Małgorzata Ziarno
- Department of Food Technology and Assessment, Institute of Food Science, Warsaw University of Life Sciences-SGGW (WULS-SGGW), Nowoursynowska 159c St., 02-776 Warsaw, Poland
| |
Collapse
|
26
|
Cannavale CN, Mysonhimer AR, Bailey MA, Cohen NJ, Holscher HD, Khan NA. Consumption of a fermented dairy beverage improves hippocampal-dependent relational memory in a randomized, controlled cross-over trial. Nutr Neurosci 2023; 26:265-274. [PMID: 35282787 DOI: 10.1080/1028415x.2022.2046963] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Objectives: We aimed to determine whether consumption of a fermented dairy beverage containing probiotic microorganisms influences negative mood states, stress, and hippocampal memory performance in healthy adults. Methods: Adults (25-45 yrs, N = 26) free of gastrointestinal and mental illness were enrolled in a single-blind, randomized, controlled, crossover trial. Participants completed testing prior to and after 4-week consumption, with a 2-4 week washout between treatments of: (1) 8 oz of a dairy-based fermented beverage containing 25-30 billion colony forming units of live and active kefir cultures or (2) 8 oz isocaloric, non-fermented, 1% low-fat lactose-free dairy-based control beverage. Hippocampal-dependent relational memory was assessed using a spatial reconstruction task. Negative mood states of depression and anxiety were assessed using the Depression Anxiety Stress Scales-42 (DASS-42). Pooled 24-hour urine samples were analyzed using an enzyme-linked immunosorbent assay to determine urinary free-cortisol (UFC) concentrations. Fecal microbiota composition was assessed using 16S rRNA gene sequencing. Results: Lactobacillus was increased by 235% following fermented dairy consumption compared to the control (p < .01). Furthermore, the fermented dairy beverage improved performance on two metrics of relational memory, misplacement (p = .04) and object-location binding (p = .03). UFC and DASS-42 scores (all p's > .08) were not significantly changed by either arm of the intervention. No correlations were observed between the change in Lactobacillus and memory performance. Conclusions: Fermented dairy consumption increased the presence of certain microorganisms in the gut and improved relational memory in healthy adults. However, the benefits observed for relational memory were not related to changes in Lactobacillus.Trial registration: ClinicalTrials.gov identifier: NCT02849275.
Collapse
Affiliation(s)
- Corinne N Cannavale
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Annemarie R Mysonhimer
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Melisa A Bailey
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Neal J Cohen
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Psychology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Interdisciplinary Health Science Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hannah D Holscher
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Division of Nutritional Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Naiman A Khan
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Division of Nutritional Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
27
|
Sugita S, Tahir P, Kinjo S. The effects of microbiome-targeted therapy on cognitive impairment and postoperative cognitive dysfunction-A systematic review. PLoS One 2023; 18:e0281049. [PMID: 36749772 PMCID: PMC9904456 DOI: 10.1371/journal.pone.0281049] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/16/2023] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The gut-brain axis involves bidirectional communication between the gut-microbiota and central nervous system. This study aimed to investigate whether probiotics and/or prebiotics, known as Microbiome-targeted Therapies (MTTs), improve cognition and prevent postoperative cognitive dysfunction (POCD). METHODS Relevant animal and human studies were identified using a systematic database search (PubMed, EMBASE, Cochrane Library, and Web of Science), focusing on the effects of MTTs on inflammation, perioperative and non-perioperative cognitive impairment. Screening and data extraction were conducted by two independent reviewers. The Risk of bias was assessed using the SYRCLE's risk of bias tool for animal studies. The revised Cochrane risk of bias tool (RoB 2) was used for human studies. RESULTS A total of 24 articles were selected; 16 of these involved animal studies, and 8 described studies in humans. In these papers, the use of MTTs consistently resulted in decreased inflammation in perioperative and non-perioperative settings. Out of 16 animal studies, 5 studies (2 associated with delirium and 3 studies related to POCD) were conducted in a perioperative setting. MTTs improved perioperative cognitive behavior and reduced inflammation in all 5 animal studies. Eleven animal studies were conducted in a non-perioperative setting. In all of these studies, MTTs showed improvement in learning and memory function. MTTs showed a positive effect on levels of pro-inflammatory cytokines and biomarkers related to cognitive function. Among the 8 human studies, only one study examined the effects of perioperative MTTs on cognitive function. This study showed a reduced incidence of POCD along with improved cognitive function. Of the remaining 7 studies, 6 suggested that MTTs improved behavioral test results and cognition in non-perioperative environments. One study failed to show any significant differences in memory, biomarkers of inflammation, or oxidative factors. CONCLUSION In the studies we examined, most showed that MTTs decrease inflammation by down-regulating inflammatory cytokines and oxidative stress in both perioperative and non-perioperative settings. In general, MTTs also seem to have a positive effect on cognition through neural, immune, endocrine, and metabolic pathways. However, these effects have not yet resulted in a consensus regarding preventative strategies or treatments. Based on these current research results, MTTs could be a potential new preventative strategy for cognitive impairment after surgery.
Collapse
Affiliation(s)
- Saiko Sugita
- Department of Anesthesiology, Nippon Medical School, Tama-Nagayama Hospital, Tokyo, Japan
| | - Peggy Tahir
- University of California San Francisco Library, University of California, San Francisco, San Francisco, California, United States of America
| | - Sakura Kinjo
- Department of Anesthesiology and Perioperative Care, University of California, San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
28
|
Vera-Santander VE, Hernández-Figueroa RH, Jiménez-Munguía MT, Mani-López E, López-Malo A. Health Benefits of Consuming Foods with Bacterial Probiotics, Postbiotics, and Their Metabolites: A Review. Molecules 2023; 28:molecules28031230. [PMID: 36770898 PMCID: PMC9920731 DOI: 10.3390/molecules28031230] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/11/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Over the years, probiotics have been extensively studied within the medical, pharmaceutical, and food fields, as it has been revealed that these microorganisms can provide health benefits from their consumption. Bacterial probiotics comprise species derived from lactic acid bacteria (LAB) (genus Lactobacillus, Leuconostoc, and Streptococcus), the genus Bifidobacterium, and strains of Bacillus and Escherichia coli, among others. The consumption of probiotic products is increasing due to the current situation derived from the pandemic caused by COVID-19. Foods with bacterial probiotics and postbiotics are premised on being healthier than those not incorporated with them. This review aims to present a bibliographic compilation related to the incorporation of bacterial probiotics in food and to demonstrate through in vitro and in vivo studies or clinical trials the health benefits obtained with their metabolites and the consumption of foods with bacterial probiotics/postbiotics. The health benefits that have been reported include effects on the digestive tract, metabolism, antioxidant, anti-inflammatory, anticancer, and psychobiotic properties, among others. Therefore, developing food products with bacterial probiotics and postbiotics is a great opportunity for research in food science, medicine, and nutrition, as well as in the food industry.
Collapse
|
29
|
Jun J, Kasumova A, Tussing T, Mackos A, Justice S, McDaniel J. Probiotic supplements and stress-related occupational health outcomes: A scoping review. J Occup Health 2023; 65:e12404. [PMID: 37218068 PMCID: PMC10203357 DOI: 10.1002/1348-9585.12404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/30/2023] [Accepted: 05/01/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Prolonged and constant stress from work often leads to numerous adverse health effects. In recent years, interest in probiotics, living microorganisms that can benefit their host when consumed in adequate amounts, to aid health and well-being has increased. This scoping review is to systematically evaluate the current state of science on the effects of probiotic supplements on health, stress, and stress-related symptoms among working adults in occupational settings. METHODS We performed a systematic scoping review following the Arksey and O'Malley Framework. Studies that examined the effects of probiotics on workers' health and stress-related indicators/outcomes in occupational settings were included. A comprehensive search was performed from November 2021 to January 2022 using MEDLINE/PubMed, Cochrane Library, CINAHL, PsychInfo, Scopus, and Embase. RESULTS A total of 14 papers met the inclusion and exclusion criteria. Probiotics consisted primarily of Lactobacillus and/or Bifidobacterium strains in various forms and doses. Three out of eight studies reported statistical differences in inflammatory markers or stress hormone levels between probiotic and placebo groups. Three of six reported reduced respiratory tract infection incidents in the probiotic groups and three out of four studies reported no differences in anxiety and depression between groups. Lastly, three studies found that absenteeism and presentism were lower in probiotic groups compared with placebo groups. CONCLUSION The potential benefits of probiotics exist; however, the measurements of outcomes, the types of probiotics used, and the characteristics of the intervention varied across studies. Further research is needed focusing on probiotics' direct and indirect mechanisms of action on the stress response and the standardization of strains and dosing.
Collapse
Affiliation(s)
- Jin Jun
- The Ohio State University College of NursingColumbusOhioUSA
| | | | - Todd Tussing
- The Ohio State University College of NursingColumbusOhioUSA
| | - Amy Mackos
- The Ohio State University College of NursingColumbusOhioUSA
| | - Sheryl Justice
- The Ohio State University College of NursingColumbusOhioUSA
| | - Jodi McDaniel
- The Ohio State University College of NursingColumbusOhioUSA
| |
Collapse
|
30
|
Wissel E, Leon L, Tipton L. Opportunities for growth in the growing field of psychobiotics. Benef Microbes 2022; 13:445-452. [PMID: 36377580 DOI: 10.3920/bm2022.0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
There is growing interest in the field of psychobiotics, which are probiotics that confer a mental health benefit when ingested. As this field grows, it should pay particular attention to three areas within psychobiotics research that are currently under-studied - sex (and gender) representation, fungi and the mycobiome, and vagus nerve activity. Giving these three domains more attention is currently feasible without significant increased investment of time or money. We discuss these three domains briefly, why they are of particular relevance for psychobiotics research, and how psychobiotics research can easily integrate their perspectives. Our recommendations are summarised in the conclusion, but include equal sex representation at all phases of research (human and animal studies), investigating the relationship between psychobiotics and commensal fungi, and measuring the activity of the vagus nerve in psychobiotics studies.
Collapse
Affiliation(s)
- E Wissel
- Nell Hodgson Woodruff School of Nursing, Emory University, 1520 Clifton Rd, Atlanta, GA 30322, USA
| | - L Leon
- College of Biological Sciences, University of California Davis, 605 Hutchison Drive, Davis, CA 95616, USA
| | - L Tipton
- School of Natural Sciences and Mathematics, Chaminade University of Honolulu, 3140 Waialae Avenue, Honolulu, HI 96816, USA
| |
Collapse
|
31
|
Jamshidi S, Masoumi SJ, Abiri B, Sarbakhsh P, Sarrafzadeh J, Nasimi N, Vafa M. The effect of synbiotic and vitamin D co-supplementation on body composition and quality of life in middle-aged overweight and obese women: A randomized controlled trial. Clin Nutr ESPEN 2022; 52:270-276. [PMID: 36513465 DOI: 10.1016/j.clnesp.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/20/2022] [Accepted: 09/02/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND & AIMS Obesity is a worldwide problem which has involved large populations. Since some dietary factors might modify obesity through various signaling pathways, the aim of this study was to investigate the effect of synbiotic plus vitamin D co-supplementation on body composition parameters and quality of life, in middle-aged overweight and obese women. METHODS A randomized, controlled, double-blinded trial was performed and 88 overweight and obese women were assigned to 4 groups (22 per group), receiving synbiotic plus vitamin D, synbiotic, vitamin D and placebo for 8 weeks. At the beginning and at the end of the trial, anthropometric indices, body composition indicators, physical activity level, dietary intake, and quality of life score were measured by trained nutritionists. Statistical analysis was performed with SPSS version 22. RESULTS The results showed significant difference between 4 groups in waist circumference (WC), fat mass (FM), body fat percentage (BFP) and visceral fat area (VFA) values after 8 weeks of treatment (P = 0.005, P = 0.007, P = 0.003, and P = 0.009, respectively), with the greatest reduction in synbiotic plus vitamin D group compare to placebo. No significant results were demonstrated between groups in relation to other body composition variables. In addition, there were no significant differences between the 4 groups regarding physical, mental and total aspects of life quality over time. CONCLUSIONS Our study demonstrated that synbiotic and vitamin D co-supplementation for 8 weeks, had favorable effect on various anthropometric indices and body composition indicators, but no desirable change in life quality score. CLINICAL TRIAL REGISTRY IRCT (registration no. IRCT20090822002365N25).
Collapse
Affiliation(s)
- Sanaz Jamshidi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Jalil Masoumi
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran; Center for Cohort Study of SUMS Employees' Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Behnaz Abiri
- Obesity Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Sarbakhsh
- Department of Statistics and Epidemiology, School of Public Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Sarrafzadeh
- Department of Physiotherapy, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Nasrin Nasimi
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammadreza Vafa
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
32
|
Dziedzic A, Saluk J. Probiotics and Commensal Gut Microbiota as the Effective Alternative Therapy for Multiple Sclerosis Patients Treatment. Int J Mol Sci 2022; 23:ijms232214478. [PMID: 36430954 PMCID: PMC9699268 DOI: 10.3390/ijms232214478] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
The gut-brain axis (GBA) refers to the multifactorial interactions between the intestine microflora and the nervous, immune, and endocrine systems, connecting brain activity and gut functions. Alterations of the GBA have been revealed in people with multiple sclerosis (MS), suggesting a potential role in disease pathogenesis and making it a promising therapeutic target. Whilst research in this field is still in its infancy, a number of studies revealed that MS patients are more likely to exhibit modified microbiota, altered levels of short-chain fatty acids, and enhanced intestinal permeability. Both clinical and preclinical trials in patients with MS and animal models revealed that the administration of probiotic bacteria might improve cognitive, motor, and mental behaviors by modulation of GBA molecular pathways. According to the newest data, supplementation with probiotics may be associated with slower disability progression, reduced depressive symptoms, and improvements in general health in patients with MS. Herein, we give an overview of how probiotics supplementation may have a beneficial effect on the course of MS and its animal model. Hence, interference with the composition of the MS patient's intestinal microbiota may, in the future, be a grip point for the development of diagnostic tools and personalized microbiota-based adjuvant therapy.
Collapse
|
33
|
Thangaleela S, Sivamaruthi BS, Kesika P, Chaiyasut C. Role of Probiotics and Diet in the Management of Neurological Diseases and Mood States: A Review. Microorganisms 2022; 10:2268. [PMID: 36422338 PMCID: PMC9696277 DOI: 10.3390/microorganisms10112268] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
Alzheimer's (AD) and Parkinson's diseases (PD) are common in older people. Autism spectrum disorders (ASD), anxiety, depression, stress, and cognitive impairment are prevalent among people irrespective of age. The incidence of neurological disorders has been increasing in recent decades. Communication between the gut microbiota and the brain is intrinsically complicated, and it is necessary for the maintenance of the gut, brain, and immune functions of the host. The bidirectional link among the gut, gut microbiota and the brain is designated as the "microbiota-gut-brain axis." Gut microbiota modulates the host immune system and functions of tissue barriers such as gut mucosa and blood-brain barrier (BBB). Gut microbial dysfunction disturbs the gut-brain interplay and may contribute to various gut disorders, neurocognitive and psychiatric disorders. Probiotics could protect intestinal integrity, enhance gut functions, promote intestinal mucosal and BBB functions, and support the synthesis of brain-derived neurotrophic factors, which enhance neuronal survival and differentiation. Probiotics could be considered an adjunct therapy to manage metabolic and psychiatric diseases. Predominantly, Lactobacillus and Bifidobacterium strains are documented as potent probiotics, which help to maintain the bidirectional interactions between the gut and brain. The consumption of probiotics and probiotics containing fermented foods could improve the gut microbiota. The diet impacts gut microbiota, and a balanced diet could maintain the integrity of gut-brain communication by facilitating the production of neurotrophic factors and other neuropeptides. However, the beneficial effects of probiotics and diet might depend upon several factors, including strain, dosage, duration, age, host physiology, etc. This review summarizes the importance and involvement of probiotics and diet in neuroprotection and managing representative neurological disorders, injuries and mood states.
Collapse
Affiliation(s)
- Subramanian Thangaleela
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Periyanaina Kesika
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
34
|
Jung TH, Hwang HJ, Han KS. Correlation of attention deficit hyperactivity disorder with gut microbiota according to the dietary intake of Korean elementary school students. PLoS One 2022; 17:e0275520. [PMID: 36178961 PMCID: PMC9524712 DOI: 10.1371/journal.pone.0275520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 09/19/2022] [Indexed: 11/18/2022] Open
Abstract
We investigated the impact of dietary patterns on the gut microbiota and concentration of short-chain fatty acids in the feces of Korean elementary school students. The dietary intake and ADHD assessment of 40 Korean elementary school students were analyzed using a dish-based semi-quantitative food frequency questionnaire. Analysis of gut microbiota and short-chain fatty acids composition were performed using the real-time polymerase chain reaction, metagenomics, and gas chromatography methods. The dietary patterns of participants were divided into four groups: healthy, processed food, fish and shellfish, and meat. The participants were also divided into two groups according to their ADHD scores: 0–30, control group; over 30, ADHD group. The ADHD score of the processed food group was significantly higher than that of the healthy group. The processed food and ADHD groups showed significantly higher abundance of harmful bacteria, such as the Enterobacter, Escherichia coli, and Clostridium strains, and markedly lower abundance of beneficial bacteria, such as the Bifidobacterium and Ruminococcus strains, than the control group. The heat maps of metagenomics indicated that each group was separated into distinct clusters, and the processed food and ADHD groups showed significantly lower α-diversity of gut microbiota than the control group. In these groups, the concentration of acetate or butyrate in the feces was significantly lower than that in the control group. These results may indicate that imbalanced diets can disturb the colonic microbial balance and are likely to become a potential risk factor for the prevalence of ADHD.
Collapse
Affiliation(s)
- Tae-Hwan Jung
- Department of Food and Nutrition, Sahmyook University, Seoul, Korea
| | - Hyo-Jeong Hwang
- Department of Food and Nutrition, Sahmyook University, Seoul, Korea
| | - Kyoung-Sik Han
- Department of Food and Nutrition, Sahmyook University, Seoul, Korea
- * E-mail:
| |
Collapse
|
35
|
Rode J, Edebol Carlman HMT, König J, Hutchinson AN, Thunberg P, Persson J, Brummer RJ. Multi-Strain Probiotic Mixture Affects Brain Morphology and Resting State Brain Function in Healthy Subjects: An RCT. Cells 2022; 11:cells11182922. [PMID: 36139496 PMCID: PMC9496704 DOI: 10.3390/cells11182922] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Probiotics can alter brain function via the gut–brain axis. We investigated the effect of a probiotic mixture containing Bifidobacterium longum, Lactobacillus helveticus and Lactiplantibacillus plantarum. In a randomized, placebo-controlled, double-blinded crossover design, 22 healthy subjects (6 m/16 f; 24.2 ± 3.4 years) underwent four-week intervention periods with probiotics and placebo, separated by a four-week washout period. Voxel-based morphometry indicated that the probiotic intervention affected the gray matter volume of a cluster covering the left supramarginal gyrus and superior parietal lobule (p < 0.0001), two regions that were also among those with an altered resting state functional connectivity. Probiotic intervention resulted in significant (FDR < 0.05) functional connectivity changes between regions within the default mode, salience, frontoparietal as well as the language network and several regions located outside these networks. Psychological symptoms trended towards improvement after probiotic intervention, i.e., the total score of the Hospital Anxiety and Depression Scale (p = 0.056) and its depression sub-score (p = 0.093), as well as sleep patterns (p = 0.058). The probiotic intervention evoked distinct changes in brain morphology and resting state brain function alongside slight improvements of psycho(bio)logical markers of the gut–brain axis. The combination of those parameters may provide new insights into the modes of action by which gut microbiota can affect gut–brain communication and hence brain function.
Collapse
Affiliation(s)
- Julia Rode
- Nutrition-Gut-Brain Interactions Research Centre, Faculty of Medicine and Health, School of Medical Sciences, Örebro University, 70182 Örebro, Sweden
- Correspondence:
| | - Hanna M. T. Edebol Carlman
- Nutrition-Gut-Brain Interactions Research Centre, Faculty of Medicine and Health, School of Medical Sciences, Örebro University, 70182 Örebro, Sweden
| | - Julia König
- Nutrition-Gut-Brain Interactions Research Centre, Faculty of Medicine and Health, School of Medical Sciences, Örebro University, 70182 Örebro, Sweden
| | - Ashley N. Hutchinson
- Nutrition-Gut-Brain Interactions Research Centre, Faculty of Medicine and Health, School of Medical Sciences, Örebro University, 70182 Örebro, Sweden
| | - Per Thunberg
- Department of Radiology and Medical Physics, Faculty of Medicine and Health, Örebro University, 70182 Örebro, Sweden
| | - Jonas Persson
- Center for Lifespan Developmental Research (LEADER), Faculty of Humanities and Social Sciences, School of Law, Psychology and Social Work, Örebro University, 70182 Örebro, Sweden
| | - Robert J. Brummer
- Nutrition-Gut-Brain Interactions Research Centre, Faculty of Medicine and Health, School of Medical Sciences, Örebro University, 70182 Örebro, Sweden
| |
Collapse
|
36
|
Wu SI, Wu CC, Cheng LH, Noble SW, Liu CJ, Lee YH, Lin CJ, Hsu CC, Chen WL, Tsai PJ, Kuo PH, Tsai YC. Psychobiotic supplementation of HK-PS23 improves anxiety in highly stressed clinical nurses: a double-blind randomized placebo-controlled study. Food Funct 2022; 13:8907-8919. [PMID: 35924970 DOI: 10.1039/d2fo01156e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nurses often experience adverse health effects associated with increasing levels of work-related stress. Stress may induce systemic effects through the HPA axis, glucocorticoid responses, and inflammatory cascades. Psychobiotics may help alleviate stress through associations of the microbiota, anti-inflammation factors, and the gut-brain axis. We aimed to investigate whether interventions with a psychobiotic, heat-killed (HK)-PS23 cells, may help improve perceived stress, anxiety, and related biological markers among highly stressed clinical nurses. This double-blind, randomized, placebo-controlled study included seventy clinical nurses from a medical center in Northern Taiwan who scored 27 or higher on the 10-item version of the Perceived Stress Scale (PSS), and participants were randomized into either taking HK-PS23 or a placebo for 8 weeks. Baseline and endpoint results of the PSS, Job Stress Scale, State and Trait Anxiety Index (STAI), emotional questionnaires, gastrointestinal severity questionnaires, Trails Marking Tests, blood biological markers, and sleep data were analyzed. While both groups demonstrated improvements in most measures over time, only the blood cortisol measure demonstrated significant group differences after the 8-week trial. Further analyses of the subgroup with higher anxiety (nurses with STAI ≥ 103) revealed that anxiety states had improved significantly in the HK-PS23 group but not in the placebo group. In summary, this placebo-controlled trial found significant reduction in the level of blood cortisol after 8 weeks of HK-PS23 use. The distinctive anxiolytic effects of HK-PS23 may be beneficial in improving perceived anxiety and stress hormone levels in female nurses under pressure. Clinical trial registration: https://clinicaltrials.gov/, identifier: NCT04452253-sub-project 1.
Collapse
Affiliation(s)
- Shu-I Wu
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan. .,Section of Psychiatry and Suicide Prevention Center, MacKay Memorial Hospital, Taipei, Taiwan
| | | | | | | | - Chih-Ju Liu
- Department of Nursing, Mackay Memorial Hospital, Taipei, Taiwan
| | - Yu-Hsia Lee
- Department of Nursing, Mackay Memorial Hospital, Taipei, Taiwan
| | - Chen-Ju Lin
- Section of Psychiatry and Suicide Prevention Center, MacKay Memorial Hospital, Taipei, Taiwan
| | | | - Wan-Lin Chen
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan
| | | | - Po-Hsiu Kuo
- Department of Public Health & Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan.,Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan
| | - Ying-Chieh Tsai
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
37
|
Ortega MA, Fraile-Martínez Ó, García-Montero C, Alvarez-Mon MA, Lahera G, Monserrat J, Llavero-Valero M, Gutiérrez-Rojas L, Molina R, Rodríguez-Jimenez R, Quintero J, De Mon MA. Biological Role of Nutrients, Food and Dietary Patterns in the Prevention and Clinical Management of Major Depressive Disorder. Nutrients 2022; 14:3099. [PMID: 35956276 PMCID: PMC9370795 DOI: 10.3390/nu14153099] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 02/06/2023] Open
Abstract
Major Depressive Disorder (MDD) is a growing disabling condition affecting around 280 million people worldwide. This complex entity is the result of the interplay between biological, psychological, and sociocultural factors, and compelling evidence suggests that MDD can be considered a disease that occurs as a consequence of an evolutionary mismatch and unhealthy lifestyle habits. In this context, diet is one of the core pillars of health, influencing multiple biological processes in the brain and the entire body. It seems that there is a bidirectional relationship between MDD and malnutrition, and depressed individuals often lack certain critical nutrients along with an aberrant dietary pattern. Thus, dietary interventions are one of the most promising tools to explore in the field of MDD, as there are a specific group of nutrients (i.e., omega 3, vitamins, polyphenols, and caffeine), foods (fish, nuts, seeds fruits, vegetables, coffee/tea, and fermented products) or dietary supplements (such as S-adenosylmethionine, acetyl carnitine, creatine, amino acids, etc.), which are being currently studied. Likewise, the entire nutritional context and the dietary pattern seem to be another potential area of study, and some strategies such as the Mediterranean diet have demonstrated some relevant benefits in patients with MDD; although, further efforts are still needed. In the present work, we will explore the state-of-the-art diet in the prevention and clinical support of MDD, focusing on the biological properties of its main nutrients, foods, and dietary patterns and their possible implications for these patients.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (Ó.F.-M.); (C.G.-M.); (M.A.A.-M.); (G.L.); (J.M.); (M.A.D.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, 28805 Alcalá de Henares, Spain
| | - Óscar Fraile-Martínez
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (Ó.F.-M.); (C.G.-M.); (M.A.A.-M.); (G.L.); (J.M.); (M.A.D.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (Ó.F.-M.); (C.G.-M.); (M.A.A.-M.); (G.L.); (J.M.); (M.A.D.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Miguel Angel Alvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (Ó.F.-M.); (C.G.-M.); (M.A.A.-M.); (G.L.); (J.M.); (M.A.D.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain; (M.L.-V.); (J.Q.)
| | - Guillermo Lahera
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (Ó.F.-M.); (C.G.-M.); (M.A.A.-M.); (G.L.); (J.M.); (M.A.D.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain; (M.L.-V.); (J.Q.)
- Psychiatry Service, Center for Biomedical Research in the Mental Health Network, University Hospital Príncipe de Asturias, 28806 Alcalá de Henares, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (Ó.F.-M.); (C.G.-M.); (M.A.A.-M.); (G.L.); (J.M.); (M.A.D.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Maria Llavero-Valero
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain; (M.L.-V.); (J.Q.)
| | - Luis Gutiérrez-Rojas
- Department of Psychiatry and CTS-549 Research Group, Institute of Neuroscience, University of Granada, 18071 Granada, Spain;
- Psychiatry Service, San Cecilio University Hospital, 18016 Granada, Spain
| | - Rosa Molina
- Department of Psychiatry and Mental, Health San Carlos University Hospital (HCSC), 28034 Madrid, Spain;
- Research Biomedical Fundation of HCSC Hospital, 28034 Madrid, Spain
- Department of Psychology, Comillas University, Cantoblanco, 28015 Madrid, Spain
| | - Roberto Rodríguez-Jimenez
- Department of Legal Medicine, Psychiatry, and Pathology, Complutense University (UCM), 28040 Madrid, Spain;
- Institute for Health Research 12 de Octubre Hospital, (imas12)/CIBERSAM-ISCIII (Biomedical Research Networking Centre in Mental Health), 28041 Madrid, Spain
| | - Javier Quintero
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain; (M.L.-V.); (J.Q.)
- Department of Legal Medicine, Psychiatry, and Pathology, Complutense University (UCM), 28040 Madrid, Spain;
| | - Melchor Alvarez De Mon
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (Ó.F.-M.); (C.G.-M.); (M.A.A.-M.); (G.L.); (J.M.); (M.A.D.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine, University Hospital Príncipe de Asturias, (CIBEREHD), 28806 Alcalá de Henares, Spain
| |
Collapse
|
38
|
Watanabe T, Hayashi K, Takara T, Teratani T, Kitayama J, Kawahara T. Effect of Oral Administration of Lactiplantibacillus plantarum SNK12 on Temporary Stress in Adults: A Randomized, Placebo-Controlled, Double-Blind, Parallel-Group Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19158936. [PMID: 35897310 PMCID: PMC9332698 DOI: 10.3390/ijerph19158936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 01/27/2023]
Abstract
Mouse studies have reported anti-stress effects of Lactiplantibacillus plantarum SNK12 (SNK). Specifically, oral SNK administration increased mRNA levels of hippocampal neurotrophic factor and gamma-aminobutyric acid receptor in mice with sub-chronic mild stress-induced social defeat; moreover, it improved depressive behavior. We aimed to evaluate the efficacy of SNK ingestion against stress in healthy adults. We used the Uchida–Kraepelin test for the stress load, with a low-dose (50 mg/day), high-dose (150 mg/day), and placebo groups (dextrin). The primary outcome was the psychological evaluation as measured by the Profile of Mood States 2nd Edition (POMS2) using total mood disturbance (TMD) scores. The secondary outcomes were the score of each POMS2 item, salivary cortisol as a stress marker, and autonomic balance with the low frequency (LF)/ high frequency (HF) ratio. Compared with the placebo group, the SNK ingestion group showed significantly lower TMD scores. Additionally, compared with the placebo group, the high-dose group showed significantly lower scores for Tension-Anxiety and Confusion-Bewilderment, while the low-dose group showed significantly lower Anger-Hostility scores, salivary cortisol levels, and LF/HF scores. Our findings suggest that SNK ingestion could relieve stress (negative feelings, anxiety, tension, embarrassment, confusion, anger, and hostility) resulting from the temporary load caused by work and study.
Collapse
Affiliation(s)
- Takumi Watanabe
- Division of Translational Research, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi 329-0498, Tochigi, Japan; (T.T.); (J.K.)
- College of Life and Health Sciences, Chubu University, 1200 Matsumoto, Kasugai 487-8501, Aichi, Japan; (K.H.); (T.K.)
- Correspondence: ; Tel.: +81-42-978-7208
| | - Kyoko Hayashi
- College of Life and Health Sciences, Chubu University, 1200 Matsumoto, Kasugai 487-8501, Aichi, Japan; (K.H.); (T.K.)
| | - Tsuyoshi Takara
- Medical Corporation Seishinkai, Takara Clinic, 2-3-2-9, Higashigotanda, Shinagawa 141-0022, Tokyo, Japan;
| | - Takumi Teratani
- Division of Translational Research, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi 329-0498, Tochigi, Japan; (T.T.); (J.K.)
| | - Joji Kitayama
- Division of Translational Research, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi 329-0498, Tochigi, Japan; (T.T.); (J.K.)
| | - Toshio Kawahara
- College of Life and Health Sciences, Chubu University, 1200 Matsumoto, Kasugai 487-8501, Aichi, Japan; (K.H.); (T.K.)
| |
Collapse
|
39
|
Psychobiotics: the Influence of Gut Microbiota on the Gut-Brain Axis in Neurological Disorders. J Mol Neurosci 2022; 72:1952-1964. [PMID: 35849305 PMCID: PMC9289355 DOI: 10.1007/s12031-022-02053-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/12/2022] [Indexed: 12/01/2022]
Abstract
Nervous system disorders are one of the common problems that affect many people around the world every year. Regarding the beneficial effects of the probiotics on the gut and the gut-brain axis, their application along with current medications has been the subject of intense interest. Psychobiotics are a probiotic strain capable to affect the gut-brain axis. The effective role of Psychobiotics in several neurological disorders is documented. Consumption of the Psychobiotics containing nutrients has positive effects on the improvement of microbiota as well as alleviation of some symptoms of central nervous system (CNS) disorders. In the present study, the effects of probiotic strains on some CNS disorders in terms of controlling the disease symptoms were reviewed. Finding suggests that Psychobiotics can efficiently alleviate the symptoms of several CNS disorders such as autism spectrum disorders, Parkinson’s disease, multiple sclerosis, insomnia, depression, diabetic neuropathy, and anorexia nervosa. It can be concluded that functional foods containing psychotropic strains can help to improve mental health.
Collapse
|
40
|
Dandekar MP, Palepu MSK, Satti S, Jaiswal Y, Singh AA, Dash SP, Gajula SNR, Sonti R. Multi-strain Probiotic Formulation Reverses Maternal Separation and Chronic Unpredictable Mild Stress-Generated Anxiety- and Depression-like Phenotypes by Modulating Gut Microbiome-Brain Activity in Rats. ACS Chem Neurosci 2022; 13:1948-1965. [PMID: 35735411 DOI: 10.1021/acschemneuro.2c00143] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Depression is a debilitating mental disorder that affects >322 million people worldwide. Despite the availability of several antidepressant agents, many patients remain treatment refractory. A growing literature study has indicated the role of gut microbiota in neuropsychiatric disorders. Herein, we examined the psychobiotic-like activity of multi-strain probiotic formulation in maternal separation (MS) and chronic unpredictable mild stress (CUMS) models of anxiety- and depression-like phenotypes in Sprague-Dawley rats. Early- and late-life stress was employed in both male and female rats by exposing them to MS and CUMS. The multi-strain probiotic formulation (Cognisol) containing Bacillus coagulans Unique IS-2, Lactobacillus plantarum UBLP-40, Lactobacillus rhamnosus UBLR-58, Bifidobacterium lactis UBBLa-70, Bifidobacterium breve UBBr-01, and Bifidobacterium infantis UBBI-01 at a total strength of 10 billion cfu along with l-glutamine was administered for 6 weeks via drinking water. Neurobehavioral assessment was done using the forced swim test (FST), sucrose preference test (SPT), elevated plus maze (EPM), and open field test (OFT). Animals were sacrificed after behavioral assessment, and blood, brain, and intestine samples were collected to analyze the levels of cytokines, metabolites, and neurotransmitters and histology. Animals exposed to stress showed increased passivity, consumed less sucrose solution, and minimally explored the open arms in the FST, SPT, and EPM, respectively. Administration of multi-strain probiotics along with l-glutamine for 6 weeks ameliorated the behavioral abnormalities. The locomotor activity of animals in the OFT and their body weight remained unchanged across the groups. Cognisol treatment reversed the decreased BDNF and serotonin levels and increased CRP, TNF-α, and dopamine levels in the hippocampus and/or frontal cortex. Administration of Cognisol also restored the plasma levels of l-tryptophan, l-kynurenine, kynurenic-acid, and 3-hydroxyanthranilic acid; the Firmicutes-to-Bacteroides ratio; the levels of acetate, propionate, and butyrate in fecal samples; the villi/crypt ratio; and the goblet cell count, which manifested in the restoration of intestinal functions. We suggest that the multi-strain probiotic and glutamine formulation (Cognisol) ameliorated the MS + UCMS-generated anxiety- and depression-like phenotypes by reshaping the gut microbiome-brain activity in both sexes.
Collapse
Affiliation(s)
- Manoj P Dandekar
- Department of Biological Sciences, Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Mani Surya Kumar Palepu
- Department of Biological Sciences, Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Srilakshmi Satti
- Department of Biological Sciences, Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Yash Jaiswal
- Department of Biological Sciences, Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Aditya A Singh
- Department of Biological Sciences, Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Surya Prakash Dash
- Department of Biological Sciences, Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Siva Nageswara Rao Gajula
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Rajesh Sonti
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| |
Collapse
|
41
|
Eltokhi A, Sommer IE. A Reciprocal Link Between Gut Microbiota, Inflammation and Depression: A Place for Probiotics? Front Neurosci 2022; 16:852506. [PMID: 35546876 PMCID: PMC9081810 DOI: 10.3389/fnins.2022.852506] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/18/2022] [Indexed: 12/12/2022] Open
Abstract
Depression is a severe mental disorder that places a significant economic burden on public health. The reciprocal link between the trillions of bacteria in the gut, the microbiota, and depression is a controversial topic in neuroscience research and has drawn the attention of public interest and press coverage in recent years. Mounting pieces of evidence shed light on the role of the gut microbiota in depression, which is suggested to involve immune, endocrine, and neural pathways that are the main components of the microbiota-gut-brain axis. The gut microbiota play major roles in brain development and physiology and ultimately behavior. The bidirectional communication between the gut microbiota and brain function has been extensively explored in animal models of depression and clinical research in humans. Certain gut microbiota strains have been associated with the pathophysiology of depression. Therefore, oral intake of probiotics, the beneficial living bacteria and yeast, may represent a therapeutic approach for depression treatment. In this review, we summarize the findings describing the possible links between the gut microbiota and depression, focusing mainly on the inflammatory markers and sex hormones. By discussing preclinical and clinical studies on probiotics as a supplementary therapy for depression, we suggest that probiotics may be beneficial in alleviating depressive symptoms, possibly through immune modulation. Still, further comprehensive studies are required to draw a more solid conclusion regarding the efficacy of probiotics and their mechanisms of action.
Collapse
Affiliation(s)
- Ahmed Eltokhi
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Iris E Sommer
- Department of Biomedical Sciences of Cells & Systems, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
42
|
The Gut Microbiome, Mental Health, and Cognitive and Neurodevelopmental Disorders: A Scoping Review. J Nurse Pract 2022. [DOI: 10.1016/j.nurpra.2022.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Thurfah JN, Christine , Bagaskhara PP, Alfian SD, Puspitasari IM. Dietary Supplementations and Depression. J Multidiscip Healthc 2022; 15:1121-1141. [PMID: 35607362 PMCID: PMC9123934 DOI: 10.2147/jmdh.s360029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/02/2022] [Indexed: 12/22/2022] Open
Abstract
Depression is a mood disturbance condition that occurs for more than two weeks in a row, leading to suicide. Due to adverse effects of depression, antidepressants and adjunctive therapies, such as dietary supplementation, are used for treatment. Therefore, this review explored and summarized dietary supplements’ types, dosages, and effectiveness in preventing and treating depression. A literature search of the PubMed database was conducted in August 2021 to identify studies assessing depression, after which scale measurements based on dietary supplements were identified. From the obtained 221 studies, we selected 63 papers. Results showed PUFA (EPA and DHA combination), vitamin D, and probiotics as the most common supplementation used in clinical studies to reduce depressive symptoms. We also observed that although the total daily PUFA dosage that exhibited beneficial effects was in the range of 0.7–2 g EPA and 0.4–0.8 g DHA daily, with an administration period of three weeks to four months, positive vitamin D-based supplementation effects were observed after administering doses of 2000 IU/day or 50,000 IU/week between 8 weeks and 24 months. Alternatively, microbes from the genus Lactobacillus and Bifidobacterium in the probiotic group with a minimum dose of 108 CFU in various dose forms effectively treated depression. Besides, a depression scale was helpful to assess the effect of an intervention on depression. Hence, PUFA, vitamin D, and probiotics were proposed as adjunctive therapies for depression treatment based on the results from this study.
Collapse
|
44
|
Rode J, Edebol Carlman HMT, König J, Repsilber D, Hutchinson AN, Thunberg P, Andersson P, Persson J, Kiselev A, Lathrop Stern L, Salomon B, Mohammed AA, Labus JS, Brummer RJ. Probiotic Mixture Containing Lactobacillus helveticus, Bifidobacterium longum and Lactiplantibacillus plantarum Affects Brain Responses Toward an Emotional Task in Healthy Subjects: A Randomized Clinical Trial. Front Nutr 2022; 9:827182. [PMID: 35571902 PMCID: PMC9104811 DOI: 10.3389/fnut.2022.827182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/05/2022] [Indexed: 01/04/2023] Open
Abstract
Background Evidence from preclinical studies suggests that probiotics affect brain function via the microbiome-gut-brain axis, but evidence in humans remains limited. Objective The present proof-of-concept study investigated if a probiotic product containing a mixture of Bifidobacterium longum R0175, Lactobacillus helveticus R0052 and Lactiplantibacillus plantarum R1012 (in total 3 × 109 CFU/day) affected functional brain responses in healthy subjects during an emotional attention task. Design In this double-blinded, randomized, placebo-controlled crossover study (Clinicaltrials.gov, NCT03615651), 22 healthy subjects (24.2 ± 3.4 years, 6 males/16 females) were exposed to a probiotic intervention and a placebo for 4 weeks each, separated by a 4-week washout period. Subjects underwent functional magnetic resonance imaging while performing an emotional attention task after each intervention period. Differential brain activity and functional connectivity were assessed. Results Altered brain responses were observed in brain regions implicated in emotional, cognitive and face processing. Increased activation in the orbitofrontal cortex, a region that receives extensive sensory input and in turn projects to regions implicated in emotional processing, was found after probiotic intervention compared to placebo using a cluster-based analysis of functionally defined areas. Significantly reduced task-related functional connectivity was observed after the probiotic intervention compared to placebo. Fecal microbiota composition was not majorly affected by probiotic intervention. Conclusion The probiotic intervention resulted in subtly altered brain activity and functional connectivity in healthy subjects performing an emotional task without major effects on the fecal microbiota composition. This indicates that the probiotic effects occurred via microbe-host interactions on other levels. Further analysis of signaling molecules could give possible insights into the modes of action of the probiotic intervention on the gut-brain axis in general and brain function specifically. The presented findings further support the growing consensus that probiotic supplementation influences brain function and emotional regulation, even in healthy subjects. Future studies including patients with altered emotional processing, such as anxiety or depression symptoms are of great interest. Clinical Trial Registration [http://clinicaltrials.gov/], identifier [NCT03615651].
Collapse
Affiliation(s)
- Julia Rode
- Nutrition-Gut-Brain Interactions Research Center, Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden
- *Correspondence: Julia Rode,
| | - Hanna M. T. Edebol Carlman
- Nutrition-Gut-Brain Interactions Research Center, Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Julia König
- Nutrition-Gut-Brain Interactions Research Center, Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Dirk Repsilber
- Nutrition-Gut-Brain Interactions Research Center, Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Ashley N. Hutchinson
- Nutrition-Gut-Brain Interactions Research Center, Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Per Thunberg
- Department of Radiology and Medical Physics, Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Pernilla Andersson
- Center for Lifespan Developmental Research (LEADER), Faculty of Humanities and Social Sciences, School of Law, Psychology and Social Work, Örebro University, Örebro, Sweden
| | - Jonas Persson
- Center for Lifespan Developmental Research (LEADER), Faculty of Humanities and Social Sciences, School of Law, Psychology and Social Work, Örebro University, Örebro, Sweden
| | - Andrey Kiselev
- Center for Applied Autonomous Sensor Systems, Faculty for Business, Science and Engineering, School of Natural Science and Technology, Örebro University, Örebro, Sweden
| | - Lori Lathrop Stern
- Global Medical Innovation, Pfizer Consumer Healthcare, Madison, NJ, United States
| | - Benita Salomon
- Nutrition-Gut-Brain Interactions Research Center, Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Ahmed Abdulilah Mohammed
- Department of Radiology and Medical Physics, Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Jennifer S. Labus
- Integrative Bioinformatics and Biostatistics Core, Oppenheimer Center for Neurobiology of Stress and Resilience, UCLA Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Robert J. Brummer
- Nutrition-Gut-Brain Interactions Research Center, Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden
| |
Collapse
|
45
|
Zeng C, Qiu Y, Li S, Teng Z, Xiang H, Chen J, Wu X, Cao T, Zhang S, Chen Q, Wu H, Cai H. Effect of Probiotic Supplements on Oxidative Stress Biomarkers in First-Episode Bipolar Disorder Patients: A Randomized, Placebo-Controlled Trial. Front Pharmacol 2022; 13:829815. [PMID: 35559241 PMCID: PMC9086965 DOI: 10.3389/fphar.2022.829815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/04/2022] [Indexed: 11/14/2022] Open
Abstract
Background: Currently no study has examined the effects of probiotic administration on the symptoms of anxiety, depression, and mania, as well as their correlations with the biomarkers of oxidative stress in patients with bipolar disorder (BPD). The aim of this study is to determine the effects of probiotic supplementation on plasma oxidative stress-related biomarkers and different domains of clinical symptom in patients suffering from BPD. Methods: Eighty first-episode drug-naive patients with BPD were recruited. The subjects were randomized to receive psychotropic drugs supplementing with either probiotic or placebo and scheduled to evaluate with follow-ups for clinical symptom improvements and changes in the oxidative stress biomarkers. The Hamilton Depression Rating Scale, Hamilton Anxiety Rating Scale, and Young Mania Rating Scale were used to assess the clinical symptomatology. The panel of plasma oxidative stress biomarkers were determined by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS/MS) at baseline and for 3 months of follow-up, i.e., at post-treatment month 1, 2, and 3. Results: After 3 months of intervention, decreased levels of plasma lysophosphatidylcholines (LPCs) were found in both placebo and probiotic groups. However, six other oxidative stress biomarkers (i.e., creatine, inosine, hypoxanthine, choline, uric acid, allantoic acid) increased in BPD patients after the two types of therapies. In addition, a positive correlation between changes of LPC (18:0) and YMRS scale was found in BPD patients and this association only existed in the probiotic group. Additionally, the mania symptom greatly alleviated (pretreatment-posttreatment, odds ratio = 0.09, 95%CI = 0.01, 0.64, p= 0.016) in patients who received probiotic supplements as compared with the placebo group. Conclusion: The changes in plasma biomarkers of oxidative stress in patients with BPD have a potential to be trait-like markers, and serve as prognostic indexes for bipolar patients. Daily intakes of probiotics have advantageous effects on BPD patients with certain clinical symptoms, especially manic symptoms. The treatment may be a promising adjunctive therapeutic strategy for BPD patients in manic episode.
Collapse
Affiliation(s)
- Cuirong Zeng
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
- The Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Yan Qiu
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Sujuan Li
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ziwei Teng
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hui Xiang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jindong Chen
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiangxin Wu
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
- The Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Ting Cao
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
- The Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Shuangyang Zhang
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
- The Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Qian Chen
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
- The Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Haishan Wu
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - HuaLin Cai
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
- The Institute of Clinical Pharmacy, Central South University, Changsha, China
| |
Collapse
|
46
|
Sun N, Zhu B, Xin J, Li L, Gan B, Cao X, Fang J, Pan K, Jing B, Zeng Y, Lv C, Zhao L, Zeng D, Xu P, Wang H, Ni X. Psychoactive Effects of Lactobacillus johnsonii BS15 on Preventing Memory Dysfunction Induced by Acute Ethanol Exposure Through Modulating Intestinal Microenvironment and Improving Alcohol Metabolic Level. Front Microbiol 2022; 13:847468. [PMID: 35432260 PMCID: PMC9011001 DOI: 10.3389/fmicb.2022.847468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/28/2022] [Indexed: 12/12/2022] Open
Abstract
The negative effects of ethanol (EtOH) abuse on the body have been widely reported in recent years. Building on the microbiota-gut-brain axis hypothesis, our study aimed to demonstrate the potential psychobiotic role of Lactobacillus johnsonii BS15 in the preventive effects of acute EtOH intake on memory impairment. We also determined whether L. johnsonii BS15 intake could effectively improve resistance to acute drinking and alleviate the adverse effects of EtOH. Male mice were fed L. johnsonii BS15 orally with (Probiotic group) or without (Control and Alcohol groups) daily dose of 0.2 × 109 CFU/ml per mouse for 28 days. Gavage with L. johnsonii BS15 significantly modified the ileal microbial ecosystem (assessed by 16S rRNA gene sequencing) in favor of Firmicutes and Lactobacillus, indicating the ability of BS15 to restore the gut microbiota. The acute EtOH exposure model (7 g/kg EtOH per mice) was established by gavage, which was administered to the alcohol and probiotic groups on day 28 of the experiment. The L. johnsonii BS15 intake effectively reduced alcohol unconsciousness time, blood alcohol concentration, and serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels. Meanwhile, the improvement of ethanol resistance time and the activities of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) in the liver were shown by BS15 in acute alcohol-induced mice. We found that acute EtOH exposure reduced the exploration ratio (assessed by the novel object recognition test), escape latency, number of errors (assessed by passive avoidance test), and spontaneous exploration (assessed by T-maze test) in mice, which were obviously improved by L. johnsonii BS15. In the hippocampus, L. johnsonii BS15 significantly reversed the decrease in antioxidant capacity of superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione (GSH) and mRNA expression of memory-related functional proteins of brain-derived neurotrophic factor (BDNF) and cyclic ampresponse element binding protein (CREB) in the hippocampal tissue after acute EtOH exposure. In conclusion, L. johnsonii BS15 intake appears as a promising psychoactive therapy to ameliorate alcohol-mediated memory impairment by increasing EtOH metabolic levels.
Collapse
Affiliation(s)
- Ning Sun
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Zhu
- MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, The School of Life Sciences and Technology, Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Jinge Xin
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Guangzhou Beneco Biotechnology Co., Ltd., Guangzhou, China
| | - Lianxin Li
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Baoxing Gan
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xi Cao
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jing Fang
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Kangcheng Pan
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bo Jing
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yan Zeng
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Cheng Lv
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhao
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dong Zeng
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Peng Xu
- MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, The School of Life Sciences and Technology, Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Hesong Wang
- Guangzhou Beneco Biotechnology Co., Ltd., Guangzhou, China
| | - Xueqin Ni
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
47
|
Sumich A, Heym N, Lenzoni S, Hunter K. Gut microbiome-brain axis and inflammation in temperament, personality and psychopathology. Curr Opin Behav Sci 2022. [DOI: 10.1016/j.cobeha.2022.101101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
48
|
The Therapeutic Role of Exercise and Probiotics in Stressful Brain Conditions. Int J Mol Sci 2022; 23:ijms23073610. [PMID: 35408972 PMCID: PMC8998860 DOI: 10.3390/ijms23073610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/14/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023] Open
Abstract
Oxidative stress has been recognized as a contributing factor in aging and in the progression of multiple neurological disorders such as Parkinson’s disease, Alzheimer’s dementia, ischemic stroke, and head and spinal cord injury. The increased production of reactive oxygen species (ROS) has been associated with mitochondrial dysfunction, altered metal homeostasis, and compromised brain antioxidant defence. All these changes have been reported to directly affect synaptic activity and neurotransmission in neurons, leading to cognitive dysfunction. In this context two non-invasive strategies could be employed in an attempt to improve the aforementioned stressful brain status. In this regard, it has been shown that exercise could increase the resistance against oxidative stress, thus providing enhanced neuroprotection. Indeed, there is evidence suggesting that regular physical exercise diminishes BBB permeability as it reinforces antioxidative capacity, reduces oxidative stress, and has anti-inflammatory effects. However, the differential effects of different types of exercise (aerobic exhausted exercise, anaerobic exercise, or the combination of both types) and the duration of physical activity will be also addressed in this review as likely determinants of therapeutic efficacy. The second proposed strategy is related to the use of probiotics, which can also reduce some biomarkers of oxidative stress and inflammatory cytokines, although their underlying mechanisms of action remain unclear. Moreover, various probiotics produce neuroactive molecules that directly or indirectly impact signalling in the brain. In this review, we will discuss how physical activity can be incorporated as a component of therapeutic strategies in oxidative stress-based neurological disorders along with the augmentation of probiotics intake.
Collapse
|
49
|
Vellingiri B, Aishwarya SY, Benita Jancy S, Sriram Abhishek G, Winster Suresh Babu H, Vijayakumar P, Narayanasamy A, Mariappan S, Sangeetha R, Valsala Gopalakrishnan A, Parthasarathi R, Iyer M. An anxious relationship between Autism Spectrum Disorder and Gut Microbiota: A tangled chemistry? J Clin Neurosci 2022; 99:169-189. [PMID: 35286970 DOI: 10.1016/j.jocn.2022.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 12/27/2022]
Abstract
Autism spectrum disorder (ASD) is a serious multifactorial neurodevelopmental disorder often accompanied by strained social communication, repetitive behaviour, immune dysregulation, and gastrointestinal (GI) issues. Recent studies have recorded a link between dysbiosis in the gut microbiota (gm) and the primary stages of ASD. A bidirectional connection (also called microbiota-gut-brain-axis) exchanges information between the gut bacteria and central nervous system. When the homeostasis of the microenvironment of the gut is dysregulated, it causes oxidative stress, affecting neuronal cells and neurotransmitters, thereby causing neurodevelopmental disorders. Studies have confirmed a difference in the constitution of gut bacteria among ASD cases and their controls. Numerous studies on animal models of ASD have shown altered gm and its association with abnormal metabolite profile and altered behaviour phenotype. This process happens due to an abnormal metabolite production in gm, leading to changes in the immune system, especially in ASD. Hence, this review aims to question the current knowledge on gm dysbiosis and its related GI discomforts and ASD behavioural symptoms and shed light on the possible therapeutic approaches available to deal with this situation. Thereby, though it is understood that more research might be needed to prove an association or causal relationship between gm and ASD, therapy with the microbiome may also be considered as an effective strategy to combat this issue.
Collapse
Affiliation(s)
- Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India.
| | - S Y Aishwarya
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore 641062, Tamil Nadu, India
| | - S Benita Jancy
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore 641062, Tamil Nadu, India
| | - G Sriram Abhishek
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore 641062, Tamil Nadu, India
| | - Harysh Winster Suresh Babu
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India; Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Padmavathi Vijayakumar
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Arul Narayanasamy
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Sujitha Mariappan
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore 641062, Tamil Nadu, India
| | - R Sangeetha
- Department of Zoology and Wild Life Biology, Government Arts College, Udhagamandalam 643002, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014 Tamil Nadu, India
| | - Ramakrishnan Parthasarathi
- Computational Toxicology Facility, Centre for Innovation and Translational Research, Environmental Monitoring and Intervention Hub (DSIR-CRTDH), CSIR-Indian Institute of Toxicology Research, Lucknow 226001 Uttar Pradesh, India
| | - Mahalaxmi Iyer
- Livestock Farming and Bioresource Technology, Tamil Nadu, India.
| |
Collapse
|
50
|
Fermented foods: an update on evidence-based health benefits and future perspectives. Food Res Int 2022; 156:111133. [DOI: 10.1016/j.foodres.2022.111133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 12/15/2022]
|