1
|
Qin L, Tong F, Li S, Ren C. Beyond Pharmacology: The Biological Mechanisms of Remote Ischemic Conditioning in Cerebrovascular Disease. Biomolecules 2024; 14:1408. [PMID: 39595584 PMCID: PMC11592304 DOI: 10.3390/biom14111408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Cerebrovascular diseases (CVDs), comprising predominantly ischemic stroke and chronic cerebral hypoperfusion (CCH), are a significant threat to global health, often leading to disability and mortality. Remote ischemic conditioning (RIC) has emerged as a promising, non-pharmacological strategy to combat CVDs by leveraging the body's innate defense mechanisms. This review delves into the neuroprotective mechanisms of RIC, categorizing its effects during the acute and chronic phases of stroke recovery. It also explores the synergistic potential of RIC when combined with other therapeutic strategies, such as pharmacological treatments and physical exercise. Additionally, this review discusses the pathways through which peripheral transmission can confer central neuroprotection. This review concludes by addressing the challenges regarding and future directions for RIC, emphasizing the need for standardized protocols, biomarker identification, and expanded clinical trials to fully realize its therapeutic potential.
Collapse
Affiliation(s)
| | | | | | - Changhong Ren
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; (L.Q.); (F.T.); (S.L.)
| |
Collapse
|
2
|
Lee YJ, Kwon ES, Moon YS, Jo JR, Kwon DR. The Neuroprotective Effects of Peripheral Nerve Microcurrent Stimulation Therapy in a Rat Model of Middle Cerebral Artery Occlusion. Int J Mol Sci 2024; 25:10034. [PMID: 39337520 PMCID: PMC11432279 DOI: 10.3390/ijms251810034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/04/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
This study investigated the neuroprotective effects of peripheral nerve microcurrent stimulation therapy in a rat model of middle cerebral artery occlusion (MCAO). Twenty 8-week-old male Sprague Dawley rats weighing 300-330 g were categorised into group A, serving as the healthy control; group B, including rats subjected to MCAO; group C, including rats receiving microcurrent therapy immediately after MCAO, which was continued for one week; and group D, including rats receiving microcurrent therapy one week before and one week after MCAO. A gross morphological analysis, behavioural motion analysis, histological examination, immunohistochemistry, and Western blotting were conducted. Microcurrent therapy significantly reduced ischaemic damage and pyramidal cells of the hippocampus CA1 region. Haematoxylin and eosin staining revealed infarction areas/viable pyramidal cell numbers of 0%/94.33, 28.53%/40.05, 17.32%/80.13, and 5.38%/91.34 in groups A, B, C, and D, respectively (p < 0.001). A behavioural analysis revealed that the total distances moved were 1945.24 cm, 767.85 cm, 1781.77 cm, and 2122.22 cm in groups A, B, C, and D, respectively (p < 0.05), and the mean speeds were 6.48 cm/s, 2.50 cm/s, 5.43 cm/s, and 6.82 cm/s, respectively (p < 0.05). Inflammatory markers (cluster of differentiation 68, interleukin-6, and tumour necrosis factor-α) significantly decreased in the treated groups (p < 0.001). Western blotting revealed reduced proinflammatory, oxidative stress, and apoptosis-related protein levels, along with increased angiogenic factors and mitogen-activated protein kinase (MAPK) pathway modulation in the treated groups. Peripheral nerve microcurrent stimulation therapy effectively mitigates ischaemic damage, promotes recovery, reduces inflammation, and modulates protein expression, emphasising its potential as a therapeutic strategy for ischaemic stroke.
Collapse
Affiliation(s)
- Yoon-Jin Lee
- Department of Biochemistry, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea;
| | - Eun Sang Kwon
- Department of Medicine, College of Medicine, Keimyung University, Daegu 42601, Republic of Korea;
| | - Yong Suk Moon
- Department of Anatomy, Catholic University of Daegu School of Medicine, Daegu 42472, Republic of Korea;
| | - Jeong-Rang Jo
- Department of Rehabilitation Medicine, Catholic University of Daegu School of Medicine, Daegu 42472, Republic of Korea;
| | - Dong Rak Kwon
- Department of Rehabilitation Medicine, Catholic University of Daegu School of Medicine, Daegu 42472, Republic of Korea;
| |
Collapse
|
3
|
Torres-Querol C, Quintana-Luque M, Arque G, Purroy F. Preclinical evidence of remote ischemic conditioning in ischemic stroke, a metanalysis update. Sci Rep 2021; 11:23706. [PMID: 34887465 PMCID: PMC8660795 DOI: 10.1038/s41598-021-03003-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/12/2021] [Indexed: 01/13/2023] Open
Abstract
Remote ischemic conditioning (RIC) is a promising therapeutic approach for ischemic stroke patients. It has been proven that RIC reduces infarct size and improves functional outcomes. RIC can be applied either before ischemia (pre-conditioning; RIPreC), during ischemia (per-conditioning; RIPerC) or after ischemia (post-conditioning; RIPostC). Our aim was to systematically determine the efficacy of RIC in reducing infarct volumes and define the cellular pathways involved in preclinical animal models of ischemic stroke. A systematic search in three databases yielded 50 peer-review articles. Data were analyzed using random effects models and results expressed as percentage of reduction in infarct size (95% CI). A meta-regression was also performed to evaluate the effects of covariates on the pooled effect-size. 95.3% of analyzed experiments were carried out in rodents. Thirty-nine out of the 64 experiments studied RIPostC (61%), sixteen examined RIPreC (25%) and nine tested RIPerC (14%). In all studies, RIC was shown to reduce infarct volume (- 38.36%; CI - 42.09 to - 34.62%) when compared to controls. There was a significant interaction caused by species. Short cycles in mice significantly reduces infarct volume while in rats the opposite occurs. RIPreC was shown to be the most effective strategy in mice. The present meta-analysis suggests that RIC is more efficient in transient ischemia, using a smaller number of RIC cycles, applying larger length of limb occlusion, and employing barbiturates anesthetics. There is a preclinical evidence for RIC, it is safe and effective. However, the exact cellular pathways and underlying mechanisms are still not fully determined, and its definition will be crucial for the understanding of RIC mechanism of action.
Collapse
Affiliation(s)
- Coral Torres-Querol
- Clinical Neurosciences Group, Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Manuel Quintana-Luque
- Epilepsy Unit, Neurology Department, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Gloria Arque
- Clinical Neurosciences Group, Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
- Experimental Medicine Department, Universitat de Lleida, Lleida, Spain
| | - Francisco Purroy
- Clinical Neurosciences Group, Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain.
- Medicine Department, Universitat de Lleida, Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain.
- Stroke Unit, Department of Neurology, Universitat de Lleida, Hospital Universitari Arnau de Vilanova, Clinical Neurosciences Group IRBLleida, Avda Rovira Roure 80, 25198, Lleida, Spain.
| |
Collapse
|
4
|
Li CY, Ma W, Liu KP, Yang JW, Wang XB, Wu Z, Zhang T, Wang JW, Liu W, Liu J, Liang Y, Zhang XK, Li JJ, Guo JH, Li LY. Advances in intervention methods and brain protection mechanisms of in situ and remote ischemic postconditioning. Metab Brain Dis 2021; 36:53-65. [PMID: 33044640 DOI: 10.1007/s11011-020-00562-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/05/2020] [Indexed: 01/01/2023]
Abstract
Ischemic postconditioning (PostC) conventionally refers to a series of brief blood vessel occlusions and reperfusions, which can induce an endogenous neuroprotective effect and reduce cerebral ischemia/reperfusion (I/R) injury. Depending on the site of adaptive ischemic intervention, PostC can be classified as in situ ischemic postconditioning (ISPostC) and remote ischemic postconditioning (RIPostC). Many studies have shown that ISPostC and RIPostC can reduce cerebral IS injury through protective mechanisms that increase cerebral blood flow after reperfusion, decrease antioxidant stress and anti-neuronal apoptosis, reduce brain edema, and regulate autophagy as well as Akt, MAPK, PKC, and KATP channel cell signaling pathways. However, few studies have compared the intervention methods, protective mechanisms, and cell signaling pathways of ISPostC and RIPostC interventions. Thus, in this article, we compare the history, common intervention methods, neuroprotective mechanisms, and cell signaling pathways of ISPostC and RIPostC.
Collapse
Affiliation(s)
- Chun-Yan Li
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Wei Ma
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Kuang-Pin Liu
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Jin-Wei Yang
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming, 650032, Yunnan, China
| | - Xian-Bin Wang
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Zhen Wu
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming, 650032, Yunnan, China
| | - Tong Zhang
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming, 650032, Yunnan, China
| | - Jia-Wei Wang
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming, 650032, Yunnan, China
| | - Wei Liu
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Jie Liu
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Yu Liang
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Xing-Kui Zhang
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Jun-Jun Li
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Jian-Hui Guo
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming, 650032, Yunnan, China.
| | - Li-Yan Li
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, Yunnan, China.
| |
Collapse
|
5
|
Li CY, Ma W, Liu KP, Yang JW, Wang XB, Wu Z, Zhang T, Wang JW, Liu W, Liu J, Liang Y, Zhang XK, Li JJ, Guo JH, Li LY. Different ischemic duration and frequency of ischemic postconditioning affect neuroprotection in focal ischemic stroke. J Neurosci Methods 2020; 346:108921. [PMID: 32888963 DOI: 10.1016/j.jneumeth.2020.108921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 08/02/2020] [Accepted: 08/24/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Many studies have confirmed that "in situ ischemia postconditioning" (ISPostC) and "remote ischemic postconditioning" (RIPostC) can reduce cerebral ischemia/reperfusion injury, but there is no comparison was made on the consistency of neuroprotection in ISPostC and RIPostC to different ischemic duration and number of cycles. NEW METHOD We used a transient middle cerebral artery occlusion model to compare the neuroprotection of ISPostC and RIPostC. We conducted ISPostC and RIPostC via brief and repeated MCA and Femoral artery occlusion followed by different ischemic duration and number of cycles. Infarct volume, brain edema, Neurological deficit scores and Apoptosis were evaluated. RESULTS First, the ISPostC with three cycles of 10-s occlusion/30-s release of both carotid arteries and the RIPostC with three cycles of 10-min occlusion/10-min release of the left and right femoral arteries can obviously reduce cerebral infarction size, brain edema, apoptosis, and improve behavioral deficits than other approaches. Second, three cycles of ischemia/reperfusion may be the best for RIPostC. COMPARISON WITH EXISTING METHOD(S) In this paper, we compared different ischemic duration and frequency of ISPostC and RIPostC models to determine the best method. This conclusion helps to unify the experimental methods. CONCLUSIONS Different ischemic duration and frequency of ischemic postconditioning affect neuroprotection. three cycles of 10-s occlusion/30-s release of both carotid arteries and three cycles of 10-min occlusion/10-min release of both femoral arteries could be the first choice to study mechanisms of ischemic postconditioning and be conducive to the unification of research results.
Collapse
Affiliation(s)
- Chun-Yan Li
- Institute of Neuroscience, Kunming Medical University, Yunnan, Kunming, 650500, China.
| | - Wei Ma
- Institute of Neuroscience, Kunming Medical University, Yunnan, Kunming, 650500, China.
| | - Kuang-Pin Liu
- Institute of Neuroscience, Kunming Medical University, Yunnan, Kunming, 650500, China.
| | - Jin-Wei Yang
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Yunnan, Kunming 650032, China.
| | - Xian-Bin Wang
- Institute of Neuroscience, Kunming Medical University, Yunnan, Kunming, 650500, China.
| | - Zhen Wu
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Yunnan, Kunming 650032, China.
| | - Tong Zhang
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Yunnan, Kunming 650032, China.
| | - Jia-Wei Wang
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Yunnan, Kunming 650032, China.
| | - Wei Liu
- Institute of Neuroscience, Kunming Medical University, Yunnan, Kunming, 650500, China.
| | - Jie Liu
- Institute of Neuroscience, Kunming Medical University, Yunnan, Kunming, 650500, China.
| | - Yu Liang
- Institute of Neuroscience, Kunming Medical University, Yunnan, Kunming, 650500, China.
| | - Xing-Kui Zhang
- Institute of Neuroscience, Kunming Medical University, Yunnan, Kunming, 650500, China.
| | - Jun-Jun Li
- Institute of Neuroscience, Kunming Medical University, Yunnan, Kunming, 650500, China.
| | - Jian-Hui Guo
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Yunnan, Kunming 650032, China.
| | - Li-Yan Li
- Institute of Neuroscience, Kunming Medical University, Yunnan, Kunming, 650500, China.
| |
Collapse
|
6
|
Qin C, Yan X, Jin H, Zhang R, He Y, Sun X, Zhang Y, Guo ZN, Yang Y. Effects of Remote Ischemic Conditioning on Cerebral Hemodynamics in Ischemic Stroke. Neuropsychiatr Dis Treat 2020; 16:283-299. [PMID: 32021218 PMCID: PMC6988382 DOI: 10.2147/ndt.s231944] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 12/16/2019] [Indexed: 12/15/2022] Open
Abstract
Ischemic stroke is one of the most common cerebrovascular diseases and is the leading cause of disability all over the world. It is well known that cerebral blood flow (CBF) is disturbed or even disrupted when ischemic stroke happens. The imbalance between demand and shortage of blood supply makes ischemic stroke take place or worsen. The search for treatments that can preserve CBF, especially during the acute phase of ischemic stroke, has become a research hotspot. Animal and clinical experiments have proven that remote ischemic conditioning (RIC) is a beneficial therapeutic strategy for the treatment of ischemic stroke. However, the mechanism by which RIC affects CBF has not been fully understood. This review aims to discuss several possible mechanisms of RIC on the cerebral hemodynamics in ischemic stroke, such as the improvement of cardiac function and collateral circulation of cerebral vessels, the protection of neurovascular units, the formation of gas molecules, the effect on the function of vascular endothelial cells and the nervous system. RIC has the potential to become a therapeutic treatment to improve CBF in ischemic stroke. Future studies are needed to highlight our understanding of RIC as well as accelerate its clinical translation.
Collapse
Affiliation(s)
- Chen Qin
- Department of Neurology, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| | - Xiuli Yan
- Department of Neurology, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| | - Hang Jin
- Department of Neurology, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| | - Ruyi Zhang
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| | - Yaode He
- Department of Neurology, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| | - Xin Sun
- Department of Neurology, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| | - Yihe Zhang
- Department of Neurology, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| | - Zhen-Ni Guo
- Department of Neurology, The First Hospital of Jilin University, Changchun 130021, People's Republic of China.,Clinical Trial and Research Center for Stroke, Department of Neurology, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| | - Yi Yang
- Department of Neurology, The First Hospital of Jilin University, Changchun 130021, People's Republic of China.,Clinical Trial and Research Center for Stroke, Department of Neurology, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| |
Collapse
|
7
|
Effects of Combined Remote Ischemic Pre-and Post-Conditioning on Neurologic Complications in Moyamoya Disease Patients Undergoing Superficial Temporal Artery-Middle Cerebral Artery Anastomosis. J Clin Med 2019; 8:jcm8050638. [PMID: 31075871 PMCID: PMC6572043 DOI: 10.3390/jcm8050638] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/07/2019] [Accepted: 05/07/2019] [Indexed: 01/01/2023] Open
Abstract
Superficial temporal artery-middle cerebral artery (STA-MCA) anastomosis is the most commonly used treatment for Moyamoya disease. During the perioperative period, however, these patients are vulnerable to ischemic injury or hyperperfusion syndrome. This study investigated the ability of combined remote ischemic pre-conditioning (RIPC) and remote ischemic post-conditioning (RIPostC) to reduce the occurrence of major neurologic complications in Moyamoya patients undergoing STA-MCA anastomosis. The 108 patients were randomly assigned to a RIPC with RIPostC group (n = 54) or a control group (n = 54). Patients in the RIPC with RIPostC group were treated with four cycles of 5-min ischemia and 5-min reperfusion before craniotomy and after STA-MCA anastomosis (RIPostC). The incidence of postoperative neurologic complications and the duration of hospital stay were determined. The overall incidence of neurologic complication was significantly higher in the control group than in the RIPC with RIPostC group (13 vs. 3, p = 0.013). The duration of hospital stay was significantly longer in the control group than in the RIPC with RIPostC group (17.8 (11.3) vs. 13.8 (5.9) days, p = 0.023). Combined remote ischemic pre- and post-conditioning can be effective in reducing neurologic complications and the duration of hospitalization in Moyamoya patients undergoing STA-MCA anastomosis.
Collapse
|
8
|
Liu C, Yang J, Zhang C, Geng X, Zhao H. The changes of systemic immune responses during the neuroprotection induced by remote ischemic postconditioning against focal cerebral ischemia in mice. Neurol Res 2019; 41:26-36. [PMID: 30281410 DOI: 10.1080/01616412.2018.1523037] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/26/2018] [Indexed: 12/31/2022]
Abstract
Objective: Remote limb ischemic postconditioning (RIPostC) protects the brain from damage induced by transient focal ischemia/reperfusion. However, the underlying mechanism remains unclear. Methods: RIPostC induced by 10 min of occlusion and another 10 min releasing of blood flow for three cycles in the hind limbs was performed immediately after the reperfusion in a focal ischemia mice model. Neurological scores, immune cell population in the blood, spleen and lymph node, and inflammatory factors in the blood and brain were analyzed 2 days after the reperfusion. Results: Our results demonstrate that RIPostC reduced cerebral injuries and improved neurological functions 2 days after reperfusion. RIPostC significantly inhibited the reduction in the percentage of CD4 T cells in the spleen and lymph node, CD8 T cells in the blood and lymph node, and natural killer T (NKT) cells in the spleen by flow cytometry analysis. RIPostC attenuated the increase of B cells and NK cells in the spleen and noninflammatory monocytes in the blood. The cytokine assay showed that RIPostC decreased the elevation of IL-10, IL-6, and TNF-α in the blood after ischemia. The quantitative real time reverse transcription polymerase chain reaction (qRT-PCR) results indicated that the mRNA level of IL-4 in the brain increased in the middle cerebral artery occlusion mice after RIPostC treatment. Conclusions: The present study indicates that there were significant changes of inflammatory responses during the neuroprotection induced by RIPostC in stroke mice.
Collapse
Affiliation(s)
- Cuiying Liu
- a China-America Institute of Neuroscience, Beijing Luhe Hospital , Capital Medical University , Beijing , China
| | - Jian Yang
- a China-America Institute of Neuroscience, Beijing Luhe Hospital , Capital Medical University , Beijing , China
| | - Chencheng Zhang
- a China-America Institute of Neuroscience, Beijing Luhe Hospital , Capital Medical University , Beijing , China
| | - Xiaokun Geng
- a China-America Institute of Neuroscience, Beijing Luhe Hospital , Capital Medical University , Beijing , China
| | - Heng Zhao
- b Department of Neurosurgery , Stanford University , Stanford , CA , USA
| |
Collapse
|
9
|
Basalay MV, Davidson SM, Gourine AV, Yellon DM. Neural mechanisms in remote ischaemic conditioning in the heart and brain: mechanistic and translational aspects. Basic Res Cardiol 2018; 113:25. [PMID: 29858664 PMCID: PMC5984640 DOI: 10.1007/s00395-018-0684-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/02/2018] [Accepted: 05/23/2018] [Indexed: 12/13/2022]
Abstract
Remote ischaemic conditioning (RIC) is a promising method of cardioprotection, with numerous clinical studies having demonstrated its ability to reduce myocardial infarct size and improve prognosis. On the other hand, there are several clinical trials, in particular those conducted in the setting of elective cardiac surgery, that have failed to show any benefit of RIC. These contradictory data indicate that there is insufficient understanding of the mechanisms underlying RIC. RIC is now known to signal indiscriminately, protecting not only the heart, but also other organs. In particular, experimental studies have demonstrated that it is able to reduce infarct size in an acute ischaemic stroke model. However, the mechanisms underlying RIC-induced neuroprotection are even less well understood than for cardioprotection. The existence of bidirectional feedback interactions between the heart and the brain suggests that the mechanisms of RIC-induced neuroprotection and cardioprotection should be studied as a whole. This review, therefore, addresses the topic of the neural component of the RIC mechanism.
Collapse
Affiliation(s)
- Marina V Basalay
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Andrey V Gourine
- Department of Cardiology, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK.
| |
Collapse
|
10
|
Chen G, Thakkar M, Robinson C, Doré S. Limb Remote Ischemic Conditioning: Mechanisms, Anesthetics, and the Potential for Expanding Therapeutic Options. Front Neurol 2018; 9:40. [PMID: 29467715 PMCID: PMC5808199 DOI: 10.3389/fneur.2018.00040] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/17/2018] [Indexed: 12/23/2022] Open
Abstract
Novel and innovative approaches are essential in developing new treatments and improving clinical outcomes in patients with ischemic stroke. Remote ischemic conditioning (RIC) is a series of mechanical interruptions in blood flow of a distal organ, following end organ reperfusion, shown to significantly reduce infarct size through inhibition of oxidation and inflammation. Ischemia/reperfusion (I/R) is what ultimately leads to the irreversible brain damage and clinical picture seen in stroke patients. There have been several reports and reviews about the potential of RIC in acute ischemic stroke; however, the focus here is a comprehensive look at the differences in the three types of RIC (remote pre-, per-, and postconditioning). There are some limited uses of preconditioning in acute ischemic stroke due to the unpredictability of the ischemic event; however, it does provide the identification of biomarkers for clinical studies. Remote limb per- and postconditioning offer a more promising treatment during patient care as they can be harnessed during or after the initial ischemic insult. Though further research is needed, it is imperative to discuss the importance of preclinical data in understanding the methods and mechanisms involved in RIC. This understanding will facilitate translation to a clinically feasible paradigm for use in the hospital setting.
Collapse
Affiliation(s)
- Gangling Chen
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, United States.,Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
| | - Mrugesh Thakkar
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, United States
| | - Christopher Robinson
- McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Department of Neurology, University of Florida, Gainesville, FL, United States
| | - Sylvain Doré
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, United States.,McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Department of Neurology, University of Florida, Gainesville, FL, United States.,Department of Psychiatry, University of Florida, Gainesville, FL, United States.,Department of Pharmaceutics, University of Florida, Gainesville, FL, United States.,Department of Psychology, University of Florida, Gainesville, FL, United States.,Department of Neuroscience, University of Florida, Gainesville, FL, United States
| |
Collapse
|