1
|
Saeednejad Zanjani L, Razmi M, Fattahi F, Kalantari E, Abolhasani M, Saki S, Madjd Z, Mohsenzadegan M. Overexpression of melanoma-associated antigen A2 has a clinical significance in embryonal carcinoma and is associated with tumor progression. J Cancer Res Clin Oncol 2021; 148:609-631. [PMID: 34837545 DOI: 10.1007/s00432-021-03859-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/14/2021] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Melanoma-associated antigen A2 (MAGE-A2) is a member of the cancer-testis antigen family differentially overexpressed in a variety of malignancies and is associated with tumor development. However, clinical significance and prognostic value of MAGE-A2 in different histological subtypes of testicular germ cell tumors (TGCTs) have not been explored. MATERIALS AND METHODS Here, we aimed to investigate the clinical significance and prognostic impact of MAGE-A2 expression in TGCTs compared to benign tumors as well as adjacent normal tissues and then between seminomas and non-seminomas groups using immunohistochemistry on tissue microarrays. RESULTS The results indicated a statistically significant difference between overexpression of MAGE-A2 and histological subtypes of TGCTs. A statistically significant association was found between a high level of nuclear expression of MAGE-A2 protein and advanced pT stage (P = 0.022), vascular invasion (P = 0.037), as well as involvement of rete testis (P = 0.022) in embryonal carcinomas. Increased nuclear expression of MAGE-A2 was observed to be associated with more aggressive behaviors and tumor progression rather than cytoplasmic expression in these cases. Further, high level nuclear expression of MAGE-A2 had shorter disease-specific survival (DSS) or progression-free survival (PFS) compared to patients with moderate and low expression of MAGE-A2, however, without a statistically significant association. CONCLUSION Our results confirm that increased nuclear expression of MAGE-A2 has a clinical significance in embryonal carcinomas and is associated with progression of disease. Moreover, MAGE-A2 may act as a potential predictive biomarker for the prognosis in embryonal carcinomas if follow-up period becomes longer. Further investigations for the biological function of MAGE-A2 are required in future studies.
Collapse
Affiliation(s)
| | - Mahdieh Razmi
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Fahimeh Fattahi
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Elham Kalantari
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Maryam Abolhasani
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Hasheminejad Kidney Center, Iran University of Medical Sciences, (IUMS), Tehran, Iran
| | - Sima Saki
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Monireh Mohsenzadegan
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
3
|
Batool A, Karimi N, Wu XN, Chen SR, Liu YX. Testicular germ cell tumor: a comprehensive review. Cell Mol Life Sci 2019; 76:1713-1727. [PMID: 30671589 PMCID: PMC11105513 DOI: 10.1007/s00018-019-03022-7] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 01/15/2019] [Accepted: 01/17/2019] [Indexed: 12/23/2022]
Abstract
Testicular tumors are the most common tumors in adolescent and young men and germ cell tumors (TGCTs) account for most of all testicular cancers. Increasing incidence of TGCTs among males provides strong motivation to understand its biological and genetic basis. Gains of chromosome arm 12p and aneuploidy are nearly universal in TGCTs, but TGCTs have low point mutation rate. It is thought that TGCTs develop from premalignant intratubular germ cell neoplasia that is believed to arise from the failure of normal maturation of gonocytes during fetal or postnatal development. Progression toward invasive TGCTs (seminoma and nonseminoma) then occurs after puberty. Both inherited genetic factors and environmental risk factors emerge as important contributors to TGCT susceptibility. Genome-wide association studies have so far identified more than 30 risk loci for TGCTs, suggesting that a polygenic model fits better with the genetic landscape of the disease. Despite high cure rates because of its particular sensitivity to platinum-based chemotherapy, exploration of mechanisms underlying the occurrence, progression, metastasis, recurrence, chemotherapeutic resistance, early diagnosis and optional clinical therapeutics without long-term side effects are urgently needed to reduce the cancer burden in this underserved age group. Herein, we present an up-to-date review on clinical challenges, origin and progression, risk factors, TGCT mouse models, serum diagnostic markers, resistance mechanisms, miRNA regulation, and database resources of TGCTs. We appeal that more attention should be paid to the basic research and clinical diagnosis and treatment of TGCTs.
Collapse
Affiliation(s)
- Aalia Batool
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Najmeh Karimi
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiang-Nan Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Su-Ren Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China.
| | - Yi-Xun Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| |
Collapse
|
5
|
Herrmann J, Yang EH, Iliescu CA, Cilingiroglu M, Charitakis K, Hakeem A, Toutouzas K, Leesar MA, Grines CL, Marmagkiolis K. Vascular Toxicities of Cancer Therapies: The Old and the New--An Evolving Avenue. Circulation 2016; 133:1272-89. [PMID: 27022039 DOI: 10.1161/circulationaha.115.018347] [Citation(s) in RCA: 212] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Since the late 1990s, there has been a steady decline in cancer-related mortality, in part related to the introduction of so-called targeted therapies. Intended to interfere with a specific molecular pathway, these therapies have, paradoxically, led to a number of effects off their intended cancer tissue or molecular targets. The latest examples are tyrosine kinase inhibitors targeting the Philadelphia Chromosome mutation product, which have been associated with progressive atherosclerosis and acute vascular events. In addition, agents designed to interfere with the vascular growth factor signaling pathway have vascular side effects ranging from hypertension to arterial events and cardiomyocyte toxicity. Interestingly, the risk of cardiotoxicity with drugs such as trastuzumab is predicted by preexisting cardiovascular risk factors and disease, posing the question of a vascular component to the pathophysiology. The effect on the coronary circulation has been the leading explanation for the cardiotoxicity of 5-fluorouracil and may be the underlying the mechanism of presentation of apical ballooning syndrome with various chemotherapeutic agents. Classical chemotherapeutic agents such as cisplatin, often used in combination with bleomycin and vinca alkaloids, can lead to vascular events including acute coronary thrombosis and may be associated with an increased long-term cardiovascular risk. This review is intended to provide an update on the evolving spectrum of vascular toxicities with cancer therapeutics, particularly as they pertain to clinical practice, and to the conceptualization of cardiovascular diseases, as well. Vascular toxicity with cancer therapy: the old and the new, an evolving avenue.
Collapse
Affiliation(s)
- Joerg Herrmann
- From Mayo Clinic, Division of Cardiovascular Diseases, Rochester, MN (J.H.); University of California at Los Angeles, Division of Cardiology, Los Angeles (E.-H.Y.); University of Texas, MD Anderson Cancer Center, Houston (C.A.I.); Arkansas Heart Hospital, Little Rock, AR and Koc University School of Medicine, Istanbul, Turkey (M.C.); University of Texas Health Science Center, Houston (K.C.); University of Arkansas for Medical Sciences, Little Rock (A.H.); Athens Medical School, Hippokration General Hospital, Greece (K.T.); University of Alabama at Birmingham (M.A.L.); Detroit Medical Center, Cardiovascular Institute, MI (C.L.G.); and Citizens Memorial Hospital, Bolivar, MO and University of Missouri, Columbia (K.M.).
| | - Eric H Yang
- From Mayo Clinic, Division of Cardiovascular Diseases, Rochester, MN (J.H.); University of California at Los Angeles, Division of Cardiology, Los Angeles (E.-H.Y.); University of Texas, MD Anderson Cancer Center, Houston (C.A.I.); Arkansas Heart Hospital, Little Rock, AR and Koc University School of Medicine, Istanbul, Turkey (M.C.); University of Texas Health Science Center, Houston (K.C.); University of Arkansas for Medical Sciences, Little Rock (A.H.); Athens Medical School, Hippokration General Hospital, Greece (K.T.); University of Alabama at Birmingham (M.A.L.); Detroit Medical Center, Cardiovascular Institute, MI (C.L.G.); and Citizens Memorial Hospital, Bolivar, MO and University of Missouri, Columbia (K.M.)
| | - Cezar A Iliescu
- From Mayo Clinic, Division of Cardiovascular Diseases, Rochester, MN (J.H.); University of California at Los Angeles, Division of Cardiology, Los Angeles (E.-H.Y.); University of Texas, MD Anderson Cancer Center, Houston (C.A.I.); Arkansas Heart Hospital, Little Rock, AR and Koc University School of Medicine, Istanbul, Turkey (M.C.); University of Texas Health Science Center, Houston (K.C.); University of Arkansas for Medical Sciences, Little Rock (A.H.); Athens Medical School, Hippokration General Hospital, Greece (K.T.); University of Alabama at Birmingham (M.A.L.); Detroit Medical Center, Cardiovascular Institute, MI (C.L.G.); and Citizens Memorial Hospital, Bolivar, MO and University of Missouri, Columbia (K.M.)
| | - Mehmet Cilingiroglu
- From Mayo Clinic, Division of Cardiovascular Diseases, Rochester, MN (J.H.); University of California at Los Angeles, Division of Cardiology, Los Angeles (E.-H.Y.); University of Texas, MD Anderson Cancer Center, Houston (C.A.I.); Arkansas Heart Hospital, Little Rock, AR and Koc University School of Medicine, Istanbul, Turkey (M.C.); University of Texas Health Science Center, Houston (K.C.); University of Arkansas for Medical Sciences, Little Rock (A.H.); Athens Medical School, Hippokration General Hospital, Greece (K.T.); University of Alabama at Birmingham (M.A.L.); Detroit Medical Center, Cardiovascular Institute, MI (C.L.G.); and Citizens Memorial Hospital, Bolivar, MO and University of Missouri, Columbia (K.M.)
| | - Konstantinos Charitakis
- From Mayo Clinic, Division of Cardiovascular Diseases, Rochester, MN (J.H.); University of California at Los Angeles, Division of Cardiology, Los Angeles (E.-H.Y.); University of Texas, MD Anderson Cancer Center, Houston (C.A.I.); Arkansas Heart Hospital, Little Rock, AR and Koc University School of Medicine, Istanbul, Turkey (M.C.); University of Texas Health Science Center, Houston (K.C.); University of Arkansas for Medical Sciences, Little Rock (A.H.); Athens Medical School, Hippokration General Hospital, Greece (K.T.); University of Alabama at Birmingham (M.A.L.); Detroit Medical Center, Cardiovascular Institute, MI (C.L.G.); and Citizens Memorial Hospital, Bolivar, MO and University of Missouri, Columbia (K.M.)
| | - Abdul Hakeem
- From Mayo Clinic, Division of Cardiovascular Diseases, Rochester, MN (J.H.); University of California at Los Angeles, Division of Cardiology, Los Angeles (E.-H.Y.); University of Texas, MD Anderson Cancer Center, Houston (C.A.I.); Arkansas Heart Hospital, Little Rock, AR and Koc University School of Medicine, Istanbul, Turkey (M.C.); University of Texas Health Science Center, Houston (K.C.); University of Arkansas for Medical Sciences, Little Rock (A.H.); Athens Medical School, Hippokration General Hospital, Greece (K.T.); University of Alabama at Birmingham (M.A.L.); Detroit Medical Center, Cardiovascular Institute, MI (C.L.G.); and Citizens Memorial Hospital, Bolivar, MO and University of Missouri, Columbia (K.M.)
| | - Konstantinos Toutouzas
- From Mayo Clinic, Division of Cardiovascular Diseases, Rochester, MN (J.H.); University of California at Los Angeles, Division of Cardiology, Los Angeles (E.-H.Y.); University of Texas, MD Anderson Cancer Center, Houston (C.A.I.); Arkansas Heart Hospital, Little Rock, AR and Koc University School of Medicine, Istanbul, Turkey (M.C.); University of Texas Health Science Center, Houston (K.C.); University of Arkansas for Medical Sciences, Little Rock (A.H.); Athens Medical School, Hippokration General Hospital, Greece (K.T.); University of Alabama at Birmingham (M.A.L.); Detroit Medical Center, Cardiovascular Institute, MI (C.L.G.); and Citizens Memorial Hospital, Bolivar, MO and University of Missouri, Columbia (K.M.)
| | - Massoud A Leesar
- From Mayo Clinic, Division of Cardiovascular Diseases, Rochester, MN (J.H.); University of California at Los Angeles, Division of Cardiology, Los Angeles (E.-H.Y.); University of Texas, MD Anderson Cancer Center, Houston (C.A.I.); Arkansas Heart Hospital, Little Rock, AR and Koc University School of Medicine, Istanbul, Turkey (M.C.); University of Texas Health Science Center, Houston (K.C.); University of Arkansas for Medical Sciences, Little Rock (A.H.); Athens Medical School, Hippokration General Hospital, Greece (K.T.); University of Alabama at Birmingham (M.A.L.); Detroit Medical Center, Cardiovascular Institute, MI (C.L.G.); and Citizens Memorial Hospital, Bolivar, MO and University of Missouri, Columbia (K.M.)
| | - Cindy L Grines
- From Mayo Clinic, Division of Cardiovascular Diseases, Rochester, MN (J.H.); University of California at Los Angeles, Division of Cardiology, Los Angeles (E.-H.Y.); University of Texas, MD Anderson Cancer Center, Houston (C.A.I.); Arkansas Heart Hospital, Little Rock, AR and Koc University School of Medicine, Istanbul, Turkey (M.C.); University of Texas Health Science Center, Houston (K.C.); University of Arkansas for Medical Sciences, Little Rock (A.H.); Athens Medical School, Hippokration General Hospital, Greece (K.T.); University of Alabama at Birmingham (M.A.L.); Detroit Medical Center, Cardiovascular Institute, MI (C.L.G.); and Citizens Memorial Hospital, Bolivar, MO and University of Missouri, Columbia (K.M.)
| | - Konstantinos Marmagkiolis
- From Mayo Clinic, Division of Cardiovascular Diseases, Rochester, MN (J.H.); University of California at Los Angeles, Division of Cardiology, Los Angeles (E.-H.Y.); University of Texas, MD Anderson Cancer Center, Houston (C.A.I.); Arkansas Heart Hospital, Little Rock, AR and Koc University School of Medicine, Istanbul, Turkey (M.C.); University of Texas Health Science Center, Houston (K.C.); University of Arkansas for Medical Sciences, Little Rock (A.H.); Athens Medical School, Hippokration General Hospital, Greece (K.T.); University of Alabama at Birmingham (M.A.L.); Detroit Medical Center, Cardiovascular Institute, MI (C.L.G.); and Citizens Memorial Hospital, Bolivar, MO and University of Missouri, Columbia (K.M.)
| |
Collapse
|
7
|
Bien JY, Morel J, Demasles S, Abboud K, Molliex S. [Postoperative dissection of the vertebral artery in two steps]. ACTA ACUST UNITED AC 2014; 33:696-9. [PMID: 25447780 DOI: 10.1016/j.annfar.2014.07.750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 07/22/2014] [Indexed: 10/24/2022]
Abstract
The diagnosis of perioperative vertebral artery dissection can be difficult because of non-specific clinical signs. We report a case revealed by a tegmento-thalamic stroke after an abdominal second surgical look. The interest of this observation is related to a particular evolution in two steps separated by a 2-month-interval and an intercurrent cervical manipulation. After the second anesthesia, neck pain associated with a third cranial nerve palsy and a supranuclear ophtalmoplegia revealed a tegmento-thalamic ischemic stroke due to vertebral artery dissection. We discuss here the different factors possibly involved in the pathophysiology of postoperative vertebral artery dissection: positioning, cervical manipulation, subclavian central venous access and cisplatin toxicity. Vertebral artery dissection should be discussed in case of postoperative neck pain, especially with non-typical symptomatology.
Collapse
Affiliation(s)
- J-Y Bien
- Service d'anesthésie réanimation, hôpital Nord, CHU de Saint-Étienne, avenue Albert-Raymond, 42270 Saint-Priest-en-Jarez, France.
| | - J Morel
- Service d'anesthésie réanimation, hôpital Nord, CHU de Saint-Étienne, avenue Albert-Raymond, 42270 Saint-Priest-en-Jarez, France
| | - S Demasles
- Service de neurologie, hôpital Nord, CHU de Saint-Étienne, avenue Albert-Raymond, 42270 Saint-Priest-en-Jarez, France
| | - K Abboud
- Service de chirurgie digestive et cancérologique, hôpital Nord, CHU de Saint-Étienne, avenue Albert-Raymond, 42270 Saint-Priest-en-Jarez, France
| | - S Molliex
- Service d'anesthésie réanimation, hôpital Nord, CHU de Saint-Étienne, avenue Albert-Raymond, 42270 Saint-Priest-en-Jarez, France
| |
Collapse
|
8
|
Campen CJ, Kranick SM, Kasner SE, Kessler SK, Zimmerman RA, Lustig R, Phillips PC, Storm PB, Smith SE, Ichord R, Fisher MJ. Cranial irradiation increases risk of stroke in pediatric brain tumor survivors. Stroke 2012; 43:3035-40. [PMID: 22968468 DOI: 10.1161/strokeaha.112.661561] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE The purposes of this study were to determine the incidence of neurovascular events as late complications in pediatric patients with brain tumor and to evaluate radiation as a risk factor. METHODS Patients were ascertained using the tumor database of a pediatric tertiary care center. Included patients had a primary brain tumor, age birth to 21 years, initial treatment January 1, 1993, to December 31, 2002, and at least 2 visits with neuro-oncology. Radiation exposure included: whole brain, whole brain plus a focal boost, or focal brain. The primary outcome was stroke or transient ischemic attack. RESULTS Of 431 subjects, 14 had 19 events of stroke or transient ischemic attack over a median follow-up of 6.3 years. The incidence rate was 548/100 000 person-years. Overall, 61.5% of subjects received radiation, including 13 of 14 subjects with events. Median time from first radiation to first event was 4.9 years. The stroke/transient ischemic attack hazard ratio for any brain irradiation was 8.0 (95% CI, 1.05-62; P=0.045); for the circle of Willis, radiation was 9.0 (95% CI, 1.2-70; P=0.035); and for focal noncircle of Willis, radiation was 3.4 (95% CI, 0.21-55; P=0.38). CONCLUSIONS The incidence of neurovascular events in this population is 100-fold higher than in the general pediatric population and cranial irradiation is an important risk factor. By defining the incidence of this late effect, physicians are better able to counsel parents regarding treatment, monitor patients at risk, and target a population for primary stroke prevention in future studies.
Collapse
Affiliation(s)
- Cynthia J Campen
- Department of Radiology, Children's Hospital of Philadelphia, and Department of Neurology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|