1
|
Sastow D, Levavi H, Wagner N, Pratz K, Tremblay D. Ven the dose matters: Venetoclax dosing in the frontline treatment of AML. Blood Rev 2024; 68:101238. [PMID: 39217050 DOI: 10.1016/j.blre.2024.101238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/08/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Older/unfit adults with AML have worse outcomes and fewer treatment options than their younger/fit counterparts. In vitro studies have found a synergistic effect of hypomethylating agents (HMA) with venetoclax (VEN) on AML cells and since the phase 3 VIALE-A trial demonstrated a survival benefit, HMA + VEN has become the standard of care in the frontline setting for older/unfit adults with AML. Unfortunately, the standard 28-day cycle of VEN is associated with a high degree of myelosuppression leading to treatment delays and dose modifications. Many small retrospective studies have successfully shown comparable outcomes to VIALE-A with reduced dose/duration of VEN. Furthermore, low dose metronomic dosing of HMA + VEN has shown clinical benefit while minimizing myelotoxicity. Future trials are vital to understand the appropriate dose of VEN in combination with HMA, to evaluate HMA + VEN compared to intensive therapy for younger/fit patients, and to explore its utility in the relapsed/refractory setting.
Collapse
Affiliation(s)
- Dahniel Sastow
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hannah Levavi
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nicole Wagner
- Division of Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Keith Pratz
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Douglas Tremblay
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
2
|
Jiang L, Zhang Y, Qian J, Zhou X, Ma L, Zhu S, Wang L, Wang W, Yang W, Luo Y, Lang W, Xu G, Ren Y, Mei C, Ye L, Zhang Q, Liu X, Jin J, Sun J, Tong H. The m 6A methyltransferase METTL14 promotes cell proliferation via SETBP1-mediated activation of PI3K-AKT signaling pathway in myelodysplastic neoplasms. Leukemia 2024; 38:2246-2258. [PMID: 39054337 PMCID: PMC11436359 DOI: 10.1038/s41375-024-02350-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024]
Abstract
N6-methyladenosine (m6A) is the most prevalent epitranscriptomic modification in mammalian mRNA. Recent studies have revealed m6A is involved in the pathogenesis of various malignant tumors including hematologic neoplasms. Nevertheless, the specific roles of m6A modification and m6A regulators in myelodysplastic neoplasms (MDS) remain poorly understood. Herein, we demonstrated that m6A level and the expression of m6A methyltransferase METTL14 were elevated in MDS patients with bone marrow blasts ≥5%. Additionally, m6A level and METTL14 expression were upregulated as the disease risk increased and significantly associated with adverse clinical outcomes. Knockdown of METTL14 inhibited cell proliferation and colony formation ability of MDS cells. Moreover, in vivo experiments showed METTL14 knockdown remarkably reduced tumor burden and prolonged the survival of mice. Mechanistically, METTL14 facilitated the m6A modification of SETBP1 mRNA by formation of METTL3-METTL14 complex, leading to increased stabilization of SETBP1 mRNA and subsequent activation of the PI3K-AKT signaling pathway. Overall, this study elucidated the involvement of the METTL14/m6A/SETBP1/PI3K-AKT signaling axis in MDS, highlighting the therapeutic potential of targeting METTL3-METTL14 complex-mediated m6A modification for MDS therapy.
Collapse
Affiliation(s)
- Lingxu Jiang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yudi Zhang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiejing Qian
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xinping Zhou
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liya Ma
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shuanghong Zhu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lu Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wenli Yang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yingwan Luo
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Lang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Gaixiang Xu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yanling Ren
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chen Mei
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Li Ye
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qi Zhang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaozhen Liu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jie Sun
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Hongyan Tong
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Yao M, Jiang X, Xiao F, Lv X, Sheng M, Xing W, Bai J, Zhou Y. Targeting BIRC5 as a therapeutic approach to overcome ASXL1-associated decitabine resistance. Cancer Lett 2024; 593:216949. [PMID: 38729558 DOI: 10.1016/j.canlet.2024.216949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/26/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Hypomethylating agents (HMAs) are widely employed in the treatment of myeloid malignancies. However, unresponsive or resistant to HMAs occurs in approximately 50 % of patients. ASXL1, one of the most commonly mutated genes across the full spectrum of myeloid malignancies, has been reported to predict a lower overall response rate to HMAs, suggesting an essential need to develop effective therapeutic strategies for the patients with HMA failure. Here, we investigated the impact of ASXL1 on cellular responsiveness to decitabine treatment. ASXL1 deficiency increased resistance to decitabine treatment in AML cell lines and mouse bone marrow cells. Transcriptome sequencing revealed significant alterations in genes regulating cell cycle, apoptosis, and histone modification in ASXL1 deficient cells that resistant to decitabine. BIRC5 was identified as a potential target for overcoming decitabine resistance in ASXL1 deficient cells. Furthermore, our experimental evidence demonstrated that the small-molecule inhibitor of BIRC5 (YM-155) synergistically sensitized ASXL1 deficient cells to decitabine treatment. This study sheds light on the molecular mechanisms underlying the ASXL1-associated HMA resistance and proposes a promising therapeutic strategy for improving treatment outcomes in affected individuals.
Collapse
MESH Headings
- Animals
- Decitabine/pharmacology
- Humans
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/drug effects
- Survivin/genetics
- Survivin/metabolism
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Mice
- Cell Line, Tumor
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Antimetabolites, Antineoplastic/pharmacology
- Apoptosis/drug effects
- Imidazoles
- Naphthoquinones
Collapse
Affiliation(s)
- Ming Yao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China; Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Xiao Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China; Institutes of Biomedical Sciences, Medical College of Fudan University, Shanghai, 200032, China
| | - Fangnan Xiao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China; Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Xue Lv
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China; Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Mengyao Sheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China; Institutes of Biomedical Sciences, Medical College of Fudan University, Shanghai, 200032, China
| | - Wen Xing
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China; Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Jie Bai
- Department of Hematology, The Second Affiliated Hospital of Tianjin Medical University, Tianjin, 300211, China.
| | - Yuan Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China; Tianjin Institutes of Health Science, Tianjin, 301600, China.
| |
Collapse
|
4
|
Woost PG, William BM, Cooper BW, Ueda Oshima M, Otegbeye F, De Lima MJ, Wald D, Mahfouz RZ, Saunthararajah Y, Stefan T, Jacobberger JW. Flow cytometry of DNMT1 as a biomarker of hypomethylating therapies. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2024; 106:11-24. [PMID: 38345160 PMCID: PMC11000818 DOI: 10.1002/cyto.b.22158] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 12/19/2023] [Indexed: 02/24/2024]
Abstract
The 5-azacytidine (AZA) and decitabine (DEC) are noncytotoxic, differentiation-inducing therapies approved for treatment of myelodysplastic syndrome, acute myeloid leukemias (AML), and under evaluation as maintenance therapy for AML postallogeneic hematopoietic stem cell transplant and to treat hemoglobinapathies. Malignant cell cytoreduction is thought to occur by S-phase specific depletion of the key epigenetic regulator, DNA methyltransferase 1 (DNMT1) that, in the case of cancers, thereby releases terminal-differentiation programs. DNMT1-targeting can also elevate expression of immune function genes (HLA-DR, MICA, MICB) to stimulate graft versus leukemia effects. In vivo, there is a large inter-individual variability in DEC and 5-AZA activity because of pharmacogenetic factors, and an assay to quantify the molecular pharmacodynamic effect of DNMT1-depletion is a logical step toward individualized or personalized therapy. We developed and analytically validated a flow cytometric assay for DNMT1 epitope levels in blood and bone marrow cell subpopulations defined by immunophenotype and cell cycle state. Wild type (WT) and DNMT1 knock out (DKO) HC116 cells were used to select and optimize a highly specific DNMT1 monoclonal antibody. Methodologic validation of the assay consisted of cytometry and matching immunoblots of HC116-WT and -DKO cells and peripheral blood mononuclear cells; flow cytometry of H116-WT treated with DEC, and patient samples before and after treatment with 5-AZA. Analysis of patient samples demonstrated assay reproducibility, variation in patient DNMT1 levels prior to treatment, and DNMT1 depletion posttherapy. A flow-cytometry assay has been developed that in the research setting of clinical trials can inform studies of DEC or 5-AZA treatment to achieve targeted molecular pharmacodynamic effects and better understand treatment-resistance/failure.
Collapse
Affiliation(s)
- Philip G Woost
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Basem M William
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Medicine, Division of Hematology, and Oncology and Stem Cell Transplant Program, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Brenda W Cooper
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Medicine, Division of Hematology, and Oncology and Stem Cell Transplant Program, Case Western Reserve University, Cleveland, Ohio, USA
| | - Masumi Ueda Oshima
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Medicine, Division of Hematology, and Oncology and Stem Cell Transplant Program, Case Western Reserve University, Cleveland, Ohio, USA
| | - Folashade Otegbeye
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Medicine, Division of Hematology, and Oncology and Stem Cell Transplant Program, Case Western Reserve University, Cleveland, Ohio, USA
| | - Marcos J De Lima
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Medicine, Division of Hematology, and Oncology and Stem Cell Transplant Program, Case Western Reserve University, Cleveland, Ohio, USA
| | - David Wald
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
- Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Reda Z Mahfouz
- Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Yogen Saunthararajah
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
- Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Tammy Stefan
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - James W Jacobberger
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
5
|
Rubatto M, Borriello S, Sciamarrelli N, Pala V, Tonella L, Ribero S, Quaglino P. Exploring the role of epigenetic alterations and non-coding RNAs in melanoma pathogenesis and therapeutic strategies. Melanoma Res 2023; 33:462-474. [PMID: 37788101 DOI: 10.1097/cmr.0000000000000926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Melanoma is a rare but highly lethal type of skin cancer whose incidence is increasing globally. Melanoma is characterized by high resistance to therapy and relapse. Despite significant advances in the treatment of metastatic melanoma, many patients experience progression due to resistance mechanisms. Epigenetic changes, including alterations in chromatin remodeling, DNA methylation, histone modifications, and non-coding RNA rearrangements, contribute to neoplastic transformation, metastasis, and drug resistance in melanoma. This review summarizes current research on epigenetic mechanisms in melanoma and their therapeutic potential. Specifically, we discuss the role of histone acetylation and methylation in gene expression regulation and melanoma pathobiology, as well as the promising results of HDAC inhibitors and DNMT inhibitors in clinical trials. We also examine the dysregulation of non-coding RNA, particularly miRNAs, and their potential as targets for melanoma therapy. Finally, we highlight the challenges of epigenetic therapies, such as the complexity of epigenetic mechanisms combined with immunotherapies and the need for combination therapies to overcome drug resistance. In conclusion, epigenetic changes may be reversible, and the use of combination therapy between traditional therapies and epigenetically targeted drugs could be a viable solution to reverse the increasing number of patients who develop treatment resistance or even prevent it. While several clinical trials are underway, the complexity of these mechanisms presents a significant challenge to the development of effective therapies. Further research is needed to fully understand the role of epigenetic mechanisms in melanoma and to develop more effective and targeted therapies.
Collapse
Affiliation(s)
- Marco Rubatto
- Department of Medical Sciences, Dermatologic Clinic, University of Turin Medical School, Turin, Italy
| | | | | | | | | | | | | |
Collapse
|
6
|
Karan D, Singh M, Dubey S, Van Veldhuizen PJ, Saunthararajah Y. DNA Methyltransferase 1 Targeting Using Guadecitabine Inhibits Prostate Cancer Growth by an Apoptosis-Independent Pathway. Cancers (Basel) 2023; 15:2763. [PMID: 37345101 DOI: 10.3390/cancers15102763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 06/23/2023] Open
Abstract
Epigenetic alterations such as DNA methylation and histone modifications are implicated in repressing several tumor suppressor genes in prostate cancer progression. In this study, we determined the anti-prostate cancer effect of a small molecule drug guadecitabine (gDEC) that inhibits/depletes the DNA methylation writer DNA methyltransferase 1 (DNMT1). gDEC inhibited prostate cancer cell growth and proliferation in vitro without activating the apoptotic cascade. Molecular studies confirmed DNMT1 depletion and modulated epithelial-mesenchymal transition markers E-cadherin and β-catenin in several prostate cancer cell lines (LNCaP, 22Rv1, and MDA PCa 2b). gDEC treatment also significantly inhibited prostate tumor growth in vivo in mice (22Rv1, MDA PCa 2b, and PC-3 xenografts) without any observed toxicities. gDEC did not impact the expression of androgen receptor (AR) or AR-variant 7 (AR-V7) nor sensitize the prostate cancer cells to the anti-androgen enzalutamide in vitro. In further investigating the mechanism of cytoreduction by gDEC, a PCR array analyses of 84 chromatin modifying enzymes demonstrated upregulation of several lysine-specific methyltransferases (KMTs: KMT2A, KMT2C, KMT2E, KMT2H, KMT5A), confirmed by additional expression analyses in vitro and of harvested xenografts. Moreover, gDEC treatment increased global histone 3 lysine 4 mono-and di-methylation (H3K4me1 and H3K4me2). In sum, gDEC, in addition to directly depleting the corepressor DNMT1, upregulated KMT activating epigenetic enzymes, activating terminal epithelial program activation, and prostate cancer cell cycling exits independent of apoptosis.
Collapse
Affiliation(s)
- Dev Karan
- Department of Pathology, MCW Cancer Center, Prostate Cancer Center of Excellence, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Manohar Singh
- Department of Pathology, MCW Cancer Center, Prostate Cancer Center of Excellence, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Seema Dubey
- Department of Pathology, MCW Cancer Center, Prostate Cancer Center of Excellence, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Peter J Van Veldhuizen
- Department of Internal Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Yogen Saunthararajah
- Department of Hematology and Medical Oncology, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
7
|
Kong X, Zhang X, Ding M, Feng X, Dong M, Zhang L, Fu X, Li L, Li X, Sun Z, Yan J, Wang X, Wu X, Chen Q, Zhang M, Zhu L. Decitabine combined with RDHAP regimen in relapsed/refractory diffuse large B cell lymphoma. Cancer Med 2023; 12:8134-8143. [PMID: 36695162 PMCID: PMC10134321 DOI: 10.1002/cam4.5615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/14/2022] [Accepted: 12/26/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND There is an urgent need for effective treatment of patients with relapsed/refractory diffuse large B-cell lymphoma (R/R-DLBCL). This trial investigated the efficacy of decitabine in combination with rituximab, cisplatin, cytarabine, dexamethasone (RDHAP) in R/R-DLBCL. METHODS 56 patients were divided into two groups (decitabine-RDHAP group. n = 35; RDHAP group, n = 21). The primary endpoints were the overall response rate (ORR) and duration of remission (DOR). Secondary objectives were toxicity, progression-free survival (PFS), and overall survival (OS). RESULTS The ORR was 40% and 33% for decitabine-RDHAP and RDHAP groups, respectively, with no difference between the groups. The DOR for the decitabine-RDHAP regimen was higher than that for the RDHAP regimen (p = 0.044). After a median follow-up of 12.0 months, the median PFS and OS were 7.0 and 17.0 months for in the decitabine-RDHAP group and 5.0 and 9.0 months in the RDHAP group with no significant differences between the two groups (p = 0.47, 0.17). The incidence of adverse events was not significantly different between groups. CONCLUSION The decitabine-RDHAP regimen is effective and well tolerated, and is a promising salvage regimen for R/R-DLBCL.
Collapse
Affiliation(s)
- Xiaoshuang Kong
- Department of Oncology, Lymphoma Diagnosis and Treatment Centre of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xudong Zhang
- Department of Oncology, Lymphoma Diagnosis and Treatment Centre of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mengjie Ding
- Department of Oncology, Lymphoma Diagnosis and Treatment Centre of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaoyan Feng
- Department of Oncology, Lymphoma Diagnosis and Treatment Centre of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Meng Dong
- Department of Oncology, Lymphoma Diagnosis and Treatment Centre of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lei Zhang
- Department of Oncology, Lymphoma Diagnosis and Treatment Centre of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaorui Fu
- Department of Oncology, Lymphoma Diagnosis and Treatment Centre of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ling Li
- Department of Oncology, Lymphoma Diagnosis and Treatment Centre of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xin Li
- Department of Oncology, Lymphoma Diagnosis and Treatment Centre of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhenchang Sun
- Department of Oncology, Lymphoma Diagnosis and Treatment Centre of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jiaqin Yan
- Department of Oncology, Lymphoma Diagnosis and Treatment Centre of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xinhua Wang
- Department of Oncology, Lymphoma Diagnosis and Treatment Centre of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaolong Wu
- Department of Oncology, Lymphoma Diagnosis and Treatment Centre of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qingjiang Chen
- Department of Oncology, Lymphoma Diagnosis and Treatment Centre of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mingzhi Zhang
- Department of Oncology, Lymphoma Diagnosis and Treatment Centre of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Linan Zhu
- Department of Oncology, Lymphoma Diagnosis and Treatment Centre of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
8
|
Kontandreopoulou CN, Kalopisis K, Viniou NA, Diamantopoulos P. The genetics of myelodysplastic syndromes and the opportunities for tailored treatments. Front Oncol 2022; 12:989483. [PMID: 36338673 PMCID: PMC9630842 DOI: 10.3389/fonc.2022.989483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Genomic instability, microenvironmental aberrations, and somatic mutations contribute to the phenotype of myelodysplastic syndrome and the risk for transformation to AML. Genes involved in RNA splicing, DNA methylation, histone modification, the cohesin complex, transcription, DNA damage response pathway, signal transduction and other pathways constitute recurrent mutational targets in MDS. RNA-splicing and DNA methylation mutations seem to occur early and are reported as driver mutations in over 50% of MDS patients. The improved understanding of the molecular landscape of MDS has led to better disease and risk classification, leading to novel therapeutic opportunities. Based on these findings, novel agents are currently under preclinical and clinical development and expected to improve the clinical outcome of patients with MDS in the upcoming years. This review provides a comprehensive update of the normal gene function as well as the impact of mutations in the pathogenesis, deregulation, diagnosis, and prognosis of MDS, focuses on the most recent advances of the genetic basis of myelodysplastic syndromes and their clinical relevance, and the latest targeted therapeutic approaches including investigational and approved agents for MDS.
Collapse
|
9
|
Andreozzi F, Massaro F, Wittnebel S, Spilleboudt C, Lewalle P, Salaroli A. New Perspectives in Treating Acute Myeloid Leukemia: Driving towards a Patient-Tailored Strategy. Int J Mol Sci 2022; 23:3887. [PMID: 35409248 PMCID: PMC8999556 DOI: 10.3390/ijms23073887] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 12/16/2022] Open
Abstract
For decades, intensive chemotherapy (IC) has been considered the best therapeutic option for treating acute myeloid leukemia (AML), with no curative option available for patients who are not eligible for IC or who have had failed IC. Over the last few years, several new drugs have enriched the therapeutic arsenal of AML treatment for both fit and unfit patients, raising new opportunities but also new challenges. These include the already approved venetoclax, the IDH1/2 inhibitors enasidenib and ivosidenib, gemtuzumab ozogamicin, the liposomal daunorubicin/cytarabine formulation CPX-351, and oral azacitidine. Venetoclax, an anti BCL2-inhibitor, in combination with hypomethylating agents (HMAs), has markedly improved the management of unfit and elderly patients from the perspective of improved quality of life and better survival. Venetoclax is currently under investigation in combination with other old and new drugs in early phase trials. Recently developed drugs with different mechanisms of action and new technologies that have already been investigated in other settings (BiTE and CAR-T cells) are currently being explored in AML, and ongoing trials should determine promising agents, more synergic combinations, and better treatment strategies. Access to new drugs and inclusion in clinical trials should be strongly encouraged to provide scientific evidence and to define the future standard of treatment in AML.
Collapse
Affiliation(s)
- Fabio Andreozzi
- Hematology Department, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Bruxelles, Belgium; (F.M.); (S.W.); (C.S.); (P.L.); (A.S.)
| | - Fulvio Massaro
- Hematology Department, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Bruxelles, Belgium; (F.M.); (S.W.); (C.S.); (P.L.); (A.S.)
- PhD Program in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Sebastian Wittnebel
- Hematology Department, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Bruxelles, Belgium; (F.M.); (S.W.); (C.S.); (P.L.); (A.S.)
| | - Chloé Spilleboudt
- Hematology Department, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Bruxelles, Belgium; (F.M.); (S.W.); (C.S.); (P.L.); (A.S.)
| | - Philippe Lewalle
- Hematology Department, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Bruxelles, Belgium; (F.M.); (S.W.); (C.S.); (P.L.); (A.S.)
| | - Adriano Salaroli
- Hematology Department, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Bruxelles, Belgium; (F.M.); (S.W.); (C.S.); (P.L.); (A.S.)
| |
Collapse
|
10
|
The Contrasting Delayed Effects of Transient Exposure of Colorectal Cancer Cells to Decitabine or Azacitidine. Cancers (Basel) 2022; 14:cancers14061530. [PMID: 35326680 PMCID: PMC8945888 DOI: 10.3390/cancers14061530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/02/2022] [Accepted: 03/11/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Decitabine and azacitidine are cytosine analogs representing the class of drugs interfering with DNA methylation. Due to their molecular homology and similar clinical application these drugs are viewed as interchangeable. Despite their unique epigenetic mechanism of action, the studies of the prolonged activity of decitabine and azacitidine are rare. Our head-to-head comparison revealed profound differences in the activities of decitabine and azacitidine important in their anti-cancer potential and clinical application. We show that azacitidine, despite significant immediate toxicity, has negligible long-term effects. Contrary, decitabine, which does not exert initial toxicity, profoundly worsened the condition of the cancer cells over time. The effects of decitabine need a relatively long time to develop. This property is crucial for the proper design of studies or therapy involving decitabine. It undermines opinion about the similar therapeutic mechanism and interchangeability of decitabine and azacitidine. Abstract (1) Background: Decitabine and azacitidine are cytosine analogues representing the class of drugs interfering with DNA methylation. Due to their molecular homology and similar clinical application, both drugs are often regarded as interchangeable. Despite their unique mechanism of action the studies designed for observation and comparison of the prolonged activity of these drugs are rare. (2) Methods: The short-time (20–72 h) and long-term (up to 20 days) anti-cancer activity of decitabine and azacitidine has been studied in colorectal cancer cells. We observe the impact on cell culture’s viability, clonogenicity, proliferation, and expression of CDKN1A, CCND1, MDM2, MYC, CDKN2A, GLB1 genes, and activity of SA-β-galactosidase. (3) Results: Decitabine has much stronger anti-clonogenic activity than azacitidine. We show that azacitidine, despite significant immediate toxicity, has negligible long-term effects. Contrary, decitabine, which does not exert initial toxicity, profoundly worsened the condition of the cells over time. On the 13th day after treatment, the viability of cells was decreased and proliferation inhibited. These functional changes were accompanied by up-regulation of expression CDKN1A, CCND1, and CDKN2A genes and increased activation of SA-β-galactosidase, indicating cellular senescence. (4) Conclusions: Our head-to-head comparison revealed profound differences in the activities of decitabine and azacitidine important in their anti-cancer potential and clinical application. The effects of decitabine need relatively long time to develop. This property is crucial for proper design of studies and therapy concerning decitabine and undermines opinion about the similar therapeutic mechanism and interchangeability of these drugs.
Collapse
|
11
|
Epigenetic Priming with Decitabine Augments the Therapeutic Effect of Cisplatin on Triple-Negative Breast Cancer Cells through Induction of Proapoptotic Factor NOXA. Cancers (Basel) 2022; 14:cancers14010248. [PMID: 35008411 PMCID: PMC8749981 DOI: 10.3390/cancers14010248] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 12/10/2022] Open
Abstract
Epigenetic alterations caused by aberrant DNA methylation have a crucial role in cancer development, and the DNA-demethylating agent decitabine, is used to treat hematopoietic malignancy. Triple-negative breast cancers (TNBCs) have shown sensitivity to decitabine; however, the underlying mechanism of its anticancer effect and its effectiveness in treating TNBCs are not fully understood. We analyzed the effects of decitabine on nine TNBC cell lines and examined genes associated with its cytotoxic effects. According to the effect of decitabine, we classified the cell lines into cell death (D)-type, growth inhibition (G)-type, and resistant (R)-type. In D-type cells, decitabine induced the expression of apoptotic regulators and, among them, NOXA was functionally involved in decitabine-induced apoptosis. In G-type cells, induction of the cyclin-dependent kinase inhibitor, p21, and cell cycle arrest were observed. Furthermore, decitabine enhanced the cytotoxic effect of cisplatin mediated by NOXA in D-type and G-type cells. In contrast, the sensitivity to cisplatin was high in R-type cells, and no enhancing effect by decitabine was observed. These results indicate that decitabine enhances the proapoptotic effect of cisplatin on TNBC cell lines that are less sensitive to cisplatin, indicating the potential for combination therapy in TNBC.
Collapse
|
12
|
Garcia-Manero G, Döhner H, Wei AH, La Torre I, Skikne B, Beach CL, Santini V. Oral Azacitidine (CC-486) for the Treatment of Myeloid Malignancies. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2021; 22:236-250. [PMID: 34758945 DOI: 10.1016/j.clml.2021.09.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 02/07/2023]
Abstract
Epigenetic dysregulation leads to aberrant DNA hypermethylation and is common in acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS). A large number of clinical trials in AML, MDS, and other hematologic malignancies have assessed hypomethylating agents (HMAs), used alone or in combination with other drugs, in the frontline, maintenance, relapsed/refractory, and peritransplant settings. Effective maintenance therapy has long been a goal for patients with AML in remission. Previous large, randomized clinical trials of maintenance with HMAs or other agents had not shown meaningful improvement in overall survival. Oral azacitidine (Oral-AZA [CC-486]) is approved in the United States, Canada, and European Union for treatment of adult patients with AML in first complete remission (CR) or CR with incomplete blood count recovery (CRi) following intensive induction chemotherapy who are ineligible for hematopoietic cell transplant. Regulatory approvals of Oral-AZA were based on outcomes from the randomized, phase III QUAZAR AML-001 trial, which showed a median overall survival advantage of 9.9 months with Oral-AZA versus placebo. Oral-AZA allows convenient extended AZA dosing for 14 days per 28-day treatment cycle, which is not feasible with injectable AZA. Focusing on AML and MDS, this report reviews the rationale for the use of orally bioavailable AZA and its potential use in all-oral combination therapy regimens; the unique pharmacokinetic and pharmacodynamic profile of Oral-AZA compared with injectable AZA; the clinical safety and efficacy of Oral-AZA maintenance therapy in patients with AML in first remission and for treatment of patients with active MDS; and ongoing Oral-AZA clinical trials.
Collapse
Affiliation(s)
| | - Hartmut Döhner
- Department of Internal Medicine III, Ulm University Hospital, Ulm, Germany
| | - Andrew H Wei
- Department of Clinical Haematology, The Alfred Hospital, Melbourne, Australia; Monash University, Australian Centre for Blood Diseases, Melbourne, Australia
| | | | - Barry Skikne
- Bristol-Myers Squibb Company, Princeton, NJ; Department of Hematology, University of Kansas Medical Center, Kansas City, KS
| | - C L Beach
- Bristol-Myers Squibb Company, Princeton, NJ
| | - Valeria Santini
- MDS Unit, Hematology, AOU Careggi, University of Florence, Florence, Italy
| |
Collapse
|
13
|
Zavras PD, Shastri A, Goldfinger M, Verma AK, Saunthararajah Y. Clinical Trials Assessing Hypomethylating Agents Combined with Other Therapies: Causes for Failure and Potential Solutions. Clin Cancer Res 2021; 27:6653-6661. [PMID: 34551907 DOI: 10.1158/1078-0432.ccr-21-2139] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/19/2021] [Accepted: 09/17/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Azacitidine and decitabine are hypomethylating agents (HMA), that is, both inhibit and deplete DNA methyltransferase 1 (DNMT1). HMAs are standard single-agent therapies for myelodysplastic syndromes and acute myelogenous leukemias. Several attempts to improve outcomes by combining HMAs with investigational agents, excepting with the BCL2-inhibitor venetoclax, have failed in randomized clinical trial (RCT) evaluations. We extract lessons from decades of clinical trials to thereby inform future work. EXPERIMENTAL DESIGN Serial single-agent clinical trials were analyzed for mechanism and pathway properties of HMAs underpinning their success, and for rules for dose and schedule selection. RCTs were studied for principles, dos and don'ts for productive combination therapy. RESULTS Single-agent HMA trial results encourage dose and schedule selection to increase S-phase-dependent DNMT1 targeting, and discourage doses that cause indiscriminate antimetabolite effects/cytotoxicity, because these attrit myelopoiesis reserves needed for clinical response. Treatment-related myelosuppression should prompt dose/frequency reductions of less active investigational agents rather than more active HMA. Administering cytostatic agents concurrently with HMA can antagonize S-phase-dependent DNMT1 targeting. Supportive care that enables on-time administration of S-phase (exposure-time)-dependent HMA could be useful. Agents that manipulate pyrimidine metabolism to increase HMA pro-drug processing into DNMT1-depleting nucleotide, and/or inhibit other epigenetic enzymes implicated in oncogenic silencing of lineage differentiation, could be productive, but doses and schedules should adhere to therapeutic index/molecular-targeted principles already learned. CONCLUSIONS More than 40 years of clinical trial history indicates mechanism, pathway, and therapeutic index properties of HMAs that underpin their almost exclusive success and teaches lessons for selection and design of combinations aiming to build on this treatment foundation.
Collapse
Affiliation(s)
- Phaedon D Zavras
- Department of Medicine, Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Aditi Shastri
- Department of Medical Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Mendel Goldfinger
- Department of Medical Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Amit K Verma
- Department of Medical Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York.
| | - Yogen Saunthararajah
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio.
| |
Collapse
|
14
|
Zawit M, Gurnari C, Pagliuca S, Awada H, Maciejewski JP, Saunthararajah Y. A non-cytotoxic regimen of decitabine to treat refractory T-cell large granular lymphocytic leukemia. Clin Case Rep 2021; 9:e04533. [PMID: 34552731 PMCID: PMC8443408 DOI: 10.1002/ccr3.4533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/04/2021] [Accepted: 06/14/2021] [Indexed: 12/17/2022] Open
Abstract
We report on a novel, successful, non-cytotoxic therapy to treat multiply-refractory T-LGL in an elderly patient.
Collapse
Affiliation(s)
- Misam Zawit
- Translational Hematology and Oncology Research DepartmentTaussig Cancer CenterCleveland ClinicClevelandOHUSA
| | - Carmelo Gurnari
- Translational Hematology and Oncology Research DepartmentTaussig Cancer CenterCleveland ClinicClevelandOHUSA
- Department of Biomedicine and Prevention & Ph.D in Immunology, Molecular Medicine and Applied BiotechnologyUniversity of Rome Tor VergataRomeItaly
| | - Simona Pagliuca
- Translational Hematology and Oncology Research DepartmentTaussig Cancer CenterCleveland ClinicClevelandOHUSA
- Université de ParisParisFrance
| | - Hassan Awada
- Translational Hematology and Oncology Research DepartmentTaussig Cancer CenterCleveland ClinicClevelandOHUSA
| | - Jaroslaw P. Maciejewski
- Translational Hematology and Oncology Research DepartmentTaussig Cancer CenterCleveland ClinicClevelandOHUSA
| | - Yogen Saunthararajah
- Translational Hematology and Oncology Research DepartmentTaussig Cancer CenterCleveland ClinicClevelandOHUSA
| |
Collapse
|
15
|
Myelodysplastic Syndromes in the Postgenomic Era and Future Perspectives for Precision Medicine. Cancers (Basel) 2021; 13:cancers13133296. [PMID: 34209457 PMCID: PMC8267785 DOI: 10.3390/cancers13133296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary With demographic ageing, improved cancer survivorship and increased diagnostic sensitivity, incident cases of patients with Myelodysplastic Syndromes (MDS) are continuously rising, leading to a relevant impact on health care resources. Disease heterogeneity and various comorbidities are challenges for the management of the generally elderly patients. Therefore, experienced physicians and multidisciplinary teams should be involved in the establishment of the correct diagnosis, risk-assessment and personalized treatment plan. Next-generation sequencing allows for early detection of clonal hematopoiesis and monitoring of clonal evolution, but also poses new challenges for its appropriate use. At present, allogeneic hematopoietic stem cell transplantation remains the only curative treatment option for a minority of fit MDS patients. All others receive palliative treatment and will eventually progress, having an unmet need for novel therapies. Targeting compounds are in prospect for precision medicine, however, abrogation of clonal evolution to acute myeloid leukemia remains actually out of reach. Abstract Myelodysplastic syndromes (MDS) represent a heterogeneous group of clonal disorders caused by sequential accumulation of somatic driver mutations in hematopoietic stem and progenitor cells (HSPCs). MDS is characterized by ineffective hematopoiesis with cytopenia, dysplasia, inflammation, and a variable risk of transformation into secondary acute myeloid leukemia. The advent of next-generation sequencing has revolutionized our understanding of the genetic basis of the disease. Nevertheless, the biology of clonal evolution remains poorly understood, and the stochastic genetic drift with sequential accumulation of genetic hits in HSPCs is individual, highly dynamic and hardly predictable. These continuously moving genetic targets pose substantial challenges for the implementation of precision medicine, which aims to maximize efficacy with minimal toxicity of treatments. In the current postgenomic era, allogeneic hematopoietic stem cell transplantation remains the only curative option for younger and fit MDS patients. For all unfit patients, regeneration of HSPCs stays out of reach and all available therapies remain palliative, which will eventually lead to refractoriness and progression. In this review, we summarize the recent advances in our understanding of MDS pathophysiology and its impact on diagnosis, risk-assessment and disease monitoring. Moreover, we present ongoing clinical trials with targeting compounds and highlight future perspectives for precision medicine.
Collapse
|
16
|
Zhu H, Yang B, Liu J, Wang B, Wu Y, Zheng Z, Ling Y. A novel treatment regimen of granulocyte colony-stimulating factor combined with ultra-low-dose decitabine and low-dose cytarabine in older patients with acute myeloid leukemia and myelodysplastic syndromes. Ther Adv Hematol 2021; 12:20406207211009334. [PMID: 33995987 PMCID: PMC8111530 DOI: 10.1177/20406207211009334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/21/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Older patients with acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) unfit for intensive chemotherapy are emergent for suitable treatment strategies. Hypomethylating agents and low-dose cytarabine have generated relevant benefits in the hematological malignancies over recent decades. We evaluated the efficacy and safety of the novel treatment regimen consisting of ultra-low-dose decitabine and low-dose cytarabine, with granulocyte colony-stimulating factor (G-CSF) in this population of patients. Methods and materials: Patients aged more than 60 years with newly diagnosed AML/MDS were enrolled to receive therapy combined of 300 µg subcutaneously per day for priming, decitabine 5.15–7.62 mg/m2/d intravenously and cytarabine 15 mg/m2/d twice a day subcutaneously and G-CSF for consecutive 10 days every 28 days. The study enrolled 28 patients unfit for standard intensive chemotherapy. The median age of patients was 68 years (range 60–83 years) and 20 (71.4%) patients harbored AML. The primary outcome was to evaluate overall response rate. Results: Overall, this novel ultra-low-dose treatment regimen was well tolerated, with 0% of both 4- and 8-week mortality occurrence. Objective response rate (CR + CRi + PR in AML and CR + mCR + PR in MDS) was 57.1% after the first treatment course. Responses of hematologic improvement (HI) aspect were achieved in 18 of 28 (64.3%) patients, 11 (39.3%), 12 (42.9%), and eight patients (28.6%) achieved HI-E, HI-P, HI-N, respectively. Conclusions: Untreated elderly with AML/MDS were well tolerated and benefited from this novel ultra-low-dose treatment regimen.
Collapse
Affiliation(s)
- Huan Zhu
- Department of Hematology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China
| | - Bin Yang
- The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China
| | - Jia Liu
- The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China
| | - Biao Wang
- The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China
| | - Yicun Wu
- The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China
| | - Zhuojun Zheng
- The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China
| | - Yun Ling
- Department of Hematology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Juqian Road 185, Changzhou, Jiangsu 213000, China
| |
Collapse
|
17
|
Gu X, Tohme R, Tomlinson B, Sakre N, Hasipek M, Durkin L, Schuerger C, Grabowski D, Zidan AM, Radivoyevitch T, Hong C, Carraway H, Hamilton B, Sobecks R, Patel B, Jha BK, Hsi ED, Maciejewski J, Saunthararajah Y. Decitabine- and 5-azacytidine resistance emerges from adaptive responses of the pyrimidine metabolism network. Leukemia 2021; 35:1023-1036. [PMID: 32770088 PMCID: PMC7867667 DOI: 10.1038/s41375-020-1003-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/13/2020] [Accepted: 07/22/2020] [Indexed: 01/10/2023]
Abstract
Mechanisms-of-resistance to decitabine and 5-azacytidine, mainstay treatments for myeloid malignancies, require investigation and countermeasures. Both are nucleoside analog pro-drugs processed by pyrimidine metabolism into a deoxynucleotide analog that depletes the key epigenetic regulator DNA methyltranseferase 1 (DNMT1). Here, upon serial analyses of DNMT1 levels in patients' bone marrows on-therapy, we found DNMT1 was not depleted at relapse. Showing why, bone marrows at relapse exhibited shifts in expression of key pyrimidine metabolism enzymes in directions adverse to pro-drug activation. Further investigation revealed the origin of these shifts. Pyrimidine metabolism is a network that senses and regulates deoxynucleotide amounts. Deoxynucleotide amounts were disturbed by single exposures to decitabine or 5-azacytidine, via off-target depletion of thymidylate synthase and ribonucleotide reductase respectively. Compensating pyrimidine metabolism shifts peaked 72-96 h later. Continuous pro-drug exposures stabilized these adaptive metabolic responses to thereby prevent DNMT1-depletion and permit exponential leukemia out-growth as soon as day 40. The consistency of the acute metabolic responses enabled exploitation: simple treatment modifications in xenotransplant models of chemorefractory leukemia extended noncytotoxic DNMT1-depletion and leukemia control by several months. In sum, resistance to decitabine and 5-azacytidine originates from adaptive responses of the pyrimidine metabolism network; these responses can be anticipated and thus exploited.
Collapse
Affiliation(s)
- Xiaorong Gu
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Rita Tohme
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Benjamin Tomlinson
- Department of Hematology and Oncology, University Hospitals, Cleveland, OH, USA
| | - Nneha Sakre
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Metis Hasipek
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Lisa Durkin
- Department of Clinical Pathology, Tomsich Pathology Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Caroline Schuerger
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Dale Grabowski
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Asmaa M Zidan
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Tomas Radivoyevitch
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Changjin Hong
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Hetty Carraway
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Betty Hamilton
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ronald Sobecks
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Bhumika Patel
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Babal K Jha
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Eric D Hsi
- Department of Clinical Pathology, Tomsich Pathology Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jaroslaw Maciejewski
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Yogen Saunthararajah
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA.
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
18
|
Garcia-Manero G, Santini V, Almeida A, Platzbecker U, Jonasova A, Silverman LR, Falantes J, Reda G, Buccisano F, Fenaux P, Buckstein R, Diez Campelo M, Larsen S, Valcarcel D, Vyas P, Giai V, Olíva EN, Shortt J, Niederwieser D, Mittelman M, Fianchi L, La Torre I, Zhong J, Laille E, Lopes de Menezes D, Skikne B, Beach CL, Giagounidis A. Phase III, Randomized, Placebo-Controlled Trial of CC-486 (Oral Azacitidine) in Patients With Lower-Risk Myelodysplastic Syndromes. J Clin Oncol 2021; 39:1426-1436. [PMID: 33764805 PMCID: PMC8099416 DOI: 10.1200/jco.20.02619] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
PURPOSE Treatment options are limited for patients with lower-risk myelodysplastic syndromes (LR-MDS). This phase III, placebo-controlled trial evaluated CC-486 (oral azacitidine), a hypomethylating agent, in patients with International Prognostic Scoring System LR-MDS and RBC transfusion-dependent anemia and thrombocytopenia. METHODS Patients were randomly assigned 1:1 to CC-486 300-mg or placebo for 21 days/28-day cycle. The primary end point was RBC transfusion independence (TI). RESULTS Two hundred sixteen patients received CC-486 (n = 107) or placebo (n = 109). The median age was 74 years, median platelet count was 25 × 109/L, and absolute neutrophil count was 1.3 × 109/L. In the CC-486 and placebo arms, 31% and 11% of patients, respectively, achieved RBC-TI (P = .0002), with median durations of 11.1 and 5.0 months. Reductions of ≥ 4 RBC units were attained by 42.1% and 30.6% of patients, respectively, with median durations of 10.0 and 2.3 months, and more CC-486 patients had ≥ 1.5 g/dL hemoglobin increases from baseline (23.4% v 4.6%). Platelet hematologic improvement rate was higher with CC-486 (24.3% v 6.5%). Underpowered interim overall survival analysis showed no difference between CC-486 and placebo (median, 17.3 v 16.2 months; P = .96). Low-grade GI events were the most common adverse events in both arms. In the CC-486 and placebo arms, 90% and 73% of patients experienced a grade 3-4 adverse event. Overall death rate was similar between arms, but there was an imbalance in deaths during the first 56 days (CC-486, n = 16; placebo, n = 6), most related to infections; the median pretreatment absolute neutrophil count for the 16 CC-486 patients was 0.57 × 109/L. CONCLUSION CC-486 significantly improved RBC-TI rate and induced durable bilineage improvements in patients with LR-MDS and high-risk disease features. More early deaths occurred in the CC-486 arm, most related to infections in patients with significant pretreatment neutropenia. Further evaluation of CC-486 in MDS is needed.
Collapse
Affiliation(s)
| | - Valeria Santini
- MDS Unit, Hematology, AOU Careggi, University of Florence, Florence, Italy
| | | | | | - Anna Jonasova
- Medical Department Hematology, Charles University General University Hospital, Prague, Czech Republic
| | | | - Jose Falantes
- Hospital Universitario Virgen del Rocio, Seville, Spain
| | - Gianluigi Reda
- Hematology Unit, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Pierre Fenaux
- Hôpital St Louis, Assistance Publique-Hôpitaux de Paris, and Université de Paris, Paris, France
| | | | | | | | | | - Paresh Vyas
- MRC Molecular Haematology Unit and Oxford Biomedical Research Centre, University of Oxford and Oxford University Hospitals, Oxford, United Kingdom
| | - Valentina Giai
- Antonio e Biagio e Cesare Arrigo Hospital, Alessandria, Italy
| | | | - Jake Shortt
- Monash University and Monash Health, Melbourne, Australia
| | | | - Moshe Mittelman
- Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Luana Fianchi
- Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | | | | | | | | | - Barry Skikne
- Bristol Myers Squibb, Princeton, New Jersey.,University of Kansas Medical Center, Kansas City, KS
| | - C L Beach
- Bristol Myers Squibb, Princeton, New Jersey
| | | |
Collapse
|
19
|
Ultimate Precision: Targeting Cancer But Not Normal Self-Replication. Lung Cancer 2021. [DOI: 10.1007/978-3-030-74028-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Gurnari C, Pagliuca S, Visconte V. Deciphering the Therapeutic Resistance in Acute Myeloid Leukemia. Int J Mol Sci 2020; 21:ijms21228505. [PMID: 33198085 PMCID: PMC7697160 DOI: 10.3390/ijms21228505] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/05/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023] Open
Abstract
Acute myeloid leukemia (AML) is a clonal hematopoietic disorder characterized by abnormal proliferation, lack of cellular differentiation, and infiltration of bone marrow, peripheral blood, or other organs. Induction failure and in general resistance to chemotherapeutic agents represent a hindrance for improving survival outcomes in AML. Here, we review the latest insights in AML biology concerning refractoriness to therapies with a specific focus on cytarabine and daunorubicin which still represent milestones agents for inducing therapeutic response and disease eradication. However, failure to achieve complete remission in AML is still high especially in elderly patients (40-60% in patients >65 years old). Several lines of basic and clinical research have been employed to improve the achievement of complete remission. These lines of research include molecular targeted therapy and more recently immunotherapy. In terms of molecular targeted therapies, specific attention is given to DNMT3A and TP53 mutant AML by reviewing the mechanisms underlying epigenetic therapies' (e.g., hypomethylating agents) resistance and providing critical points and hints for possible future therapies overcoming AML refractoriness.
Collapse
Affiliation(s)
- Carmelo Gurnari
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (C.G.); (S.P.)
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Simona Pagliuca
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (C.G.); (S.P.)
| | - Valeria Visconte
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (C.G.); (S.P.)
- Correspondence: ; Tel.: +1-216-445-6895
| |
Collapse
|
21
|
Wang P, Zhao H, Ren F, Zhao Q, Shi R, Liu X, Liu J, Li Y, Li Y, Liu H, Chen J. [Research Progress of Epigenetics in Pathogenesis and Treatment of Malignant Tumors]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2020; 23:91-100. [PMID: 32093453 PMCID: PMC7049791 DOI: 10.3779/j.issn.1009-3419.2020.02.04] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
表观遗传学修饰与肿瘤的发生发展密切相关,其主要通过DNA甲基化、组蛋白修饰、非编码RNA调控和染色质结构重构等方式对基因功能和表达水平进行调控,从而影响肿瘤的进展。目前针对表观遗传学的药物已经逐渐应用于恶性肿瘤的治疗,常见的药物类型包括DNA甲基转移酶抑制剂和组蛋白去乙酰化酶抑制剂,但此类药物仍存在诸多不足之处广泛的临床应用仍需要进一步的研究,令人鼓舞的是表观遗传药物与多种抗肿瘤药物联合应用已表现出巨大的应用潜力。本文就表观遗传学在恶性肿瘤的发生发展机制和相关药物的新进展进行了综述。
Collapse
Affiliation(s)
- Pan Wang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin Lung Cancer Institute, Tianjin Key Laboratory of lung Cancer Metastasis and Tumor Microenvironment, Tianjin 300052, China
| | - Honglin Zhao
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin Lung Cancer Institute, Tianjin Key Laboratory of lung Cancer Metastasis and Tumor Microenvironment, Tianjin 300052, China
| | - Fan Ren
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin Lung Cancer Institute, Tianjin Key Laboratory of lung Cancer Metastasis and Tumor Microenvironment, Tianjin 300052, China
| | - Qingchun Zhao
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin Lung Cancer Institute, Tianjin Key Laboratory of lung Cancer Metastasis and Tumor Microenvironment, Tianjin 300052, China
| | - Ruifeng Shi
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin Lung Cancer Institute, Tianjin Key Laboratory of lung Cancer Metastasis and Tumor Microenvironment, Tianjin 300052, China
| | - Xingyu Liu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin Lung Cancer Institute, Tianjin Key Laboratory of lung Cancer Metastasis and Tumor Microenvironment, Tianjin 300052, China
| | - Jinghao Liu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin Lung Cancer Institute, Tianjin Key Laboratory of lung Cancer Metastasis and Tumor Microenvironment, Tianjin 300052, China
| | - Yongwen Li
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin Lung Cancer Institute, Tianjin Key Laboratory of lung Cancer Metastasis and Tumor Microenvironment, Tianjin 300052, China
| | - Ying Li
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin Lung Cancer Institute, Tianjin Key Laboratory of lung Cancer Metastasis and Tumor Microenvironment, Tianjin 300052, China
| | - Hongyu Liu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin Lung Cancer Institute, Tianjin Key Laboratory of lung Cancer Metastasis and Tumor Microenvironment, Tianjin 300052, China
| | - Jun Chen
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin Lung Cancer Institute, Tianjin Key Laboratory of lung Cancer Metastasis and Tumor Microenvironment, Tianjin 300052, China
| |
Collapse
|
22
|
Cai L, Zhao X, Ai L, Wang H. Role Of TP53 mutations in predicting the clinical efficacy of hypomethylating therapy in patients with myelodysplastic syndrome and related neoplasms: a systematic review and meta-analysis. Clin Exp Med 2020; 20:361-371. [PMID: 32613269 DOI: 10.1007/s10238-020-00641-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/16/2020] [Indexed: 02/07/2023]
Abstract
Hypomethylating agents (HMAs) are now a major treatment option for myelodysplastic syndrome (MDS) and related neoplasms, but 50% of patients still do not respond and realize poor outcomes. Mutational predictors of treatment efficacy attract continuous attention. Whether TP53 mutations can be used as predictors of HMA effectiveness has caused heated debate. Therefore, we performed a meta-analysis to investigate the predictive value of TP53 mutations to outcomes of HMA therapy in patients with MDS and related neoplasms. We systematically searched PubMed, Embase, the Cochrane Library, and the WanFang databases (published deadline: September 12, 2019). The primary endpoints were overall response rate (ORR) and overall survival (OS). Odds ratio (OR), hazard ratio (HR), and 95% confidence intervals (CI) were pooled to estimate the association between TP53 mutations and the clinical efficacy of HMAs. Four hundred fifteen papers were found, and 22 papers were included in this meta-analysis (N = 2020 participants). The results showed that the presence of TP53 mutation predicted an increased overall response rate with HMA treatment in the subsets that restricted patients in de novo disease, MDS by WHO (World Health Organization) criteria, or NGS (next-generation sequence) group (P = 0.005, P = 0.003, P = 0.0005, respectively). However, TP53 mutations remained poor factors for OS (P < 0.00001). Collectively, in HMA therapy, TP53 mutations can predict better ORR when setting more refined subgroups, but TP53 mutations still strongly correlated with poor survival in hypomethylating therapy.
Collapse
Affiliation(s)
- Li Cai
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaoyan Zhao
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lisha Ai
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Huafang Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
23
|
Clinical, molecular, and prognostic correlates of number, type, and functional localization of TET2 mutations in chronic myelomonocytic leukemia (CMML)-a study of 1084 patients. Leukemia 2019; 34:1407-1421. [PMID: 31836856 DOI: 10.1038/s41375-019-0690-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/18/2019] [Accepted: 12/05/2019] [Indexed: 12/17/2022]
Abstract
Loss-of-function TET2 mutations (TET2MT) are frequent early clonal events in myeloid neoplasms and are thought to confer a fitness advantage to hematopoietic precursors. This large, multi-institutional study (n = 1084), investigated the TET2 mutational landscape and prognostic implications of the number, type, and location of TET2MT and the epistatic relationship with other somatic events in chronic myelomonocytic leukemia (CMML). Nine hundred and forty-two TET2MT were identified in 604 (56%) patients, of which 710 (75%) were predicted to be truncating (involving the catalytic domain). Three hundred and sixteen (29%) patients had ≥1 TET2MT, with 28%, 1%, and 0.2% harboring 2, 3, and 5 mutations, respectively. In comparison to TET2WT, TET2MT patients were older in age, more likely to have dysplastic CMML, a higher number of co-occurring mutations, and lower-risk stratification. Importantly, TET2MT were associated with a survival advantage (49 vs. 30 months, p < 0.0001), especially in the context of multiple TET2MT (≥2; 57 months, p < 0.001), and truncating TET2MT (51 months, p < 0.001). In addition, the adverse prognostic impact of ASXL1MT was partially mitigated by concurrent TET2MT, with the ASXL1WT/TET2MT genotype having better outcomes and resulting in further risk stratification of ASXL1 inclusive CMML prognostic models, in comparison to ASXL1MT alone.
Collapse
|
24
|
Zhou H, Qin P, Liu Q, Yuan C, Hao Y, Zhang H, Wang Z, Ran X, Chu X, Yu W, Wang X, Hou Y, Peng J, Hou M. A prospective, multicenter study of low dose decitabine in adult patients with refractory immune thrombocytopenia. Am J Hematol 2019; 94:1374-1381. [PMID: 31591739 DOI: 10.1002/ajh.25646] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 12/22/2022]
Abstract
We conducted a prospective, multicenter study to evaluate the efficacy and safety of low-dose decitabine in adult patients with refractory immune thrombocytopenia. Adult patients who did not respond to, did not tolerate, or were unwilling to undergo splenectomy, with either a baseline platelet count less than 30 × 109 /L or the presence of bleeding symptoms and further need of ITP-specific treatments, were enrolled. Patients received decitabine at 3.5 mg/m2 intravenously for three consecutive days per cycle, for three cycles with a four-week interval between cycles. All patients were assessed every week during the first 12 weeks and at four-week intervals thereafter. We screened 49 patients for eligibility. Four patients were excluded and 45 received decitabine. At the end of decitabine treatment, complete response was achieved in eight patients (17.78%), and partial response was achieved in 15 patients (33.33%). The median time to initial response was 28 days (range, 14-70 days). Furthermore, seven relapsed patients received decitabine retreatment and all showed platelet response, including one complete response and six partial responses. Sustained response rates at 6, 12 and 18 months were 44.44% (20/45), 31.11% (14/45) and 20.0% (9/45), respectively. For responders, immune thrombocytopenia-related symptoms, fatigue, psychological health, fear, and overall quality of life were significantly improved. Adverse events were observed in 13 (28.89%) patients. No serious adverse events were recorded. In conclusion, low dose decitabine is potentially effective and safe in the management of adults with refractory immune thrombocytopenia. This trial is registered with clinicaltrials.gov identifier: NCT01568333.
Collapse
Affiliation(s)
- Hai Zhou
- Department of Hematology Qilu Hospital, Shandong University Jinan China
| | - Ping Qin
- Department of Hematology Qilu Hospital, Shandong University Jinan China
| | - Qiang Liu
- Department of Hematology Qilu Hospital, Shandong University Jinan China
| | - Chenglu Yuan
- Department of Hematology Qilu Hospital (Qingdao), Shandong University Qingdao China
| | - Yunliang Hao
- Department of Hematology Jining No.1 People's Hospital Jining China
| | - Haiyan Zhang
- Department of Hematology Linyi People's Hospital Linyi China
| | - Zhencheng Wang
- Department of Hematology Zibo Central Hospital Zibo China
| | - Xuehong Ran
- Department of Hematology Weifang People's Hospital Weifang China
| | - Xiaoxia Chu
- Department of Hematology Yantai Yuhuangding Hospital Yantai China
| | - Wenzheng Yu
- Department of Hematology Binzhou Medical University Hospital Binzhou China
| | - Xin Wang
- Department of Hematology Provincial Hospital Affiliated to Shandong University Jinan China
| | - Yu Hou
- Department of Hematology Qilu Hospital, Shandong University Jinan China
| | - Jun Peng
- Department of Hematology Qilu Hospital, Shandong University Jinan China
- Shandong Provincial Key Laboratory of Immunohematology Qilu Hospital, Shandong University Jinan China
- Leading Research Group of Scientific Innovation, Department of Science and Technology of Shandong Province Qilu Hospital, Shandong University Jinan China
| | - Ming Hou
- Department of Hematology Qilu Hospital, Shandong University Jinan China
- Shandong Provincial Key Laboratory of Immunohematology Qilu Hospital, Shandong University Jinan China
- Leading Research Group of Scientific Innovation, Department of Science and Technology of Shandong Province Qilu Hospital, Shandong University Jinan China
| |
Collapse
|
25
|
Awada H, Mahfouz RZ, Kishtagari A, Kuzmanovic T, Durrani J, Kerr CM, Patel BJ, Visconte V, Radivoyevitch T, Lichtin A, Carraway HE, Maciejewski JP, Saunthararajah Y. Extended experience with a non-cytotoxic DNMT1-targeting regimen of decitabine to treat myeloid malignancies. Br J Haematol 2019; 188:924-929. [PMID: 31736067 PMCID: PMC7154732 DOI: 10.1111/bjh.16281] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/24/2019] [Indexed: 11/30/2022]
Abstract
The nucleoside analogue decitabine can deplete the epigenetic regulator DNA methyltransferase 1 (DNMT1), an effect that occurs, and is saturated at, low concentrations/doses. A reason to pursue this molecular-targeted effect instead of the DNA damage/cytotoxicity produced with high concentrations/doses, is that non-cytotoxic DNMT1-depletion can cytoreduce even p53-null myeloid malignancies while sparing normal haematopoiesis. We thus identified minimum doses of decitabine (0·1-0·2 mg/kg) that deplete DNMT1 without off-target anti-metabolite effects/cytotoxicity, and then administered these well-tolerated doses frequently 1-2X/week to increase S-phase dependent DNMT1-depletion, and used a Myeloid Malignancy Registry to evaluate long-term outcomes in 69 patients treated this way. Consistent with the scientific rationale, treatment was well-tolerated and durable responses were produced (~40%) in genetically heterogeneous disease and the very elderly.
Collapse
Affiliation(s)
- Hassan Awada
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Reda Z Mahfouz
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ashwin Kishtagari
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA.,Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Teodora Kuzmanovic
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jibran Durrani
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Cassandra M Kerr
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Bhumika J Patel
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA.,Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Valeria Visconte
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Tomas Radivoyevitch
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Alan Lichtin
- Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Hetty E Carraway
- Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jaroslaw P Maciejewski
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA.,Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Yogen Saunthararajah
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA.,Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
26
|
Donnelly D, Aung PP, Jour G. The "-OMICS" facet of melanoma: Heterogeneity of genomic, proteomic and metabolomic biomarkers. Semin Cancer Biol 2019; 59:165-174. [PMID: 31295564 DOI: 10.1016/j.semcancer.2019.06.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 01/23/2023]
Abstract
In the recent decade, cutting edge molecular and proteomic analysis platforms revolutionized biomarkers discovery in cancers. Melanoma is the prototype with over 51,100 biomarkers discovered and investigated thus far. These biomarkers include tissue based tumor cell and tumor microenvironment biomarkers and circulating biomarkers including tumor DNA (cf-DNA), mir-RNA, proteins and metabolites. These biomarkers provide invaluable information for diagnosis, prognosis and play an important role in prediction of treatment response. In this review, we summarize the most recent discoveries in each of these biomarker categories. We will discuss the challenges in their implementation and standardization and conclude with some perspectives in melanoma biomarker research.
Collapse
Affiliation(s)
- Douglas Donnelly
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, NY, United States; Interdisciplinary Melanoma Program, New York University School of Medicine, New York, NY, United States
| | - Phyu P Aung
- Department of Pathology, Section of Dermatopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - George Jour
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, NY, United States; Interdisciplinary Melanoma Program, New York University School of Medicine, New York, NY, United States; Department of Pathology, New York University School of Medicine, New York, NY, United States.
| |
Collapse
|
27
|
Ueda M, El-Jurdi N, Cooper B, Caimi P, Baer L, Kolk M, Brister L, Wald DN, Otegbeye F, Lazarus HM, Sandmaier BM, William B, Saunthararajah Y, Woost P, Jacobberger JW, de Lima M. Low-Dose Azacitidine with DNMT1 Level Monitoring to Treat Post-Transplantation Acute Myelogenous Leukemia or Myelodysplastic Syndrome Relapse. Biol Blood Marrow Transplant 2019; 25:1122-1127. [PMID: 30599207 DOI: 10.1016/j.bbmt.2018.12.764] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/21/2018] [Indexed: 11/18/2022]
Abstract
Patients with early relapse of acute myelogenous leukemia (AML) or myelodysplastic syndrome (MDS) after hematopoietic cell transplantation (HCT) have a poor prognosis, and no standard treatment. Twenty-nine patients with early disease recurrence post-transplantation were treated with azacitidine (AZA; median dose, 40 mg/m2/day for 5 to 7 days). At a median follow-up of 6.3 months (range, 1.3 to 41.1 months), 7 patients (27%) had a response to AZA, defined as complete remission, hematologic improvement, or improved donor chimerism. Response occurred after a median of 3 cycles, and the median duration of response was 70 days (range, 26 to 464 days). Median survival was 6.8 months (95% confidence interval, 3.8 to 11.1 months). Survival was similar in the patients receiving an AZA dose ≤40 mg/m2 and those receiving an AZA dose >40 mg/m2. Six patients receiving donor lymphocyte infusion with AZA had a response or stable disease without worsening graft-versus-host-disease. We retrospectively used a flow cytometry assay to explore DNA-methyltransferase-1 in blood mononuclear cells as a potential pharmacodynamic marker to assess intracellular drug targeting in 8 patients. No correlation with AZA dose or response was observed. Low-dose AZA appears to have comparable efficacy to higher-dose AZA post-HCT. A significant proportion of this poor-risk population responded to low-dose AZA, suggesting a dose-independent, noncytotoxic mechanism for antileukemic activity.
Collapse
Affiliation(s)
- Masumi Ueda
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, Washington
| | - Najla El-Jurdi
- University Hospitals Seidman Cancer Center and Case Western Reserve University, Cleveland, Ohio; Case Comprehensive Cancer Center, Cleveland, Ohio
| | - Brenda Cooper
- University Hospitals Seidman Cancer Center and Case Western Reserve University, Cleveland, Ohio; Case Comprehensive Cancer Center, Cleveland, Ohio
| | - Paolo Caimi
- University Hospitals Seidman Cancer Center and Case Western Reserve University, Cleveland, Ohio; Case Comprehensive Cancer Center, Cleveland, Ohio
| | - Linda Baer
- University Hospitals Seidman Cancer Center and Case Western Reserve University, Cleveland, Ohio; Case Comprehensive Cancer Center, Cleveland, Ohio
| | - Merle Kolk
- University Hospitals Seidman Cancer Center and Case Western Reserve University, Cleveland, Ohio; Case Comprehensive Cancer Center, Cleveland, Ohio
| | - Lauren Brister
- University Hospitals Seidman Cancer Center and Case Western Reserve University, Cleveland, Ohio; Case Comprehensive Cancer Center, Cleveland, Ohio
| | - David N Wald
- University Hospitals Seidman Cancer Center and Case Western Reserve University, Cleveland, Ohio; Department of Pathology, Case Western Reserve University, Cleveland, Ohio; Case Comprehensive Cancer Center, Cleveland, Ohio
| | - Folashade Otegbeye
- University Hospitals Seidman Cancer Center and Case Western Reserve University, Cleveland, Ohio; Case Comprehensive Cancer Center, Cleveland, Ohio
| | - Hillard M Lazarus
- University Hospitals Seidman Cancer Center and Case Western Reserve University, Cleveland, Ohio; Case Comprehensive Cancer Center, Cleveland, Ohio
| | - Brenda M Sandmaier
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, Washington
| | - Basem William
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Yogen Saunthararajah
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio; Case Comprehensive Cancer Center, Cleveland, Ohio
| | - Philip Woost
- Case Comprehensive Cancer Center, Cleveland, Ohio
| | - James W Jacobberger
- University Hospitals Seidman Cancer Center and Case Western Reserve University, Cleveland, Ohio; Case Comprehensive Cancer Center, Cleveland, Ohio
| | - Marcos de Lima
- University Hospitals Seidman Cancer Center and Case Western Reserve University, Cleveland, Ohio; Case Comprehensive Cancer Center, Cleveland, Ohio.
| |
Collapse
|
28
|
Chilakala S, Feng Y, Li L, Mahfouz R, Quteba E, Saunthararajah Y, Xu Y. Tracking Decitabine Incorporation into Malignant Myeloid Cell DNA in vitro and in vivo by LC-MS/MS with Enzymatic Digestion. Sci Rep 2019; 9:4558. [PMID: 30872721 PMCID: PMC6418203 DOI: 10.1038/s41598-019-41070-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 02/27/2019] [Indexed: 12/31/2022] Open
Abstract
The DNA hypomethylating agents decitabine and 5-azacytidine are the only two drugs approved for treatment of all subtypes of the myeloid malignancy myelodysplastic syndromes (MDS). The key to drug activity is incorporation into target cell DNA, however, a practical method to measure this incorporation is un-available. Here, we report a sensitive and specific LC-MS/MS method to simultaneously measure decitabine incorporation and DNA hypomethylation. A stable heavy isotope of 2'-deoxycytidine was used as an internal standard and one-step multi-enzyme digestion was used to release the DNA bound drug. Enzyme-released decitabine along with other mononucleosides were separated by a reverse-phase C18 column and quantified by mass spectrometry using multiple-reaction-monitoring (MRM) mode, with a lower limit of quantitation at 1.00 nM. In vitro studies demonstrated dosage and time-dependent incorporation of decitabine into myeloid leukemia cell DNA that correlated with extent of DNA hypomethylation. When applied to clinical samples serially collected from MDS patients treated with decitabine, the method again demonstrated correlation between decitabine DNA-incorporation and DNA hypomethylation. This novel assay to measure the intended molecular pharmacodynamic effect of decitabine therapy can therefore potentially provide insights into mechanisms underlying sensitivity versus resistance to therapy.
Collapse
Affiliation(s)
- Sujatha Chilakala
- Department of Chemistry, Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio, 44115, USA
| | - Ye Feng
- Department of Chemistry, Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio, 44115, USA
| | - Lan Li
- Department of Chemistry, Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio, 44115, USA
| | - Reda Mahfouz
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, 2010 East 90th Street, Cleveland, OH, 44195, USA
| | - Ebrahem Quteba
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, 2010 East 90th Street, Cleveland, OH, 44195, USA
| | - Yogen Saunthararajah
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, 2010 East 90th Street, Cleveland, OH, 44195, USA
| | - Yan Xu
- Department of Chemistry, Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio, 44115, USA.
| |
Collapse
|
29
|
Velcheti V, Schrump D, Saunthararajah Y. Ultimate Precision: Targeting Cancer but Not Normal Self-replication. Am Soc Clin Oncol Educ Book 2018; 38:950-963. [PMID: 30231326 DOI: 10.1200/edbk_199753] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Self-replication is the engine that drives all biologic evolution, including neoplastic evolution. A key oncotherapy challenge is to target this, the heart of malignancy, while sparing the normal self-replication mandatory for health and life. Self-replication can be demystified: it is activation of replication, the most ancient of cell programs, uncoupled from activation of lineage-differentiation, metazoan programs more recent in origin. The uncoupling can be physiologic, as in normal tissue stem cells, or pathologic, as in cancer. Neoplastic evolution selects to disengage replication from forward-differentiation where intrinsic replication rates are the highest, in committed progenitors that have division times measured in hours versus weeks for tissue stem cells, via partial loss of function in master transcription factors that activate terminal-differentiation programs (e.g., GATA4) or in the coactivators they use for this purpose (e.g., ARID1A). These loss-of-function mutations bias master transcription factor circuits, which normally regulate corepressor versus coactivator recruitment, toward corepressors (e.g., DNMT1) that repress rather than activate terminal-differentiation genes. Pharmacologic inhibition of the corepressors rebalances to coactivator function, activating lineage-differentiation genes that dominantly antagonize MYC (the master transcription factor coordinator of replication) to terminate malignant self-replication. Physiologic self-replication continues, because the master transcription factors in tissue stem cells activate stem cell, not terminal-differentiation, programs. Druggable corepressor proteins are thus the barriers between self-replicating cancer cells and the terminal-differentiation fates intended by their master transcription factor content. This final common pathway to oncogenic self-replication, being separate and distinct from the normal, offers the favorable therapeutic indices needed for clinical progress.
Collapse
Affiliation(s)
- Vamsidhar Velcheti
- From the Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH; Thoracic Oncology, National Cancer Institute, Bethesda, MD
| | - David Schrump
- From the Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH; Thoracic Oncology, National Cancer Institute, Bethesda, MD
| | - Yogen Saunthararajah
- From the Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH; Thoracic Oncology, National Cancer Institute, Bethesda, MD
| |
Collapse
|
30
|
Imanishi S, Umezu T, Kobayashi C, Ohta T, Ohyashiki K, Ohyashiki JH. Chromatin Regulation by HP1γ Contributes to Survival of 5-Azacytidine-Resistant Cells. Front Pharmacol 2018; 9:1166. [PMID: 30386240 PMCID: PMC6198088 DOI: 10.3389/fphar.2018.01166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 09/26/2018] [Indexed: 12/20/2022] Open
Abstract
Recent investigations of the treatment for hematologic neoplasms have focused on targeting epigenetic regulators. The DNA methyltransferase inhibitor 5-azacytidine (AZA) has produced good results in the treatment of patients with myelodysplastic syndromes. The mechanism underlying its pharmacological activity involves many cellular processes including histone modifications, but chromatin regulation in AZA-resistant cells is still largely unknown. Therefore, we compared human leukemia cells with AZA resistance and their AZA-sensitive counterparts with regard to the response of histone modifications and their readers to AZA treatment to identify novel molecular target(s) in hematologic neoplasms with AZA resistance. We observed an a decrease of HP1γ, a methylated lysine 9 of histone H3-specific reader protein, in AZA-sensitive cells after treatment, whereas AZA treatment did not affect HP1 family proteins in AZA-resistant cells. The expression of shRNA targeting HP1γ reduced viability and induced apoptosis specifically in AZA-resistant cells, which accompanied with down-regulation of ATM/BRCA1 signaling, indicating that chromatin regulation by HP1γ plays a key role in the survival of AZA-resistant cells. In addition, the amount of HP1γ protein in AZA-sensitive and AZA-resistant cells was decreased after treatment with the bromodomain inhibitor I-BET151 at a dose that inhibited the growth of AZA-resistant cells more strongly than that of AZA-sensitive cells. Our findings demonstrate that treatment with AZA, which affects an epigenetic reader protein and targets HP1γ, or a bromodomain inhibitor is a novel strategy that can be used to treat patients with hematopoietic neoplasms with AZA resistance.
Collapse
Affiliation(s)
- Satoshi Imanishi
- Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Tomohiro Umezu
- Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Chiaki Kobayashi
- Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Tomohiko Ohta
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, Kawasaki, Japan
| | - Kazuma Ohyashiki
- Department of Hematology, Tokyo Medical University, Tokyo, Japan
| | - Junko H Ohyashiki
- Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
31
|
Gu X, Ebrahem Q, Mahfouz RZ, Hasipek M, Enane F, Radivoyevitch T, Rapin N, Przychodzen B, Hu Z, Balusu R, Cotta CV, Wald D, Argueta C, Landesman Y, Martelli MP, Falini B, Carraway H, Porse BT, Maciejewski J, Jha BK, Saunthararajah Y. Leukemogenic nucleophosmin mutation disrupts the transcription factor hub that regulates granulomonocytic fates. J Clin Invest 2018; 128:4260-4279. [PMID: 30015632 PMCID: PMC6159976 DOI: 10.1172/jci97117] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 07/10/2018] [Indexed: 12/23/2022] Open
Abstract
Nucleophosmin (NPM1) is among the most frequently mutated genes in acute myeloid leukemia (AML). It is not known, however, how the resulting oncoprotein mutant NPM1 is leukemogenic. To reveal the cellular machinery in which NPM1 participates in myeloid cells, we analyzed the endogenous NPM1 protein interactome by mass spectrometry and discovered abundant amounts of the master transcription factor driver of monocyte lineage differentiation PU.1 (also known as SPI1). Mutant NPM1, which aberrantly accumulates in cytoplasm, dislocated PU.1 into cytoplasm with it. CEBPA and RUNX1, the master transcription factors that collaborate with PU.1 to activate granulomonocytic lineage fates, remained nuclear; but without PU.1, their coregulator interactions were toggled from coactivators to corepressors, repressing instead of activating more than 500 granulocyte and monocyte terminal differentiation genes. An inhibitor of nuclear export, selinexor, by locking mutant NPM1/PU.1 in the nucleus, activated terminal monocytic fates. Direct depletion of the corepressor DNA methyltransferase 1 (DNMT1) from the CEBPA/RUNX1 protein interactome using the clinical drug decitabine activated terminal granulocytic fates. Together, these noncytotoxic treatments extended survival by more than 160 days versus vehicle in a patient-derived xenotransplant model of NPM1/FLT3-mutated AML. In sum, mutant NPM1 represses monocyte and granulocyte terminal differentiation by disrupting PU.1/CEBPA/RUNX1 collaboration, a transforming action that can be reversed by pharmacodynamically directed dosing of clinical small molecules.
Collapse
Affiliation(s)
- Xiaorong Gu
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Quteba Ebrahem
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Reda Z. Mahfouz
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Metis Hasipek
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Francis Enane
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Tomas Radivoyevitch
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Nicolas Rapin
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, and Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bartlomiej Przychodzen
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Zhenbo Hu
- Department of Hematology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Ramesh Balusu
- Department of Internal Medicine, Division of Hematologic Malignancies and Cellular Therapeutics, University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Claudiu V. Cotta
- Department of Clinical Pathology, Tomsich Pathology Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - David Wald
- Department of Clinical Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | | - Maria Paola Martelli
- Institute of Hematology, Center for Research in Hematology-Oncology (CREO), University of Perugia, Perugia, Italy
| | - Brunangelo Falini
- Institute of Hematology, Center for Research in Hematology-Oncology (CREO), University of Perugia, Perugia, Italy
| | - Hetty Carraway
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Bo T. Porse
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, and Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jaroslaw Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Babal K. Jha
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Yogen Saunthararajah
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
32
|
Chen YB, McCarthy PL, Hahn T, Holstein SA, Ueda M, Kröger N, Bishop M, de Lima M. Methods to prevent and treat relapse after hematopoietic stem cell transplantation with tyrosine kinase inhibitors, immunomodulating drugs, deacetylase inhibitors, and hypomethylating agents. Bone Marrow Transplant 2018; 54:497-507. [DOI: 10.1038/s41409-018-0269-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 06/18/2018] [Accepted: 06/18/2018] [Indexed: 11/09/2022]
|
33
|
Abstract
Acute myeloid leukemia (AML) is one of the best studied malignancies, and significant progress has been made in understanding the clinical implications of its disease biology. Unfortunately, drug development has not kept pace, as the '7+3' induction regimen remains the standard of care for patients fit for intensive therapy 40 years after its first use. Temporal improvements in overall survival were mostly confined to younger patients and driven by improvements in supportive care and use of hematopoietic stem cell transplantation. Multiple forms of novel therapy are currently in clinical trials and are attempting to bring bench discoveries to the bedside to benefit patients. These novel therapies include improved chemotherapeutic agents, targeted molecular inhibitors, cell cycle regulators, pro-apoptotic agents, epigenetic modifiers, and metabolic therapies. Immunotherapies in the form of vaccines; naked, conjugated and bispecific monoclonal antibodies; cell-based therapy; and immune checkpoint inhibitors are also being evaluated in an effort to replicate the success seen in other malignancies. Herein, we review the scientific basis of these novel therapeutic approaches, summarize the currently available evidence, and look into the future of AML therapy by highlighting key clinical studies and the challenges the field continues to face.
Collapse
|
34
|
Shapiro RM, Lazo-Langner A. Systematic review of azacitidine regimens in myelodysplastic syndrome and acute myeloid leukemia. BMC HEMATOLOGY 2018; 18:3. [PMID: 29435331 PMCID: PMC5793426 DOI: 10.1186/s12878-017-0094-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 12/18/2017] [Indexed: 01/10/2023]
Abstract
Background 5-Azacitidine administered as a 7-day dosing regimen (7–0-0) is approved in high risk IPSS myelodysplastic syndrome (MDS) patients. Alternative regimens such as a 5-day (5–0-0) or 7-day with a weekend break (5–2-2) are commonly used. No randomized controlled trial has been done directly comparing all three dosing regimens. The objective of this study was to compare the efficacies of the 5–0-0, 5–2-2, and 7–0-0 regimens in MDS and AML. Methods A systematic review was conducted using MEDLINE, EMBASE and CENTRAL. Eligible studies were randomized controlled trials (RCTs), observational prospective and retrospective studies. The primary clinical outcomes were Objective Response Rate (ORR) defined as the sum of complete response (CR), partial response (PR), and hematological improvement (HI) as defined by the IWG 2006 criteria. A meta-analysis of simple proportions was conducted using a random effects model with weights defined according to Laird and Mosteller. Comparisons between groups were not attempted due to the heterogeneity of study designs. Results The only RCT directly comparing alternative azacitidine regimens showed no difference in ORR between the 5–0-0 and 5–2-2 regimens. All other RCTs compared a dosing regimen to conventional care. The pooled proportion of ORR was 44.8% with 95% CI (42.8%, 45.5%) for 7–0-0, 41.2% with 95% CI (39.2%, 41.9%) for 5–0-0, and 45.8% with 95% CI (42.6%, 46.4%) for 5–2-2. Conclusions Indirect comparison of alternative azacitidine dosing regimens in MDS and AML shows a benefit for the 7-day regimen in attaining ORR. Additional RCTs are required to definitively address this comparison. Electronic supplementary material The online version of this article (10.1186/s12878-017-0094-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Roman M Shapiro
- 1Department of Medicine, Western University, London, ON Canada
| | - Alejandro Lazo-Langner
- 2Department of Medicine, Division of Hematology, Western University, London, ON Canada.,3Department of Epidemiology & Biostatistics, Western University, London, ON Canada.,4Hematology Division, London Health Sciences Centre, 800 Commissioners Rd E, Rm E6-216A, London, ON N6A 5W9 Canada
| |
Collapse
|
35
|
Parisi S, Ratti S, Mongiorgi S, Suh PG, Manzoli L, McCubrey JA, Cocco L, Follo MY, Finelli C. Current therapy and new drugs: a road to personalized treatment of myelodysplastic syndromes. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2018. [DOI: 10.1080/23808993.2018.1419820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Sarah Parisi
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology “L. e A. Seràgnoli”, S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Stefano Ratti
- Cellular Signalling Laboratory, Institute of Human Anatomy DIBINEM, University of Bologna, Bologna, Italy
| | - Sara Mongiorgi
- Cellular Signalling Laboratory, Institute of Human Anatomy DIBINEM, University of Bologna, Bologna, Italy
| | - Pann-Ghill Suh
- School of Life Sciences, UNIST, Ulsan, Republic of Korea
| | - Lucia Manzoli
- Cellular Signalling Laboratory, Institute of Human Anatomy DIBINEM, University of Bologna, Bologna, Italy
| | - James A. McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Lucio Cocco
- Cellular Signalling Laboratory, Institute of Human Anatomy DIBINEM, University of Bologna, Bologna, Italy
| | - Matilde Y. Follo
- Cellular Signalling Laboratory, Institute of Human Anatomy DIBINEM, University of Bologna, Bologna, Italy
| | - Carlo Finelli
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology “L. e A. Seràgnoli”, S. Orsola-Malpighi Hospital, Bologna, Italy
| |
Collapse
|
36
|
Velcheti V, Radivoyevitch T, Saunthararajah Y. Higher-Level Pathway Objectives of Epigenetic Therapy: A Solution to the p53 Problem in Cancer. Am Soc Clin Oncol Educ Book 2017; 37:812-824. [PMID: 28561650 DOI: 10.1200/edbk_174175] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Searches for effective yet nontoxic oncotherapies are searches for exploitable differences between cancer and normal cells. In its core of cell division, cancer resembles normal life, coordinated by the master transcription factor MYC. Outside of this core, apoptosis and differentiation programs, which dominantly antagonize MYC to terminate cell division, necessarily differ between cancer and normal cells, as apoptosis is suppressed by biallelic inactivation of the master regulator of apoptosis, p53, or its cofactor p16/CDKN2A in approximately 80% of cancers. These genetic alterations impact therapy: conventional oncotherapy applies stress upstream of p53 to upregulate it and causes apoptosis (cytotoxicity)-a toxic, futile intent when it is absent or nonfunctional. Differentiation, on the other hand, cannot be completely suppressed because it is a continuum along which all cells exist. Neoplastic evolution stalls advances along this continuum at its most proliferative points-in lineage-committed progenitors that have division times measured in hours compared with weeks for tissue stem cells. This differentiation arrest is by mutations/deletions in differentiation-driving transcription factors or their coactivators that shift balances of gene-regulating protein complexes toward corepressors that repress instead of activate hundreds of terminal differentiation genes. That is, malignant proliferation without differentiation, also referred to as cancer "stem" cell self-renewal, hinges on druggable corepressors. Inhibiting these corepressors (e.g., DNMT1) releases p53-independent terminal differentiation in cancer stem cells but preserves self-renewal of normal stem cells that express stem cell transcription factors. Thus, epigenetic-differentiation therapies exploit a fundamental distinction between cancer and normal stem cell self-renewal and have a pathway of action downstream of genetic defects in cancer, affording favorable therapeutic indices needed for clinical progress.
Collapse
Affiliation(s)
- Vamsidhar Velcheti
- From the Department of Hematology & Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH; Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH; Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Tomas Radivoyevitch
- From the Department of Hematology & Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH; Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH; Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Yogen Saunthararajah
- From the Department of Hematology & Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH; Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH; Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
37
|
Molokie R, Lavelle D, Gowhari M, Pacini M, Krauz L, Hassan J, Ibanez V, Ruiz MA, Ng KP, Woost P, Radivoyevitch T, Pacelli D, Fada S, Rump M, Hsieh M, Tisdale JF, Jacobberger J, Phelps M, Engel JD, Saraf S, Hsu LL, Gordeuk V, DeSimone J, Saunthararajah Y. Oral tetrahydrouridine and decitabine for non-cytotoxic epigenetic gene regulation in sickle cell disease: A randomized phase 1 study. PLoS Med 2017; 14:e1002382. [PMID: 28880867 PMCID: PMC5589090 DOI: 10.1371/journal.pmed.1002382] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 08/03/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Sickle cell disease (SCD), a congenital hemolytic anemia that exacts terrible global morbidity and mortality, is driven by polymerization of mutated sickle hemoglobin (HbS) in red blood cells (RBCs). Fetal hemoglobin (HbF) interferes with this polymerization, but HbF is epigenetically silenced from infancy onward by DNA methyltransferase 1 (DNMT1). METHODS AND FINDINGS To pharmacologically re-induce HbF by DNMT1 inhibition, this first-in-human clinical trial (NCT01685515) combined 2 small molecules-decitabine to deplete DNMT1 and tetrahydrouridine (THU) to inhibit cytidine deaminase (CDA), the enzyme that otherwise rapidly deaminates/inactivates decitabine, severely limiting its half-life, tissue distribution, and oral bioavailability. Oral decitabine doses, administered after oral THU 10 mg/kg, were escalated from a very low starting level (0.01, 0.02, 0.04, 0.08, or 0.16 mg/kg) to identify minimal doses active in depleting DNMT1 without cytotoxicity. Patients were SCD adults at risk of early death despite standard-of-care, randomized 3:2 to THU-decitabine versus placebo in 5 cohorts of 5 patients treated 2X/week for 8 weeks, with 4 weeks of follow-up. The primary endpoint was ≥ grade 3 non-hematologic toxicity. This endpoint was not triggered, and adverse events (AEs) were not significantly different in THU-decitabine-versus placebo-treated patients. At the decitabine 0.16 mg/kg dose, plasma concentrations peaked at approximately 50 nM (Cmax) and remained elevated for several hours. This dose decreased DNMT1 protein in peripheral blood mononuclear cells by >75% and repetitive element CpG methylation by approximately 10%, and increased HbF by 4%-9% (P < 0.001), doubling fetal hemoglobin-enriched red blood cells (F-cells) up to approximately 80% of total RBCs. Total hemoglobin increased by 1.2-1.9 g/dL (P = 0.01) as reticulocytes simultaneously decreased; that is, better quality and efficiency of HbF-enriched erythropoiesis elevated hemoglobin using fewer reticulocytes. Also indicating better RBC quality, biomarkers of hemolysis, thrombophilia, and inflammation (LDH, bilirubin, D-dimer, C-reactive protein [CRP]) improved. As expected with non-cytotoxic DNMT1-depletion, platelets increased and neutrophils concurrently decreased, but not to an extent requiring treatment holds. As an early phase study, limitations include small patient numbers at each dose level and narrow capacity to evaluate clinical benefits. CONCLUSION Administration of oral THU-decitabine to patients with SCD was safe in this study and, by targeting DNMT1, upregulated HbF in RBCs. Further studies should investigate clinical benefits and potential harms not identified to date. TRIAL REGISTRATION ClinicalTrials.gov, NCT01685515.
Collapse
Affiliation(s)
- Robert Molokie
- Department of Medicine, University of Illinois Hospital and Health Sciences System, Chicago, Illinois, United States of America
- Jesse Brown VA Medical Center, Chicago, Illinois, United States of America
| | - Donald Lavelle
- Department of Medicine, University of Illinois Hospital and Health Sciences System, Chicago, Illinois, United States of America
- Jesse Brown VA Medical Center, Chicago, Illinois, United States of America
| | - Michel Gowhari
- Department of Medicine, University of Illinois Hospital and Health Sciences System, Chicago, Illinois, United States of America
| | - Michael Pacini
- Department of Medicine, University of Illinois Hospital and Health Sciences System, Chicago, Illinois, United States of America
| | - Lani Krauz
- Department of Medicine, University of Illinois Hospital and Health Sciences System, Chicago, Illinois, United States of America
| | - Johara Hassan
- Department of Medicine, University of Illinois Hospital and Health Sciences System, Chicago, Illinois, United States of America
| | - Vinzon Ibanez
- Jesse Brown VA Medical Center, Chicago, Illinois, United States of America
| | - Maria A. Ruiz
- Jesse Brown VA Medical Center, Chicago, Illinois, United States of America
| | - Kwok Peng Ng
- Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Philip Woost
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Tomas Radivoyevitch
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Daisy Pacelli
- Department of Medicine, University of Illinois Hospital and Health Sciences System, Chicago, Illinois, United States of America
| | - Sherry Fada
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Matthew Rump
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Matthew Hsieh
- Molecular and Clinical Hematology Section, National Institutes of Health, Bethesda, Maryland, United States of America
| | - John F. Tisdale
- Molecular and Clinical Hematology Section, National Institutes of Health, Bethesda, Maryland, United States of America
| | - James Jacobberger
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Mitch Phelps
- College of Pharmacy, The Ohio State University, Columbus, Ohio, United States of America
| | - James Douglas Engel
- Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Santhosh Saraf
- Department of Medicine, University of Illinois Hospital and Health Sciences System, Chicago, Illinois, United States of America
| | - Lewis L. Hsu
- Department of Medicine, University of Illinois Hospital and Health Sciences System, Chicago, Illinois, United States of America
| | - Victor Gordeuk
- Department of Medicine, University of Illinois Hospital and Health Sciences System, Chicago, Illinois, United States of America
| | - Joseph DeSimone
- Department of Medicine, University of Illinois Hospital and Health Sciences System, Chicago, Illinois, United States of America
| | - Yogen Saunthararajah
- Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| |
Collapse
|
38
|
Enane FO, Shuen WH, Gu X, Quteba E, Przychodzen B, Makishima H, Bodo J, Ng J, Chee CL, Ba R, Seng Koh L, Lim J, Cheong R, Teo M, Hu Z, Ng KP, Maciejewski J, Radivoyevitch T, Chung A, Ooi LL, Tan YM, Cheow PC, Chow P, Chan CY, Lim KH, Yerian L, Hsi E, Toh HC, Saunthararajah Y. GATA4 loss of function in liver cancer impedes precursor to hepatocyte transition. J Clin Invest 2017; 127:3527-3542. [PMID: 28758902 DOI: 10.1172/jci93488] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 06/08/2017] [Indexed: 12/18/2022] Open
Abstract
The most frequent chromosomal structural loss in hepatocellular carcinoma (HCC) is of the short arm of chromosome 8 (8p). Genes on the remaining homologous chromosome, however, are not recurrently mutated, and the identity of key 8p tumor-suppressor genes (TSG) is unknown. In this work, analysis of minimal commonly deleted 8p segments to identify candidate TSG implicated GATA4, a master transcription factor driver of hepatocyte epithelial lineage fate. In a murine model, liver-conditional deletion of 1 Gata4 allele to model the haploinsufficiency seen in HCC produced enlarged livers with a gene expression profile of persistent precursor proliferation and failed hepatocyte epithelial differentiation. HCC mimicked this gene expression profile, even in cases that were morphologically classified as well differentiated. HCC with intact chromosome 8p also featured GATA4 loss of function via GATA4 germline mutations that abrogated GATA4 interactions with a coactivator, MED12, or by inactivating mutations directly in GATA4 coactivators, including ARID1A. GATA4 reintroduction into GATA4-haploinsufficient HCC cells or ARID1A reintroduction into ARID1A-mutant/GATA4-intact HCC cells activated hundreds of hepatocyte genes and quenched the proliferative precursor program. Thus, disruption of GATA4-mediated transactivation in HCC suppresses hepatocyte epithelial differentiation to sustain replicative precursor phenotype.
Collapse
Affiliation(s)
- Francis O Enane
- Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Wai Ho Shuen
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Xiaorong Gu
- Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ebrahem Quteba
- Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Bartlomiej Przychodzen
- Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Hideki Makishima
- Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Juraj Bodo
- Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Joanna Ng
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Chit Lai Chee
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Rebecca Ba
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Lip Seng Koh
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Janice Lim
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Rachael Cheong
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Marissa Teo
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Zhenbo Hu
- Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Kwok Peng Ng
- Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jaroslaw Maciejewski
- Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Tomas Radivoyevitch
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Alexander Chung
- Department of Hepato-pancreato-biliary and Transplant Surgery and
| | | | - Yu Meng Tan
- Department of Hepato-pancreato-biliary and Transplant Surgery and
| | - Peng-Chung Cheow
- Department of Hepato-pancreato-biliary and Transplant Surgery and
| | - Pierce Chow
- Department of Hepato-pancreato-biliary and Transplant Surgery and
| | - Chung Yip Chan
- Department of Hepato-pancreato-biliary and Transplant Surgery and
| | - Kiat Hon Lim
- Department of Pathology, Singapore General Hospital, Singapore
| | - Lisa Yerian
- Clinical Pathology, Pathology Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Eric Hsi
- Clinical Pathology, Pathology Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Han Chong Toh
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Yogen Saunthararajah
- Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
39
|
Micevic G, Theodosakis N, Bosenberg M. Aberrant DNA methylation in melanoma: biomarker and therapeutic opportunities. Clin Epigenetics 2017; 9:34. [PMID: 28396701 PMCID: PMC5381063 DOI: 10.1186/s13148-017-0332-8] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/24/2017] [Indexed: 12/18/2022] Open
Abstract
Aberrant DNA methylation is an epigenetic hallmark of melanoma, known to play important roles in melanoma formation and progression. Recent advances in genome-wide methylation methods have provided the means to identify differentially methylated genes, methylation signatures, and potential biomarkers. However, despite considerable effort and advances in cataloging methylation changes in melanoma, many questions remain unanswered. The aim of this review is to summarize recent developments, emerging trends, and important unresolved questions in the field of aberrant DNA methylation in melanoma. In addition to reviewing recent developments, we carefully synthesize the findings in an effort to provide a framework for understanding the current state and direction of the field. To facilitate clarity, we divided the review into DNA methylation changes in melanoma, biomarker opportunities, and therapeutic developments. We hope this review contributes to accelerating the utilization of the diagnostic, prognostic, and therapeutic potential of DNA methylation for the benefit of melanoma patients.
Collapse
Affiliation(s)
- Goran Micevic
- Department of Dermatology, Yale University School of Medicine, New Haven, CT 06520 USA.,Department of Pathology, Yale University School of Medicine, New Haven, CT 06520 USA
| | - Nicholas Theodosakis
- Department of Dermatology, Yale University School of Medicine, New Haven, CT 06520 USA.,Department of Pathology, Yale University School of Medicine, New Haven, CT 06520 USA
| | - Marcus Bosenberg
- Department of Dermatology, Yale University School of Medicine, New Haven, CT 06520 USA.,Department of Pathology, Yale University School of Medicine, New Haven, CT 06520 USA
| |
Collapse
|
40
|
Programmed cell death-1 pathway inhibition in myeloid malignancies: implications for myeloproliferative neoplasms. Ann Hematol 2017; 96:919-927. [DOI: 10.1007/s00277-016-2915-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 12/25/2016] [Indexed: 01/22/2023]
|
41
|
Shahrabi S, Khosravi A, Shahjahani M, Rahim F, Saki N. Genetics and Epigenetics of Myelodysplastic Syndromes and Response to Drug Therapy: New Insights. Oncol Rev 2016; 10:311. [PMID: 28058097 PMCID: PMC5178845 DOI: 10.4081/oncol.2016.311] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 12/06/2016] [Indexed: 12/12/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are a heterogeneous group of hematologic neoplasms ocurring mostly in the elderly. The clinical outcome of MDS patients is still poor despite progress in treatment approaches. About 90% of patients harbor at least one somatic mutation. This review aimed to assess the potential of molecular abnormalities in understanding pathogenesis, prognosis, diagnosis and in guiding choice of proper therapy in MDS patients. Papers related to this topic from 2000 to 2016 in PubMed and Scopus databases were searched and studied. The most common molecular abnormalities were TET2, ASXL1 as well as molecules involved in spliceosome machinery (U2AF1, SRSF2 and SF3B1). Patients with defects in TET2 molecule show better response to treatment with azacitidine. IDH and DNMT3A mutations are associated with a good response to decitabine therapy. In addition, patients with del5q subtype harboring TP53 mutation do not show a good response to lenalidomide therapy. In general, the results of this study show that molecular abnormalities can be associated with the occurrence of a specific morphological phenotype in patients. Therefore, considering the morphology of patients, different gene profiling methods can be selected to choice the most appropriate therapeutic measure in these patients in addition to faster and more cost-effective diagnosis of molecular abnormalities.
Collapse
Affiliation(s)
- Saeid Shahrabi
- Department of Biochemistry and Hematology, Semnan University of Medical Sciences, Semnan
| | - Abbas Khosravi
- Health Research Institute, Thalassemia and Hemoglobinopathy Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz
| | - Mohammad Shahjahani
- Colestan Hospital Clinical Research Development Unit. Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fakher Rahim
- Health Research Institute, Thalassemia and Hemoglobinopathy Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz
| | - Najmaldin Saki
- Health Research Institute, Thalassemia and Hemoglobinopathy Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz
- Colestan Hospital Clinical Research Development Unit. Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
42
|
Waespe N, Van Den Akker M, Klaassen RJ, Lieberman L, Irwin MS, Ali SS, Abdelhaleem M, Zlateska B, Liebman M, Cada M, Schechter T, Dror Y. Response to treatment with azacitidine in children with advanced myelodysplastic syndrome prior to hematopoietic stem cell transplantation. Haematologica 2016; 101:1508-1515. [PMID: 27540140 DOI: 10.3324/haematol.2016.145821] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 08/18/2016] [Indexed: 12/14/2022] Open
Abstract
Advanced myelodysplastic syndrome harbors a high risk of progression to acute myeloid leukemia and poor prognosis. In children, there is no established treatment to prevent or delay progression to leukemia prior to hematopoietic stem cell transplantation. Azacitidine is a hypomethylating agent, which was shown to slow progression to leukemia in adults with myelodysplastic syndrome. There is little data on the efficacy of azacitidine in children. We reviewed 22 pediatric patients with advanced myelodysplastic syndrome from a single center, diagnosed between January 2000 and December 2015. Of those, eight patients received off-label azacitidine before hematopoietic stem cell transplantation. A total of 31 cycles were administered and modification or delay occurred in four of them due to cytopenias, infection, nausea/vomiting, and transient renal impairment. Bone marrow blast percentages in azacitidine-treated patients decreased significantly from a median of 15% (range 9-31%) at the start of treatment to 5.5% (0-12%, P=0.02) before hematopoietic stem cell transplantation. Following azacitidine treatment, four patients (50%) achieved marrow remission, and none progressed. In contrast, three untreated patients (21.4%) had progressive disease characterized by >50% increase in blast counts or progression to leukemia. Azacitidine-treated patients had significantly increased 4-year event-free survival (P=0.04); predicted 4-year overall survival was 100% versus 69.3% in untreated patients (P=0.1). In summary, azacitidine treatment prior to hematopoietic stem cell transplantation was well tolerated in pediatric patients with advanced myelodysplastic syndrome, led to partial or complete bone marrow response in seven of eight patients (87.5%), and correlated with superior event-free survival in this cohort.
Collapse
Affiliation(s)
- Nicolas Waespe
- Marrow Failure and Myelodysplasia Program, Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, Canada.,Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Machiel Van Den Akker
- Marrow Failure and Myelodysplasia Program, Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, Canada.,Pediatric Hematology/Oncology, UZ Brussel, Jette, Belgium
| | - Robert J Klaassen
- Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - Lani Lieberman
- Department of Laboratory Medicine, University Health Network, Toronto, Canada
| | - Meredith S Irwin
- Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, Canada
| | - Salah S Ali
- Bone Marrow Transplantation Program, Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, Canada
| | - Mohamed Abdelhaleem
- Department of Pediatric Laboratory Medicine, Division of Hematopathology, The Hospital for Sick Children, Toronto, Canada
| | - Bozana Zlateska
- Marrow Failure and Myelodysplasia Program, Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, Canada.,Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Mira Liebman
- Marrow Failure and Myelodysplasia Program, Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, Canada
| | - Michaela Cada
- Marrow Failure and Myelodysplasia Program, Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, Canada
| | - Tal Schechter
- Bone Marrow Transplantation Program, Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, Canada
| | - Yigal Dror
- Marrow Failure and Myelodysplasia Program, Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, Canada .,Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada.,Institute of Medical Science, University of Toronto, Canada
| |
Collapse
|
43
|
Mutations of myelodysplastic syndromes (MDS): An update. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 769:47-62. [DOI: 10.1016/j.mrrev.2016.04.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/11/2016] [Indexed: 01/08/2023]
|
44
|
Mei Q, Chen M, Lu X, Li X, Duan F, Wang M, Luo G, Han W. An open-label, single-arm, phase I/II study of lower-dose decitabine based therapy in patients with advanced hepatocellular carcinoma. Oncotarget 2016; 6:16698-711. [PMID: 25895027 PMCID: PMC4599300 DOI: 10.18632/oncotarget.3677] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 03/04/2015] [Indexed: 12/14/2022] Open
Abstract
Purpose We conducted this phase I/II clinical trial to determine the safety and efficacy of lower-dose decitabine based therapy in pretreated patients with advanced HCC. Experimental Design Patients with advanced HCC were eligible. The administered dose of decitabine was 6 mg/m2/d intravenously on days 1 to 5 of a 28-day cycle. Additional therapies were given based on their disease progression status. The endpoint was to ensure the safety, hepatotoxicity, clinical responses, progression-free survival (PFS) and pharmacodynamics assay of lower-dose decitabine. Results Fifteen patients were enrolled. The favorable adverse events and liver function profiles were observed. The most beneficial responses were 1 complete response (CR), 6 stable disease (SD) and 8 progressive disease (PD). MRI liver scans post-treatment indicated a unique and specific characteristic. The immunohistochemistry result from the liver biopsy exhibited noteworthy CTL responses. Median PFS was 4 months (95% CI 1.7, 7), comparing favorably with existing therapeutic options. Expression decrement of DNMT1 and global DNA hypomethylation were observed in PBMCs after lower-dose decitabine treatment. Conclusion The lower-dose decitabine based treatment resulted in beneficial clinical response and favorable toxicity profiles in patients with advanced HCC. The prospective evaluations of decitabine administration schemes and tumor tissue-based pharmacodynamics effect are warranted in future trials.
Collapse
Affiliation(s)
- Qian Mei
- Department of Molecular Biology, School of Life Sciences, Chinese PLA General Hospital, Beijing, P. R. China.,Department of Bio-therapeutic, School of Life Sciences, Chinese PLA General Hospital, Beijing, P. R. China
| | - Meixia Chen
- Department of Molecular Biology, School of Life Sciences, Chinese PLA General Hospital, Beijing, P. R. China.,Department of Bio-therapeutic, School of Life Sciences, Chinese PLA General Hospital, Beijing, P. R. China
| | - Xuechun Lu
- Department of Molecular Biology, School of Life Sciences, Chinese PLA General Hospital, Beijing, P. R. China.,Department of Bio-therapeutic, School of Life Sciences, Chinese PLA General Hospital, Beijing, P. R. China
| | - Xiang Li
- Department of Molecular Biology, School of Life Sciences, Chinese PLA General Hospital, Beijing, P. R. China.,Department of Bio-therapeutic, School of Life Sciences, Chinese PLA General Hospital, Beijing, P. R. China
| | - Feng Duan
- Department of Interventional Radiology, Chinese PLA General Hospital, Beijing, P. R. China
| | - Maoqiang Wang
- Department of Interventional Radiology, Chinese PLA General Hospital, Beijing, P. R. China
| | - Guangbin Luo
- Department of Molecular Biology, School of Life Sciences, Chinese PLA General Hospital, Beijing, P. R. China.,Department of Genetics and Genome Sciences, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Weidong Han
- Department of Molecular Biology, School of Life Sciences, Chinese PLA General Hospital, Beijing, P. R. China.,Department of Bio-therapeutic, School of Life Sciences, Chinese PLA General Hospital, Beijing, P. R. China
| |
Collapse
|
45
|
Botezatu L, Michel LC, Makishima H, Schroeder T, Germing U, Haas R, van der Reijden B, Marneth AE, Bergevoet SM, Jansen JH, Przychodzen B, Wlodarski M, Niemeyer C, Platzbecker U, Ehninger G, Unnikrishnan A, Beck D, Pimanda J, Hellström-Lindberg E, Malcovati L, Boultwood J, Pellagatti A, Papaemmanuil E, Le Coutre P, Kaeda J, Opalka B, Möröy T, Dührsen U, Maciejewski J, Khandanpour C. GFI1(36N) as a therapeutic and prognostic marker for myelodysplastic syndrome. Exp Hematol 2016; 44:590-595.e1. [PMID: 27080012 PMCID: PMC4917888 DOI: 10.1016/j.exphem.2016.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 03/31/2016] [Accepted: 04/03/2016] [Indexed: 01/06/2023]
Abstract
Inherited gene variants play an important role in malignant diseases. The transcriptional repressor growth factor independence 1 (GFI1) regulates hematopoietic stem cell (HSC) self-renewal and differentiation. A single-nucleotide polymorphism of GFI1 (rs34631763) generates a protein with an asparagine (N) instead of a serine (S) at position 36 (GFI136N) and has a prevalence of 3%–5% among Caucasians. Because GFI1 regulates myeloid development, we examined the role of GFI136N on the course of MDS disease. To this end, we determined allele frequencies of GFI136N in four independent MDS cohorts from the Netherlands and Belgium, Germany, the ICGC consortium, and the United States. The GFI136N allele frequency in the 723 MDS patients genotyped ranged between 9% and 12%. GFI136N was an independent adverse prognostic factor for overall survival, acute myeloid leukemia-free survival, and event-free survival in a univariate analysis. After adjustment for age, bone marrow blast percentage, IPSS score, mutational status, and cytogenetic findings, GFI136N remained an independent adverse prognostic marker. GFI136S homozygous patients exhibited a sustained response to treatment with hypomethylating agents, whereas GFI136N patients had a poor sustained response to this therapy. Because allele status of GFI136N is readily determined using basic molecular techniques, we propose inclusion of GFI136N status in future prospective studies for MDS patients to better predict prognosis and guide therapeutic decisions. GFI136N is present in about 9%–12% of all Caucasian patients with myelodysplastic syndrome. GFI136N is an independent, adverse prognostic factor for survival. GFI136N patients with myelodysplastic syndrome respond poorly to hypomethylating agents.
Collapse
Affiliation(s)
- Lacramioara Botezatu
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Lars C Michel
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Hideki Makishima
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland, OH, USA
| | - Thomas Schroeder
- Department of Hematology and Oncology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Ulrich Germing
- Department of Hematology and Oncology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Rainer Haas
- Department of Hematology and Oncology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Bert van der Reijden
- Department of Laboratory Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Anne E Marneth
- Department of Laboratory Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Saskia M Bergevoet
- Department of Laboratory Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Joop H Jansen
- Department of Laboratory Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Bartlomiej Przychodzen
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland, OH, USA
| | - Marcin Wlodarski
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University of Freiburg, Freiburg, Germany
| | - Charlotte Niemeyer
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University of Freiburg, Freiburg, Germany
| | - Uwe Platzbecker
- Department of Internal Medicine I, University Hospital TU Dresden, Dresden, Germany
| | - Gerhard Ehninger
- Department of Internal Medicine I, University Hospital TU Dresden, Dresden, Germany
| | - Ashwin Unnikrishnan
- Lowy Cancer Research Centre and Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
| | - Dominik Beck
- Lowy Cancer Research Centre and Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
| | - John Pimanda
- Lowy Cancer Research Centre and Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
| | - Eva Hellström-Lindberg
- Center for Hematology and Regenerative Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Luca Malcovati
- Department of Molecular Medicine, University of Pavia, and Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Jacqueline Boultwood
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Andrea Pellagatti
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Elli Papaemmanuil
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Philipp Le Coutre
- Medical Department with Focus on Hematology/Oncology Charite Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | - Jaspal Kaeda
- Medical Department with Focus on Hematology/Oncology Charite Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | - Bertram Opalka
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Tarik Möröy
- Institut de Recherches Cliniques de Montréal (IRCM), Hematopoiesis and Cancer Research Unit, and Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Canada
| | - Ulrich Dührsen
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Jaroslaw Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland, OH, USA
| | - Cyrus Khandanpour
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany.
| |
Collapse
|
46
|
Wu L, Shi W, Li X, Chang C, Xu F, He Q, Wu D, Su J, Zhou L, Song L, Xiao C, Zhang Z. High expression of the human equilibrative nucleoside transporter 1 gene predicts a good response to decitabine in patients with myelodysplastic syndrome. J Transl Med 2016; 14:66. [PMID: 26944860 PMCID: PMC4779250 DOI: 10.1186/s12967-016-0817-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 02/17/2016] [Indexed: 11/20/2022] Open
Abstract
Background Despite the efficacy of decitabine treatment in myelodysplastic syndrome (MDS), no definite predictor of response is known. In this study, we investigated whether the expression levels of human equilibrative nucleoside transporter 1 (hENT1), hENT2, deoxycytidine kinase (DCK) and cytidine deaminase (CDA) genes could predict response to decitabine in MDS. Methods We performed quantitative real-time PCR in marrow mononuclear cells to examine the expression of hENT1, hENT2, DCK, and CDA prior to therapy in 98 MDS patients initially treated with decitabine. Response and overall survival of patients treated with decitabine were analyzed according to gene expression levels. HENT1 knockdown was performed by shRNA in the SKM-1 cell line, and the effect of this on the demethylation ability of decitabine on long interspersed nucleotide element 1 (LINE1) was investigated. Results Patients responding to decitabine presented with significantly higher hENT1 expression levels than non-responders (p = 0.004). Overall response, complete response, and cytogenetic complete response rate in patients with high hENT1 expression (79.4, 41.3, and 43.8 %) were significantly higher than those in patients with low hENT1 expression (48.6, 20.0, and 5.9 %, respectively) (p = 0.004, 0.033, and 0.006, respectively). In higher-risk MDS, patients with high hENT1 expression showed prolonged survival compared with those with low hENT1 expression (22.0 vs 14.0 months; p = 0.027). However, the expression levels of hENT2, DCK, and CDA did not affect response rate. Knockdown of hENT1 in SKM-1 cells weakened the demethylation effect on LINE1 induced by decitabine. Conclusions High expression of hENT1 appears to predict a good response to decitabine and a prolonged survival in higher-risk MDS patients treated with decitabine. HENT1 expression knockdown weakens the demethylation effect of decitabine. Electronic supplementary material The online version of this article (doi:10.1186/s12967-016-0817-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lingyun Wu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| | - Wenhui Shi
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| | - Xiao Li
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| | - Chunkang Chang
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| | - Feng Xu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| | - Qi He
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| | - Dong Wu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| | - Jiying Su
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| | - Liyu Zhou
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| | - Luxi Song
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| | - Chao Xiao
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| | - Zheng Zhang
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| |
Collapse
|
47
|
Abstract
Aberrant DNA methylation is a characteristic feature of cancer including blood malignancies. Mutations in the DNA methylation regulators DNMT3A, TET1/2 and IDH1/2 are recurrent in leukemia and lymphoma. Specific and distinct DNA methylation patterns characterize subtypes of AML and lymphoma. Regulatory regions such as promoter CpG islands, CpG shores and enhancers show changes in methylation during transformation. However, the reported poor correlation between changes in methylation and gene expression in many mouse models and human studies reflects the complexity in the precise molecular mechanism for why aberrant DNA methylation promotes malignancies. This review will summarize current concepts regarding the mechanisms behind aberrant DNA methylation in hematopoietic malignancy and discuss its importance in cancer prognosis, tumor heterogeneity and relapse.
Collapse
Affiliation(s)
- Maria Guillamot
- Howard Hughes Medical Institute and Department of Pathology, NYU School of Medicine, New York, NY, 10016, USA; Laura and Isaac Perlmutter Cancer Center and Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY, 10016, USA
| | - Luisa Cimmino
- Howard Hughes Medical Institute and Department of Pathology, NYU School of Medicine, New York, NY, 10016, USA; Laura and Isaac Perlmutter Cancer Center and Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY, 10016, USA
| | - Iannis Aifantis
- Howard Hughes Medical Institute and Department of Pathology, NYU School of Medicine, New York, NY, 10016, USA; Laura and Isaac Perlmutter Cancer Center and Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY, 10016, USA
| |
Collapse
|
48
|
Nishiwaki S, Ito M, Watarai R, Okuno S, Harada Y, Yamamoto S, Suzuki K, Kurahashi S, Iwasaki T, Sugiura I. A new prognostic index to make short-term prognoses in MDS patients treated with azacitidine: A combination of p53 expression and cytogenetics. Leuk Res 2016; 41:21-6. [DOI: 10.1016/j.leukres.2015.11.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 11/11/2015] [Accepted: 11/22/2015] [Indexed: 01/13/2023]
|
49
|
Lowder JN, Taverna P, Issa JPJ. Will next-generation agents deliver on the promise of epigenetic hypomethylation therapy? Epigenomics 2015; 7:1083-8. [PMID: 26541345 DOI: 10.2217/epi.15.66] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- James N Lowder
- Astex Pharmaceuticals, 4420 Rosewood Drive, Suite 200, Pleasanton, CA 92488, USA
| | - Pietro Taverna
- Astex Pharmaceuticals, 4420 Rosewood Drive, Suite 200, Pleasanton, CA 92488, USA
| | - Jean-Pierre J Issa
- Fels Institute, Temple University School of Medicine & Cancer Epigenetics Program, Fox Chase Cancer Center, Temple Health, 3307 North Broad Street, Room 154, Philadelphia, PA 19140, USA
| |
Collapse
|
50
|
Abstract
A wealth of genomic and epigenomic data has identified abnormal regulation of epigenetic processes as a prominent theme in hematologic malignancies. Recurrent somatic alterations in myeloid malignancies of key proteins involved in DNA methylation, post-translational histone modification and chromatin remodeling have highlighted the importance of epigenetic regulation of gene expression in the initiation and maintenance of various malignancies. The rational use of targeted epigenetic therapies requires a thorough understanding of the underlying mechanisms of malignant transformation driven by aberrant epigenetic regulators. In this review we provide an overview of the major protagonists in epigenetic regulation, their aberrant role in myeloid malignancies, prognostic significance and potential for therapeutic targeting.
Collapse
Affiliation(s)
- Chun Yew Fong
- Cancer Epigenetics Laboratory, Peter MacCallum Cancer Centre, East Melbourne; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
| | - Jessica Morison
- Cancer Epigenetics Laboratory, Peter MacCallum Cancer Centre, East Melbourne
| | - Mark A Dawson
- Cancer Epigenetics Laboratory, Peter MacCallum Cancer Centre, East Melbourne; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
| |
Collapse
|