1
|
Yao CY, Lin CC, Wang YH, Kao CJ, Tsai CH, Hou HA, Tien HF, Hsu CL, Chou WC. Kinome expression profiling improves risk stratification and therapeutic targeting in myelodysplastic syndromes. Blood Adv 2024; 8:2442-2454. [PMID: 38527292 PMCID: PMC11112608 DOI: 10.1182/bloodadvances.2023011512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/31/2024] [Accepted: 02/12/2024] [Indexed: 03/27/2024] Open
Abstract
ABSTRACT The human kinome, which comprises >500 kinases, plays a critical role in regulating numerous essential cellular functions. Although the dysregulation of kinases has been observed in various human cancers, the characterization and clinical implications of kinase expressions in myelodysplastic syndromes (MDS) have not been systematically investigated. In this study, we evaluated the kinome expression profiles of 341 adult patients with primary MDS and identified 7 kinases (PTK7, KIT, MAST4, NTRK1, PAK6, CAMK1D, and PRKCZ) whose expression levels were highly predictive of compromised patient survival. We then constructed the kinase stratification score (KISS) by combining the weighted expressions of the 7 kinases and validated its prognostic significance in 2 external MDS cohorts. A higher KISS was associated with older age, higher peripheral blood and marrow blast percentages, higher Revised International Prognostic Scoring System (IPSS-R) risks, complex karyotype, and mutations in several adverse-risk genes in MDS, such as ASXL1, EZH2, NPM1, RUNX1, STAG2, and TP53. Multivariate analysis confirmed that a higher KISS was an independent unfavorable risk factor in MDS. Mechanistically, the KISS-high patients were enriched for gene sets associated with hematopoietic and leukemic stem cell signatures. By investigating the Genomics of Drug Sensitivity in Cancer database, we identified axitinib and taselisib as candidate compounds that could potentially target the KISS-high myeloblasts. Altogether, our findings suggest that KISS holds the potential to improve the current prognostic scheme of MDS and inform novel therapeutic opportunities.
Collapse
Affiliation(s)
- Chi-Yuan Yao
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chien-Chin Lin
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Hung Wang
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Chein-Jun Kao
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Cheng-Hong Tsai
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsin-An Hou
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Hwei-Fang Tien
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chia-Lang Hsu
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wen-Chien Chou
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
2
|
Veitch S, Radia DH. Recent Advances in the Therapeutic Management of Advanced Systemic Mastocytosis. Diagnostics (Basel) 2023; 14:80. [PMID: 38201389 PMCID: PMC10802166 DOI: 10.3390/diagnostics14010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Advanced systemic mastocytosis (AdvSM) is a rare haematological neoplasm characterised by the accumulation of neoplastic mast cells (MCs) in various organs, resulting in organ dysfunction and reduced life expectancy. The subtypes include aggressive SM (ASM), SM with an associated haematological neoplasm (SM-AHN) and mast cell leukaemia (MCL). The gain of function KIT D816V mutation is present in most cases. The availability of tyrosine kinase inhibitors (TKIs) has revolutionised the treatment landscape for patients with this life-limiting disease. Patients are now able to achieve molecular remission, improved quality of life and improved overall survival. This review focuses on the targeted therapies currently available in clinical practice and within the clinical trial setting for AdvSM. This review also highlights possible future therapeutic targets and discusses therapeutic strategies for this multimutated and clinically heterogeneous disease.
Collapse
Affiliation(s)
- Scott Veitch
- Department of Haematology, Guy’s and St Thomas’ NHS Foundation Trust, London SE1 7EH, UK
| | - Deepti H. Radia
- Department of Haematology, Guy’s and St Thomas’ NHS Foundation Trust, London SE1 7EH, UK
| |
Collapse
|
3
|
Marcella S, Petraroli A, Canè L, Ferrara AL, Poto R, Parente R, Palestra F, Cristinziano L, Modestino L, Galdiero MR, Monti M, Marone G, Triggiani M, Varricchi G, Loffredo S. Thymic stromal lymphopoietin (TSLP) is a substrate for tryptase in patients with mastocytosis. Eur J Intern Med 2023; 117:111-118. [PMID: 37500310 DOI: 10.1016/j.ejim.2023.07.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/13/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023]
Abstract
Mastocytosis is a heterogeneous disease associated to uncontrolled proliferation and increased density of mast cells in different organs. This clonal disorder is related to gain-of-function pathogenic variants of the c-kit gene that encodes for KIT (CD117) expressed on mast cell membrane. Thymic stromal lymphopoietin (TSLP) is a pleiotropic cytokine, which plays a key role in allergic disorders and several cancers. TSLP is a survival and activating factor for human mast cells through the engagement of the TSLP receptor. Activated human mast cells release several preformed mediators, including tryptase. Increased mast cell-derived tryptase is a diagnostic biomarker of mastocytosis. In this study, we found that in these patients serum concentrations of TSLP were lower than healthy donors. There was an inverse correlation between TSLP and tryptase concentrations in mastocytosis. Incubation of human recombinant TSLP with sera from patients with mastocytosis, containing increasing concentrations of tryptase, concentration-dependently decreased TSLP immunoreactivity. Similarly, recombinant β-tryptase reduced the immunoreactivity of recombinant TSLP, inducing the formation of a cleavage product of approximately 10 kDa. Collectively, these results indicate that TSLP is a substrate for human mast cell tryptase and highlight a novel loop involving these mediators in mastocytosis.
Collapse
Affiliation(s)
| | - Angelica Petraroli
- Department of Translational Medical Sciences, University of Naples Federico II, Naples 80131, Italy; World Allergy Organization (WAO) Center of Excellence, Naples 80131, Italy
| | - Luisa Canè
- Department of Translational Medical Sciences, University of Naples Federico II, Naples 80131, Italy; CEINGE Advanced Biotechnologies, Naples, Italy
| | - Anne Lise Ferrara
- Department of Translational Medical Sciences, University of Naples Federico II, Naples 80131, Italy; World Allergy Organization (WAO) Center of Excellence, Naples 80131, Italy
| | - Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Naples 80131, Italy; World Allergy Organization (WAO) Center of Excellence, Naples 80131, Italy
| | - Roberta Parente
- Division of Allergy and Clinical Immunology, University of Salerno, Fisciano (SA) 84084, Italy
| | - Francesco Palestra
- Department of Translational Medical Sciences, University of Naples Federico II, Naples 80131, Italy; World Allergy Organization (WAO) Center of Excellence, Naples 80131, Italy
| | - Leonardo Cristinziano
- Department of Translational Medical Sciences, University of Naples Federico II, Naples 80131, Italy; World Allergy Organization (WAO) Center of Excellence, Naples 80131, Italy
| | - Luca Modestino
- Department of Translational Medical Sciences, University of Naples Federico II, Naples 80131, Italy; World Allergy Organization (WAO) Center of Excellence, Naples 80131, Italy
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences, University of Naples Federico II, Naples 80131, Italy; World Allergy Organization (WAO) Center of Excellence, Naples 80131, Italy; Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples 80131, Italy
| | - Maria Monti
- CEINGE Advanced Biotechnologies, Naples, Italy; Department of Chemical Sciences, University of Naples Federico II, Naples 80126, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, Naples 80131, Italy; World Allergy Organization (WAO) Center of Excellence, Naples 80131, Italy; Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples 80131, Italy; Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples 80131, Italy
| | - Massimo Triggiani
- Division of Allergy and Clinical Immunology, University of Salerno, Fisciano (SA) 84084, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples 80131, Italy; World Allergy Organization (WAO) Center of Excellence, Naples 80131, Italy; Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples 80131, Italy; Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples 80131, Italy.
| | - Stefania Loffredo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples 80131, Italy; World Allergy Organization (WAO) Center of Excellence, Naples 80131, Italy; Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples 80131, Italy; Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples 80131, Italy.
| |
Collapse
|
4
|
Gotlib J. Available and emerging therapies for bona fide advanced systemic mastocytosis and primary eosinophilic neoplasms. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2022; 2022:34-46. [PMID: 36485158 PMCID: PMC9821059 DOI: 10.1182/hematology.2022000368] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The historically poor prognosis of patients with advanced systemic mastocytosis (AdvSM) and primary eosinophilic neoplasms has shifted to increasingly favorable outcomes with the discovery of druggable targets. The multikinase/KIT inhibitor midostaurin and the highly selective KIT D816V inhibitor avapritinib can elicit marked improvements in measures of mast cell (MC) burden as well as reversion of MC-mediated organ damage (C-findings) and disease symptoms. With avapritinib, the achievement of molecular remission of KIT D816V and improved survival compared with historical therapy suggests a potential to affect disease natural history. BLU-263 and bezuclastinib are KIT D816V inhibitors currently being tested in trials of AdvSM. In the new World Health Organization and International Consensus Classifications, the category of "myeloid/lymphoid neoplasms with eosinophilia and tyrosine kinase (TK) gene fusions" is inclusive of rearrangements involving PDGFRA, PDGFRB, FGFR1, JAK2, FLT3, and ETV6::ABL1. While the successful outcomes with imatinib in FIP1L1::PDGFRA-positive cases and PDGFRB-rearranged neoplasms have become the "poster children" of these disorders, the responses of the other TK-driven neoplasms to small-molecule inhibitors are more variable. The selective FGFR inhibitor pemigatinib, approved in August 2022, is a promising therapy in aggressive FGFR1-driven diseases and highlights the role of such agents in bridging patients to allogeneic transplantation. This review summarizes the data for these approved and investigational agents and discusses open questions and future priorities regarding the management of these rare diseases.
Collapse
Affiliation(s)
- Jason Gotlib
- Division of Hematology, Stanford Cancer Institute/Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
5
|
Arai H, Minami Y, Chi S, Utsu Y, Masuda S, Aotsuka N. Molecular-Targeted Therapy for Tumor-Agnostic Mutations in Acute Myeloid Leukemia. Biomedicines 2022; 10:3008. [PMID: 36551764 PMCID: PMC9775249 DOI: 10.3390/biomedicines10123008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022] Open
Abstract
Comprehensive genomic profiling examinations (CGPs) have recently been developed, and a variety of tumor-agnostic mutations have been detected, leading to the development of new molecular-targetable therapies across solid tumors. In addition, the elucidation of hereditary tumors, such as breast and ovarian cancer, has pioneered a new age marked by the development of new treatments and lifetime management strategies required for patients with potential or presented hereditary cancers. In acute myeloid leukemia (AML), however, few tumor-agnostic or hereditary mutations have been the focus of investigation, with associated molecular-targeted therapies remaining poorly developed. We focused on representative tumor-agnostic mutations such as the TP53, KIT, KRAS, BRCA1, ATM, JAK2, NTRK3, FGFR3 and EGFR genes, referring to a CGP study conducted in Japan, and we considered the possibility of developing molecular-targeted therapies for AML with tumor-agnostic mutations. We summarized the frequency, the prognosis, the structure and the function of these mutations as well as the current treatment strategies in solid tumors, revealed the genetical relationships between solid tumors and AML and developed tumor-agnostic molecular-targeted therapies and lifetime management strategies in AML.
Collapse
Affiliation(s)
- Hironori Arai
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho 286-0041, Japan
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan
| | - Yosuke Minami
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan
| | - SungGi Chi
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan
| | - Yoshikazu Utsu
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho 286-0041, Japan
| | - Shinichi Masuda
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho 286-0041, Japan
| | - Nobuyuki Aotsuka
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho 286-0041, Japan
| |
Collapse
|
6
|
Avapritinib for advanced systemic mastocytosis. Blood 2022; 140:1667-1673. [PMID: 35877999 DOI: 10.1182/blood.2021014612] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/16/2022] [Indexed: 11/20/2022] Open
Abstract
Avapritinib, a highly selective inhibitor of KIT D816V, was approved by the Food and Drug Administration in 2021 for treatment of advanced systemic mastocytosis (AdvSM) and by the European Medicines Agency in 2022 for AdvSM after prior systemic therapy. The phase 1 EXPLORER and phase 2 PATHFINDER trials demonstrated that avapritinib can elicit complete and durable clinical responses and molecular remission of KIT D816V. Key management challenges relate to the complex mutational landscape of AdvSM, often found with an associated hematologic neoplasm.
Collapse
|
7
|
Mughal TI, Pemmaraju N, Bejar R, Gale RP, Bose P, Kiladjian JJ, Prchal J, Royston D, Pollyea D, Valent P, Brümmendorf TH, Skorski T, Patnaik M, Santini V, Fenaux P, Kucine N, Verstovsek S, Mesa R, Barbui T, Saglio G, Van Etten RA. Perspective: Pivotal translational hematology and therapeutic insights in chronic myeloid hematopoietic stem cell malignancies. Hematol Oncol 2022; 40:491-504. [PMID: 35368098 DOI: 10.1002/hon.2987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/21/2022] [Accepted: 03/03/2022] [Indexed: 11/10/2022]
Abstract
Despite much of the past 2 years being engulfed by the devastating consequences of the SAR-CoV-2 pandemic, significant progress, even breathtaking, occurred in the field of chronic myeloid malignancies. Some of this was show-cased at the 15th Post-American Society of Hematology (ASH) and the 25th John Goldman workshops on myeloproliferative neoplasms (MPN) held on 9th-10th December 2020 and 7th-10th October 2021, respectively. The inaugural Post-ASH MPN workshop was set out in 2006 by John Goldman (deceased) and Tariq Mughal to answer emerging translational hematology and therapeutics of patients with these malignancies. Rather than present a resume of the discussions, this perspective focuses on some of the pivotal translational hematology and therapeutic insights in these diseases.
Collapse
Affiliation(s)
- Tariq I Mughal
- Tufts University School of Medicine, Boston, Massachusetts, USA
- University of Buckingham, Buckingham, UK
| | - Naveen Pemmaraju
- MD Anderson Cancer Center, University of Texas, Houston, Texas, USA
| | - Rafael Bejar
- University of California San Diego, La Jolla, California, USA
| | | | - Prithviraj Bose
- MD Anderson Cancer Center, University of Texas, Houston, Texas, USA
| | | | - Josef Prchal
- Huntsman Cancer Center, Salt Lake City, Utah, USA
| | - Daniel Royston
- John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Daniel Pollyea
- University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Peter Valent
- Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | | | - Tomasz Skorski
- Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | | | - Valeria Santini
- Azienda Ospedaliero Universitaria Careggi, University of Florence, Florence, Italy
| | - Pierre Fenaux
- Hospital St Louis, Assistance Publique Hôpitaux de Paris, Paris, France
| | | | - Srdan Verstovsek
- MD Anderson Cancer Center, University of Texas, Houston, Texas, USA
| | - Ruben Mesa
- Mays Cancer Center, UT Health San Antonio MD Anderson Cancer Center, San Antonio, Texas, USA
| | - Tiziano Barbui
- Fondazione per la Ricerca Ospedale Maggiore di Bergamo, Bergamo, Italy
| | | | - Richard A Van Etten
- Chao Family Comprehensive Cancer Center, University of California, Irvine, California, USA
| |
Collapse
|
8
|
Azad F, Zhang J, Wang E. Avapritinib for the treatment of KIT mutation-negative systemic mastocytosis. Proc (Bayl Univ Med Cent) 2022; 36:81-82. [PMID: 36578586 PMCID: PMC9762747 DOI: 10.1080/08998280.2022.2123661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Systemic mastocytosis results from the spread of abnormal mast cells in different parts of the body, with variable clinical presentation. It is difficult to diagnose and to determine the appropriate therapy regimen. We present a case of a 53-year-old man diagnosed with KIT-negative advanced systemic mastocytosis based on the 2016 World Health Organization criteria. The patient presented with widespread symptoms that continued to worsen despite supportive therapy and traditional tyrosine kinase inhibitors. He was ultimately started on avapritinib, which reduced his tryptase level and provided symptomatic relief many years after his diagnosis.
Collapse
Affiliation(s)
- Farhan Azad
- University of Buffalo, Buffalo, New York,Corresponding author: Farhan Azad, DO, 462 Grider St., Buffalo, NY14215 (e-mail: )
| | | | | |
Collapse
|
9
|
Gotlib J, Schwaab J, Shomali W, George TI, Radia DH, Castells M, Carter MC, Hartmann K, Álvarez-Twose I, Brockow K, Bonadonna P, Hermine O, Niedoszytko M, Hoermann G, Sperr WR, Elberink HO, Siebenhaar F, Butterfield JH, Ustun C, Zanotti R, Triggiani M, Schwartz LB, Lyons JJ, Orfao A, Sotlar K, Horny HP, Arock M, Metcalfe DD, Akin C, Lübke J, Valent P, Reiter A. Proposed European Competence Network on Mastocytosis-American Initiative in Mast Cell Diseases (ECNM-AIM) Response Criteria in Advanced Systemic Mastocytosis. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:2025-2038.e1. [PMID: 35724948 DOI: 10.1016/j.jaip.2022.05.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 12/18/2022]
Abstract
Advanced systemic mastocytosis (AdvSM) is characterized by the presence of KIT D816V and other somatic mutations (eg, in SRSF2, ASXL1, and RUNX1) in 95% and 60% to 70% of patients, respectively. The biological and clinical consequences of AdvSM include multilineage involvement (eg, associated hematologic neoplasm) in 60% to 80% of patients, variable infiltration and damage (C-findings) of predominantly bone marrow and visceral organs through affected mast cell (MC) and non-MC lineages, and elevated levels of serum tryptase. Recently, the treatment landscape has substantially changed with the introduction of the multikinase/KIT inhibitor midostaurin and the selective KIT D816V inhibitor avapritinib. In this review, we discuss the evolution of AdvSM response criteria that have been developed to better capture clinical benefit (eg, improved responses and progression-free and overall survival). We propose refined response criteria from European Competence Network on Mastocytosis and American Initiative in Mast Cell Diseases investigators that use a tiered approach to segregate the effects of histopathologic (eg, bone marrow MC burden, tryptase), molecular (eg, KIT D816V variant allele frequency), clinical (eg, C-findings), and symptom response on long-term outcomes. These response criteria require evaluation in future prospective clinical trials of selective KIT inhibitors and other novel agents.
Collapse
Affiliation(s)
- Jason Gotlib
- Stanford Cancer Institute/Stanford University School of Medicine, Stanford, Calif.
| | - Juliana Schwaab
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - William Shomali
- Stanford Cancer Institute/Stanford University School of Medicine, Stanford, Calif
| | - Tracy I George
- Department of Pathology, University of Utah, Salt Lake City, Utah
| | - Deepti H Radia
- Department of Clinical Haematology, Guys and St Thomas' NHS Hospitals, London, United Kingdom
| | - Mariana Castells
- Division of Allergy and Immunology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - Melody C Carter
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Karin Hartmann
- Division of Allergy, Department of Dermatology, University Hospital Basel and University of Basel, Basel, Switzerland; Department of Biomedicine, University Hospital Basel and University of Basel, Switzerland
| | - Ivan Álvarez-Twose
- Instituto de Estudios de Mastocitosis de Castilla La Mancha and Centro de Investigación Biomédica en Red de Oncología (CIBERONC), Hospital Virgen del Valle, Toledo, Spain
| | - Knut Brockow
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University of Munich, Munich, Germany
| | | | - Olivier Hermine
- Imagine Institute Université de Paris, Sorbonne, INSERM U1163, Centre National de Référence des Mastocytoses, Hôpital Necker, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Marek Niedoszytko
- Department of Allergology, Medical University of Gdansk, Gdansk, Poland
| | - Gregor Hoermann
- MLL Munich Leukemia Laboratory, Munich, Germany; Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang R Sperr
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria; Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Hanneke Oude Elberink
- Department of Allergology, University Medical Center Groningen and GRIAC Research Institute, University of Groningen, Groningen, The Netherlands
| | - Frank Siebenhaar
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Department of Allergology and Immunology, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Berlin, Germany
| | | | - Celalettin Ustun
- Department of Medicine, Division of Hematology, Oncology, and Cell Therapy, Coleman Foundation Blood and Marrow Transplant Center at Rush University Medical Center, Chicago, Ill
| | - Roberta Zanotti
- Section of Hematology, Multidisciplinary Outpatients Clinics for Mastocytosis, Department of Medicine, University Hospital of Verona, Verona, Italy
| | - Massimo Triggiani
- Division of Allergy and Clinical Immunology, University of Salerno, Salerno, Italy
| | - Lawrence B Schwartz
- Department of Internal Medicine, Division of Rheumatology, Allergy, and Immunology, Virginia Commonwealth University, Richmond, Va
| | - Jonathan J Lyons
- Translational Allergic Immunopathology Unit, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Alberto Orfao
- Servicio Central de Citometria (NUCLEUS), Instituto de Biología Molecular y Celular del Cáncer (IBMCC) Instituto Biosanitario de Salamanca, CIBERONC and Department of Medicine, University of Salamanca, Salamanca, Spain; Utah
| | - Karl Sotlar
- Institute of Pathology, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Hans-Peter Horny
- Institute of Pathology, Ludwig-Maximilians-University, Munich, Germany
| | - Michel Arock
- Department of Hematological Biology, Pitié-Salpêtrière Hospital, Pierre et Marie Curie University, Paris, France
| | - Dean D Metcalfe
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Cem Akin
- Division of Allergy and Clinical Immunology, University of Michigan, Ann Arbor, Mich
| | - Johannes Lübke
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Peter Valent
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria; Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Andreas Reiter
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
10
|
Systemic Mastocytosis and Other Entities Involving Mast Cells: A Practical Review and Update. Cancers (Basel) 2022; 14:cancers14143474. [PMID: 35884535 PMCID: PMC9322501 DOI: 10.3390/cancers14143474] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 02/05/2023] Open
Abstract
Evidence in the recent literature suggests that the presentation spectrum of mast cell neoplasms is broad. In this article, we elaborate on recent data pertaining to minor diagnostic criteria of systemic mastocytosis (SM), including sensitive testing methods for detection of activating mutations in the KIT gene or its variants, and adjusted serum tryptase levels in cases with hereditary α-tryptasemia. We also summarize entities that require differential diagnosis, such as the recently reclassified SM subtype named bone marrow mastocytosis, mast cell leukemia (an SM subtype that can be acute or chronic); the rare morphological variant of all SM subtypes known as well-differentiated systemic mastocytosis; the extremely rare myelomastocytic leukemia and its differentiating features from mast cell leukemia; and mast cell activation syndrome. In addition, we provide a concise clinical update of the latest adjusted risk stratification model incorporating genomic data to define prognosis in SM and new treatments that were approved for advanced SM (midostaurin, avapritinib).
Collapse
|
11
|
Schneeweiss-Gleixner M, Filik Y, Stefanzl G, Berger D, Sadovnik I, Bauer K, Smiljkovic D, Eisenwort G, Witzeneder N, Greiner G, Hoermann G, Schiefer AI, Schwaab J, Jawhar M, Reiter A, Sperr WR, Arock M, Valent P, Gleixner KV. CDK4/CDK6 Inhibitors Synergize with Midostaurin, Avapritinib, and Nintedanib in Inducing Growth Inhibition in KIT D816V + Neoplastic Mast Cells. Cancers (Basel) 2022; 14:3070. [PMID: 35804842 PMCID: PMC9264943 DOI: 10.3390/cancers14133070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/23/2022] [Accepted: 06/06/2022] [Indexed: 11/18/2022] Open
Abstract
In most patients with advanced systemic mastocytosis (AdvSM), neoplastic mast cells (MC) express KIT D816V. However, despite their disease-modifying potential, KIT D816V-targeting drugs, including midostaurin and avapritinib, may not produce long-term remissions in all patients. Cyclin-dependent kinase (CDK) 4 and CDK6 are promising targets in oncology. We found that shRNA-mediated knockdown of CDK4 and CDK6 results in growth arrest in the KIT D816V+ MC line HMC-1.2. The CDK4/CDK6 inhibitors palbociclib, ribociclib, and abemaciclib suppressed the proliferation in primary neoplastic MC as well as in all HMC-1 and ROSA cell subclones that were examined. Abemaciclib was also found to block growth in the drug-resistant MC line MCPV-1, whereas no effects were seen with palbociclib and ribociclib. Anti-proliferative drug effects on MC were accompanied by cell cycle arrest. Furthermore, CDK4/CDK6 inhibitors were found to synergize with the KIT-targeting drugs midostaurin, avapritinib, and nintedanib in inducing growth inhibition and apoptosis in neoplastic MCs. Finally, we found that CDK4/CDK6 inhibitors induce apoptosis in CD34+/CD38- stem cells in AdvSM. Together, CDK4/CDK6 inhibition is a potent approach to suppress the growth of neoplastic cells in AdvSM. Whether CDK4/CDK6 inhibitors can improve clinical outcomes in patients with AdvSM remains to be determined in clinical trials.
Collapse
Affiliation(s)
- Mathias Schneeweiss-Gleixner
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria; (M.S.-G.); (Y.F.); (I.S.); (K.B.); (D.S.); (G.E.); (N.W.); (G.G.); (G.H.); (W.R.S.); (P.V.)
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria; (G.S.); (D.B.)
- Department of Medicine III, Division of Gastroenterology and Hepatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Yüksel Filik
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria; (M.S.-G.); (Y.F.); (I.S.); (K.B.); (D.S.); (G.E.); (N.W.); (G.G.); (G.H.); (W.R.S.); (P.V.)
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria; (G.S.); (D.B.)
| | - Gabriele Stefanzl
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria; (G.S.); (D.B.)
| | - Daniela Berger
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria; (G.S.); (D.B.)
| | - Irina Sadovnik
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria; (M.S.-G.); (Y.F.); (I.S.); (K.B.); (D.S.); (G.E.); (N.W.); (G.G.); (G.H.); (W.R.S.); (P.V.)
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria; (G.S.); (D.B.)
| | - Karin Bauer
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria; (M.S.-G.); (Y.F.); (I.S.); (K.B.); (D.S.); (G.E.); (N.W.); (G.G.); (G.H.); (W.R.S.); (P.V.)
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria; (G.S.); (D.B.)
| | - Dubravka Smiljkovic
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria; (M.S.-G.); (Y.F.); (I.S.); (K.B.); (D.S.); (G.E.); (N.W.); (G.G.); (G.H.); (W.R.S.); (P.V.)
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria; (G.S.); (D.B.)
| | - Gregor Eisenwort
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria; (M.S.-G.); (Y.F.); (I.S.); (K.B.); (D.S.); (G.E.); (N.W.); (G.G.); (G.H.); (W.R.S.); (P.V.)
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria; (G.S.); (D.B.)
| | - Nadine Witzeneder
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria; (M.S.-G.); (Y.F.); (I.S.); (K.B.); (D.S.); (G.E.); (N.W.); (G.G.); (G.H.); (W.R.S.); (P.V.)
| | - Georg Greiner
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria; (M.S.-G.); (Y.F.); (I.S.); (K.B.); (D.S.); (G.E.); (N.W.); (G.G.); (G.H.); (W.R.S.); (P.V.)
- Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
- Ihr Labor, Medical Diagnostic Laboratories Vienna, 1220 Vienna, Austria
| | - Gregor Hoermann
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria; (M.S.-G.); (Y.F.); (I.S.); (K.B.); (D.S.); (G.E.); (N.W.); (G.G.); (G.H.); (W.R.S.); (P.V.)
- MLL Munich Leukemia Laboratory, 81377 Munich, Germany
| | - Ana-Iris Schiefer
- Department of Pathology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Juliana Schwaab
- Department of Hematology and Oncology, University Medical Center Mannheim and Medical Faculty Mannheim, Heidelberg University, 69120 Heidelberg, Germany; (J.S.); (M.J.); (A.R.)
| | - Mohamad Jawhar
- Department of Hematology and Oncology, University Medical Center Mannheim and Medical Faculty Mannheim, Heidelberg University, 69120 Heidelberg, Germany; (J.S.); (M.J.); (A.R.)
| | - Andreas Reiter
- Department of Hematology and Oncology, University Medical Center Mannheim and Medical Faculty Mannheim, Heidelberg University, 69120 Heidelberg, Germany; (J.S.); (M.J.); (A.R.)
| | - Wolfgang R. Sperr
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria; (M.S.-G.); (Y.F.); (I.S.); (K.B.); (D.S.); (G.E.); (N.W.); (G.G.); (G.H.); (W.R.S.); (P.V.)
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria; (G.S.); (D.B.)
| | - Michel Arock
- Department of Hematological Biology, Pitié-Salpêtrière Hospital, Pierre et Marie Curie University (UPMC), 75013 Paris, France;
| | - Peter Valent
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria; (M.S.-G.); (Y.F.); (I.S.); (K.B.); (D.S.); (G.E.); (N.W.); (G.G.); (G.H.); (W.R.S.); (P.V.)
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria; (G.S.); (D.B.)
| | - Karoline V. Gleixner
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria; (M.S.-G.); (Y.F.); (I.S.); (K.B.); (D.S.); (G.E.); (N.W.); (G.G.); (G.H.); (W.R.S.); (P.V.)
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria; (G.S.); (D.B.)
| |
Collapse
|
12
|
Katagiri S, Chi S, Minami Y, Fukushima K, Shibayama H, Hosono N, Yamauchi T, Morishita T, Kondo T, Yanada M, Yamamoto K, Kuroda J, Usuki K, Akahane D, Gotoh A. Mutated KIT Tyrosine Kinase as a Novel Molecular Target in Acute Myeloid Leukemia. Int J Mol Sci 2022; 23:ijms23094694. [PMID: 35563085 PMCID: PMC9103326 DOI: 10.3390/ijms23094694] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 01/25/2023] Open
Abstract
KIT is a type-III receptor tyrosine kinase that contributes to cell signaling in various cells. Since KIT is activated by overexpression or mutation and plays an important role in the development of some cancers, such as gastrointestinal stromal tumors and mast cell disease, molecular therapies targeting KIT mutations are being developed. In acute myeloid leukemia (AML), genome profiling via next-generation sequencing has shown that several genes that are mutated in patients with AML impact patients’ prognosis. Moreover, it was suggested that precision-medicine-based treatment using genomic data will improve treatment outcomes for AML patients. This paper presents (1) previous studies regarding the role of KIT mutations in AML, (2) the data in AML with KIT mutations from the HM-SCREEN-Japan-01 study, a genome profiling study for patients newly diagnosed with AML who are unsuitable for the standard first-line treatment (unfit) or have relapsed/refractory AML, and (3) new therapies targeting KIT mutations, such as tyrosine kinase inhibitors and heat shock protein 90 inhibitors. In this era when genome profiling via next-generation sequencing is becoming more common, KIT mutations are attractive novel molecular targets in AML.
Collapse
Affiliation(s)
- Seiichiro Katagiri
- Department of Hematology, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan; (S.K.); (D.A.); (A.G.)
| | - SungGi Chi
- Department of Hematology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa-shi, Chiba 277-8577, Japan;
| | - Yosuke Minami
- Department of Hematology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa-shi, Chiba 277-8577, Japan;
- Correspondence: ; Tel.: +81-4-7133-1111; Fax: +81-7133-6502
| | - Kentaro Fukushima
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; (K.F.); (H.S.)
| | - Hirohiko Shibayama
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; (K.F.); (H.S.)
| | - Naoko Hosono
- Department of Hematology and Oncology, University of Fukui Hospital, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan; (N.H.); (T.Y.)
| | - Takahiro Yamauchi
- Department of Hematology and Oncology, University of Fukui Hospital, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan; (N.H.); (T.Y.)
| | - Takanobu Morishita
- Division of Hematology, Japanese Red Cross Nagoya First Hospital, 3-35 Michishita-cho, Nakamura-ku, Nagoya-shi, Aichi 453-8511, Japan;
| | - Takeshi Kondo
- Blood Disorders Center, Aiiku Hospital, 2-1 S4 W25 Chuo-ku, Sapporo, Hokkaido 064-0804, Japan;
| | - Masamitsu Yanada
- Department of Hematology and Cell Therapy, Aichi Cancer Center, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi 464-8681, Japan; (M.Y.); (K.Y.)
| | - Kazuhito Yamamoto
- Department of Hematology and Cell Therapy, Aichi Cancer Center, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi 464-8681, Japan; (M.Y.); (K.Y.)
| | - Junya Kuroda
- Division of Hematology and Oncology, Kyoto Prefectural University of Medicine, 465 Kajii-cho Kawaramachi-hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan;
| | - Kensuke Usuki
- Department of Hematology, NTT Medical Center Tokyo, 5-9-22 Higashi-Gotanda, Shinagawa-ku, Tokyo 141-8625, Japan;
| | - Daigo Akahane
- Department of Hematology, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan; (S.K.); (D.A.); (A.G.)
| | - Akihiko Gotoh
- Department of Hematology, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan; (S.K.); (D.A.); (A.G.)
| |
Collapse
|
13
|
Pilkington H, Smith S, Roskell N, Iannazzo S. Indirect treatment comparisons of avapritinib versus midostaurin for patients with advanced systemic mastocytosis. Future Oncol 2022; 18:1583-1594. [PMID: 35114819 DOI: 10.2217/fon-2021-1509] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Objective: This research aimed to compare the relative efficacy of avapritinib versus midostaurin for patients with advanced systemic mastocytosis. Method: A systematic literature review was performed to identify relevant evidence. Unanchored matching-adjusted indirect comparisons were conducted for overall survival (OS), overall response rate (ORR) and complete remission (CR). Results: The systematic literature review identified the clinical trials EXPLORER and PATHFINDER (investigating avapritinib) and D2201 and A2213 (investigating midostaurin). The avapritinib versus midostaurin adjusted hazard ratio for OS was 0.44 (95% CI: 0.25-0.76), and the adjusted odds ratios for ORR and CR were 4.06 (95% CI: 3.09-5.33) and 9.56 (95% CI: 0.97-93.81), respectively. Conclusion: The results suggest that avapritinib improves survival and response (ORR and CR) compared with midostaurin.
Collapse
Affiliation(s)
| | - Sarah Smith
- BresMed Health Solutions, Manchester, M2 1DH, UK
| | - Neil Roskell
- BresMed Health Solutions, Manchester, M2 1DH, UK
| | | |
Collapse
|
14
|
Kwiatkowska D, Reich A. Role of Mast Cells in the Pathogenesis of Pruritus in Mastocytosis. Acta Derm Venereol 2021; 101:adv00583. [PMID: 34642766 DOI: 10.2340/actadv.v101.350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Pruritus can be defined as an unpleasant sensation that evokes a desire to scratch and significantly impairs patients' quality of life. Pruritus is widely observed in many dermatoses, including mastocytosis, a rare disease characterized by abnormal accumulation of mast cells, which can involve skin, bone marrow, and other organs. Increasing evidence highlights the role of mast cells in neurogenic inflammation and itching. Mast cells release various pruritogenic mediators, initiating subsequent mutual communication with specific nociceptors on sensory nerve fibres. Among important mediators released by mast cells that induce pruritus, one can distinguish histamine, serotonin, proteases, as well as various cytokines. During neuronal-induced inflammation, mast cells may respond to numerous mediators, including neuropeptides, such as substance P, neurokinin A, calcitonin gene-related peptide, endothelin 1, and nerve growth factor. Currently, treatment of pruritus in mastocytosis is focused on alleviating the effects of mediators secreted by mast cells. However, a deeper understanding of the intricacies of the neurobiology of this disease could help to provide better treatment options for patients.
Collapse
Affiliation(s)
| | - Adam Reich
- Department of Dermatology, University of Rzeszow, Ul. Szopena 2, PL-35-055 Rzeszów, Poland.
| |
Collapse
|
15
|
Below S, Michaelis LC. Avapritinib in the Treatment of Systemic Mastocytosis: an Update. Curr Hematol Malig Rep 2021; 16:464-472. [PMID: 34580817 DOI: 10.1007/s11899-021-00650-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2021] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW Patients with systemic mastocytosis, a dangerous and rare myeloid neoplasm, have long had few therapies available to them and, historically, rarely achieved from significant disease control. However, research and translational developments over the last decade have led to promising new options for disease management. In this review, we briefly outline the history of treatment for systemic mastocytosis and subsequently focus on the clinical development and potential applications of avapritinib (previously known as BLU-285), a potent and selective oral inhibitor of the tyrosine kinase most commonly mutated in this condition. RECENT FINDINGS Phase I data and recent phase II data have demonstrated both safety and efficacy of this agent used as monotherapy, even in patients who have progressed on other targeted therapy. Studies to date have focused on patients with the most aggressive disease, but new trials in indolent mastocytosis are accruing currently. Over the next several years, one may anticipate finalized, peer-reviewed, and formally published data for this agent in both advanced systemic and indolent mastocytosis. Evidence from these early studies will also likely highlight where more research is needed.
Collapse
Affiliation(s)
- Samantha Below
- Department of Medicine, Medical College of Wisconsin, 9200 W. Wisconsin Ave, Milwaukee, WI, 53226, USA
| | - Laura C Michaelis
- Department of Medicine, Medical College of Wisconsin, 9200 W. Wisconsin Ave, Milwaukee, WI, 53226, USA.
| |
Collapse
|
16
|
Abstract
INTRODUCTION Systemic mastocytosis (SM) is a rare myeloid neoplasm driven in ≈95% of cases by activating KIT mutations, usually D816V. SM can be indolent (ISM), smoldering (SSM) and advanced (AdvSM), the latter characterized by organ damage resulting from infiltrating neoplastic mast cells. The vast majority of cases are indolent, with near-normal life expectancy, although symptoms can be severe. AdvSM, comprising aggressive SM, SM with an associated hematologic neoplasm and mast cell leukemia, however, carries a poor prognosis. Avapritinib is a highly potent and selective inhibitor of mutant KIT. AREAS COVERED We provide an overview of SM, including the current therapeutic landscape, and discuss avapritinib in detail: its chemistry and discovery, pharmacodynamic and pharmacokinetic data, current approval status and safety and efficacy profiles in both advanced and non-advanced SM. EXPERT OPINION With a response rate of 75% amongst evaluable patients with AdvSM and marked reductions observed in measures of mast cell and disease burden, avapritinib stands out as a highly effective targeted therapy for this mutant KIT-driven disease. Cognitive impairment may occur, and intracranial hemorrhage has been reported, particularly in association with severe thrombocytopenia. Early results in patients with ISM/SSM are encouraging. Avapritinib is now approved in the US for AdvSM.
Collapse
Affiliation(s)
- Prithviraj Bose
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Srdan Verstovsek
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
17
|
Moncada A, Pancrazzi A. Lab tests for MPN. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 366:187-220. [PMID: 35153004 DOI: 10.1016/bs.ircmb.2021.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Molecular laboratory investigations for myeloproliferative neoplasm (MPN) can ideally be divided into two distincts groups, those for the detection of the BCR-ABL rearrangement (suspect of chronic myeloid leukemia) and those for the variants determination of the driver genes of the negative Philadelphia forms (MPN Ph neg). The BCR-ABL detection is based on RT-Polymerase Chain Reaction techniques and more recently on droplet digital PCR (ddPCR). For this type of analysis, combined with chromosome banding analysis (CBA) and Fluorescent in situ hybridization (FISH), it is essential to quantify BCR-ABL mutated copies by standard curve method. The investigation on driver genes for MPN Ph neg forms includes activity for erythroid forms such as Polycythemia Vera (test JAK2V617F and JAK2 exon 12), for non-erythroid forms such as essential thrombocythemia and myelofibrosis (test JAK2V617F, CALR exon 9, MPL exon 10), for "atypical" ones such as mastocytosis (cKIT D816V test) and for hypereosinophilic syndrome (FIP1L1-PDGFRalpha test). It's crucial to assign prognosis value through calculating allelic burden of JAK2 V617F variant and determining CALR esone 9 variants (type1/1like, type2/2like and atypical ones). A fundamental innovation for investigating triple negative cases for JAK2, CALR, MPL and for providing prognostic score is the use of Next Generation Sequencing panels containing high molecular risk genes as ASXL1, EZH2, TET2, IDH1/IDH2, SRSF2. This technique allows to detect additional or subclonal mutations which are usually acquired in varying sized sub-clones of hematopoietic progenitors. These additional variants have a prognostic significance and should be indagated to exclude false negative cases.
Collapse
Affiliation(s)
- Alice Moncada
- Laboratory Medicine Department, Molecular and Clinical Pathology Sector, Azienda USL Toscana Sudest, Ospedale San Donato, Arezzo, Italy
| | - Alessandro Pancrazzi
- Laboratory Medicine Department, Molecular and Clinical Pathology Sector, Azienda USL Toscana Sudest, Ospedale San Donato, Arezzo, Italy.
| |
Collapse
|
18
|
Response Criteria in Advanced Systemic Mastocytosis: Evolution in the Era of KIT Inhibitors. Int J Mol Sci 2021; 22:ijms22062983. [PMID: 33804174 PMCID: PMC8001403 DOI: 10.3390/ijms22062983] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/12/2022] Open
Abstract
Systemic mastocytosis (SM) is a rare clonal hematologic neoplasm, driven, in almost all cases, by the activating KIT D816V mutation that leads to the growth and accumulation of neoplastic mast cells. While patients with advanced forms of SM have a poor prognosis, the introduction of KIT inhibitors (e.g., midostaurin, and avapritinib) has changed their outlook. Because of the heterogenous nature of advanced SM (advSM), successive iterations of response criteria have tried to capture different dimensions of the disease, including measures of mast cell burden (percentage of bone marrow mast cells and serum tryptase level), and mast cell-related organ damage (referred to as C findings). Historically, response criteria have been anchored to reversion of one or more organ damage finding(s) as a minimal criterion for response. This is a central principle of the Valent criteria, Mayo criteria, and International Working Group-Myeloproliferative Neoplasms Research and Treatment and European Competence Network on Mastocytosis (IWG-MRT-ECNM) consensus criteria. Irrespective of the response criteria, an ever-present challenge is how to apply response criteria in patients with SM and an associated hematologic neoplasm, where the presence of both diseases complicates assignment of organ damage and adjudication of response. In the context of trials with the selective KIT D816V inhibitor avapritinib, pure pathologic response (PPR) criteria, which rely solely on measures of mast cell burden and exclude consideration of organ damage findings, are being explored as more robust surrogate of overall survival. In addition, the finding that avapritinib can elicit complete molecular responses of KIT D816V allele burden, establishes a new benchmark for advSM and motivates the inclusion of definitions for molecular response in future criteria. Herein, we also outline how the concept of PPR can inform a proposal for new response criteria which use a tiered evaluation of pathologic, molecular, and clinical responses.
Collapse
|
19
|
Marcella S, Petraroli A, Braile M, Parente R, Ferrara AL, Galdiero MR, Modestino L, Cristinziano L, Rossi FW, Varricchi G, Triggiani M, de Paulis A, Spadaro G, Loffredo S. Vascular endothelial growth factors and angiopoietins as new players in mastocytosis. Clin Exp Med 2021; 21:415-427. [PMID: 33687603 PMCID: PMC8266723 DOI: 10.1007/s10238-021-00693-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/08/2021] [Indexed: 12/27/2022]
Abstract
Mastocytosis is a disorder characterized by the abnormal proliferation and/or accumulation of mast cells in different organs. More than 90% of patients with systemic mastocytosis have a gain-of-function mutation in codon 816 of the KIT receptor on mast cells (MCs). The symptoms of mastocytosis patients are related to the MC-derived mediators that exert local and distant effects. MCs produce angiogenic and lymphangiogenic factors, including vascular endothelial growth factors (VEGFs) and angiopoietins (ANGPTs). Serum concentrations of VEGF-A, VEGF-C, VEGF-D, ANGPT1 and ANGPT2 were determined in 64 mastocytosis patients and 64 healthy controls. Intracellular concentrations and spontaneous release of these mediators were evaluated in the mast cell lines ROSAKIT WT and ROSA KIT D816V and in human lung mast cells (HLMCs). VEGF-A, ANGPT1, ANGPT2 and VEGF-C concentrations were higher in mastocytosis patients compared to controls. The VEGF-A, ANGPT2 and VEGF-C concentrations were correlated with the symptom severity. ANGPT1 concentrations were increased in all patients compared to controls. ANGPT2 levels were correlated with severity of clinical variants and with tryptase levels. VEGF-A, ANGPT1 and VEGF-C did not differ between indolent and advanced mastocytosis. ROSAKIT WT, ROSAKIT D816V and HLMCs contained and spontaneously released VEGFs and ANGPTs. Serum concentrations of VEGFs and ANGPTs are altered in mastocytosis patients.
Collapse
Affiliation(s)
- Simone Marcella
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, 80131, Naples, Italy
| | - Angelica Petraroli
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, 80131, Naples, Italy
| | - Mariantonia Braile
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, 80131, Naples, Italy
| | - Roberta Parente
- Division of Allergy and Clinical Immunology, University of Salerno, 84084, Fisciano, SA, Italy
| | - Anne Lise Ferrara
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, 80131, Naples, Italy.,Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131, Naples, Italy
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, 80131, Naples, Italy.,Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131, Naples, Italy
| | - Luca Modestino
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, 80131, Naples, Italy
| | - Leonardo Cristinziano
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, 80131, Naples, Italy
| | - Francesca Wanda Rossi
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, 80131, Naples, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy. .,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy. .,World Allergy Organization (WAO) Center of Excellence, 80131, Naples, Italy. .,Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131, Naples, Italy.
| | - Massimo Triggiani
- Division of Allergy and Clinical Immunology, University of Salerno, 84084, Fisciano, SA, Italy
| | - Amato de Paulis
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, 80131, Naples, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, 80131, Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy. .,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy. .,World Allergy Organization (WAO) Center of Excellence, 80131, Naples, Italy. .,Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131, Naples, Italy.
| |
Collapse
|
20
|
Gotlib J, Kluin-Nelemans HC, Akin C, Hartmann K, Valent P, Reiter A. Practical management of adverse events in patients with advanced systemic mastocytosis receiving midostaurin. Expert Opin Biol Ther 2021; 21:487-498. [PMID: 33063554 DOI: 10.1080/14712598.2021.1837109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Systemic mastocytosis (SM) is characterized by the overproduction and accumulation of neoplastic mast cells (MCs) in the bone marrow, skin, and visceral organs. The KIT D816V mutation is found in approximately 90% of cases. In advanced SM (advSM), inferior survival often relates to MC-induced organ damage that may impact multiple organ systems. In addition, mediator symptoms related to MC activation can severely impact the quality of life. The oral multikinase/KIT inhibitor midostaurin was approved by the US Food and Drug Administration and the European Medicines Agency as monotherapy for advSM based on data from phase 2 clinical studies. AREAS COVERED This review discusses the management of common adverse events (AEs) in patients with advSM who participated in phase 2 clinical studies that led to the approval of midostaurin. EXPERT OPINION In the advSM population undergoing treatment with midostaurin, treatment-related AEs are often difficult to distinguish from disease-related symptoms, which can lead to premature discontinuation and improper dose reduction of midostaurin therapy in patients who might have benefitted from continued therapy. Here we present strategies to help optimize AE management and maximize the potential benefits of midostaurin in advSM.
Collapse
Affiliation(s)
- Jason Gotlib
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Hanneke C Kluin-Nelemans
- Department of Hematology, University Medical Center, University of Groningen, Groningen, The Netherlands
| | - Cem Akin
- Division of Allergy and Clinical Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Karin Hartmann
- Division of Allergy, Department of Dermatology, University of Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Andreas Reiter
- University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
21
|
Ruksha TG, Sergeeva EY, Fefelova YA, Khorzhevsky VA. [The significance of C-KIT gene mutations in the diagnosis and prognosis of malignant tumors]. Arkh Patol 2021; 83:61-68. [PMID: 34278763 DOI: 10.17116/patol20218304161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Mutations in the C-KIT gene encoding type III receptor tyrosine kinase that regulates cellular processes, such as differentiation, survival, proliferation, migration, and apoptosis, are found in some neoplasms: gastrointestinal stromal tumor, mastocytosis, melanoma, breast carcinomas, myeloid leukemias, and a number of others. Tumors that exhibit these mutations are sensitive to therapy with tyrosine kinase inhibitors, which makes it necessary to correctly identify the mutation status by C-KIT in order to apply a personalized approach to therapy. This literature review shows that the type and localization of the C-KIT gene mutation are of crucial prognostic value and significance in choosing drugs for antitumor therapy, but traditional diagnostic methods fail to determine accurate mutation characteristics. Routine sequencing techniques focus on identifying the gene mutations associated with specific cellular processes, such as DNA damage and repair. The emergence of next-generation sequencing techniques has solved this problem, making it possible to fully analyze the genome of a malignant neoplasm, with constant screening for new mutations that appear as the tumor develops, affect the prognosis of the disease, and change its sensitivity to the antitumor therapy.
Collapse
Affiliation(s)
- T G Ruksha
- Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University of the Ministry of Health of Russia, Krasnoyarsk, Russia
| | - E Yu Sergeeva
- Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University of the Ministry of Health of Russia, Krasnoyarsk, Russia
| | - Yu A Fefelova
- Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University of the Ministry of Health of Russia, Krasnoyarsk, Russia
| | - V A Khorzhevsky
- Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University of the Ministry of Health of Russia, Krasnoyarsk, Russia
| |
Collapse
|
22
|
Catching the clinical and biological diversity for an appropriate therapeutic approach in systemic mastocytosis. Ann Hematol 2020; 100:337-344. [PMID: 33156374 PMCID: PMC7646220 DOI: 10.1007/s00277-020-04323-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 10/26/2020] [Indexed: 11/13/2022]
Abstract
Systemic mastocytosis (SM) is a rare disease calling for integrated approaches involving onco-hematologic competences for appropriate clinical management and treatment. The wide variability of manifestations and disease course claims for an accurate risk stratification, currently relying on the appraisal of the benefit/risk ratio of treatment modalities within indolent and advanced variants according to WHO classification. More objective parameters are progressively incorporated and integrated into comprehensive models, on which to support the adoption of therapeutic strategies, since the mere clinical distinction between mediator-related signs/symptoms and “true” organ damage can sometimes be complicated. The development of novel targeted drugs is progressively extending the therapeutic alternatives available, which ranges from conventional agents such as interferon and cladribine, to the more modern approach based on KIT inhibition. Ultimately, the choice of the most appropriate therapy should be rationalized on the basis of the clinical picture and molecular data. The focus of the present review is on the areas still open in the current evaluation of SM patients, particularly when considering the need of a treatment.
Collapse
|
23
|
New developments in diagnosis, prognostication, and treatment of advanced systemic mastocytosis. Blood 2020; 135:1365-1376. [DOI: 10.1182/blood.2019000932] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/30/2019] [Indexed: 12/26/2022] Open
Abstract
AbstractSystemic mastocytosis (SM) has greatly benefited from the broad application of precision medicine techniques to hematolymphoid neoplasms. Sensitive detection of the recurrent KIT D816V mutation and use of next-generation sequencing (NGS) panels to profile the genetic landscape of SM variants have been critical adjuncts to the diagnosis and subclassification of SM, and development of clinical-molecular prognostic scoring systems. Multilineage KIT involvement and multimutated clones are characteristic of advanced SM (advSM), especially SM with an associated hematologic neoplasm (AHN). A major challenge is how to integrate conventional markers of mast cell disease burden (percentage of bone marrow mast cell infiltration and serum tryptase levels) with molecular data (serial monitoring of both KIT D816V variant allele frequency and NGS panels) to lend more diagnostic and prognostic clarity to the heterogeneous clinical presentations and natural histories of advSM. The approval of the multikinase/KIT inhibitor midostaurin has validated the paradigm of KIT inhibition in advSM, and the efficacy and safety of second-generation agents, such as the switch-control inhibitor ripretinib (DCC-2618) and the D816V-selective inhibitor avapritinib (BLU-285) are being further defined in ongoing clinical trials. Looking forward, perhaps the most fruitful marriage of the advances in molecular genetics and treatment will be the design of adaptive basket trials that combine histopathology and genetic profiling to individualize treatment approaches for patients with diverse AHNs and relapsed/refractory SM.
Collapse
|
24
|
Activation of Siglec-7 results in inhibition of in vitro and in vivo growth of human mast cell leukemia cells. Pharmacol Res 2020; 158:104682. [PMID: 32035162 DOI: 10.1016/j.phrs.2020.104682] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/31/2020] [Accepted: 02/04/2020] [Indexed: 02/06/2023]
Abstract
Advanced systemic mastocytosis is a rare and still untreatable disease. Blocking antibodies against inhibitory receptors, also known as "immune checkpoints", have revolutionized anti-cancer treatment. Inhibitory receptors are expressed not only on normal immune cells, including mast cells but also on neoplastic cells. Whether activation of inhibitory receptors through monoclonal antibodies can lead to tumor growth inhibition remains mostly unknown. Here we show that the inhibitory receptor Siglec-7 is expressed by primary neoplastic mast cells in patients with systemic mastocytosis and by mast cell leukemia cell lines. Activation of Siglec-7 by anti-Siglec-7 monoclonal antibody caused phosphorylation of Src homology region 2 domain-containing phosphatase-1 (SHP-1), reduced phosphorylation of KIT and induced growth inhibition in mast cell lines. In SCID-beige mice injected with either the human mast cell line HMC-1.1 and HMC-1.2 or with Siglec-7 transduced B cell lymphoma cells, anti-Siglec-7 monoclonal antibody reduced tumor growth by a mechanism involving Siglec-7 cytoplasmic domains in "preventive" and "treatment" settings. These data demonstrate that activation of Siglec-7 on mast cell lines can inhibit their growth in vitro and in vivo. This might pave the way to additional treatment strategies for mastocytosis.
Collapse
|
25
|
Galinsky I, Coleman M, Fechter L. Midostaurin: Nursing Perspectives on Managing Treatment and Adverse Events in Patients With FLT3 Mutation–Positive Acute Myeloid Leukemia and Advanced Systemic Mastocytosis. Clin J Oncol Nurs 2019; 23:599-608. [DOI: 10.1188/19.cjon.599-608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
26
|
Mughal TI, Pemmaraju N, Radich JP, Deininger MW, Kucine N, Kiladjian JJ, Bose P, Gotlib J, Valent P, Chen CC, Barbui T, Rampal R, Verstovsek S, Koschmieder S, Saglio G, Van Etten RA. Emerging translational science discoveries, clonal approaches, and treatment trends in chronic myeloproliferative neoplasms. Hematol Oncol 2019; 37:240-252. [PMID: 31013548 DOI: 10.1002/hon.2622] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 04/13/2019] [Indexed: 12/19/2022]
Abstract
The 60th American Society of Hematology (ASH) held in San Diego in December 2018 was followed by the 13th Post-ASH chronic myeloproliferative neoplasms (MPNs) workshop on December 4 and 5, 2018. This closed annual workshop, first introduced in 2006 by Goldman and Mughal, was organized in collaboration with Alpine Oncology Foundation and allowed experts in preclinical and clinical research in the chronic MPNs to discuss the current scenario, including relevant presentations at ASH, and address pivotal open questions that impact translational research and clinical management. This review is based on the presentations and deliberations at this workshop, and rather than provide a resume of the proceedings, we have selected some of the important translational science and treatment issues that require clarity. We discuss the experimental and observational evidence to support the intimate interaction between aging, inflammation, and clonal evolution of MPNs, the clinical impact of the unfolding mutational landscape on the emerging targets and treatment of MPNs, new methods to detect clonal heterogeneity, the challenges in managing childhood and adolescent MPN, and reflect on the treatment of systemic mastocytosis (SM) following the licensing of midostaurin.
Collapse
Affiliation(s)
- Tariq I Mughal
- Division of Hematology-Oncology, Tufts University Cancer Center, Boston, Massachusetts
| | - Naveen Pemmaraju
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jerald P Radich
- Fred Hutch Cancer Research Center, Fred Hutchinson Cancer Center, Seattle, Washington
| | | | - Nicole Kucine
- Division of Pediatric Hematology, Weill Cornell Medicine, New York, New York
| | | | - Prithviraj Bose
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jason Gotlib
- Division of Hematology, Stanford Cancer Institute, Stanford, California
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Chih-Cheng Chen
- Chang-Gung Memorial Hospital, Chiayi; College of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Tiziano Barbui
- Foundation for Clinical Research (FROM), Papa Giovanni XXIIII Hospital, Bergamo, Italy
| | - Raajit Rampal
- Division of Hematology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Srdan Verstovsek
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Steffen Koschmieder
- Department of Medicine IV, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Giuseppe Saglio
- Divison of Hematology, Orbassano University Hospital, Turin, Italy
| | - Richard A Van Etten
- Division of Hematology-Oncology, University of California Irvine, Irvine, California
| |
Collapse
|