1
|
Li J, Zhou W, Wang W. Artificial antigen-presenting cells: the booster for the obtaining of functional adoptive cells. Cell Mol Life Sci 2024; 81:378. [PMID: 39215816 PMCID: PMC11365909 DOI: 10.1007/s00018-024-05412-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
Adoptive cell therapy (ACT) achieves substantial efficacy in the treatment of hematological malignancies and solid tumours, while enormous endeavors have been made to reduce relapse and extend the remission duration after ACT. For the genetically engineered T cells, their functionality and long-term anti-tumour potential depend on the specificity of the T cell receptor (TCR) or chimeric antigen receptor (CAR). In addition, the therapeutic benefit is directly to sufficient activation and proliferation of engineered T cells. Artificial antigen-presenting cells (aAPCs), as powerful boosters for ACT, have been applied to provide sustained stimulation of the cognate antigen and facilitate the expansion of sufficient T cells for infusion. In this review, we summarize the aAPCs used to generate effector cells for ACT and underline the mechanism by which aAPCs enhance the functionality of the effector cells. The manuscript includes investigations ranging from basic research to clinical trials, which we hope will highlight the importance of aAPCs and provide guidance for novel strategies to improve the effectiveness of ACT.
Collapse
Affiliation(s)
- Jing Li
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Weilin Zhou
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Wei Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
2
|
Bobisse S, Bianchi V, Tanyi JL, Sarivalasis A, Missiaglia E, Pétremand R, Benedetti F, Torigian DA, Genolet R, Barras D, Michel A, Mastroyannis SA, Zsiros E, Dangaj Laniti D, Tsourti Z, Stevenson BJ, Iseli C, Levine BL, Speiser DE, Gfeller D, Bassani-Sternberg M, Powell DJ, June CH, Dafni U, Kandalaft LE, Harari A, Coukos G. A phase 1 trial of adoptive transfer of vaccine-primed autologous circulating T cells in ovarian cancer. NATURE CANCER 2023; 4:1410-1417. [PMID: 37735588 DOI: 10.1038/s43018-023-00623-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/24/2023] [Indexed: 09/23/2023]
Abstract
We have previously shown that vaccination with tumor-pulsed dendritic cells amplifies neoantigen recognition in ovarian cancer. Here, in a phase 1 clinical study ( NCT01312376 /UPCC26810) including 19 patients, we show that such responses are further reinvigorated by subsequent adoptive transfer of vaccine-primed, ex vivo-expanded autologous peripheral blood T cells. The treatment is safe, and epitope spreading with novel neopeptide reactivities was observed after cell infusion in patients who experienced clinical benefit, suggesting reinvigoration of tumor-sculpting immunity.
Collapse
Affiliation(s)
- Sara Bobisse
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Lausanne, Switzerland
- Center for Cell Immunotherapy, Department of Oncology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Valentina Bianchi
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Lausanne, Switzerland
- Center for Cell Immunotherapy, Department of Oncology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
- Center for Experimental Therapeutics, Department of Oncology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Janos L Tanyi
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Apostolos Sarivalasis
- Center for Cell Immunotherapy, Department of Oncology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Edoardo Missiaglia
- Institute of Pathology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Rémy Pétremand
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Lausanne, Switzerland
- Center for Cell Immunotherapy, Department of Oncology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Fabrizio Benedetti
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Lausanne, Switzerland
- Center for Cell Immunotherapy, Department of Oncology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Drew A Torigian
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Raphael Genolet
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Lausanne, Switzerland
- Center for Cell Immunotherapy, Department of Oncology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - David Barras
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Lausanne, Switzerland
- Center for Cell Immunotherapy, Department of Oncology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Alexandra Michel
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Lausanne, Switzerland
- Center for Cell Immunotherapy, Department of Oncology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Spyridon A Mastroyannis
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Emese Zsiros
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
- Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Denarda Dangaj Laniti
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Lausanne, Switzerland
- Center for Cell Immunotherapy, Department of Oncology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Zoi Tsourti
- Laboratory of Biostatistics, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Brian J Stevenson
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Lausanne, Switzerland
- Center for Cell Immunotherapy, Department of Oncology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Christian Iseli
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Bioinformatics Competence Center, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Bruce L Levine
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel E Speiser
- Center for Cell Immunotherapy, Department of Oncology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - David Gfeller
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Lausanne, Switzerland
- Center for Cell Immunotherapy, Department of Oncology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Michal Bassani-Sternberg
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Lausanne, Switzerland
- Center for Cell Immunotherapy, Department of Oncology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Daniel J Powell
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Carl H June
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Urania Dafni
- Laboratory of Biostatistics, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Lana E Kandalaft
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Lausanne, Switzerland
- Center for Cell Immunotherapy, Department of Oncology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
- Center for Experimental Therapeutics, Department of Oncology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Alexandre Harari
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Lausanne, Switzerland
- Center for Cell Immunotherapy, Department of Oncology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - George Coukos
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Lausanne, Switzerland.
- Center for Cell Immunotherapy, Department of Oncology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland.
| |
Collapse
|
3
|
Cole K, Al-Kadhimi Z, Talmadge JE. Highlights into historical and current immune interventions for cancer. Int Immunopharmacol 2023; 117:109882. [PMID: 36848790 PMCID: PMC10355273 DOI: 10.1016/j.intimp.2023.109882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 03/01/2023]
Abstract
Immunotherapy is an additional pillar when combined with traditional standards of care such as chemotherapy, radiotherapy, and surgery for cancer patients. It has revolutionized cancer treatment and rejuvenated the field of tumor immunology. Several types of immunotherapies, including adoptive cellular therapy (ACT) and checkpoint inhibitors (CPIs), can induce durable clinical responses. However, their efficacies vary, and only subsets of cancer patients benefit from their use. In this review, we address three goals: to provide insight into the history of these approaches, broaden our understanding of immune interventions, and discuss current and future approaches. We highlight how cancer immunotherapy has evolved and discuss how personalization of immune intervention may address present limitations. Cancer immunotherapy is considered a recent medical achievement and in 2013 was selected as the "Breakthrough of the Year" by Science. While the breadth of immunotherapeutics has been rapidly expanding, to include the use of chimeric antigen receptor (CAR) T-cell therapy and immune checkpoint inhibitor (ICI) therapy, immunotherapy dates back over 3000 years. The expansive history of immunotherapy, and related observations, have resulted in several approved immune therapeutics beyond the recent emphasis on CAR-T and ICI therapies. In addition to other classical forms of immune intervention, including human papillomavirus (HPV), hepatitis B, and the Mycobacterium bovis Bacillus Calmette-Guérin (BCG) tuberculosis vaccines, immunotherapies have had a broad and durable impact on cancer therapy and prevention. One classic example of immunotherapy was identified in 1976 with the use of intravesical administration of BCG in patients with bladder cancer; resulting in a 70 % eradication rate and is now standard of care. However, a greater impact from the use of immunotherapy is documented by the prevention of HPV infections that are responsible for 98 % of cervical cancer cases. In 2020, the World Health Organization (WHO) estimated that 341,831 women died from cervical cancer [1]. However, administration of a single dose of a bivalent HPV vaccine was shown to be 97.5 % effective in preventing HPV infections. These vaccines not only prevent cervical squamous cell carcinoma and adenocarcinoma, but also oropharyngeal, anal, vulvar, vaginal, and penile squamous cell carcinomas. The breadth, response and durability of these vaccines can be contrasted with CAR-T-cell therapies, which have significant barriers to their widespread use including logistics, manufacturing limitations, toxicity concerns, financial burden and lasting remissions observed in only 30 to 40 % of responding patients. Another, recent immunotherapy focus are ICIs. ICIs are a class of antibodies that can increase the immune responses against cancer cells in patients. However, ICIs are only effective against tumors with a high mutational burden and are associated with a broad spectrum of toxicities requiring interruption of administration and/or administration corticosteroids; both of which limit immune therapy. In summary, immune therapeutics have a broad impact worldwide, utilizing numerous mechanisms of action and when considered in their totality are more effective against a broader range of tumors than initially considered. These new cancer interventions have tremendous potential notability when multiple mechanisms of immune intervention are combined as well as with standard of care modalities.
Collapse
Affiliation(s)
- Kathryn Cole
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Zaid Al-Kadhimi
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - James E Talmadge
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
4
|
Lee-Chang C, Lesniak MS. Next-generation antigen-presenting cell immune therapeutics for gliomas. J Clin Invest 2023; 133:e163449. [PMID: 36719372 PMCID: PMC9888388 DOI: 10.1172/jci163449] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Antigen presentation machinery and professional antigen-presenting cells (APCs) are fundamental for an efficacious immune response against cancers, especially in the context of T cell-centric immunotherapy. Dendritic cells (DCs), the gold standard APCs, play a crucial role in initiating and maintaining a productive antigen-specific adaptive immunity. In recent decades, ex vivo-differentiated DCs from circulating CD14+ monocytes have become the reference for APC-based immunotherapy. DCs loaded with tumor-associated antigens, synthetic peptides, or RNA activate T cells with antitumor properties. This strategy has paved the way for the development of alternative antigen-presenting vaccination strategies, such as monocytes, B cells, and artificial APCs, that have shown effective therapeutic outcomes in preclinical cancer models. The search for alternative APC platforms was initiated by the overall limited clinical impact of DC vaccines, especially in indications such as gliomas, a primary brain tumor known for resistance to any immune intervention. In this Review, we navigate the APC immune therapeutics' past, present, and future in the context of primary brain tumors.
Collapse
Affiliation(s)
- Catalina Lee-Chang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Malnati Brain Tumor Institute, Chicago, Illinois, USA
| | - Maciej S. Lesniak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Malnati Brain Tumor Institute, Chicago, Illinois, USA
| |
Collapse
|
5
|
Starzer AM, Preusser M, Berghoff AS. Immune escape mechanisms and therapeutic approaches in cancer: the cancer-immunity cycle. Ther Adv Med Oncol 2022; 14:17588359221096219. [PMID: 35510032 PMCID: PMC9058458 DOI: 10.1177/17588359221096219] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/04/2022] [Indexed: 12/31/2022] Open
Abstract
The introduction of immune checkpoint inhibitors has changed the therapeutic possibilities for various cancer types. However, despite the success in some entities, a significant fraction of patients does not respond to immune checkpoint inhibitors. A functioning cancer-immunity cycle is needed as the precondition for a clinically meaningful response to immune checkpoint inhibitors. It is assumed that only if each step of the cycle is activated and functioning properly, immune checkpoint inhibitors induce a meaningful immune response. However, an activated cancer-immunity cycle might not be present equally in each patient and cancer type. Ideally, treatment concepts should consider each single step of the cancer-immunity cycle and provide personalized treatment approaches, allowing the adaption to functioning and malfunctioning steps of the individual patient’s specific cancer-immunity cycle. In the following review, we provide an overview of the single steps of the cancer-immunity cycle as well as the impact of malfunctioning steps on the generation of an effective tumor-specific immune response.
Collapse
Affiliation(s)
- Angelika M. Starzer
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Anna S. Berghoff
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
- Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Tiriveedhi V, Ivy MT, Myles EL, Zent R, Rathmell JC, Titze J. Ex Vivo High Salt Activated Tumor-Primed CD4+T Lymphocytes Exert a Potent Anti-Cancer Response. Cancers (Basel) 2021; 13:1690. [PMID: 33918403 PMCID: PMC8038238 DOI: 10.3390/cancers13071690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 02/02/2023] Open
Abstract
Cell based immunotherapy is rapidly emerging as a promising cancer treatment. A modest increase in salt (sodium chloride) concentration in immune cell cultures is known to induce inflammatory phenotypic differentiation. In our current study, we analyzed the ability of salt treatment to induce ex vivo expansion of tumor-primed CD4 (cluster of differentiation 4)+T cells to an effector phenotype. CD4+T cells were isolated using immunomagnetic beads from draining lymph nodes and spleens from tumor bearing C57Bl/6 mice, 28 days post-injection of Py230 syngeneic breast cancer cells. CD4+T cells from non-tumor bearing mice were isolated from splenocytes of 12-week-old C57Bl/6 mice. These CD4+T cells were expanded ex vivo with five stimulation cycles, and each cycle comprised of treatment with high salt (Δ0.035 M NaCl) or equimolar mannitol controls along with anti-CD3/CD28 monoclonal antibodies for the first 3 days, followed by the addition of interleukin (IL)-2/IL-7 cytokines and heat killed Py230 for 4 days. Ex vivo high salt treatment induced a two-fold higher Th1 (T helper type 1) expansion and four-fold higher Th17 expansion compared to equimolar mannitol treatment. Importantly, the high salt expanded CD4+T cells retained tumor-specificity, as demonstrated by higher in vitro cytotoxicity against Py230 breast cancer cells and reduced in vivo syngeneic tumor growth. Metabolic studies revealed that high salt treatment enhanced the glycolytic reserve and basal mitochondrial oxidation of CD4+T cells, suggesting a role of high salt in enhanced pro-growth anabolic metabolism needed for inflammatory differentiation. Mechanistic studies demonstrated that the high salt induced switch to the effector phenotype was mediated by tonicity-dependent transcription factor, TonEBP/NFAT5. Using a transgenic murine model, we demonstrated that CD4 specific TonEBP/NFAT5 knock out (CD4cre/creNFAT5flox/flox) abrogated the induction of the effector phenotype and anti-tumor efficiency of CD4+T cells following high salt treatment. Taken together, our data suggest that high salt-mediated ex vivo expansion of tumor-primed CD4+T cells could induce effective tumor specific anti-cancer responses, which may have a novel cell-based cancer immunotherapeutic application.
Collapse
Affiliation(s)
- Venkataswarup Tiriveedhi
- Department of Biological Sciences, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209, USA; (M.T.I.); (E.L.M.)
- Division of Pharmacology, Vanderbilt University, Nashville, TN 37212, USA
| | - Michael T. Ivy
- Department of Biological Sciences, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209, USA; (M.T.I.); (E.L.M.)
| | - Elbert L. Myles
- Department of Biological Sciences, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209, USA; (M.T.I.); (E.L.M.)
| | - Roy Zent
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Jeffrey C. Rathmell
- Department Pathology, Microbiology and Immunology, Vanderbilt University Medical Center North, Nashville, TN 37232, USA;
| | - Jens Titze
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857, Singapore;
- Division of Nephrology, Duke University School of Medicine, 2 Genome Court, Durham, NC 27710, USA
| |
Collapse
|
7
|
Isser A, Livingston NK, Schneck JP. Biomaterials to enhance antigen-specific T cell expansion for cancer immunotherapy. Biomaterials 2021; 268:120584. [PMID: 33338931 PMCID: PMC7856270 DOI: 10.1016/j.biomaterials.2020.120584] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/22/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023]
Abstract
T cells are often referred to as the 'guided missiles' of our immune system because of their capacity to traffic to and accumulate at sites of infection or disease, destroy infected or mutated cells with high specificity and sensitivity, initiate systemic immune responses, sterilize infections, and produce long-lasting memory. As a result, they are a common target for a range of cancer immunotherapies. However, the myriad of challenges of expanding large numbers of T cells specific to each patient's unique tumor antigens has led researchers to develop alternative, more scalable approaches. Biomaterial platforms for expansion of antigen-specific T cells offer a path forward towards broadscale translation of personalized immunotherapies by providing "off-the-shelf", yet modular approaches to customize the phenotype, function, and specificity of T cell responses. In this review, we discuss design considerations and progress made in the development of ex vivo and in vivo technologies for activating antigen-specific T cells, including artificial antigen presenting cells, T cell stimulating scaffolds, biomaterials-based vaccines, and artificial lymphoid organs. Ultimate translation of these platforms as a part of cancer immunotherapy regimens hinges on an in-depth understanding of T cell biology and cell-material interactions.
Collapse
Affiliation(s)
- Ariel Isser
- Department of Biomedical Engineering, School of Medicine, USA; Institute for Cell Engineering, School of Medicine, USA
| | - Natalie K Livingston
- Department of Biomedical Engineering, School of Medicine, USA; Institute for Cell Engineering, School of Medicine, USA; Translational Tissue Engineering Center, USA; Institute for Nanobiotechnology, USA
| | - Jonathan P Schneck
- Institute for Cell Engineering, School of Medicine, USA; Department of Pathology, School of Medicine, USA; Institute for Nanobiotechnology, USA; Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
8
|
Kwon YR, Kim HJ, Sohn MJ, Lim JY, Park KS, Lee S, Chung NG, Jeong DC, Min CK, Kim YJ. Effects of decitabine on allogeneic immune reactions of donor lymphocyte infusion via activation of dendritic cells. Exp Hematol Oncol 2020; 9:22. [PMID: 32908796 PMCID: PMC7470611 DOI: 10.1186/s40164-020-00178-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/21/2020] [Indexed: 11/15/2022] Open
Abstract
Background Successful prevention of post-transplantation relapse after donor lymphocyte infusion (DLI) depends on its capability to mediate an effective graft-versus-leukemia (GVL) response while minimizing DLI-related toxicity, including graft-versus-host disease (GVHD). Methods We assessed the effects of decitabine (DEC), a hypomethylating agent, upon allogeneic immune reaction in a murine model of DLI. Results Significantly greater tumor growth retardation and survival prolongation occurred in mice administered with 1.0 mg/kg DEC for 5 days (DEC-1.0) than in control or DEC-0.1 mice. Upon prompt DEC and DLI co-administration, dendritic cells (DCs) were activated; DEC-1.0/DLI induced severe GVHD, and survival was significantly lower than with DLI alone or DEC-0.1/DLI treatments. IFN-γ and CD28 levels were higher in splenic DCs of DEC-1.0 mice than in those of control mice. Assessment of delayed DLI co-administration with DEC, when IFN-γ levels were normalized to control levels, revealed that DEC-1.0/DLI successfully facilitated tumor management without causing severe GVHD. Conclusions Our results suggest that DEC primes allogeneic immune reactions of DLI via DC activation, and GVHD and GVL effects are separable through optimal DLI timing based on DEC-induced increase in IFN-γ expression levels.
Collapse
Affiliation(s)
- Yong-Rim Kwon
- Laboratory of Hematological Disease and Immunology, Seoul, Republic of Korea
| | - Hye Joung Kim
- Laboratory of Hematological Disease and Immunology, Seoul, Republic of Korea
| | - Min-Jung Sohn
- Laboratory of Hematological Disease and Immunology, Seoul, Republic of Korea
| | - Ji-Young Lim
- Laboratory of Hematological Disease and Immunology, Seoul, Republic of Korea
| | - Kyung-Shin Park
- Department of Clinical Pathology, Seoul St. Mary's Hospital, Seoul, Republic of Korea
| | - Seok Lee
- Laboratory of Hematological Disease and Immunology, Seoul, Republic of Korea.,Leukemia Research Institute, Seoul, Republic of Korea.,Seoul St. Mary's Hematology Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591 Republic of Korea
| | - Nack-Gyun Chung
- Leukemia Research Institute, Seoul, Republic of Korea.,Seoul St. Mary's Hematology Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591 Republic of Korea.,Department of Pediatrics, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dae-Chul Jeong
- Department of Pediatrics, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chang-Ki Min
- Laboratory of Hematological Disease and Immunology, Seoul, Republic of Korea.,Leukemia Research Institute, Seoul, Republic of Korea.,Seoul St. Mary's Hematology Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591 Republic of Korea
| | - Yoo-Jin Kim
- Laboratory of Hematological Disease and Immunology, Seoul, Republic of Korea.,Leukemia Research Institute, Seoul, Republic of Korea.,Seoul St. Mary's Hematology Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591 Republic of Korea
| |
Collapse
|
9
|
Braendstrup P, Levine BL, Ruella M. The long road to the first FDA-approved gene therapy: chimeric antigen receptor T cells targeting CD19. Cytotherapy 2020; 22:57-69. [PMID: 32014447 PMCID: PMC7036015 DOI: 10.1016/j.jcyt.2019.12.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/27/2019] [Accepted: 12/01/2019] [Indexed: 12/11/2022]
Abstract
Thirty years after initial publications of the concept of a chimeric antigen receptor (CAR), the U.S. Food and Drug Administration (FDA) approved the first anti-CD19 CAR T-cell therapy. Unlike other immunotherapies, such as immune checkpoint inhibitors and bispecific antibodies, CAR T cells are unique as they are "living drugs," that is, gene-edited killer cells that can recognize and kill cancer. During these 30 years of development, the CAR construct, T-cell manufacturing process, and clinical patient management have gone through rounds of failures and successes that drove continuous improvement. Tisagenlecleucel was the first gene therapy to receive approval from the FDA for any indication. The initial approval was for relapsed or refractory (r/r) pediatric and young-adult B-cell acute lymphoblastic leukemia in August 2017 and in May 2018 for adult r/r diffuse large B-cell lymphoma. Here we review the preclinical and clinical development of what began as CART19 at the University of Pennsylvania and later developed into tisagenlecleucel.
Collapse
Affiliation(s)
- Peter Braendstrup
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Hematology, Herlev University Hospital, Denmark; Department of Hematology, Zealand University Hospital Roskilde, Denmark
| | - Bruce L Levine
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Marco Ruella
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
10
|
Fleischer LC, Spencer HT, Raikar SS. Targeting T cell malignancies using CAR-based immunotherapy: challenges and potential solutions. J Hematol Oncol 2019; 12:141. [PMID: 31884955 PMCID: PMC6936092 DOI: 10.1186/s13045-019-0801-y] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 10/09/2019] [Indexed: 12/23/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has been successful in treating B cell malignancies in clinical trials; however, fewer studies have evaluated CAR T cell therapy for the treatment of T cell malignancies. There are many challenges in translating this therapy for T cell disease, including fratricide, T cell aplasia, and product contamination. To the best of our knowledge, no tumor-specific antigen has been identified with universal expression on cancerous T cells, hindering CAR T cell therapy for these malignancies. Numerous approaches have been assessed to address each of these challenges, such as (i) disrupting target antigen expression on CAR-modified T cells, (ii) targeting antigens with limited expression on T cells, and (iii) using third party donor cells that are either non-alloreactive or have been genome edited at the T cell receptor α constant (TRAC) locus. In this review, we discuss CAR approaches that have been explored both in preclinical and clinical studies targeting T cell antigens, as well as examine other potential strategies that can be used to successfully translate this therapy for T cell disease.
Collapse
Affiliation(s)
- Lauren C Fleischer
- Molecular and Systems Pharmacology Graduate Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University School of Medicine, Atlanta, GA, USA
- Cell and Gene Therapy Program, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
| | - H Trent Spencer
- Molecular and Systems Pharmacology Graduate Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University School of Medicine, Atlanta, GA, USA
- Cell and Gene Therapy Program, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
| | - Sunil S Raikar
- Cell and Gene Therapy Program, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
11
|
Su Q, Igyártó BZ. One-step artificial antigen presenting cell-based vaccines induce potent effector CD8 T cell responses. Sci Rep 2019; 9:18949. [PMID: 31831802 PMCID: PMC6908577 DOI: 10.1038/s41598-019-55286-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 11/24/2019] [Indexed: 12/14/2022] Open
Abstract
The production and wide use of artificial antigen presenting cells (aAPCs) in the clinic as cancer immunotherapeutics are hindered by the need of identifying immunogenic cancer antigens and production of recombinant patient-specific major histocompatibility complexes (MHC) loaded with these peptides. To overcome these limitations, in this study, we tested the idea of whether peptide-MHCs can directly be captured from cell lysates, including cancer cells using affinity beads, and used to initiate T cell responses. In theory, these affinity beads covered with the unknown peptide-MHC repertoire captured from the cancer cells could interact with a wide range of antigen-specific T cells and promote anti-cancer responses. Indeed, we found that we can successfully pull-down peptide-MHCs from cell lysates and the aAPCs generated using this technique were able to induce antigen-specific cytotoxic effector T cell responses that led to in vitro and in vivo tumor cell killing. In summary, we present here a novel technique to generate patient-specific aAPCs, that might have the potential to revolutionize the field of cancer vaccines, and provide patients with a vaccine in matters of days at minimal costs.
Collapse
Affiliation(s)
- Qingtai Su
- Baylor Scott & White Research Institute, Baylor Institute for Immunology Research, Dallas, TX, USA
| | - Botond Z Igyártó
- Baylor Scott & White Research Institute, Baylor Institute for Immunology Research, Dallas, TX, USA.
| |
Collapse
|
12
|
Yado S, Luboshits G, Hazan O, Or R, Firer MA. Long-term survival without graft-versus-host-disease following infusion of allogeneic myeloma-specific Vβ T cell families. J Immunother Cancer 2019; 7:301. [PMID: 31727148 PMCID: PMC6854718 DOI: 10.1186/s40425-019-0776-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/09/2019] [Indexed: 12/11/2022] Open
Abstract
Background Despite chemo-induction therapy and autologous stem cell transplantation (ASCT), the vast majority of patients with Multiple Myeloma (MM) relapse within 7 years and the disease remains incurable. Adoptive Allogeneic T-cell therapy (ATCT) might be curative for MM, however current ATCT protocols often lead to graft versus host disease (GvHD). Transplanting only tumor reactive donor T cells that mediate a graft-versus-myeloma (GvM) but not GvHD may overcome this problem. Methods We used an MHC-matched/miHA-disparate B10.D2 → Balb/c bone marrow transplantation (BMT) murine model and MOPC315.BM MM cells to develop an ATCT protocol consisting of total body irradiation, autologous-BMT and infusion of selective, myeloma-reactive lymphocytes of T cell receptor (TCR) Vβ 2, 3 and 8.3 families (MM-auto BMT ATCT). Results Pre-stimulation ex vivo of allogeneic T cells by exposure to MOPC315.BM MM cells in the presence of IL-2, anti-CD3 and anti-CD28 resulted in expansion of the myeloma-reactive T cell TCRVβ 2, 3 and 8.3 subfamilies. Their isolation and infusion into MM-bearing mice resulted in a vigorous GvM response without induction GvHD and long-term survival. Repeated infusion of naïve myeloma-reactive T cell TCRVβ 2, 3 and 8.3 subfamilies was also effective. Conclusions These data demonstrate that a transplantation protocol involving only selective tumor-reactive donor T cell families is an effective immunotherapy and results in long-term survival in a mouse model of human MM. The results highlight the need to develop similar ATCT strategies for MM patients that result in enhanced survival without symptoms of GvHD.
Collapse
Affiliation(s)
- S Yado
- Chemical Engineering and Biotechnology, and Adelson School of Medicine, Ariel University, 40700, Ariel, Israel
| | - G Luboshits
- Chemical Engineering and Biotechnology, and Adelson School of Medicine, Ariel University, 40700, Ariel, Israel.,Ariel Center for Applied Cancer Research, Ariel University, 40700, Ariel, Israel
| | - O Hazan
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - R Or
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - M A Firer
- Chemical Engineering and Biotechnology, and Adelson School of Medicine, Ariel University, 40700, Ariel, Israel. .,Ariel Center for Applied Cancer Research, Ariel University, 40700, Ariel, Israel. .,Adelson Medical School, Ariel University, 40700, Ariel, Israel.
| |
Collapse
|
13
|
Xu J, Sai H, Li Y, Jordan AC, McGettigan SE, Chen JH, Bedoya F, Fraietta JA, Gladney WL, Melenhorst JJ, Beatty GL. Peripheral Blood T-Cell Fitness Is Diminished in Patients With Pancreatic Carcinoma but Can Be Improved With Homeostatic Cytokines. Cell Mol Gastroenterol Hepatol 2019; 8:656-658.e6. [PMID: 31398492 PMCID: PMC6889367 DOI: 10.1016/j.jcmgh.2019.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 12/12/2022]
Affiliation(s)
- J Xu
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - H Sai
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Y Li
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - A C Jordan
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - S E McGettigan
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - J-H Chen
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - F Bedoya
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - J A Fraietta
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - W L Gladney
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - J Joseph Melenhorst
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania.
| | - G L Beatty
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania; Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
14
|
Cohen AD, Garfall AL, Stadtmauer EA, Melenhorst JJ, Lacey SF, Lancaster E, Vogl DT, Weiss BM, Dengel K, Nelson A, Plesa G, Chen F, Davis MM, Hwang WT, Young RM, Brogdon JL, Isaacs R, Pruteanu-Malinici I, Siegel DL, Levine BL, June CH, Milone MC. B cell maturation antigen-specific CAR T cells are clinically active in multiple myeloma. J Clin Invest 2019; 129:2210-2221. [PMID: 30896447 DOI: 10.1172/jci126397] [Citation(s) in RCA: 539] [Impact Index Per Article: 89.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR) T cells are a promising therapy for hematologic malignancies. B-cell maturation antigen (BCMA) is a rational target in multiple myeloma (MM). METHODS We conducted a phase I study of autologous T cells lentivirally-transduced with a fully-human, BCMA-specific CAR containing CD3ζ and 4-1BB signaling domains (CART-BCMA), in subjects with relapsed/refractory MM. Twenty-five subjects were treated in 3 cohorts: 1) 1-5 x 108 CART-BCMA cells alone; 2) Cyclophosphamide (Cy) 1.5 g/m2 + 1-5 x 107 CART-BCMA cells; and 3) Cy 1.5 g/m2 + 1-5 x 108 CART-BCMA cells. No pre-specified BCMA expression level was required. RESULTS CART-BCMA cells were manufactured and expanded in all subjects. Toxicities included cytokine release syndrome and neurotoxicity, which were grade 3-4 in 8 (32%) and 3 (12%) subjects, respectively, and reversible. One subject died at day 24 from candidemia and progressive myeloma, following treatment for severe CRS and encephalopathy. Responses (based on treated subjects) were seen in 4/9 (44%) in cohort 1, 1/5 (20%) in cohort 2, and 7/11 (64%) in cohort 3, including 5 partial, 5 very good partial, and 2 complete responses, 3 of which were ongoing at 11, 14, and 32 months. Decreased BCMA expression on residual MM cells was noted in responders; expression increased at progression in most. Responses and CART-BCMA expansion were associated with CD4:CD8 T cell ratio and frequency of CD45RO-CD27+CD8+ T cells in the pre-manufacturing leukapheresis product. CONCLUSION CART-BCMA infusions with or without lymphodepleting chemotherapy are clinically active in heavily-pretreated MM patients. TRIAL REGISTRATION NCT02546167. FUNDING University of Pennsylvania-Novartis Alliance and NIH.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Wei-Ting Hwang
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Jennifer L Brogdon
- Novartis Institute for Biomedical Research, Cambridge, Massachusetts, USA
| | - Randi Isaacs
- Novartis Institute for Biomedical Research, Cambridge, Massachusetts, USA
| | | | - Don L Siegel
- Center for Cellular Immunotherapies.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Bruce L Levine
- Center for Cellular Immunotherapies.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Carl H June
- Center for Cellular Immunotherapies.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael C Milone
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
15
|
Iriguchi S, Kaneko S. Toward the development of true "off-the-shelf" synthetic T-cell immunotherapy. Cancer Sci 2019; 110:16-22. [PMID: 30485606 PMCID: PMC6317915 DOI: 10.1111/cas.13892] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 11/19/2018] [Accepted: 11/22/2018] [Indexed: 12/24/2022] Open
Abstract
Recent outstanding clinical results produced by engineered T cells, including chimeric antigen receptors, have already facilitated further research that broadens their applicability. One such direction is to explore new T cell sources for allogeneic “off‐the‐shelf” adoptive immunotherapy. Human pluripotent stem cells could serve as an alternative cell source for this purpose due to their unique features of infinite propagation ability and pluripotency. Here, we describe the current state of engineered T cell transfer with the focus on cell manufacturing processes and the potentials and challenges of induced pluripotent stem cell‐derived T cells as a starting material to construct off‐the‐shelf T‐cell banks.
Collapse
Affiliation(s)
- Shoichi Iriguchi
- Center for iPS Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Shin Kaneko
- Center for iPS Research and Application (CiRA), Kyoto University, Kyoto, Japan
| |
Collapse
|
16
|
Xia Y, Tian X, Wang J, Qiao D, Liu X, Xiao L, Liang W, Ban D, Chu J, Yu J, Wang R, Tian G, Wang M. Treatment of metastatic non-small cell lung cancer with NY-ESO-1 specific TCR engineered-T cells in a phase I clinical trial: A case report. Oncol Lett 2018; 16:6998-7007. [PMID: 30546433 PMCID: PMC6256329 DOI: 10.3892/ol.2018.9534] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 07/27/2018] [Indexed: 12/13/2022] Open
Abstract
This article presented a case of a human leukocyte antigen (HLA)-A2-positive patient with advanced cancer/testis antigen New York esophageal squamous cell carcinoma-1 (NY-ESO-1) expressing lung adenocarcinoma (LADC) who received adoptive cell therapy of T cell receptor engineered-T cells (TCR-T cells) targeting the cancer-testis antigen NY-ESO-1. The appropriate clinical and laboratory assessments were conducted to investigate the safety and efficacy of this therapy for this lung cancer patient. The patient had a clinical response to and was well-tolerated with this therapy in the clinical trial. In addition, a preliminary evaluation of the safety of NY-ESO-1 TCR-T cell therapy was performed in four patients with non-small cell lung cancer (NSCLC) enrolled in a clinical trial. It was well-tolerated and did not observe any serious adverse events post-infusion. Fever, anemia, and a decrease in white blood cell count were common adverse events, which were likely due to the TCR-T cell therapy. Two patients had clinical responses to NY-ESO-1 TCR-T cell therapy, including the 44-year-old female patient with LADC, who achieved a short-term partial response for 4 months, improved in Karnofsky performance status, and had a recovery of drug sensitivity. This suggests that TCR-T cell therapy targeting NY-ESO-1 antigen may be beneficial for HLA-A2-positive late-stage patients with NY-ESO-1-expressing NSCLC.
Collapse
Affiliation(s)
- Yan Xia
- Department of Oncology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518035, P.R. China.,Department of Research and Development, Shenzhen Institute for Innovation and Translational Medicine, Shenzhen, Guangdong 518120, P.R. China.,Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xiaopeng Tian
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Juntao Wang
- Department of Research and Development, Shenzhen Institute for Innovation and Translational Medicine, Shenzhen, Guangdong 518120, P.R. China
| | - Dongjuan Qiao
- Department of Research and Development, Shenzhen Institute for Innovation and Translational Medicine, Shenzhen, Guangdong 518120, P.R. China
| | - Xianhao Liu
- Department of Oncology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518035, P.R. China
| | - Liang Xiao
- Department of Oncology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518035, P.R. China
| | - Wenli Liang
- Department of Oncology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518035, P.R. China
| | - Dongcheng Ban
- Department of Research and Development, Shenzhen Institute for Innovation and Translational Medicine, Shenzhen, Guangdong 518120, P.R. China
| | - Junjun Chu
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jiaming Yu
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Rongfu Wang
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Geng Tian
- Department of Oncology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518035, P.R. China
| | - Mingjun Wang
- Department of Research and Development, Shenzhen Institute for Innovation and Translational Medicine, Shenzhen, Guangdong 518120, P.R. China
| |
Collapse
|
17
|
Ruella M, June CH. Predicting Dangerous Rides in CAR T Cells: Bridging the Gap between Mice and Humans. Mol Ther 2018; 26:1401-1403. [PMID: 29784587 PMCID: PMC5986966 DOI: 10.1016/j.ymthe.2018.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Marco Ruella
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA
| | - Carl H June
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA.
| |
Collapse
|
18
|
Fraietta JA, Nobles CL, Sammons MA, Lundh S, Carty SA, Reich TJ, Cogdill AP, Morrissette JJD, DeNizio JE, Reddy S, Hwang Y, Gohil M, Kulikovskaya I, Nazimuddin F, Gupta M, Chen F, Everett JK, Alexander KA, Lin-Shiao E, Gee MH, Liu X, Young RM, Ambrose D, Wang Y, Xu J, Jordan MS, Marcucci KT, Levine BL, Garcia KC, Zhao Y, Kalos M, Porter DL, Kohli RM, Lacey SF, Berger SL, Bushman FD, June CH, Melenhorst JJ. Disruption of TET2 promotes the therapeutic efficacy of CD19-targeted T cells. Nature 2018; 558:307-312. [PMID: 29849141 DOI: 10.1038/s41586-018-0178-z] [Citation(s) in RCA: 620] [Impact Index Per Article: 88.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 04/27/2018] [Indexed: 12/18/2022]
Abstract
Cancer immunotherapy based on genetically redirecting T cells has been used successfully to treat B cell malignancies1-3. In this strategy, the T cell genome is modified by integration of viral vectors or transposons encoding chimaeric antigen receptors (CARs) that direct tumour cell killing. However, this approach is often limited by the extent of expansion and persistence of CAR T cells4,5. Here we report mechanistic insights from studies of a patient with chronic lymphocytic leukaemia treated with CAR T cells targeting the CD19 protein. Following infusion of CAR T cells, anti-tumour activity was evident in the peripheral blood, lymph nodes and bone marrow; this activity was accompanied by complete remission. Unexpectedly, at the peak of the response, 94% of CAR T cells originated from a single clone in which lentiviral vector-mediated insertion of the CAR transgene disrupted the methylcytosine dioxygenase TET2 gene. Further analysis revealed a hypomorphic mutation in this patient's second TET2 allele. TET2-disrupted CAR T cells exhibited an epigenetic profile consistent with altered T cell differentiation and, at the peak of expansion, displayed a central memory phenotype. Experimental knockdown of TET2 recapitulated the potency-enhancing effect of TET2 dysfunction in this patient's CAR T cells. These findings suggest that the progeny of a single CAR T cell induced leukaemia remission and that TET2 modification may be useful for improving immunotherapies.
Collapse
Affiliation(s)
- Joseph A Fraietta
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher L Nobles
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Morgan A Sammons
- Department of Cell and Developmental Biology, Epigenetics Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Biology, University at Albany, State University of New York, Albany, NY, USA
| | - Stefan Lundh
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shannon A Carty
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Internal Medicine and Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Tyler J Reich
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexandria P Cogdill
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer J D Morrissette
- Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jamie E DeNizio
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shantan Reddy
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Young Hwang
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mercy Gohil
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Irina Kulikovskaya
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Farzana Nazimuddin
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Minnal Gupta
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Fang Chen
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John K Everett
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Katherine A Alexander
- Department of Cell and Developmental Biology, Epigenetics Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Enrique Lin-Shiao
- Department of Cell and Developmental Biology, Epigenetics Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marvin H Gee
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Xiaojun Liu
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Regina M Young
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David Ambrose
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yan Wang
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jun Xu
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Martha S Jordan
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Katherine T Marcucci
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bruce L Levine
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - K Christopher Garcia
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yangbing Zhao
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael Kalos
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David L Porter
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rahul M Kohli
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Simon F Lacey
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shelley L Berger
- Department of Cell and Developmental Biology, Epigenetics Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Frederic D Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Carl H June
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. .,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. .,Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. .,Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA, USA.
| | - J Joseph Melenhorst
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. .,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. .,Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. .,Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
19
|
Fraietta JA, Lacey SF, Orlando EJ, Pruteanu-Malinici I, Gohil M, Lundh S, Boesteanu AC, Wang Y, O'Connor RS, Hwang WT, Pequignot E, Ambrose DE, Zhang C, Wilcox N, Bedoya F, Dorfmeier C, Chen F, Tian L, Parakandi H, Gupta M, Young RM, Johnson FB, Kulikovskaya I, Liu L, Xu J, Kassim SH, Davis MM, Levine BL, Frey NV, Siegel DL, Huang AC, Wherry EJ, Bitter H, Brogdon JL, Porter DL, June CH, Melenhorst JJ. Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat Med 2018; 24:563-571. [PMID: 29713085 DOI: 10.1038/s41591-018-0010-1] [Citation(s) in RCA: 1207] [Impact Index Per Article: 172.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 02/07/2018] [Indexed: 01/12/2023]
Abstract
Tolerance to self-antigens prevents the elimination of cancer by the immune system1,2. We used synthetic chimeric antigen receptors (CARs) to overcome immunological tolerance and mediate tumor rejection in patients with chronic lymphocytic leukemia (CLL). Remission was induced in a subset of subjects, but most did not respond. Comprehensive assessment of patient-derived CAR T cells to identify mechanisms of therapeutic success and failure has not been explored. We performed genomic, phenotypic and functional evaluations to identify determinants of response. Transcriptomic profiling revealed that CAR T cells from complete-responding patients with CLL were enriched in memory-related genes, including IL-6/STAT3 signatures, whereas T cells from nonresponders upregulated programs involved in effector differentiation, glycolysis, exhaustion and apoptosis. Sustained remission was associated with an elevated frequency of CD27+CD45RO-CD8+ T cells before CAR T cell generation, and these lymphocytes possessed memory-like characteristics. Highly functional CAR T cells from patients produced STAT3-related cytokines, and serum IL-6 correlated with CAR T cell expansion. IL-6/STAT3 blockade diminished CAR T cell proliferation. Furthermore, a mechanistically relevant population of CD27+PD-1-CD8+ CAR T cells expressing high levels of the IL-6 receptor predicts therapeutic response and is responsible for tumor control. These findings uncover new features of CAR T cell biology and underscore the potential of using pretreatment biomarkers of response to advance immunotherapies.
Collapse
Affiliation(s)
- Joseph A Fraietta
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA.,Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA
| | - Simon F Lacey
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA.,Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA
| | - Elena J Orlando
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | | | - Mercy Gohil
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Stefan Lundh
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Alina C Boesteanu
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Yan Wang
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Roddy S O'Connor
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Wei-Ting Hwang
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward Pequignot
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - David E Ambrose
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Changfeng Zhang
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicholas Wilcox
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Felipe Bedoya
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Corin Dorfmeier
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Fang Chen
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Lifeng Tian
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Harit Parakandi
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Minnal Gupta
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Regina M Young
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - F Brad Johnson
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Irina Kulikovskaya
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Li Liu
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Jun Xu
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Sadik H Kassim
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Megan M Davis
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Bruce L Levine
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Noelle V Frey
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA.,Division of Hematology-Oncology, Department of Internal Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Donald L Siegel
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA.,Division of Transfusion Medicine and Therapeutic Pathology, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexander C Huang
- Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA.,Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - E John Wherry
- Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA.,Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hans Bitter
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | | | - David L Porter
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Division of Hematology-Oncology, Department of Internal Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Carl H June
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA.,Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA
| | - J Joseph Melenhorst
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA. .,Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA. .,Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
20
|
O'Rourke DM, Nasrallah MP, Desai A, Melenhorst JJ, Mansfield K, Morrissette JJD, Martinez-Lage M, Brem S, Maloney E, Shen A, Isaacs R, Mohan S, Plesa G, Lacey SF, Navenot JM, Zheng Z, Levine BL, Okada H, June CH, Brogdon JL, Maus MV. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci Transl Med 2018; 9:9/399/eaaa0984. [PMID: 28724573 DOI: 10.1126/scitranslmed.aaa0984] [Citation(s) in RCA: 1156] [Impact Index Per Article: 165.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 05/09/2017] [Indexed: 12/18/2022]
Abstract
We conducted a first-in-human study of intravenous delivery of a single dose of autologous T cells redirected to the epidermal growth factor receptor variant III (EGFRvIII) mutation by a chimeric antigen receptor (CAR). We report our findings on the first 10 recurrent glioblastoma (GBM) patients treated. We found that manufacturing and infusion of CAR-modified T cell (CART)-EGFRvIII cells are feasible and safe, without evidence of off-tumor toxicity or cytokine release syndrome. One patient has had residual stable disease for over 18 months of follow-up. All patients demonstrated detectable transient expansion of CART-EGFRvIII cells in peripheral blood. Seven patients had post-CART-EGFRvIII surgical intervention, which allowed for tissue-specific analysis of CART-EGFRvIII trafficking to the tumor, phenotyping of tumor-infiltrating T cells and the tumor microenvironment in situ, and analysis of post-therapy EGFRvIII target antigen expression. Imaging findings after CART immunotherapy were complex to interpret, further reinforcing the need for pathologic sampling in infused patients. We found trafficking of CART-EGFRvIII cells to regions of active GBM, with antigen decrease in five of these seven patients. In situ evaluation of the tumor environment demonstrated increased and robust expression of inhibitory molecules and infiltration by regulatory T cells after CART-EGFRvIII infusion, compared to pre-CART-EGFRvIII infusion tumor specimens. Our initial experience with CAR T cells in recurrent GBM suggests that although intravenous infusion results in on-target activity in the brain, overcoming the adaptive changes in the local tumor microenvironment and addressing the antigen heterogeneity may improve the efficacy of EGFRvIII-directed strategies in GBM.
Collapse
Affiliation(s)
- Donald M O'Rourke
- Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - MacLean P Nasrallah
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Arati Desai
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jan J Melenhorst
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Keith Mansfield
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Jennifer J D Morrissette
- Division of Precision and Computational Diagnostics, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maria Martinez-Lage
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Steven Brem
- Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eileen Maloney
- Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Angela Shen
- Novartis Oncology, East Hanover, NJ 07936, USA
| | - Randi Isaacs
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Suyash Mohan
- Division of Neuroradiology, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gabriela Plesa
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Simon F Lacey
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jean-Marc Navenot
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhaohui Zheng
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bruce L Levine
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hideho Okada
- Department of Neurosurgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Carl H June
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Marcela V Maus
- Cellular Immunotherapy Program, Cancer Center and Department of Medicine, Massachusetts General Hospital, Boston, MA 02129, USA.
| |
Collapse
|
21
|
Chimeric Antigen Receptor-T Cell Therapy: Practical Considerations for Implementation in Europe. Hemasphere 2018; 2:e18. [PMID: 31723747 PMCID: PMC6745952 DOI: 10.1097/hs9.0000000000000018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/08/2017] [Accepted: 11/09/2017] [Indexed: 12/27/2022] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy is a new class of cellular immunotherapies that involves ex vivo genetic modification of T cells to incorporate an engineered CAR. After infusion into the patient, the CAR-expressing T cells recognize specific tumor targets and induce an immune response against them. The technology utilized is fundamentally different from previously available cancer treatments. Currently, most CAR-T cell therapies use autologous T cells. Tisagenlecleucel (formerly CTL019) is an anti-CD19 CAR-T cell therapy that was recently approved in the United States for the treatment of pediatric and young adult patients with relapsed/refractory B-cell acute lymphoblastic leukemia (B-ALL). Tisagenlecleucel has shown robust in vivo expansion and long-term persistence, clinically meaningful durable response and remission rates, and overall survival benefit in pediatric and young adult patients with relapsed/refractory B-ALL and in relapsed/refractory diffuse large B-cell lymphoma. Common adverse events (AEs) include cytokine release syndrome, which may require hospitalization and admission to an intensive care unit, neurological toxicities, and B-cell aplasia. These AEs are manageable when treated by an appropriately trained team. Additional research is required to further develop AE management protocols. In this review, we describe regulatory requirements, clinical considerations, and site-level requirements for clinical study implementation of CAR-T cell therapy in Europe. We also provide a case study of the European experience from the first global clinical trial for tisagenlecleucel, which may serve as a useful starting point for investigators and clinicians looking to implement CAR-T cell therapy at their institutions.
Collapse
|
22
|
Xue Q, Bettini E, Paczkowski P, Ng C, Kaiser A, McConnell T, Kodrasi O, Quigley MF, Heath J, Fan R, Mackay S, Dudley ME, Kassim SH, Zhou J. Single-cell multiplexed cytokine profiling of CD19 CAR-T cells reveals a diverse landscape of polyfunctional antigen-specific response. J Immunother Cancer 2017; 5:85. [PMID: 29157295 PMCID: PMC5697351 DOI: 10.1186/s40425-017-0293-7] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/16/2017] [Indexed: 12/25/2022] Open
Abstract
Background It remains challenging to characterize the functional attributes of chimeric antigen receptor (CAR)-engineered T cell product targeting CD19 related to potency and immunotoxicity ex vivo, despite promising in vivo efficacy in patients with B cell malignancies. Methods We employed a single-cell, 16-plex cytokine microfluidics device and new analysis techniques to evaluate the functional profile of CD19 CAR-T cells upon antigen-specific stimulation. CAR-T cells were manufactured from human PBMCs transfected with the lentivirus encoding the CD19-BB-z transgene and expanded with anti-CD3/anti-CD28 coated beads. The enriched CAR-T cells were stimulated with anti-CAR or control IgG beads, stained with anti-CD4 RPE and anti-CD8 Alexa Fluor 647 antibodies, and incubated for 16 h in a single-cell barcode chip (SCBC). Each SCBC contains ~12,000 microchambers, covered with a glass slide that was pre-patterned with a complete copy of a 16-plex antibody array. Protein secretions from single CAR-T cells were captured and subsequently analyzed using proprietary software and new visualization methods. Results We demonstrate a new method for single-cell profiling of CD19 CAR-T pre-infusion products prepared from 4 healthy donors. CAR-T single cells exhibited a marked heterogeneity of cytokine secretions and polyfunctional (2+ cytokine) subsets specific to anti-CAR bead stimulation. The breadth of responses includes anti-tumor effector (Granzyme B, IFN-γ, MIP-1α, TNF-α), stimulatory (GM-CSF, IL-2, IL-8), regulatory (IL-4, IL-13, IL-22), and inflammatory (IL-6, IL-17A) functions. Furthermore, we developed two new bioinformatics tools for more effective polyfunctional subset visualization and comparison between donors. Conclusions Single-cell, multiplexed, proteomic profiling of CD19 CAR-T product reveals a diverse landscape of immune effector response of CD19 CAR-T cells to antigen-specific challenge, providing a new platform for capturing CAR-T product data for correlative analysis. Additionally, such high dimensional data requires new visualization methods to further define precise polyfunctional response differences in these products. The presented biomarker capture and analysis system provides a more sensitive and comprehensive functional assessment of CAR-T pre-infusion products and may provide insights into the safety and efficacy of CAR-T cell therapy. Electronic supplementary material The online version of this article (10.1186/s40425-017-0293-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qiong Xue
- Novartis Pharmaceuticals, 64 Sidney Street, Cambridge, MA, 02139, USA. .,Present Address: Novartis Institute of BioMedical Research, 300 Technology Square, Cambridge, MA, 02139, USA.
| | - Emily Bettini
- IsoPlexis Corporation, 35 NE Industrial Rd, Branford, CT, 06405, USA
| | | | - Colin Ng
- IsoPlexis Corporation, 35 NE Industrial Rd, Branford, CT, 06405, USA
| | - Alaina Kaiser
- IsoPlexis Corporation, 35 NE Industrial Rd, Branford, CT, 06405, USA
| | - Timothy McConnell
- IsoPlexis Corporation, 35 NE Industrial Rd, Branford, CT, 06405, USA
| | - Olja Kodrasi
- Novartis Pharmaceuticals, 64 Sidney Street, Cambridge, MA, 02139, USA.,Present Address: Novartis Institute of BioMedical Research, 64 Sidney street, Cambridge, MA, 02139, USA
| | - Máire F Quigley
- Novartis Pharmaceuticals, 64 Sidney Street, Cambridge, MA, 02139, USA.,Present Address: Novartis Pharmaceuticals, 45 Sidney Street, Cambridge, MA, 02139, USA
| | - James Heath
- NanoSystems Biology Cancer Center, Division of Chemistry, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Sean Mackay
- IsoPlexis Corporation, 35 NE Industrial Rd, Branford, CT, 06405, USA
| | - Mark E Dudley
- Novartis Pharmaceuticals, 64 Sidney Street, Cambridge, MA, 02139, USA.,Present Address: Adaptimmune, 351 Rouse Blvd, Philadelphia, PA, 19112, USA
| | - Sadik H Kassim
- Novartis Pharmaceuticals, 64 Sidney Street, Cambridge, MA, 02139, USA.,Present Address: Mustang Bio, 95 Sawyer Road, Waltham, MA, 02453, USA
| | - Jing Zhou
- IsoPlexis Corporation, 35 NE Industrial Rd, Branford, CT, 06405, USA.
| |
Collapse
|
23
|
Wang C, Sun W, Ye Y, Bomba HN, Gu Z. Bioengineering of Artificial Antigen Presenting Cells and Lymphoid Organs. Theranostics 2017; 7:3504-3516. [PMID: 28912891 PMCID: PMC5596439 DOI: 10.7150/thno.19017] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 03/24/2017] [Indexed: 12/12/2022] Open
Abstract
The immune system protects the body against a wide range of infectious diseases and cancer by leveraging the efficiency of immune cells and lymphoid organs. Over the past decade, immune cell/organ therapies based on the manipulation, infusion, and implantation of autologous or allogeneic immune cells/organs into patients have been widely tested and have made great progress in clinical applications. Despite these advances, therapy with natural immune cells or lymphoid organs is relatively expensive and time-consuming. Alternatively, biomimetic materials and strategies have been applied to develop artificial immune cells and lymphoid organs, which have attracted considerable attentions. In this review, we survey the latest studies on engineering biomimetic materials for immunotherapy, focusing on the perspectives of bioengineering artificial antigen presenting cells and lymphoid organs. The opportunities and challenges of this field are also discussed.
Collapse
Affiliation(s)
- Chao Wang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Wujin Sun
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yanqi Ye
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hunter N. Bomba
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
| | - Zhen Gu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
24
|
O’Hara MH, Stashwick C, Plesa G, Tanyi JL. Overcoming barriers of car T-cell therapy in patients with mesothelin-expressing cancers. Immunotherapy 2017; 9:767-780. [DOI: 10.2217/imt-2017-0026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
One obstacle to the application of immunotherapy to solid malignancies is to overcome the existing tolerance to self-antigens. Vaccine strategies aimed at harnessing endogenous antitumor T cells are limited by the T-cell receptor repertoire, which can be detected within the thymus as central tolerance or rendered nonfunctional by post-thymic mechanisms of peripheral tolerance. Adoptive immunotherapy can overcome these obstacles, since therapeutically effective T cells can be engineered to recognize tumors. Continued advancements in novel treatments, including immunotherapy, in solid malignancies are imperative. While mesothelin is an attractive target for cancer immunotherapy given its normal expression is limited to mesothelial cells, the breakthrough for chimeric antigen receptor T-cell treatment against this antigen is still forthcoming.
Collapse
Affiliation(s)
- Mark H O’Hara
- Department of Hematologic Oncology of the University of Pennsylvania, The University of Pennsylvania Health System, 3400 Spruce street, Philadelphia, PA 19104, USA
| | - Caitlin Stashwick
- Division of Gynecologic Oncology, Lancaster General Hospital, 555 N Duke street, Lancaster, PA 17602, USA
| | - Gabriela Plesa
- Department of Pathology & Laboratory Medicine of The University of Pennsylvania, The University of Pennsylvania Health System, 3400 Spruce street, Philadelphia, PA 19104, USA
| | - Janos L Tanyi
- Department of Gynecologic Oncology of the University of Pennsylvania, The University of Pennsylvania Health System, 3400 Spruce street, Philadelphia, PA 19104, USA
| |
Collapse
|
25
|
Singh N, Hofmann TJ, Gershenson Z, Levine BL, Grupp SA, Teachey DT, Barrett DM. Monocyte lineage-derived IL-6 does not affect chimeric antigen receptor T-cell function. Cytotherapy 2017; 19:867-880. [PMID: 28506444 PMCID: PMC6676485 DOI: 10.1016/j.jcyt.2017.04.001] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 02/20/2017] [Accepted: 04/03/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND AIMS Chimeric antigen receptor (CAR) T-cell therapy targeting CD19 has demonstrated remarkable success in targeting B-cell malignancies but is often complicated by serious systemic toxicity in the form of cytokine release syndrome (CRS). CRS symptoms are primarily mediated by interleukin 6 (IL-6), and clinical management has focused on inhibition of IL-6 signaling. The cellular source and function of IL-6 in CRS remain unknown. METHODS Using co-culture assays and data from patients on our clinical CAR T-cell trials, we investigated the cellular source of IL-6, as well as other CRS-associated cytokines, during CAR T-cell activation. We also explored the effect that IL-6 has on T-cell function. RESULTS We demonstrated that IL-6 is secreted by monocyte-lineage cells in response to CAR T-cell activation in a contact-independent mechanism upon T-cell engagement of target leukemia. We observed that the presence of antigen-presenting cell-derived IL-6 has no impact on CAR T-cell transcriptional profiles or cytotoxicity. Finally, we confirm that CAR T cells do not secrete IL-6 in vivo during clinical CRS. DISCUSSION These findings suggest that IL-6 blockade will not affect CD19 CAR T-cell-driven anti-leukemic cytotoxicity, permitting enhanced control of CRS while maintaining CAR T-cell efficacy.
Collapse
Affiliation(s)
- Nathan Singh
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Ted J Hofmann
- Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia, Pennsylvania, USA
| | - Zachary Gershenson
- Department of Cellular and Molecular Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Bruce L Levine
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Stephan A Grupp
- Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia, Pennsylvania, USA; Department of Pathology, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - David T Teachey
- Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia, Pennsylvania, USA
| | - David M Barrett
- Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia, Pennsylvania, USA
| |
Collapse
|
26
|
Moreno Ayala MA, Gottardo MF, Asad AS, Zuccato C, Nicola A, Seilicovich A, Candolfi M. Immunotherapy for the treatment of breast cancer. Expert Opin Biol Ther 2017; 17:797-812. [PMID: 28446053 DOI: 10.1080/14712598.2017.1324566] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Breast cancer is the most common cancer as well as the first cause of death by cancer in women worldwide. Although routine treatment improves the outcome of early stage breast cancer patients, there is no effective therapy for the disseminated disease. Immunotherapy has emerged as a powerful therapeutic strategy for the treatment of many cancers. Although traditionally conceived as a non-immunogenic tumor, breast cancer is now considered a potential target for immunotherapy. Areas covered: In this review, the authors discuss different immunotherapeutic strategies that are currently being tested for the treatment of breast cancer: These strategies include: (i) blockade of immunological checkpoints, (ii) antitumor vaccines, (iii) regulatory T cell blockade, (iv) adoptive T cell transfer therapy, (iv) adoptive immunotherapy with monoclonal antibodies, and (v) combination of immunotherapy with chemotherapy. Expert opinion: A growing body of evidence indicates that immunotherapeutic strategies can benefit a larger cohort of breast cancer patients than hitherto anticipated. Since breast tumors entail multiple mechanisms to impair antitumor immunity, the immunological characterization of individual tumors and the selection of suitable combinations of chemotherapeutic and immunotherapeutic approaches are required to achieve significant clinical benefit in these patients.
Collapse
Affiliation(s)
- Mariela A Moreno Ayala
- a Instituto de Investigaciones Biomédicas (INBIOMED-CONICET/UBA), Facultad de Medicina , Universidad de Buenos Aires , Buenos Aires , Argentina
| | - Maria Florencia Gottardo
- a Instituto de Investigaciones Biomédicas (INBIOMED-CONICET/UBA), Facultad de Medicina , Universidad de Buenos Aires , Buenos Aires , Argentina
| | - Antonela S Asad
- a Instituto de Investigaciones Biomédicas (INBIOMED-CONICET/UBA), Facultad de Medicina , Universidad de Buenos Aires , Buenos Aires , Argentina
| | - Camila Zuccato
- a Instituto de Investigaciones Biomédicas (INBIOMED-CONICET/UBA), Facultad de Medicina , Universidad de Buenos Aires , Buenos Aires , Argentina
| | - Alejandro Nicola
- a Instituto de Investigaciones Biomédicas (INBIOMED-CONICET/UBA), Facultad de Medicina , Universidad de Buenos Aires , Buenos Aires , Argentina
| | - Adriana Seilicovich
- a Instituto de Investigaciones Biomédicas (INBIOMED-CONICET/UBA), Facultad de Medicina , Universidad de Buenos Aires , Buenos Aires , Argentina
| | - Marianela Candolfi
- a Instituto de Investigaciones Biomédicas (INBIOMED-CONICET/UBA), Facultad de Medicina , Universidad de Buenos Aires , Buenos Aires , Argentina
| |
Collapse
|
27
|
Yi Y, Sanchez L, Gao Y, Lee K, Yu Y. Interrogating Cellular Functions with Designer Janus Particles. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2017; 29:1448-1460. [PMID: 31530969 PMCID: PMC6748339 DOI: 10.1021/acs.chemmater.6b05322] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Janus particles have two distinct surfaces or compartments. This enables novel applications that are impossible with homogeneous particles, ranging from the engineering of active colloidal metastructures to creating multimodal therapeutic materials. Recent years have witnessed a rapid development of novel Janus structures and exploration of their applications, particularly in the biomedical arena. It, therefore, becomes crucial to understand how Janus particles with surface or structural anisotropy might interact with biological systems and how such interactions may be exploited to manipulate biological responses. This perspective highlights recent studies that have employed Janus particles as novel toolsets to manipulate, measure, and understand cellular functions. Janus particles have been shown to have biological interactions different from uniform particles. Their surface anisotropy has been used to control the cell entry of synthetic particles, to spatially organize stimuli for the activation of immune cells, and to enable direct visualization and measurement of rotational dynamics of particles in living systems. The work included in this perspective showcases the significance of understanding the biological interactions of Janus particles and the tremendous potential of harnessing such interactions to advance the development of Janus structure-based biomaterials.
Collapse
Affiliation(s)
| | | | | | | | - Yan Yu
- Corresponding Author (Y.Yu)
| |
Collapse
|
28
|
Garfall AL, Stadtmauer EA. Cellular and vaccine immunotherapy for multiple myeloma. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2016; 2016:521-527. [PMID: 27913524 PMCID: PMC6142464 DOI: 10.1182/asheducation-2016.1.521] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Allogeneic hematopoietic cell transplantation and donor lymphocyte infusion for multiple myeloma (MM) can induce graft-versus-myeloma immunity and long-term survivorship, but limited efficacy and associated toxicities have prevented its widespread use. Cellular immunotherapies and vaccines seek to induce more specific, reliable, and potent antimyeloma immune responses with less treatment-related risk than is possible with allogeneic transplantation. Advances in molecular biology, and basic and applied immunology, have led to promising approaches such as genetically engineered T cells with chimeric antigen receptors and T-cell receptors targeting myeloma-specific epitopes, vaccine primed ex vivo expanded autologous T cells, expanded marrow-infiltrating lymphocytes, and plasma cell/dendritic cell fusion vaccines. The addition of these emerging therapies to immunomodulatory drugs and inhibitors of programmed death-1 T-cell regulatory pathways are poised to improve outcome for our patients with myeloma.
Collapse
Affiliation(s)
- Alfred L Garfall
- Division of Hematology-Oncology and the Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Edward A Stadtmauer
- Division of Hematology-Oncology and the Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
29
|
Chan WC, Linn YC. A comparison between cytokine- and bead-stimulated polyclonal T cells: the superiority of each and their possible complementary role. Cytotechnology 2016; 68:735-48. [PMID: 25481728 PMCID: PMC4960124 DOI: 10.1007/s10616-014-9825-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 11/17/2014] [Indexed: 01/13/2023] Open
Abstract
Cytokine-induced killer (CIK) cells and T cells expanded by co-stimulation with beads presenting anti-CD3 and -CD28 antibodies are both polyclonal T cells under intensive laboratory and clinical studies, but there has not been any direct comparison between both. We compared the expansion, memory T cell subsets and cytotoxicity for T cells expanded in parallel by the two methods. Bead-stimulated T cells showed superior expansion as compared to CIK cells on D14 of culture. Bead-stimulated T cells consisted of a significantly higher CD4(+) subset and significantly lower CD8(+) subset as compared to CIK cells, as well as a higher proportion of less terminally differentiated T cells and a higher proportion of homing molecules. On the other hand, CIK cells exhibited significantly superior cytotoxicity against two myelomonocytic leukemia cell lines (THP-1 and U937) and two RCC cell lines (786.0 and CaKi-2). The cytotoxicity on D14 against THP-1 was 58.1 % for CIK cells and 8.3 % for bead-stimulated T cells at E:T of 10:1 (p < 0.01). Cytotoxicity correlated positively with the proportion of the CD8 subset in the culture and was independent of NKG2D recognition of susceptible targets. Polyclonal T cells expanded by different methods exhibit different characteristics which may define the specific role of each in different clinical scenario. We postulate that the more potent CIK cells may offer short term benefit while bead-stimulated T cells may offer a more sustained immune response.
Collapse
Affiliation(s)
- Weng-Chee Chan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Yeh-Ching Linn
- Department of Haematology, Singapore General Hospital, Academia, Level 3, 20, College Road, Singapore, 169856, Singapore.
| |
Collapse
|
30
|
Hexner EO, Luger SM, Reshef R, Jeschke GR, Mangan JK, Frey NV, Frank DM, Richman LP, Vonderheide RH, Aqui NA, Rosenbach M, Zhang Y, Chew A, Loren AW, Stadtmauer EA, Levine BL, June CH, Emerson SG, Porter DL. Infusion of CD3/CD28 costimulated umbilical cord blood T cells at the time of single umbilical cord blood transplantation may enhance engraftment. Am J Hematol 2016; 91:453-60. [PMID: 26858124 PMCID: PMC6145177 DOI: 10.1002/ajh.24303] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/09/2016] [Accepted: 01/12/2016] [Indexed: 01/04/2023]
Abstract
Limited cell numbers in umbilical cord blood (UCB) grafts present a major impediment to favorable outcomes in adult transplantation, largely related to delayed or failed engraftment. The advent of UCB transplantation (UCBT) using two grafts successfully circumvents this obstacle, despite the engraftment of only one unit. Preclinical models suggested that the addition of UCB T cells at the time of transplant can enhance engraftment. We tested whether ex vivo activation by CD3/CD28 costimulation and expansion of T cells from a single UCB graft would be safe and feasible in adults with advanced hematologic malignancies, with an overall objective of optimizing engraftment in single unit UCBT. In this phase 1 study, recipients of single UCB units were eligible if the unit was stored in two adequate fractions. Dose limiting toxicity was defined as grade 3 or grade 4 GVHD within 90 days of UCBT. Four patients underwent UCBT; all were treated at the first dose level (10(5) cells/kg). At the 10(5) cells/kg dose level two subjects experienced grade 3 intestinal GVHD, thus meeting stopping criteria. For three subjects, neutrophil engraftment was early (12, 17, and 20 days), while one subject experienced primary graft failure. We observed early donor T cell trafficking and found that expanded T cells produced supraphysiologic levels of cytokines relevant to engraftment and to lymphoid differentiation and function. Taken together, these preliminary data suggest rapid engraftment in recipients of a single UCBT combined with relatively low doses of activated T cells, though potentially complicated by severe GVHD.
Collapse
Affiliation(s)
- Elizabeth O. Hexner
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Selina M. Luger
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ran Reshef
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Grace R. Jeschke
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - James K. Mangan
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Noelle V. Frey
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Dale M. Frank
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lee P. Richman
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert H. Vonderheide
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nicole A. Aqui
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Misha Rosenbach
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yi Zhang
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Anne Chew
- Center for Cellular Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Alison W. Loren
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Edward A. Stadtmauer
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Bruce L. Levine
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Cellular Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Carl H. June
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Cellular Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stephen G. Emerson
- Columbia College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, New York
| | - David L. Porter
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
31
|
Noonan KA, Huff CA, Davis J, Lemas MV, Fiorino S, Bitzan J, Ferguson A, Emerling A, Luznik L, Matsui W, Powell J, Fuchs E, Rosner GL, Epstein C, Rudraraju L, Ambinder RF, Jones RJ, Pardoll D, Borrello I. Adoptive transfer of activated marrow-infiltrating lymphocytes induces measurable antitumor immunity in the bone marrow in multiple myeloma. Sci Transl Med 2016; 7:288ra78. [PMID: 25995224 DOI: 10.1126/scitranslmed.aaa7014] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Successful adoptive T cell therapy (ACT) requires the ability to activate tumor-specific T cells with the ability to traffic to the tumor site and effectively kill their target as well as persist over time. We hypothesized that ACT using marrow-infiltrating lymphocytes (MILs) in multiple myeloma (MM) could impart greater antitumor immunity in that they were obtained from the tumor microenvironment. We describe the results from the first clinical trial using MILs in MM. Twenty-five patients with either newly diagnosed or relapsed disease had their MILs harvested, activated and expanded, and subsequently infused on the third day after myeloablative therapy. Cells were obtained and adequately expanded in all patients with anti-CD3/CD28 beads plus interleukin-2, and a median of 9.5 × 10(8) MILs were infused. Factors indicative of response to MIL ACT included (i) the presence of measurable myeloma-specific activity of the ex vivo expanded product, (ii) low endogenous bone marrow T cell interferon-γ production at baseline, (iii) a CD8(+) central memory phenotype at baseline, and (iv) the generation and persistence of myeloma-specific immunity in the bone marrow at 1 year after ACT. Achieving at least a 90% reduction in disease burden significantly increased the progression-free survival (25.1 months versus 11.8 months; P = 0.01). This study demonstrates the feasibility and efficacy of MILs as a form of ACT with applicability across many hematologic malignancies and possibly solid tumors infiltrating the bone marrow.
Collapse
Affiliation(s)
- Kimberly A Noonan
- Johns Hopkins University School of Medicine, 1650 Orleans Street, CRB1 Room 453, Baltimore, MD 21231, USA
| | - Carol A Huff
- Johns Hopkins University School of Medicine, 1650 Orleans Street, CRB1 Room 453, Baltimore, MD 21231, USA
| | - Janice Davis
- Johns Hopkins University School of Medicine, 1650 Orleans Street, CRB1 Room 453, Baltimore, MD 21231, USA
| | - M Victor Lemas
- Johns Hopkins University School of Medicine, 1650 Orleans Street, CRB1 Room 453, Baltimore, MD 21231, USA
| | - Susan Fiorino
- Johns Hopkins University School of Medicine, 1650 Orleans Street, CRB1 Room 453, Baltimore, MD 21231, USA
| | - Jeffrey Bitzan
- Johns Hopkins University School of Medicine, 1650 Orleans Street, CRB1 Room 453, Baltimore, MD 21231, USA
| | - Anna Ferguson
- Johns Hopkins University School of Medicine, 1650 Orleans Street, CRB1 Room 453, Baltimore, MD 21231, USA
| | - Amy Emerling
- Johns Hopkins University School of Medicine, 1650 Orleans Street, CRB1 Room 453, Baltimore, MD 21231, USA
| | - Leo Luznik
- Johns Hopkins University School of Medicine, 1650 Orleans Street, CRB1 Room 453, Baltimore, MD 21231, USA
| | - William Matsui
- Johns Hopkins University School of Medicine, 1650 Orleans Street, CRB1 Room 453, Baltimore, MD 21231, USA
| | - Jonathan Powell
- Johns Hopkins University School of Medicine, 1650 Orleans Street, CRB1 Room 453, Baltimore, MD 21231, USA
| | - Ephraim Fuchs
- Johns Hopkins University School of Medicine, 1650 Orleans Street, CRB1 Room 453, Baltimore, MD 21231, USA
| | - Gary L Rosner
- Johns Hopkins University School of Medicine, 1650 Orleans Street, CRB1 Room 453, Baltimore, MD 21231, USA
| | - Caroline Epstein
- Johns Hopkins University School of Medicine, 1650 Orleans Street, CRB1 Room 453, Baltimore, MD 21231, USA
| | - Lakshmi Rudraraju
- Johns Hopkins University School of Medicine, 1650 Orleans Street, CRB1 Room 453, Baltimore, MD 21231, USA
| | - Richard F Ambinder
- Johns Hopkins University School of Medicine, 1650 Orleans Street, CRB1 Room 453, Baltimore, MD 21231, USA
| | - Richard J Jones
- Johns Hopkins University School of Medicine, 1650 Orleans Street, CRB1 Room 453, Baltimore, MD 21231, USA
| | - Drew Pardoll
- Johns Hopkins University School of Medicine, 1650 Orleans Street, CRB1 Room 453, Baltimore, MD 21231, USA
| | - Ivan Borrello
- Johns Hopkins University School of Medicine, 1650 Orleans Street, CRB1 Room 453, Baltimore, MD 21231, USA.
| |
Collapse
|
32
|
Fraietta JA, Schwab RD, Maus MV. Improving therapy of chronic lymphocytic leukemia with chimeric antigen receptor T cells. Semin Oncol 2016; 43:291-9. [PMID: 27040708 DOI: 10.1053/j.seminoncol.2016.02.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Adoptive cell immunotherapy for the treatment of chronic lymphocytic leukemia (CLL) has heralded a new era of synthetic biology. The infusion of genetically engineered, autologous chimeric antigen receptor (CAR) T cells directed against CD19 expressed by normal and malignant B cells represents a novel approach to cancer therapy. The results of recent clinical trials of CAR T cells in relapsed and refractory CLL have demonstrated long-term disease-free remissions, underscoring the power of harnessing and redirecting the immune system against cancer. This review will briefly summarize T-cell therapies in development for CLL disease. We discuss the role of T-cell function and phenotype, T-cell culture optimization, CAR design, and approaches to potentiate the survival and anti-tumor effects of infused lymphocytes. Future efforts will focus on improving the efficacy of CAR T cells for the treatment of CLL and incorporating adoptive cell immunotherapy into standard medical management of CLL.
Collapse
Affiliation(s)
- Joseph A Fraietta
- Center for Cellular Immunotherapy, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Robert D Schwab
- Center for Cellular Immunotherapy, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Marcela V Maus
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA.
| |
Collapse
|
33
|
Themeli M, Rivière I, Sadelain M. New cell sources for T cell engineering and adoptive immunotherapy. Cell Stem Cell 2016; 16:357-66. [PMID: 25842976 DOI: 10.1016/j.stem.2015.03.011] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The promising clinical results obtained with engineered T cells, including chimeric antigen receptor (CAR) therapy, call for further advancements to facilitate and broaden their applicability. One potentially beneficial innovation is to exploit new T cell sources that reduce the need for autologous cell manufacturing and enable cell transfer across histocompatibility barriers. Here we review emerging T cell engineering approaches that utilize alternative T cell sources, which include virus-specific or T cell receptor-less allogeneic T cells, expanded lymphoid progenitors, and induced pluripotent stem cell (iPSC)-derived T lymphocytes. The latter offer the prospect for true off-the-shelf, genetically enhanced, histocompatible cell therapy products.
Collapse
Affiliation(s)
- Maria Themeli
- The Center for Cell Engineering, Immunology and Molecular Pharmacology and Chemistry Programs, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Isabelle Rivière
- The Center for Cell Engineering, Immunology and Molecular Pharmacology and Chemistry Programs, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Michel Sadelain
- The Center for Cell Engineering, Immunology and Molecular Pharmacology and Chemistry Programs, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
34
|
Porter DL, Hwang WT, Frey NV, Lacey SF, Shaw PA, Loren AW, Bagg A, Marcucci KT, Shen A, Gonzalez V, Ambrose D, Grupp SA, Chew A, Zheng Z, Milone MC, Levine BL, Melenhorst JJ, June CH. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci Transl Med 2015; 7:303ra139. [PMID: 26333935 PMCID: PMC5909068 DOI: 10.1126/scitranslmed.aac5415] [Citation(s) in RCA: 1353] [Impact Index Per Article: 135.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Patients with multiply relapsed or refractory chronic lymphocytic leukemia (CLL) have a poor prognosis. Chimeric antigen receptor (CAR)-modified T cells targeting CD19 have the potential to improve on the low complete response rates with conventional therapies by inducing sustained remissions in patients with refractory B cell malignancies. We previously reported preliminary results on three patients with refractory CLL. We report the mature results from our initial trial using CAR-modified T cells to treat 14 patients with relapsed and refractory CLL. Autologous T cells transduced with a CD19-directed CAR (CTL019) lentiviral vector were infused into patients with relapsed/refractory CLL at doses of 0.14 × 10(8) to 11 × 10(8) CTL019 cells (median, 1.6 × 10(8) cells). Patients were monitored for toxicity, response, expansion, and persistence of circulating CTL019 T cells. The overall response rate in these heavily pretreated CLL patients was 8 of 14 (57%), with 4 complete remissions (CR) and 4 partial remissions (PR). The in vivo expansion of the CAR T cells correlated with clinical responses, and the CAR T cells persisted and remained functional beyond 4 years in the first two patients achieving CR. No patient in CR has relapsed. All responding patients developed B cell aplasia and experienced cytokine release syndrome, coincident with T cell proliferation. Minimal residual disease was not detectable in patients who achieved CR, suggesting that disease eradication may be possible in some patients with advanced CLL.
Collapse
Affiliation(s)
- David L Porter
- Division of Hematology/Oncology, Department of Medicine, and Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Wei-Ting Hwang
- Department of Biostatistics and Epidemiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Noelle V Frey
- Division of Hematology/Oncology, Department of Medicine, and Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Simon F Lacey
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Pamela A Shaw
- Department of Biostatistics and Epidemiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Alison W Loren
- Division of Hematology/Oncology, Department of Medicine, and Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Adam Bagg
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Katherine T Marcucci
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Angela Shen
- Novartis Pharmaceutical Corporation, One Health Plaza, East Hanover, NJ 07936, USA
| | - Vanessa Gonzalez
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - David Ambrose
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Stephan A Grupp
- Division of Oncology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Anne Chew
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Zhaohui Zheng
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Michael C Milone
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Bruce L Levine
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jan J Melenhorst
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Carl H June
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
35
|
Gill S, June CH. Going viral: chimeric antigen receptor T-cell therapy for hematological malignancies. Immunol Rev 2015; 263:68-89. [PMID: 25510272 DOI: 10.1111/imr.12243] [Citation(s) in RCA: 253] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
On July 1, 2014, the United States Food and Drug Administration granted 'breakthrough therapy' designation to CTL019, the anti-CD19 chimeric antigen receptor T-cell therapy developed at the University of Pennsylvania. This is the first personalized cellular therapy for cancer to be so designated and occurred 25 years after the first publication describing genetic redirection of T cells to a surface antigen of choice. The peer-reviewed literature currently contains the outcomes of more than 100 patients treated on clinical trials of anti-CD19 redirected T cells, and preliminary results on many more patients have been presented. At last count almost 30 clinical trials targeting CD19 were actively recruiting patients in North America, Europe, and Asia. Patients with high-risk B-cell malignancies therefore represent the first beneficiaries of an exciting and potent new treatment modality that harnesses the power of the immune system as never before. A handful of trials are targeting non-CD19 hematological and solid malignancies and represent the vanguard of enormous preclinical efforts to develop CAR T-cell therapy beyond B-cell malignancies. In this review, we explain the concept of chimeric antigen receptor gene-modified T cells, describe the extant results in hematologic malignancies, and share our outlook on where this modality is likely to head in the near future.
Collapse
Affiliation(s)
- Saar Gill
- Abramson Cancer Center, Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
36
|
Singh N, Kulikovskaya I, Barrett DM, Binder-Scholl G, Jakobsen B, Martinez D, Pawel B, June CH, Kalos MD, Grupp SA. T cells targeting NY-ESO-1 demonstrate efficacy against disseminated neuroblastoma. Oncoimmunology 2015; 5:e1040216. [PMID: 26942053 DOI: 10.1080/2162402x.2015.1040216] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/06/2015] [Accepted: 04/08/2015] [Indexed: 10/23/2022] Open
Abstract
The cancer-testis antigen NY-ESO-1 is expressed by many solid tumors and has limited expression by mature somatic tissues, making it a highly attractive target for tumor immunotherapy. Targeting NY-ESO-1 using engineered T cells has demonstrated clinical efficacy in the treatment of some adult tumors. Neuroblastoma is a significant cause of cancer mortality in children, and is a tumor type shown to be responsive to immunotherapies. We evaluated a large panel of primarily resected neuroblastoma samples and demonstrated that 23% express NY-ESO-1. After confirming antigen-specific activity of T cells genetically engineered to express an NY-ESO-1 directed high-affinity transgenic T cell receptor in vitro, we performed xenograft mouse studies assessing the efficacy of NY-ESO-1-targeted T cells in both localized and disseminated models of neuroblastoma. Disease responses were monitored by tumor volume measurement and in vivo bioluminescence. After delivery of NY-ESO-1 transgenic TCR T cells, we observed significant delay of tumor progression in mice bearing localized and disseminated neuroblastoma, as well as enhanced animal survival. These data demonstrate that NY-ESO-1 is an antigen target in neuroblastoma and that targeted T cells represent a potential therapeutic option for patients with neuroblastoma.
Collapse
Affiliation(s)
- Nathan Singh
- Department of Medicine, University of Pennsylvania , Philadelphia, PA, USA
| | - Irina Kulikovskaya
- Abramson Cancer Center and Department of Pathology, University of Pennsylvania , Philadelphia, PA, USA
| | - David M Barrett
- Division of Oncology, Children's Hospital of Philadelphia , Philadelphia, PA, USA
| | | | | | - Daniel Martinez
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia , Philadelphia, PA, USA
| | - Bruce Pawel
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia , Philadelphia, PA, USA
| | - Carl H June
- Abramson Cancer Center and Department of Pathology, University of Pennsylvania , Philadelphia, PA, USA
| | - Michael D Kalos
- Lilly Research Laboratories, Eli Lilly and Company , New York, NY, USA
| | - Stephan A Grupp
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
37
|
Mandal S, Hammink R, Tel J, Eksteen-Akeroyd ZH, Rowan AE, Blank K, Figdor CG. Polymer-based synthetic dendritic cells for tailoring robust and multifunctional T cell responses. ACS Chem Biol 2015; 10:485-92. [PMID: 25372624 DOI: 10.1021/cb500455g] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Dendritic cells (DCs) are antigen-presenting cells that play an essential role in T cell activation. Recent efforts in cancer immunotherapy have been directed at the development of artificial antigen presenting cells (aAPCs) loaded with tumor antigens. These aAPCs are designed to mimic DCs with the goal of triggering an efficient and specific T cell response directed against the tumor. We have designed a novel synthetic dendritic cell (sDC) that possesses the essential features of natural DCs. Our sDC is based on a semiflexible poly(isocyano peptide) polymer and carries anti-CD3 antibodies (αCD3) for triggering the T cell receptor/CD3 complex as well as anti-CD28 antibodies (αCD28) as a co-stimulatory signal. Multiple copies of both antibodies facilitate multivalent binding similar to natural DCs. The high mobility of these polymer-bound antibodies, reminiscent of protein motility in a natural plasma membrane, enables receptor rearrangements to occur during T cell activation. We show that our bifunctional αCD3/αCD28-sDC triggers T cell activation at significantly lower antibody concentrations than freely soluble antibodies. This superior performance is further demonstrated in comparison to a mixture of monofunctional αCD3-sDC and αCD28-sDC. The presence of both antibodies on the same polymer not only reduces the threshold for T cell activation but, more importantly, critically shapes the specificity of the T cell response. αCD3/αCD28-sDC is a far more efficient activator of multifunctional killer cells. These findings demonstrate the potential of multifunctional polymers for mimicking natural DCs, paving the way for their exploitation in immunotherapeutic strategies.
Collapse
Affiliation(s)
- Subhra Mandal
- Department
of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26, 6525 GA Nijmegen, The Netherlands
| | - Roel Hammink
- Department
of Molecular Materials, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Jurjen Tel
- Department
of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26, 6525 GA Nijmegen, The Netherlands
| | - Zaskia H. Eksteen-Akeroyd
- Department
of Molecular Materials, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Alan E. Rowan
- Department
of Molecular Materials, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Kerstin Blank
- Department
of Molecular Materials, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Carl G. Figdor
- Department
of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
38
|
Sun W, Wang Y, East JE, Kimball AS, Tkaczuk K, Kesmodel S, Strome SE, Webb TJ. Invariant natural killer T cells generated from human adult hematopoietic stem-progenitor cells are poly-functional. Cytokine 2015; 72:48-57. [PMID: 25569376 DOI: 10.1016/j.cyto.2014.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 11/17/2014] [Accepted: 12/06/2014] [Indexed: 01/04/2023]
Abstract
Invariant natural killer T (iNKT) cells constitute an important subset of T cells that can both directly and indirectly mediate anti-tumor immunity. However, cancer patients have a reduction in both iNKT cell number and function, and these deficits limit the potential clinical application of iNKT cells for cancer therapy. To overcome the problem of limited iNKT cell numbers, we investigated whether iNKT cells can be generated in vitro from bone marrow-derived adult hematopoietic stem-progenitor cells (HSPC). Our data demonstrate that co-culture of HSPC with OP9-DL1 stromal cells, results in a functional CD3(+) T cell population. These T cells can be further differentiated into iNKT cells by secondary culture with CD1d-Ig-based artificial antigen-presenting cells (aAPC). Importantly, these in vitro-generated iNKT cells are functional, as demonstrated by their ability to proliferate and secrete IFN-γ and GM-CSF following stimulation.
Collapse
Affiliation(s)
- Wenji Sun
- Department of Microbiology and Immunology, University of Maryland School of Medicine, and the Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD 21201, United States
| | - Yi Wang
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun, PR China
| | - James E East
- Department of Microbiology and Immunology, University of Maryland School of Medicine, and the Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD 21201, United States
| | - Amy S Kimball
- Department of Medicine, University of Maryland School of Medicine, and the Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD 21201, United States
| | - Katherine Tkaczuk
- Department of Medicine, University of Maryland School of Medicine, and the Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD 21201, United States
| | - Susan Kesmodel
- Department of Surgery, University of Maryland School of Medicine, and the Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD 21201, United States
| | - Scott E Strome
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, and the Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD 21201, United States
| | - Tonya J Webb
- Department of Microbiology and Immunology, University of Maryland School of Medicine, and the Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD 21201, United States.
| |
Collapse
|
39
|
Negrin RS. Graft-versus-host disease versus graft-versus-leukemia. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2015; 2015:225-230. [PMID: 26637726 DOI: 10.1182/asheducation-2015.1.225] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Graft-versus-host disease (GVHD) is a significant clinical problem after allogenic hematopoietic cell transplantation (HCT) associated with substantial morbidity and mortality that limits the potential utility of transplantation. Associated with GVHD is the well-recognized phenomenon of the graft-versus-leukemia (GVL) effect that results in reduced risk of disease relapse. GVL effects have been observed after treatment for a broad range of hematological malignancies. Both GVHD and GVL are the results of T cell-effector functions that frames a major question in the field of how linked are these two phenomena. A major goal of basic science and translational research has been to develop strategies to reduce the risk of GVHD while maintaining or enhancing GVL. In this review, a number of different strategies developed from preclinical animal models will be explored with a focus on those approaches that have been extended to the clinic in an attempt to achieve this goal. Needless to say, there is no proven strategy; however, with the use of modern technology and clinical translation, there has been substantial progress toward this goal of reducing the risks of GVHD while promoting and enhancing GVL responses.
Collapse
Affiliation(s)
- Robert S Negrin
- Department of Medicine-Blood and Marrow Transplantation, Stanford University, Stanford, CA
| |
Collapse
|
40
|
Maude SL, Shpall EJ, Grupp SA. Chimeric antigen receptor T-cell therapy for ALL. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2014; 2014:559-564. [PMID: 25696911 DOI: 10.1182/asheducation-2014.1.559] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Relapsed and refractory leukemias pose substantial challenges in both children and adults, with very little progress being made in more than a decade. Targeted immunotherapy using chimeric antigen receptor (CAR)-modified T cells has emerged as a potent therapy with an innovative mechanism. Dramatic clinical responses with complete remission rates as high as 90% have been reported using CAR-modified T cells directed against the B-cell-specific antigen CD19 in patients with relapsed/refractory acute lymphoblastic leukemia. Supraphysiologic T-cell proliferation, a hallmark of this therapy, contributes to both efficacy and the most notable toxicity, cytokine release syndrome, posing a unique challenge for toxicity management. Further studies are necessary to identify additional targets, standardize approaches to cytokine release syndrome management, and determine the durability of remissions.
Collapse
Affiliation(s)
| | | | - Stephan A Grupp
- Division of Oncology and Department of Pathology, The Children's Hospital of Philadelphia, and Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA; and
| |
Collapse
|
41
|
Gomez-Eerland R, Nuijen B, Heemskerk B, van Rooij N, van den Berg JH, Beijnen JH, Uckert W, Kvistborg P, Schumacher TN, Haanen JB, Jorritsma A. Manufacture of gene-modified human T-cells with a memory stem/central memory phenotype. Hum Gene Ther Methods 2014; 25:277-87. [PMID: 25143008 PMCID: PMC4208561 DOI: 10.1089/hgtb.2014.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 08/16/2014] [Indexed: 12/21/2022] Open
Abstract
Advances in genetic engineering have made it possible to generate human T-cell products that carry desired functionalities, such as the ability to recognize cancer cells. The currently used strategies for the generation of gene-modified T-cell products lead to highly differentiated cells within the infusion product, and on the basis of data obtained in preclinical models, this is likely to impact the efficacy of these products. We set out to develop a good manufacturing practice (GMP) protocol that yields T-cell receptor (TCR) gene-modified T-cells with more favorable properties for clinical application. Here, we show the robust clinical-scale production of human peripheral blood T-cells with an early memory phenotype that express a MART-1-specific TCR. By combining selection and stimulation using anti-CD3/CD28 beads for retroviral transduction, followed by expansion in the presence of IL-7 and IL-15, production of a well-defined clinical-scale TCR gene-modified T-cell product could be achieved. A major fraction of the T-cells generated in this fashion were shown to coexpress CD62L and CD45RA, and express CD27 and CD28, indicating a central memory or memory stemlike phenotype. Furthermore, these cells produced IFNγ, TNFα, and IL-2 and displayed cytolytic activity against target cells expressing the relevant antigen. The T-cell products manufactured by this robust and validated GMP production process are now undergoing testing in a phase I/IIa clinical trial in HLA-A*02:01 MART-1-positive advanced stage melanoma patients. To our knowledge, this is the first clinical trial protocol in which the combination of IL-7 and IL-15 has been applied for the generation of gene-modified T-cell products.
Collapse
MESH Headings
- Antigens, CD/genetics
- Antigens, CD/immunology
- Cell Engineering/methods
- Cell Proliferation
- Clinical Trials as Topic
- Cytotoxicity, Immunologic/genetics
- Gene Expression
- Genetic Vectors
- Humans
- Immunologic Memory/genetics
- Interferon-gamma/genetics
- Interferon-gamma/immunology
- Interleukin-15/pharmacology
- Interleukin-2/genetics
- Interleukin-2/immunology
- Interleukin-7/pharmacology
- MART-1 Antigen/genetics
- MART-1 Antigen/immunology
- Melanoma/genetics
- Melanoma/immunology
- Melanoma/pathology
- Melanoma/therapy
- Phenotype
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Retroviridae/genetics
- Skin Neoplasms/genetics
- Skin Neoplasms/immunology
- Skin Neoplasms/pathology
- Skin Neoplasms/therapy
- T-Lymphocytes, Cytotoxic/cytology
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/transplantation
- Transduction, Genetic
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/immunology
Collapse
Affiliation(s)
- Raquel Gomez-Eerland
- Division of Immunology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Bastiaan Nuijen
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- Amsterdam BioTherapeutics Unit, 1066 EC Amsterdam, The Netherlands
| | - Bianca Heemskerk
- Division of Immunology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Nienke van Rooij
- Division of Immunology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Joost H. van den Berg
- Division of Immunology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- Amsterdam BioTherapeutics Unit, 1066 EC Amsterdam, The Netherlands
| | - Jos H. Beijnen
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- Amsterdam BioTherapeutics Unit, 1066 EC Amsterdam, The Netherlands
| | - Wolfgang Uckert
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Pia Kvistborg
- Division of Immunology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Ton N. Schumacher
- Division of Immunology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - John B.A.G. Haanen
- Division of Immunology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Annelies Jorritsma
- Division of Immunology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
42
|
Golay J, D'Amico A, Borleri G, Bonzi M, Valgardsdottir R, Alzani R, Cribioli S, Albanese C, Pesenti E, Finazzi MC, Quaresmini G, Nagorsen D, Introna M, Rambaldi A. A novel method using blinatumomab for efficient, clinical-grade expansion of polyclonal T cells for adoptive immunotherapy. THE JOURNAL OF IMMUNOLOGY 2014; 193:4739-47. [PMID: 25267972 DOI: 10.4049/jimmunol.1401550] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Current treatment of chronic lymphocytic leukemia (CLL) patients often results in life-threatening immunosuppression. Furthermore, CLL is still an incurable disease due to the persistence of residual leukemic cells. These patients may therefore benefit from immunotherapy approaches aimed at immunoreconstitution and/or the elimination of residual disease following chemotherapy. For these purposes, we designed a simple GMP-compliant protocol for ex vivo expansion of normal T cells from CLL patients' peripheral blood for adoptive therapy, using bispecific Ab blinatumomab (CD3 × CD19), acting both as T cell stimulator and CLL depletion agent, and human rIL-2. Starting from only 10 ml CLL peripheral blood, a mean 515 × 10(6) CD3(+) T cells were expanded in 3 wk. The resulting blinatumomab-expanded T cells (BET) were polyclonal CD4(+) and CD8(+) and mostly effector and central memory cells. The Th1 subset was slightly prevalent over Th2, whereas Th17 and T regulatory cells were <1%. CMV-specific clones were detected in equivalent proportion before and after expansion. Interestingly, BET cells had normalized expression of the synapse inhibitors CD272 and CD279 compared with starting T cells and were cytotoxic against CD19(+) targets in presence of blinatumomab in vitro. In support of their functional capacity, we observed that BET, in combination with blinatumomab, had significant therapeutic activity in a systemic human diffuse large B lymphoma model in NOD-SCID mice. We propose BET as a therapeutic tool for immunoreconstitution of heavily immunosuppressed CLL patients and, in combination with bispecific Ab, as antitumor immunotherapy.
Collapse
Affiliation(s)
- Josée Golay
- Centro di Terapia Cellulare, "G. Lanzani," USC Ematologia, Azienda Ospedaliera Papa Giovanni XXIII, 24127 Bergamo, Italy;
| | - Anna D'Amico
- Centro di Terapia Cellulare, "G. Lanzani," USC Ematologia, Azienda Ospedaliera Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Gianmaria Borleri
- Centro Trapianto Midollo Osseo, USC Ematologia, Azienda Ospedaliera Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Michela Bonzi
- Centro di Terapia Cellulare, "G. Lanzani," USC Ematologia, Azienda Ospedaliera Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Rut Valgardsdottir
- Centro di Terapia Cellulare, "G. Lanzani," USC Ematologia, Azienda Ospedaliera Papa Giovanni XXIII, 24127 Bergamo, Italy
| | | | | | | | | | - Maria Chiara Finazzi
- Centro Trapianto Midollo Osseo, USC Ematologia, Azienda Ospedaliera Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Giulia Quaresmini
- Centro Trapianto Midollo Osseo, USC Ematologia, Azienda Ospedaliera Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Dirk Nagorsen
- Global Clinical Development, Amgen, Thousand Oaks, CA 91320
| | - Martino Introna
- Centro di Terapia Cellulare, "G. Lanzani," USC Ematologia, Azienda Ospedaliera Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Alessandro Rambaldi
- Centro Trapianto Midollo Osseo, USC Ematologia, Azienda Ospedaliera Papa Giovanni XXIII, 24127 Bergamo, Italy
| |
Collapse
|
43
|
June CH. Toward synthetic biology with engineered T cells: a long journey just begun. Hum Gene Ther 2014; 25:779-84. [PMID: 25244569 PMCID: PMC4174426 DOI: 10.1089/hum.2014.2533] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 09/03/2014] [Indexed: 01/16/2023] Open
Affiliation(s)
- Carl H June
- Abramson Cancer Center; Abramson Family Cancer Research Institute; and Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA 19104-5156
| |
Collapse
|
44
|
Abstract
Adoptive T-cell therapy involves the ex vivo enrichment and expansion of tumor-reactive T cells for infusion. As an immune-based approach, adoptive therapy has become an increasingly attractive modality for the treatment of patients with cancer due to its potential for high specificity, non-cross resistance with conventional therapies, and promise of long-term immunoprotection. In recent years, a resurgence in discoveries underlying T-cell recognition, tumor immune evasion, and T-cell memory and differentiation coupled with the development of several enabling technologies have facilitated a renewed focus in the field of adoptive therapy and its transition to the clinical arena as a treatment modality for patients with cancer. In this review, endogenous T cells derived from peripheral blood or tumor sites will be presented as a source of effector cells for adoptive therapy and strategies to isolate, manipulate, and enhance the function of antigen-specific T cells in vitro and to augment their in vivo efficacy and persistence by host immunomodulation are presented in the context of an ever-increasing inventory of preclinical and clinically available reagents. Optimizing the combination of adoptive cellular therapy and other immune-based and conventional approaches will herald a new generation of research and clinical opportunities for cancer immunotherapy.
Collapse
Affiliation(s)
- Cassian Yee
- Department of Melanoma Medical Oncology and Department of Immunology, MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
45
|
van der Weijden J, Paulis LE, Verdoes M, van Hest JCM, Figdor CG. The right touch: design of artificial antigen-presenting cells to stimulate the immune system. Chem Sci 2014. [DOI: 10.1039/c4sc01112k] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
46
|
Gill S, Porter DL. CAR-modified anti-CD19 T cells for the treatment of B-cell malignancies: rules of the road. Expert Opin Biol Ther 2013; 14:37-49. [PMID: 24261468 DOI: 10.1517/14712598.2014.860442] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Malignancies of the B lymphocyte or its precursor include B-cell non-Hodgkin lymphoma as well as chronic and acute lymphoid leukemias. These are among the most common hematologic malignancies and many patients with B-cell malignancies are incurable. Although most patients initially respond to first-line treatment, relapse is frequent and is associated with a poor prognosis. T cells that are genetically engineered to express chimeric antigen receptors (CARs) recognizing the B-cell-associated molecule CD19 have emerged as a potentially potent and exciting therapeutic modality in recent years. AREAS COVERED This review explores the current peer-reviewed publications in the field and a discussion of expert opinion. EXPERT OPINION Genetic engineering of T cells has become clinically feasible and appears to be safe. Here we provide an insight into the process of patient selection, engineered T-cell production, infusion procedure, expected toxicities and efficacy of this exciting approach as it is practiced in the treatment of B-cell malignancies. Anti-CD19-redirected T cells likely represent the vanguard of an exciting new approach to treating cancer.
Collapse
Affiliation(s)
- Saar Gill
- University of Pennsylvania, Abramson Cancer Center, Perelman School of Medicine, Division of Hematology-Oncology, Department of Medicine , Philadelphia, PA 19106 , USA
| | | |
Collapse
|
47
|
Abstract
Improved outcomes for patients with cancer hinge on the development of new targeted therapies with acceptable short-term and long-term toxicity. Progress in basic, preclinical, and clinical arenas spanning cellular immunology, synthetic biology, and cell-processing technologies has paved the way for clinical applications of chimeric antigen receptor-based therapies. This new form of targeted immunotherapy merges the exquisite targeting specificity of monoclonal antibodies with the potent cytotoxicity and long-term persistence provided by cytotoxic T cells. Although this field is still in its infancy, clinical trials have already shown clinically significant antitumor activity in neuroblastoma, chronic lymphocytic leukemia, and B cell lymphoma, and trials targeting a variety of other adult and pediatric malignancies are under way. Ongoing work is focused on identifying optimal tumor targets and on elucidating and manipulating both cell- and host-associated factors to support expansion and persistence of the genetically engineered cells in vivo. The potential to target essentially any tumor-associated cell-surface antigen for which a monoclonal antibody can be made opens up an entirely new arena for targeted therapy of cancer.
Collapse
Affiliation(s)
- David M Barrett
- Abramson Cancer Center and the Departments of Medicine, Pediatrics, and Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| | | | | | | | | |
Collapse
|
48
|
Kalos M, June CH. Adoptive T cell transfer for cancer immunotherapy in the era of synthetic biology. Immunity 2013; 39:49-60. [PMID: 23890063 DOI: 10.1016/j.immuni.2013.07.002] [Citation(s) in RCA: 359] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Indexed: 01/12/2023]
Abstract
Adoptive T cell transfer for cancer and chronic infection is an emerging field that shows promise in recent trials. Synthetic-biology-based engineering of T lymphocytes to express high-affinity antigen receptors can overcome immune tolerance, which has been a major limitation of immunotherapy-based strategies. Advances in cell engineering and culture approaches to enable efficient gene transfer and ex vivo cell expansion have facilitated broader evaluation of this technology, moving adoptive transfer from a "boutique" application to the cusp of a mainstream technology. The major challenge currently facing the field is to increase the specificity of engineered T cells for tumors, because targeting shared antigens has the potential to lead to on-target off-tumor toxicities, as observed in recent trials. As the field of adoptive transfer technology matures, the major engineering challenge is the development of automated cell culture systems, so that the approach can extend beyond specialized academic centers and become widely available.
Collapse
Affiliation(s)
- Michael Kalos
- Abramson Cancer Center and the Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-5156, USA.
| | | |
Collapse
|
49
|
Linn YC. Adoptive immunotherapy with polyclonal T cells and natural killer cells for hematological malignancies: current status and future prospects. Int J Hematol Oncol 2013. [DOI: 10.2217/ijh.13.31] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
SUMMARY Adoptive cellular therapy with polyclonal T cells and natural killer cells are immunotherapeutic modalities being studied in solid tumors and hematological malignancies to treat disease and prevent relapse. These include unexpanded polyclonal T cells, short-term activation by cytokine into lymphokine-activated killer cells, longer term expansion by cytokine stimulation giving rise to cytokine-induced killer cells or expansion under costimulation with beads expressing anti-CD3 and anti-CD28. Similarly natural killer cells can be given with or without activation and expansion. Here we review the published work and clinical trials involving each cell type in the autologous, matched allogeneic, haploidentical and nontransplant settings, comparing and contrasting each cell type and discussing their potential applications.
Collapse
Affiliation(s)
- Yeh-Ching Linn
- Department of Hematology, Singapore General Hospital, Outram Road, Singapore 169608
| |
Collapse
|
50
|
Garfall AL, Vogl DT, Weiss BM, Stadtmauer EA. Cellular immunotherapy for plasma cell myeloma. Bone Marrow Transplant 2013; 48:1377-86. [PMID: 23645169 DOI: 10.1038/bmt.2013.54] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 03/04/2013] [Indexed: 02/07/2023]
Abstract
Allogeneic hematopoietic cell transplantation for plasma cell myeloma can lead to graft-vs-myeloma immunity and long-term survivorship, but limited efficacy and associated toxicities have prevented its widespread use. Cellular immunotherapies seek to induce more specific, reliable and potent antimyeloma immune responses with less treatment-related risk than is possible with allogeneic transplantation. Strategies under development include infusion of vaccine-primed and ex vivo expanded/costimulated autologous T cells after high-dose melphalan, genetic engineering of autologous T cells with receptors for myeloma-specific epitopes, administration of DC/plasma cell fusions and administration expanded marrow-infiltrating lymphocytes. In addition, novel immunomodulatory drugs such as inhibitors of the programmed death-1 T cell regulatory pathway may synergize with cellular immunotherapies.
Collapse
Affiliation(s)
- A L Garfall
- Multiple Myeloma Program, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | |
Collapse
|