1
|
Gomaa AAE, Zeid AMA, Nagy IM, Zahran AM. The effect of genetic polymorphisms in STIM1 and ORAI1 on erythropoietin resistance in Egyptian patients with end-stage renal disease. Clin Chim Acta 2025; 564:119948. [PMID: 39214396 DOI: 10.1016/j.cca.2024.119948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Chronic renal failure (CRF) is an incurable disease with unique challenges. Anemia is a frequent complication affecting dialysis patients. Erythropoietin (EPO) is used to treat anemia, but a poor response may result. We investigated genetic polymorphisms of store-operated calcium channel (SOC) signaling, an important erythropoietin-activated pathway that may induce EPO resistance in patients with renal failure. A total of 108 end stage renal disease (ESRD) patients were selected for this study. Patients were divided into two groups according to their erythropoietin resistance index (ERI): 39 patients with an ERI>10 and 69 patients with an ERI<10. We selected four tagging single nucleotide polymorphisms (tSNPs) in STIM1 and five in ORAI1 in our study. A polymerase chain reaction was performed, and genotyping against EPO resistance was correlated. Patients with the AG genotype of rs1561876 in STIM1, the TC genotype of rs6486795 in ORAI1, and the TG or GG genotypes of rs12320939 in ORAI1 were associated with an increased risk of erythropoietin resistance. Overall, we reported a moderately significant relationship between genetic polymorphisms of STIM1 and EPO resistance. We also reported a highly significant relationship between genetic polymorphisms of ORAI1 and EPO resistance. The (A-A-G) haplotype of STIM1 and the (G-T-G-T-A, G-C-G-C-G, or G-T-T-C-G) haplotypes of ORAI1 were significantly associated with EPO resistance.
Collapse
Affiliation(s)
- Azza A E Gomaa
- Internal Medicine Department, Menofia University, Menofia, Egypt.
| | - Amany M A Zeid
- Clinical Pathology Department, Menofia University, Menofia, Egypt
| | - Ibrahim M Nagy
- Medicinal Chemistry Department, Menofia University, Menofia, Egypt.
| | - Ahmed M Zahran
- Internal Medicine Department, Menofia University, Menofia, Egypt
| |
Collapse
|
2
|
Choudhury R, Bahadi CK, Ray IP, Dash P, Pattanaik I, Mishra S, Mohapatra SR, Patnaik S, Nikhil K. PIM1 kinase and its diverse substrate in solid tumors. Cell Commun Signal 2024; 22:529. [PMID: 39487435 PMCID: PMC11531143 DOI: 10.1186/s12964-024-01898-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/18/2024] [Indexed: 11/04/2024] Open
Abstract
The PIM kinase family, consisting of PIM1, PIM2, and PIM3, is a group of serine/threonine protein kinases crucial for cellular growth, immunoregulation, and oncogenesis. PIM1 kinase is often overexpressed in solid and hematopoietic malignancies, promoting cell survival, proliferation, migration, and senescence by activating key genes. In vitro and in vivo studies have established the oncogenic potential of PIM1 kinases. These kinases have been implicated in tumor progression, metastasis, and resistance to chemotherapy, underscoring their potential as a therapeutic target for cancer therapy. This review delves into the intricate molecular mechanisms through which PIM1 interacts with specific substrates in different tumor tissues, leading to diverse outcomes in various human cancers. Over the past decade, the inhibition of PIM1 in cancers has garnered significant attention as a potential standalone treatment. Various in vitro, in vivo, and early clinical trial data have provided support for this approach to varying extents. Novel compounds that inhibit PIM1 kinase have shown effectiveness and a favorable toxicity profile in preclinical studies. Several of these substances are now being studied in clinical trials due to their promising outcomes. This article provides a thorough examination of the PIM1 kinase pathways and the recent advancements in producing PIM1 kinase inhibitors for the treatment of cancer.
Collapse
Affiliation(s)
- Rituparna Choudhury
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-Be-University, Bhubaneswar, 751024, India
| | - Chandan Kumar Bahadi
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-Be-University, Bhubaneswar, 751024, India
| | - Ipsa Pratibimbita Ray
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-Be-University, Bhubaneswar, 751024, India
| | - Pragyanshree Dash
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-Be-University, Bhubaneswar, 751024, India
| | - Isha Pattanaik
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-Be-University, Bhubaneswar, 751024, India
| | - Suman Mishra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-Be-University, Bhubaneswar, 751024, India
| | - Soumya R Mohapatra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-Be-University, Bhubaneswar, 751024, India
| | - Srinivas Patnaik
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-Be-University, Bhubaneswar, 751024, India
| | - Kumar Nikhil
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-Be-University, Bhubaneswar, 751024, India.
| |
Collapse
|
3
|
Clements AN, Casillas AL, Flores CE, Liou H, Toth RK, Chauhan SS, Sutterby K, Deshmukh SK, Wu S, Xiu J, Farrell A, Radovich M, Nabhan C, Heath EI, McKay RR, Subah N, Centuori S, Wheeler TJ, Cress AE, Rogers GC, Wilson JE, Recio-Boiles A, Warfel NA. Inhibition of PIM kinase in tumor associated macrophages suppresses inflammasome activation and sensitizes prostate cancer to immunotherapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.21.618756. [PMID: 39484473 PMCID: PMC11526960 DOI: 10.1101/2024.10.21.618756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Immunotherapy has changed the treatment paradigm for many types of cancer, but immune checkpoint inhibitors (ICIs) have not shown benefit in prostate cancer (PCa). Chronic inflammation contributes to the immunosuppressive prostate tumor microenvironment (TME) and is associated with poor response to ICIs. The primary source of inflammatory cytokine production is the inflammasome. Here, we identify PIM kinases as important regulators of inflammasome activation in tumor associated macrophages (TAMs). Analysis of clinical data from a cohort of treatment naïve, hormone responsive PCa patients revealed that tumors from patients with high PIM1/2/3 display an immunosuppressive TME characterized by high inflammation (IL-1β and TNFα) and a high density of repressive immune cells, most notably TAMs. Strikingly, macrophage-specific knockout of PIM reduced tumor growth in syngeneic models of prostate cancer. Transcriptional analyses indicate that eliminating PIM from macrophages enhanced the adaptive immune response and increased cytotoxic immune cells. Combined treatment with PIM inhibitors and ICIs synergistically reduced tumor growth. Immune profiling revealed that PIM inhibitors sensitized PCa tumors to ICIs by increasing tumor suppressive TAMs and increasing the activation of cytotoxic T cells. Collectively, our data implicate macrophage PIM as a driver of inflammation that limits the potency of ICIs and provides preclinical evidence that PIM inhibitors are an effective strategy to improve the efficacy of immunotherapy in prostate cancer.
Collapse
|
4
|
Yang X, Liu C, Lei Y, Liu Z, Zhu B, Zhao D. PIM1 signaling in immunoinflammatory diseases: an emerging therapeutic target. Front Immunol 2024; 15:1443784. [PMID: 39372407 PMCID: PMC11449710 DOI: 10.3389/fimmu.2024.1443784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/02/2024] [Indexed: 10/08/2024] Open
Abstract
PIM1, the proviral integration site for Moloney murine leukemia virus, is a member of the serine/threonine protein kinase family. It is involved in many biological events, such as cell survival, cell cycle progression, cell proliferation, and cell migration, and has been widely studied in malignant diseases. However, recent studies have shown that PIM1 plays a prominent role in immunoinflammatory diseases, including autoimmune uveitis, inflammatory bowel disease, asthma, and rheumatoid arthritis. PIM1 can function in inflammatory signal transduction by phosphorylating multiple inflammatory protein substrates and mediating macrophage activation and T lymphocyte cell specification, thus participating in the development of multiple immunoinflammatory diseases. Moreover, the inhibition of PIM1 has been demonstrated to ameliorate certain immunoinflammatory disorders. Based on these studies, we suggest PIM1 as a potential therapeutic target for immunoinflammatory diseases and a valid candidate for future research. Herein, for the first time, we provide a detailed review that focuses on the roles of PIM1 in the pathogenesis of immunoinflammatory diseases.
Collapse
Affiliation(s)
- Xue Yang
- Department of Pediatrics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
- Department of Pediatrics, Children’s Digital Health and Data Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chunming Liu
- Department of Pediatrics, Children’s Digital Health and Data Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yuxi Lei
- Department of Pediatrics, Children’s Digital Health and Data Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhi Liu
- Department of Pediatrics, Children’s Digital Health and Data Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Bin Zhu
- Department of Pediatrics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Dongchi Zhao
- Department of Pediatrics, Children’s Digital Health and Data Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
5
|
Rout AK, Dehury B, Parida SN, Rout SS, Jena R, Kaushik N, Kaushik NK, Pradhan SK, Sahoo CR, Singh AK, Arya M, Behera BK. A review on structure-function mechanism and signaling pathway of serine/threonine protein PIM kinases as a therapeutic target. Int J Biol Macromol 2024; 270:132030. [PMID: 38704069 DOI: 10.1016/j.ijbiomac.2024.132030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/05/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
The proviral integration for the Moloney murine leukemia virus (PIM) kinases, belonging to serine/threonine kinase family, have been found to be overexpressed in various types of cancers, such as prostate, breast, colon, endometrial, gastric, and pancreatic cancer. The three isoforms PIM kinases i.e., PIM1, PIM2, and PIM3 share a high degree of sequence and structural similarity and phosphorylate substrates controlling tumorigenic phenotypes like proliferation and cell survival. Targeting short-lived PIM kinases presents an intriguing strategy as in vivo knock-down studies result in non-lethal phenotypes, indicating that clinical inhibition of PIM might have fewer adverse effects. The ATP binding site (hinge region) possesses distinctive attributes, which led to the development of novel small molecule scaffolds that target either one or all three PIM isoforms. Machine learning and structure-based approaches have been at the forefront of developing novel and effective chemical therapeutics against PIM in preclinical and clinical settings, and none have yet received approval for cancer treatment. The stability of PIM isoforms is maintained by PIM kinase activity, which leads to resistance against PIM inhibitors and chemotherapy; thus, to overcome such effects, PIM proteolysis targeting chimeras (PROTACs) are now being developed that specifically degrade PIM proteins. In this review, we recapitulate an overview of the oncogenic functions of PIM kinases, their structure, function, and crucial signaling network in different types of cancer, and the potential of pharmacological small-molecule inhibitors. Further, our comprehensive review also provides valuable insights for developing novel antitumor drugs that specifically target PIM kinases in the future. In conclusion, we provide insights into the benefits of degrading PIM kinases as opposed to blocking their catalytic activity to address the oncogenic potential of PIM kinases.
Collapse
Affiliation(s)
- Ajaya Kumar Rout
- Rani Lakshmi Bai Central Agricultural University, Jhansi-284003, Uttar Pradesh, India
| | - Budheswar Dehury
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal-576104, India
| | - Satya Narayan Parida
- Rani Lakshmi Bai Central Agricultural University, Jhansi-284003, Uttar Pradesh, India
| | - Sushree Swati Rout
- Department of Zoology, Fakir Mohan University, Balasore-756089, Odisha, India
| | - Rajkumar Jena
- Department of Zoology, Fakir Mohan University, Balasore-756089, Odisha, India
| | - Neha Kaushik
- Department of Biotechnology, The University of Suwon, Hwaseong si, South Korea
| | | | - Sukanta Kumar Pradhan
- Department of Bioinformatics, Odisha University of Agriculture and Technology, Bhubaneswar-751003, Odisha, India
| | - Chita Ranjan Sahoo
- ICMR-Regional Medical Research Centre, Department of Health Research, Ministry of Health and Family Welfare, Government of India, Bhubaneswar-751023, India
| | - Ashok Kumar Singh
- Rani Lakshmi Bai Central Agricultural University, Jhansi-284003, Uttar Pradesh, India
| | - Meenakshi Arya
- Rani Lakshmi Bai Central Agricultural University, Jhansi-284003, Uttar Pradesh, India.
| | - Bijay Kumar Behera
- Rani Lakshmi Bai Central Agricultural University, Jhansi-284003, Uttar Pradesh, India.
| |
Collapse
|
6
|
Petkau G, Mitchell TJ, Evans MJ, Matheson L, Salerno F, Turner M. Zfp36l1 establishes the high-affinity CD8 T-cell response by directly linking TCR affinity to cytokine sensing. Eur J Immunol 2024; 54:e2350700. [PMID: 38039407 PMCID: PMC11146077 DOI: 10.1002/eji.202350700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/03/2023]
Abstract
How individual T cells compete for and respond to IL-2 at the molecular level, and, as a consequence, how this shapes population dynamics and the selection of high-affinity clones is still poorly understood. Here we describe how the RNA binding protein ZFP36L1, acts as a sensor of TCR affinity to promote clonal expansion of high-affinity CD8 T cells. As part of an incoherent feed-forward loop, ZFP36L1 has a nonredundant role in suppressing multiple negative regulators of cytokine signaling and mediating a selection mechanism based on competition for IL-2. We suggest that ZFP36L1 acts as a sensor of antigen affinity and establishes the dominance of high-affinity T cells by installing a hierarchical response to IL-2.
Collapse
Affiliation(s)
- Georg Petkau
- The Babraham InstituteBabraham Research CampusCambridgeUnited Kingdom
| | - Twm J. Mitchell
- The Babraham InstituteBabraham Research CampusCambridgeUnited Kingdom
| | | | - Louise Matheson
- The Babraham InstituteBabraham Research CampusCambridgeUnited Kingdom
| | - Fiamma Salerno
- The Babraham InstituteBabraham Research CampusCambridgeUnited Kingdom
| | - Martin Turner
- The Babraham InstituteBabraham Research CampusCambridgeUnited Kingdom
| |
Collapse
|
7
|
Buchacher T, Shetty A, Koskela SA, Smolander J, Kaukonen R, Sousa AGG, Junttila S, Laiho A, Rundquist O, Lönnberg T, Marson A, Rasool O, Elo LL, Lahesmaa R. PIM kinases regulate early human Th17 cell differentiation. Cell Rep 2023; 42:113469. [PMID: 38039135 PMCID: PMC10765319 DOI: 10.1016/j.celrep.2023.113469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/23/2023] [Accepted: 11/03/2023] [Indexed: 12/03/2023] Open
Abstract
The serine/threonine-specific Moloney murine leukemia virus (PIM) kinase family (i.e., PIM1, PIM2, and PIM3) has been extensively studied in tumorigenesis. PIM kinases are downstream of several cytokine signaling pathways that drive immune-mediated diseases. Uncontrolled T helper 17 (Th17) cell activation has been associated with the pathogenesis of autoimmunity. However, the detailed molecular function of PIMs in human Th17 cell regulation has yet to be studied. In the present study, we comprehensively investigated how the three PIMs simultaneously alter transcriptional gene regulation during early human Th17 cell differentiation. By combining PIM triple knockdown with bulk and scRNA-seq approaches, we found that PIM deficiency promotes the early expression of key Th17-related genes while suppressing Th1-lineage genes. Further, PIMs modulate Th cell signaling, potentially via STAT1 and STAT3. Overall, our study highlights the inhibitory role of PIMs in human Th17 cell differentiation, thereby suggesting their association with autoimmune phenotypes.
Collapse
Affiliation(s)
- Tanja Buchacher
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland.
| | - Ankitha Shetty
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland; Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Saara A Koskela
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland; Institute of Biomedicine, University of Turku, 20520 Turku, Finland
| | - Johannes Smolander
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
| | - Riina Kaukonen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
| | - António G G Sousa
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
| | - Sini Junttila
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
| | - Asta Laiho
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
| | - Olof Rundquist
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
| | - Tapio Lönnberg
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
| | - Alexander Marson
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA; Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Omid Rasool
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
| | - Laura L Elo
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland; Institute of Biomedicine, University of Turku, 20520 Turku, Finland
| | - Riitta Lahesmaa
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland; Institute of Biomedicine, University of Turku, 20520 Turku, Finland.
| |
Collapse
|
8
|
Kaneshige A, Bai L, Wang M, McEachern D, Meagher JL, Xu R, Wang Y, Jiang W, Metwally H, Kirchhoff PD, Zhao L, Jiang H, Wang M, Wen B, Sun D, Stuckey JA, Wang S. A selective small-molecule STAT5 PROTAC degrader capable of achieving tumor regression in vivo. Nat Chem Biol 2023; 19:703-711. [PMID: 36732620 DOI: 10.1038/s41589-022-01248-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 12/21/2022] [Indexed: 02/04/2023]
Abstract
Signal transducer and activator of transcription 5 (STAT5) is an attractive therapeutic target, but successful targeting of STAT5 has proved to be difficult. Here we report the development of AK-2292 as a first, potent and selective small-molecule degrader of both STAT5A and STAT5B isoforms. AK-2292 induces degradation of STAT5A/B proteins with an outstanding selectivity over all other STAT proteins and more than 6,000 non-STAT proteins, leading to selective inhibition of STAT5 activity in cells. AK-2292 effectively induces STAT5 depletion in normal mouse tissues and human chronic myeloid leukemia (CML) xenograft tissues and achieves tumor regression in two CML xenograft mouse models at well-tolerated dose schedules. AK-2292 is not only a powerful research tool with which to investigate the biology of STAT5 and the therapeutic potential of selective STAT5 protein depletion and inhibition but also a promising lead compound toward ultimate development of a STAT5-targeted therapy.
Collapse
Affiliation(s)
- Atsunori Kaneshige
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Medical School, Ann Arbor, MI, USA
| | - Longchuan Bai
- Department of Internal Medicine, University of Michigan, Medical School, Ann Arbor, MI, USA
| | - Mi Wang
- Department of Internal Medicine, University of Michigan, Medical School, Ann Arbor, MI, USA
| | - Donna McEachern
- Department of Internal Medicine, University of Michigan, Medical School, Ann Arbor, MI, USA
| | | | - Renqi Xu
- Department of Internal Medicine, University of Michigan, Medical School, Ann Arbor, MI, USA
| | - Yu Wang
- Department of Internal Medicine, University of Michigan, Medical School, Ann Arbor, MI, USA
| | - Wei Jiang
- Department of Internal Medicine, University of Michigan, Medical School, Ann Arbor, MI, USA
| | - Hoda Metwally
- Department of Internal Medicine, University of Michigan, Medical School, Ann Arbor, MI, USA
| | - Paul D Kirchhoff
- Department of Internal Medicine, University of Michigan, Medical School, Ann Arbor, MI, USA
| | - Lijie Zhao
- Department of Internal Medicine, University of Michigan, Medical School, Ann Arbor, MI, USA
| | - Hui Jiang
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Meilin Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Bo Wen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Duxin Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Jeanne A Stuckey
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Shaomeng Wang
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA.
- Department of Internal Medicine, University of Michigan, Medical School, Ann Arbor, MI, USA.
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
- Department of Pharmacology, Medical School, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
9
|
Xu Y, Ritchie SC, Liang Y, Timmers PRHJ, Pietzner M, Lannelongue L, Lambert SA, Tahir UA, May-Wilson S, Foguet C, Johansson Å, Surendran P, Nath AP, Persyn E, Peters JE, Oliver-Williams C, Deng S, Prins B, Luan J, Bomba L, Soranzo N, Di Angelantonio E, Pirastu N, Tai ES, van Dam RM, Parkinson H, Davenport EE, Paul DS, Yau C, Gerszten RE, Mälarstig A, Danesh J, Sim X, Langenberg C, Wilson JF, Butterworth AS, Inouye M. An atlas of genetic scores to predict multi-omic traits. Nature 2023; 616:123-131. [PMID: 36991119 PMCID: PMC10323211 DOI: 10.1038/s41586-023-05844-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 02/15/2023] [Indexed: 03/30/2023]
Abstract
The use of omic modalities to dissect the molecular underpinnings of common diseases and traits is becoming increasingly common. But multi-omic traits can be genetically predicted, which enables highly cost-effective and powerful analyses for studies that do not have multi-omics1. Here we examine a large cohort (the INTERVAL study2; n = 50,000 participants) with extensive multi-omic data for plasma proteomics (SomaScan, n = 3,175; Olink, n = 4,822), plasma metabolomics (Metabolon HD4, n = 8,153), serum metabolomics (Nightingale, n = 37,359) and whole-blood Illumina RNA sequencing (n = 4,136), and use machine learning to train genetic scores for 17,227 molecular traits, including 10,521 that reach Bonferroni-adjusted significance. We evaluate the performance of genetic scores through external validation across cohorts of individuals of European, Asian and African American ancestries. In addition, we show the utility of these multi-omic genetic scores by quantifying the genetic control of biological pathways and by generating a synthetic multi-omic dataset of the UK Biobank3 to identify disease associations using a phenome-wide scan. We highlight a series of biological insights with regard to genetic mechanisms in metabolism and canonical pathway associations with disease; for example, JAK-STAT signalling and coronary atherosclerosis. Finally, we develop a portal ( https://www.omicspred.org/ ) to facilitate public access to all genetic scores and validation results, as well as to serve as a platform for future extensions and enhancements of multi-omic genetic scores.
Collapse
Affiliation(s)
- Yu Xu
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK.
| | - Scott C Ritchie
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Yujian Liang
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Paul R H J Timmers
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Maik Pietzner
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
- Computational Medicine, Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Precision Healthcare University Research Institute, Queen Mary University of London, London, UK
| | - Loïc Lannelongue
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
| | - Samuel A Lambert
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Usman A Tahir
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Sebastian May-Wilson
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Carles Foguet
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
| | - Åsa Johansson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Praveen Surendran
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Artika P Nath
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Elodie Persyn
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - James E Peters
- Department of Immunology and Inflammation, Faculty of Medicine, Imperial College London, London, UK
| | - Clare Oliver-Williams
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Shuliang Deng
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Bram Prins
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Jian'an Luan
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Lorenzo Bomba
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- BioMarin Pharmaceutical, Novato, CA, USA
| | - Nicole Soranzo
- British Heart Foundation Centre of Research Excellence, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- NIHR Blood and Transplant Research Unit in Donor Health and Behaviour, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Genomics Research Centre, Human Technopole, Milan, Italy
| | - Emanuele Di Angelantonio
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- NIHR Blood and Transplant Research Unit in Donor Health and Behaviour, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Health Data Science Research Centre, Human Technopole, Milan, Italy
| | - Nicola Pirastu
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
- Genomics Research Centre, Human Technopole, Milan, Italy
| | - E Shyong Tai
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
- Department of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Rob M van Dam
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
- Departments of Exercise and Nutrition Sciences and Epidemiology, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| | - Helen Parkinson
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Dirk S Paul
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Christopher Yau
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
- Division of Informatics, Imaging and Data Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Health Data Research UK, London, UK
| | - Robert E Gerszten
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anders Mälarstig
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Pfizer Worldwide Research, Development and Medical, Stockholm, Sweden
| | - John Danesh
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- NIHR Blood and Transplant Research Unit in Donor Health and Behaviour, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Xueling Sim
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Claudia Langenberg
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
- Computational Medicine, Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Precision Healthcare University Research Institute, Queen Mary University of London, London, UK
| | - James F Wilson
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Adam S Butterworth
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- NIHR Blood and Transplant Research Unit in Donor Health and Behaviour, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Michael Inouye
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK.
- British Heart Foundation Centre of Research Excellence, School of Clinical Medicine, University of Cambridge, Cambridge, UK.
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK.
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
- The Alan Turing Institute, London, UK.
| |
Collapse
|
10
|
Targeting Pim kinases in hematological cancers: molecular and clinical review. Mol Cancer 2023; 22:18. [PMID: 36694243 PMCID: PMC9875428 DOI: 10.1186/s12943-023-01721-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/13/2023] [Indexed: 01/26/2023] Open
Abstract
Decades of research has recognized a solid role for Pim kinases in lymphoproliferative disorders. Often up-regulated following JAK/STAT and tyrosine kinase receptor signaling, Pim kinases regulate cell proliferation, survival, metabolism, cellular trafficking and signaling. Targeting Pim kinases represents an interesting approach since knock-down of Pim kinases leads to non-fatal phenotypes in vivo suggesting clinical inhibition of Pim may have less side effects. In addition, the ATP binding site offers unique characteristics that can be used for the development of small inhibitors targeting one or all Pim isoforms. This review takes a closer look at Pim kinase expression and involvement in hematopoietic cancers. Current and past clinical trials and in vitro characterization of Pim kinase inhibitors are examined and future directions are discussed. Current studies suggest that Pim kinase inhibition may be most valuable when accompanied by multi-drug targeting therapy.
Collapse
|
11
|
Julson JR, Marayati R, Beierle EA, Stafman LL. The Role of PIM Kinases in Pediatric Solid Tumors. Cancers (Basel) 2022; 14:3565. [PMID: 35892829 PMCID: PMC9332273 DOI: 10.3390/cancers14153565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 12/04/2022] Open
Abstract
PIM kinases have been identified as potential therapeutic targets in several malignancies. Here, we provide an in-depth review of PIM kinases, including their structure, expression, activity, regulation, and role in pediatric carcinogenesis. Also included is a brief summary of the currently available pharmaceutical agents targeting PIM kinases and existing clinical trials.
Collapse
Affiliation(s)
- Janet Rae Julson
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (J.R.J.); (R.M.)
| | - Raoud Marayati
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (J.R.J.); (R.M.)
| | - Elizabeth Ann Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (J.R.J.); (R.M.)
| | - Laura Lee Stafman
- Division of Pediatric Surgery, Department of Surgery, Vanderbilt University, Nashville, TN 37240, USA;
| |
Collapse
|
12
|
Mahata S, Sahoo PK, Pal R, Sarkar S, Mistry T, Ghosh S, Nasare VD. PIM1/STAT3 axis: a potential co-targeted therapeutic approach in triple-negative breast cancer. Med Oncol 2022; 39:74. [PMID: 35568774 DOI: 10.1007/s12032-022-01675-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 02/01/2022] [Indexed: 10/18/2022]
Abstract
Triple-negative breast cancer lacks an expression of ER, PR, and Her-2, has a poor prognosis, and there are no target therapies available. Therapeutic options to treat TNBC are limited and urgently needed. Strong evidence indicates that molecular signaling pathways have a significant function to regulate biological mechanisms and their abnormal expression endows with the development of cancer. PIM kinase is overexpressed in various human cancers including TNBC which is regulated by various signaling pathways that are crucial for cancer cell proliferation and survival and also make PIM kinase as an attractive drug target. One of the targets of the STAT3 signaling pathway is PIM1 that plays a key role in tumor progression and transformation. In this review, we accumulate the current scenario of the PIM-STAT3 axis that provides insights into the PIM1 and STAT3 inhibitors which can be developed as potential co-inhibitors as prospective anticancer agents.
Collapse
Affiliation(s)
- Sutapa Mahata
- Department of Pathology and Cancer Screening, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, 700026, India
| | - Pranab K Sahoo
- Department of Pathology and Cancer Screening, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, 700026, India
| | - Ranita Pal
- Department of Pathology and Cancer Screening, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, 700026, India
| | - Sinjini Sarkar
- Department of Pathology and Cancer Screening, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, 700026, India
| | - Tanuma Mistry
- Department of Pathology and Cancer Screening, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, 700026, India
| | - Sushmita Ghosh
- Department of Pathology and Cancer Screening, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, 700026, India
| | - Vilas D Nasare
- Department of Pathology and Cancer Screening, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, 700026, India.
| |
Collapse
|
13
|
Zhang H, Wei R, Yang X, Xu L, Jiang H, Li M, Jiang H, Zhang H, Chen Z, Qian F, Sun L. AMFR drives allergic asthma development by promoting alveolar macrophage–derived GM-CSF production. J Exp Med 2022; 219. [DOI: https:/doi.org/10.1084/jem.20211828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025] Open
Abstract
Alveolar macrophages (AMs) are specialized tissue-resident macrophages that orchestrate the immune response in allergic inflammation and asthma. However, what signals direct AMs to cross talk with other immune cells remains unclear. Here, we report that autocrine motility factor receptor (AMFR), an endoplasmic reticulum–resident E3 ubiquitin ligase, is upregulated in AMs of asthma and is critical for this condition. AMFR deficiency significantly decreased allergy-induced T helper 2 (Th2) and eosinophilic inflammation, with less granulocyte-macrophage colony-stimulating factor (GM-CSF) production in AMs. Mechanistically, following thymic stromal lymphopoietin (TSLP) stimulation, AMFR associated directly with cytokine-inducible SH2-containing protein (CIS), induced the ubiquitination of Lys48-linked polyubiquitination of CIS, and consequently blocked the inhibitory effect of CIS on signal transducer and activator of transcription 5 (STAT5) phosphorylation and the downstream pathway activation in AMs. In conclusion, our results demonstrate that AMFR serves a crucial role in promoting inflammation in asthma through regulating AM function, and may emerge as a new potential drug target for asthma therapy.
Collapse
Affiliation(s)
- Huihui Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, P.R. China 1
| | - Ran Wei
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China 2
| | - Xinyi Yang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, P.R. China 1
| | - Lu Xu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, P.R. China 1
| | - Hongchao Jiang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, P.R. China 1
| | - Mengkai Li
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, P.R. China 1
| | - Haixia Jiang
- School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, P.R. China 3
| | - Haibo Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, P.R. China 1
| | - Zhihong Chen
- Department of Respiratory and Critical Care Medicine of Zhongshan Hospital, Shanghai Institute of Respiratory Disease, Fudan University, Shanghai, P.R. China 4
| | - Feng Qian
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, P.R. China 1
| | - Lei Sun
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, P.R. China 1
| |
Collapse
|
14
|
Zhang H, Wei R, Yang X, Xu L, Jiang H, Li M, Jiang H, Zhang H, Chen Z, Qian F, Sun L. AMFR drives allergic asthma development by promoting alveolar macrophage-derived GM-CSF production. J Exp Med 2022; 219:e20211828. [PMID: 35333296 PMCID: PMC8961293 DOI: 10.1084/jem.20211828] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/02/2022] [Accepted: 02/02/2022] [Indexed: 12/23/2022] Open
Abstract
Alveolar macrophages (AMs) are specialized tissue-resident macrophages that orchestrate the immune response in allergic inflammation and asthma. However, what signals direct AMs to cross talk with other immune cells remains unclear. Here, we report that autocrine motility factor receptor (AMFR), an endoplasmic reticulum-resident E3 ubiquitin ligase, is upregulated in AMs of asthma and is critical for this condition. AMFR deficiency significantly decreased allergy-induced T helper 2 (Th2) and eosinophilic inflammation, with less granulocyte-macrophage colony-stimulating factor (GM-CSF) production in AMs. Mechanistically, following thymic stromal lymphopoietin (TSLP) stimulation, AMFR associated directly with cytokine-inducible SH2-containing protein (CIS), induced the ubiquitination of Lys48-linked polyubiquitination of CIS, and consequently blocked the inhibitory effect of CIS on signal transducer and activator of transcription 5 (STAT5) phosphorylation and the downstream pathway activation in AMs. In conclusion, our results demonstrate that AMFR serves a crucial role in promoting inflammation in asthma through regulating AM function, and may emerge as a new potential drug target for asthma therapy.
Collapse
Affiliation(s)
- Huihui Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Ran Wei
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Xinyi Yang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Lu Xu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Hongchao Jiang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Mengkai Li
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Haixia Jiang
- School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Haibo Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Zhihong Chen
- Department of Respiratory and Critical Care Medicine of Zhongshan Hospital, Shanghai Institute of Respiratory Disease, Fudan University, Shanghai, P.R. China
| | - Feng Qian
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Lei Sun
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, P.R. China
| |
Collapse
|
15
|
Mahata S, Behera SK, Kumar S, Sahoo PK, Sarkar S, Fazil MHUT, Nasare VD. In-silico and in-vitro investigation of STAT3-PIM1 heterodimeric complex: Its mechanism and inhibition by curcumin for cancer therapeutics. Int J Biol Macromol 2022; 208:356-366. [DOI: 10.1016/j.ijbiomac.2022.03.137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/19/2022] [Accepted: 03/22/2022] [Indexed: 01/19/2023]
|
16
|
Zhao Y, Aziz AUR, Zhang H, Zhang Z, Li N, Liu B. A systematic review on active sites and functions of PIM-1 protein. Hum Cell 2022; 35:427-440. [PMID: 35000143 DOI: 10.1007/s13577-021-00656-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022]
Abstract
The Proviral Integration of Molony murine leukemia virus (PIM)-1 protein contributes to the solid cancers and hematologic malignancies, cell growth, proliferation, differentiation, migration, and other life activities. Many studies have related these functions to its molecular structure, subcellular localization and expression level. However, recognition of specific active sites and their effects on the activity of this constitutively active kinase is still a challenge. Based on the close relationship between its molecular structure and functional activity, this review covers the specific residues involved in the binding of ATP and different substrates in its catalytic domain. This review then elaborates on the relevant changes in protein conformation and cell functions after PIM-1 binds to different substrates. Therefore, this intensive study can improve the understanding of PIM-1-regulated signaling pathways by facilitating the discovery of its potential phosphorylation substrates.
Collapse
Affiliation(s)
- Youyi Zhao
- School of Biomedical Engineering, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian, 116024, China
| | - Aziz Ur Rehman Aziz
- School of Biomedical Engineering, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian, 116024, China
| | - Hangyu Zhang
- School of Biomedical Engineering, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian, 116024, China
| | - Zhengyao Zhang
- School of Life and Pharmaceutical Sciences, Panjin Campus of Dalian University of Technology, Panjin, 124221, China
| | - Na Li
- School of Biomedical Engineering, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian, 116024, China.
| | - Bo Liu
- School of Biomedical Engineering, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
17
|
Aranda-Tavío H, Recio C, Martín-Acosta P, Guerra-Rodríguez M, Brito-Casillas Y, Blanco R, Junco V, León J, Montero JC, Gandullo-Sánchez L, McNaughton-Smith G, Zapata JM, Pandiella A, Amesty A, Estévez-Braun A, Fernández-Pérez L, Guerra B. JKST6, a novel multikinase modulator of the BCR-ABL1/STAT5 signaling pathway that potentiates direct BCR-ABL1 inhibition and overcomes imatinib resistance in chronic myelogenous leukemia. Biomed Pharmacother 2021; 144:112330. [PMID: 34673425 DOI: 10.1016/j.biopha.2021.112330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 11/16/2022] Open
Abstract
Chronic myelogenous leukemia (CML) is a hematological malignancy that highly depends on the BCR-ABL1/STAT5 signaling pathway for cell survival. First-line treatments for CML consist of tyrosine kinase inhibitors that efficiently target BCR-ABL1 activity. However, drug resistance and intolerance are still therapeutic limitations in Ph+ cells. Therefore, the development of new anti-CML drugs that exhibit alternative mechanisms to overcome these limitations is a desirable goal. In this work, the antitumoral activity of JKST6, a naphthoquinone-pyrone hybrid, was assessed in imatinib-sensitive and imatinib-resistant human CML cells. Live-cell imaging analysis revealed JKST6 potent antiproliferative activity in 2D and 3D CML cultures. JKST6 provoked cell increase in the subG1 phase along with a reduction in the G0/G1 phase and altered the expression of key proteins involved in the control of mitosis and DNA damage. Rapid increases in Annexin V staining and activation/cleavage of caspases 8, 9 and 3 were observed after JKST6 treatment in CML cells. Of interest, JKST6 inhibited BCR-ABL1/STAT5 signaling through oncokinase downregulation that was preceded by rapid polyubiquitination. In addition, JKST6 caused a transient increase in JNK and AKT phosphorylation, whereas the phosphorylation of P38-MAPK and Src was reduced. Combinatory treatment unveiled synergistic effects between imatinib and JKST6. Notably, JKST6 maintained its antitumor efficacy in BCR-ABL1-T315I-positive cells and CML cells that overexpress BCR-ABL and even restored imatinib efficacy after a short exposure time. These findings, together with the observed low toxicity of JKST6, reveal a novel multikinase modulator that might overcome the limitations of BCR-ABL1 inhibitors in CML therapy.
Collapse
Affiliation(s)
- Haidée Aranda-Tavío
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Farmacología Molecular y Traslacional (BIOPharm), Universidad de Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain
| | - Carlota Recio
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Farmacología Molecular y Traslacional (BIOPharm), Universidad de Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain
| | - Pedro Martín-Acosta
- Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO), Departamento de Química Orgánica, QUIBIONAT, Universidad de La Laguna (ULL), La Laguna, Spain
| | - Miguel Guerra-Rodríguez
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Farmacología Molecular y Traslacional (BIOPharm), Universidad de Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain
| | - Yeray Brito-Casillas
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Farmacología Molecular y Traslacional (BIOPharm), Universidad de Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain
| | - Rosa Blanco
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
| | - Vanessa Junco
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
| | - Javier León
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
| | - Juan Carlos Montero
- Instituto de Biología Molecular y Celular del Cáncer, CSIC and CIBERONC. Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Lucía Gandullo-Sánchez
- Instituto de Biología Molecular y Celular del Cáncer, CSIC and CIBERONC. Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | | | - Juan Manuel Zapata
- Instituto de Investigaciones Biomédicas "Alberto Sols" - CSIC, Universidad Autónoma de Madrid, Madrid, Spain
| | - Atanasio Pandiella
- Instituto de Biología Molecular y Celular del Cáncer, CSIC and CIBERONC. Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Angel Amesty
- Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO), Departamento de Química Orgánica, QUIBIONAT, Universidad de La Laguna (ULL), La Laguna, Spain
| | - Ana Estévez-Braun
- Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO), Departamento de Química Orgánica, QUIBIONAT, Universidad de La Laguna (ULL), La Laguna, Spain
| | - Leandro Fernández-Pérez
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Farmacología Molecular y Traslacional (BIOPharm), Universidad de Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain.
| | - Borja Guerra
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Farmacología Molecular y Traslacional (BIOPharm), Universidad de Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain.
| |
Collapse
|
18
|
Zhang Y, Newsom KJ, Zhang M, Kelley JS, Starostik P. GATM-Mediated Creatine Biosynthesis Enables Maintenance of FLT3-ITD-Mutant Acute Myeloid Leukemia. Mol Cancer Res 2021; 20:293-304. [PMID: 34635505 DOI: 10.1158/1541-7786.mcr-21-0314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/31/2021] [Accepted: 10/06/2021] [Indexed: 11/16/2022]
Abstract
FMS-like tyrosine kinase 3 (FLT3) is one of the most frequently mutated genes in acute myeloid leukemia (AML), with the most common mutation being internal tandem duplications (ITD). The presence of FLT3-ITD in AML carries a particularly poor prognosis and renders therapeutic resistance. New druggable targets are thus needed in this disease. In this study, we demonstrate the effects of de novo creatine biosynthesis upregulation by FLT3-ITD on AML sustainability. Our data show that FLT3-ITD constitutively activates the STAT5 signaling pathway, which upregulates the expression of glycine amidinotransferase (GATM), the first rate-limiting enzyme of de novo creatine biosynthesis. Pharmacologic FLT3-ITD inhibition reduces intracellular creatinine levels through transcriptional downregulation of genes in the de novo creatine biosynthesis pathway. The same reduction can be achieved by cyclocreatine or genetic GATM knockdown with shRNA and is reflected in significant decrease of cell proliferation and moderate increase of cell apoptosis in FLT3-ITD-mutant cell lines. Those effects are at least partially mediated through the AMPK/mTOR signaling pathway. This study uncovers a previously uncharacterized role of creatine metabolic pathway in the maintenance of FLT3-ITD-mutant AML and suggests that targeting this pathway may serve as a promising therapeutic strategy for FLT3-ITD-positive AML. IMPLICATIONS: FLT3-ITD mutation in AML upregulates de novo creatine biosynthesis that we show can be suppressed to diminish the proliferation and survival of blast cells.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Kimberly J Newsom
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Mei Zhang
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Jeffry S Kelley
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Petr Starostik
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida.
| |
Collapse
|
19
|
Rathi A, Kumar D, Hasan GM, Haque MM, Hassan MI. Therapeutic targeting of PIM KINASE signaling in cancer therapy: Structural and clinical prospects. Biochim Biophys Acta Gen Subj 2021; 1865:129995. [PMID: 34455019 DOI: 10.1016/j.bbagen.2021.129995] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/28/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND PIM kinases are well-studied drug targets for cancer, belonging to Serine/Threonine kinases family. They are the downstream target of various signaling pathways, and their up/down-regulation affects various physiological processes. PIM family comprises three isoforms, namely, PIM-1, PIM-2, and PIM-3, on alternative initiation of translation and they have different levels of expression in different types of cancers. Its structure shows a unique ATP-binding site in the hinge region which makes it unique among other kinases. SCOPE OF REVIEW PIM kinases are widely reported in hematological malignancies along with prostate and breast cancers. Currently, many drugs are used as inhibitors of PIM kinases. In this review, we highlighted the physiological significance of PIM kinases in the context of disease progression and therapeutic targeting. We comprehensively reviewed the PIM kinases in terms of their expression and regulation of different physiological roles. We further predicted functional partners of PIM kinases to elucidate their role in the cellular physiology of different cancer and mapped their interaction network. MAJOR CONCLUSIONS A deeper mechanistic insight into the PIM signaling involved in regulating different cellular processes, including transcription, apoptosis, cell cycle regulation, cell proliferation, cell migration and senescence, is provided. Furthermore, structural features of PIM have been dissected to understand the mechanism of inhibition and subsequent implication of designed inhibitors towards therapeutic management of prostate, breast and other cancers. GENERAL SIGNIFICANCE Being a potential drug target for cancer therapy, available drugs and PIM inhibitors at different stages of clinical trials are discussed in detail.
Collapse
Affiliation(s)
- Aanchal Rathi
- Department of Biotechnology, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Dhiraj Kumar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | | | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
20
|
Tomc J, Debeljak N. Molecular Pathways Involved in the Development of Congenital Erythrocytosis. Genes (Basel) 2021; 12:1150. [PMID: 34440324 PMCID: PMC8391844 DOI: 10.3390/genes12081150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 01/08/2023] Open
Abstract
Patients with idiopathic erythrocytosis are directed to targeted genetic testing including nine genes involved in oxygen sensing pathway in kidneys, erythropoietin signal transduction in pre-erythrocytes and hemoglobin-oxygen affinity regulation in mature erythrocytes. However, in more than 60% of cases the genetic cause remains undiagnosed, suggesting that other genes and mechanisms must be involved in the disease development. This review aims to explore additional molecular mechanisms in recognized erythrocytosis pathways and propose new pathways associated with this rare hematological disorder. For this purpose, a comprehensive review of the literature was performed and different in silico tools were used. We identified genes involved in several mechanisms and molecular pathways, including mRNA transcriptional regulation, post-translational modifications, membrane transport, regulation of signal transduction, glucose metabolism and iron homeostasis, which have the potential to influence the main erythrocytosis-associated pathways. We provide valuable theoretical information for deeper insight into possible mechanisms of disease development. This information can be also helpful to improve the current diagnostic solutions for patients with idiopathic erythrocytosis.
Collapse
Affiliation(s)
| | - Nataša Debeljak
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
| |
Collapse
|
21
|
STAT5 as a Key Protein of Erythropoietin Signalization. Int J Mol Sci 2021; 22:ijms22137109. [PMID: 34281163 PMCID: PMC8268974 DOI: 10.3390/ijms22137109] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 12/14/2022] Open
Abstract
Erythropoietin (EPO) acts on multiple tissues through its receptor EPOR, a member of a cytokine class I receptor superfamily with pleiotropic effects. The interaction of EPO and EPOR triggers the activation of several signaling pathways that induce erythropoiesis, including JAK2/STAT5, PI3K/AKT, and MAPK. The canonical EPOR/JAK2/STAT5 pathway is a known regulator of differentiation, proliferation, and cell survival of erythroid progenitors. In addition, its role in the protection of other cells, including cancer cells, is under intense investigation. The involvement of EPOR/JAK2/STAT5 in other processes such as mRNA splicing, cytoskeleton reorganization, and cell metabolism has been recently described. The transcriptomics, proteomics, and epigenetic studies reviewed in this article provide a detailed understanding of EPO signalization. Advances in this area of research may be useful for improving the efficacy of EPO therapy in hematologic disorders, as well as in cancer treatment.
Collapse
|
22
|
Alsubaie M, Matou-Nasri S, Aljedai A, Alaskar A, Al-Eidi H, Albabtain SA, Aldilaijan KE, Alsayegh M, Alabdulkareem IB. In vitro assessment of the efficiency of the PIM-1 kinase pharmacological inhibitor as a potential treatment for Burkitt's lymphoma. Oncol Lett 2021; 22:622. [PMID: 34267815 PMCID: PMC8258613 DOI: 10.3892/ol.2021.12883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/18/2021] [Indexed: 11/06/2022] Open
Abstract
Burkitt's lymphoma is an aggressive form of lymphoma affecting B lymphocytes. It occurs endemically in Africa and sporadically in the rest of the world. Due to the high proliferation rate of this tumor, intensive multi-drug treatment is required; however, the risk of tumor syndrome lysis is high. Overexpression of the proto-oncogene proviral integration of the Moloney murine leukemia virus (PIM-1) kinase is associated with the development of hematological abnormalities, including Burkitt's lymphoma (BL). PIM-1 primarily exerts anti-apoptotic activities through BAD phosphorylation. The aim of the present study was to investigate the in vitro efficiency of a PIM-1 kinase pharmacological inhibitor (PIM1-1) in BL. The impact of PIM1-1 was evaluated in terms of the viability and apoptosis status of the BL B cell lines, Raji and Daudi, compared with K562 leukemia cells, which highly express PIM-1. Cell viability and apoptotic status were assessed with western blotting, and PIM-1 gene expression was assessed with reverse transcription-quantitative PCR. After 48 h of treatment, PIM1-1 inhibited the Daudi, Raji and K562 cell viability with a half-maximal inhibitory concentration corresponding to 10, 20 and 30 µM PIM1-1, respectively. A significant decrease of ERK phosphorylation was detected in PIM1-1-treated Daudi cells, confirming the antiproliferative effect. The addition of 10 µM PIM1-1 significantly decreased the PIM-1 protein and gene expression in Daudi cells. An inhibition of the pro-apoptotic BAD phosphorylation was observed in the Daudi cells treated with 0.1-1 µM PIM1-1 and 10 µM PIM1-1 decreased BAD phosphorylation in the Raji cells. The apoptotic status of both PIM1-1-treated cells lines were confirmed with the detection of cleaved capase-3. However, no change in cell viability and PIM-1 protein expression was observed in the 10 µM PIM1-1-treated K562 cells. In conclusion, the findings indicated that the PIM1-1 pharmacological inhibitor may have therapeutic potential in BL, but with lower efficiency in leukemia.
Collapse
Affiliation(s)
- Mona Alsubaie
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Center, Ministry of National Guard-Health Affairs, Riyadh 11481, Saudi Arabia.,Hematology and Serology Unit, Department of Laboratory Medicine Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Riyadh 11942, Saudi Arabia.,Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| | - Sabine Matou-Nasri
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Center, Ministry of National Guard-Health Affairs, Riyadh 11481, Saudi Arabia.,College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia
| | - Abdullah Aljedai
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| | - Ahmed Alaskar
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia.,Division of Adult Hematology and Hematopoietic Stem Cell Transplantation, Department of Oncology, King Abdullah Medical City, Ministry of National Guard-Health Affairs, Riyadh 14611, Saudi Arabia.,King Abdullah International Medical Research Center, Ministry of National Guard-Health Affairs, Riyadh 11426, Saudi Arabia
| | - Hamad Al-Eidi
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Center, Ministry of National Guard-Health Affairs, Riyadh 11481, Saudi Arabia
| | - Sarah A Albabtain
- Research Department, Health Sciences Research Center, Princess Nourah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia
| | - Khawlah E Aldilaijan
- Research Department, Health Sciences Research Center, Princess Nourah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia
| | - Manal Alsayegh
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Center, Ministry of National Guard-Health Affairs, Riyadh 11481, Saudi Arabia
| | - Ibrahim B Alabdulkareem
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Center, Ministry of National Guard-Health Affairs, Riyadh 11481, Saudi Arabia.,Research Department, Health Sciences Research Center, Princess Nourah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia
| |
Collapse
|
23
|
Kao CC, Wong HSC, Wang YJ, Chou WH, Perwitasari DA, Wu MS, Chang WC. The role of genetic polymorphisms in STIM1 and ORAI1 for erythropoietin resistance in patients with renal failure. Medicine (Baltimore) 2021; 100:e25243. [PMID: 33907089 PMCID: PMC8083997 DOI: 10.1097/md.0000000000025243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 11/27/2022] Open
Abstract
ABSTRACT Anemia is a common complication in patients with renal failure. While erythropoietin is commonly used to treat anemia, some patients exhibit a poor response to erythropoietin. Since store-operated calcium channel (SOC) signaling is one of the erythropoietin activated pathways, we aimed to investigate the association between the genetic polymorphisms of SOC signaling pathway and erythropoietin resistance in patients with renal failure.Four tagging single nucleotide polymorphisms in STIM1 and five in ORAI1 were selected in this study. Genotyping was performed with the TaqMan Allelic Discrimination assay and the association of individual tagging single nucleotide polymorphisms with erythropoietin resistance was analyzed by multivariable adjusted random intercepts model.194 patients were enrolled in this study. The mean age of participants is 68 years, and 56% were men. The mean erythropoietin resistance index was 9.04 ± 4.51 U/Kg/week/g/dL. We found that patients with the AA genotype of rs1561876 in STIM1, and the CC or CT genotypes of rs6486795 in ORAI1, were associated with increased risk of erythropoietin resistance. Functional annotation of expression quantitative trait loci revealed that the AA genotype of rs1561876 in STIM1 has a relatively lower expression of ribonucleotide reductase catalytic subunit M1 in skeletal muscle, while the CC genotype of rs6486795 in ORAI1 has a relatively higher expression of ORAI1 in the whole blood and thyroid.Overall, we demonstrate a significant association between erythropoietin resistance and genetic polymorphisms of STIM1 and ORAI1. Annotation prediction revealed the importance of SOC-mediated calcium signaling for erythropoietin resistance.
Collapse
Affiliation(s)
- Chih-Chin Kao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University Hospital
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University
- TMU Research Center of Urology and Kidney (TMU-RCUK)
| | - Henry Sung-Ching Wong
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University
- Master Program for Clinical Pharmacogenomics and Pharmacoproteomics, School of Pharmacy, Taipei Medical University
| | - Yu-Jia Wang
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan
| | - Wan-Hsuan Chou
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University
| | | | - Mai-Szu Wu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University
- TMU Research Center of Urology and Kidney (TMU-RCUK)
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City
| | - Wei-Chiao Chang
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University
- Master Program for Clinical Pharmacogenomics and Pharmacoproteomics, School of Pharmacy, Taipei Medical University
- Integrative Research Center for Critical Care, Wan Fang Hospital, Taipei Medical University, Taipei
- Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| |
Collapse
|
24
|
Lee B, Lee H, Cho J, Yoon SE, Kim SJ, Park WY, Kim WS, Ko YH. Mutational Profile and Clonal Evolution of Relapsed/Refractory Diffuse Large B-Cell Lymphoma. Front Oncol 2021; 11:628807. [PMID: 33777778 PMCID: PMC7992425 DOI: 10.3389/fonc.2021.628807] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/04/2021] [Indexed: 12/13/2022] Open
Abstract
Primary refractory/relapsed diffuse large B-cell lymphoma (rrDLBCL) is an unresolved issue for DLBCL treatment and new treatments to overcome resistance is required. To explore the genetic mechanisms underlying treatment resistance in rrDLBCL and to identify candidate genes, we performed targeted deep sequencing of 430 lymphoma-related genes from 58 patients diagnosed with rrDLBCL. Genetic alterations found between the initial biopsy and biopsy at recurrence or refractory disease were investigated. The genes most frequently altered (> 20%) were (in decreasing order of frequency) CDKN2A, PIM1, CD79B, TP53, MYD88, MYC, BTG2, BTG1, CDKN2B, DTX1, CD58, ETV6, and IRF4. Genes mutation of which in pretreatment sample were associated with poor overall survival included NOTCH1, FGFR2, BCL7A, BCL10, SPEN and TP53 (P < 0.05). FGFR2, BCL2, BCL6, BCL10, and TP53 were associated with poor progression-free survival (P < 0.05). Most mutations were truncal and were maintained in both the initial biopsy and post-treatment biopsy with high dynamics of subclones. Immune-evasion genes showed increased overall mutation frequency (CD58, B2M) and variant allele fraction (CD58), and decreased copy number (B2M, CD70) at the post-treatment biopsy. Using the established mutational profiles and integrative analysis of mutational evolution, we identified information about candidate genes that may be useful for the development of future treatment strategies.
Collapse
Affiliation(s)
- Boram Lee
- Samsung Genome Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Department of Health Science and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
| | - Hyunwoo Lee
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Junhun Cho
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Sang Eun Yoon
- Division of Hematology and Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Seok Jin Kim
- Division of Hematology and Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Department of Health Science and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea.,Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Won Seog Kim
- Division of Hematology and Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Young Hyeh Ko
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| |
Collapse
|
25
|
Zhang S, Shuai L, Wang D, Huang T, Yang S, Miao M, Liu F, Xu J. Pim-1 Protects Retinal Ganglion Cells by Enhancing Their Regenerative Ability Following Optic Nerve Crush. Exp Neurobiol 2020; 29:249-272. [PMID: 32624507 PMCID: PMC7344373 DOI: 10.5607/en20019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/22/2020] [Accepted: 06/22/2020] [Indexed: 11/19/2022] Open
Abstract
Provirus integration site Moloney murine leukemia virus (Pim-1) is a proto-oncogene reported to be associated with cell proliferation, differentiation and survival. This study was to explore the neuroprotective role of Pim-1 in a rat model subjected to optic nerve crush (ONC), and discuss its related molecules in improving the intrinsic regeneration ability of retinal ganglion cells (RGCs). Immunofluorescence staining showed that AAV2- Pim-1 infected 71% RGCs and some amacrine cells in the retina. Real-time PCR and Western blotting showed that retina infection with AAV2- Pim-1 up-regulated the Pim-1 mRNA and protein expressions compared with AAV2-GFP group. Hematoxylin-Eosin (HE) staining, γ-synuclein immunohistochemistry, Cholera toxin B (CTB) tracing and TUNEL showed that RGCs transduction with AAV2-Pim-1 prior to ONC promoted the survival of damaged RGCs and decreased cell apoptosis. RITC anterograde labeling showed that Pim-1 overexpression increased axon regeneration and promoted the recovery of visual function by pupillary light reflex and flash visual evoked potential. Western blotting showed that Pim- 1 overexpression up-regulated the expression of Stat3, p-Stat3, Akt1, p-Akt1, Akt2 and p-Akt2, as well as βIII-tubulin, GAP-43 and 4E-BP1, and downregulated the expression of SOCS1 and SOCS3, Cleaved caspase 3, Bad and Bax. These results demonstrate that Pim-1 exerted a neuroprotective effect by promoting nerve regeneration and functional recovery of RGCs. In addition, it enhanced the intrinsic regeneration capacity of RGCs after ONC by activating Stat3, Akt1 and Akt2 pathways, and inhibiting the mitochondrial apoptosis pathways. These findings suggest that Pim-1 may prove to be a potential therapeutic target for the clinical treatment of optic nerve injury.
Collapse
Affiliation(s)
- Shoumei Zhang
- Department of Anatomy, Second Military Medical University, Shanghai 200433, China.,Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Li Shuai
- Department of Health Administration, Second Military Medical University, Shanghai 200433, China
| | - Dong Wang
- Department of Anatomy, Second Military Medical University, Shanghai 200433, China
| | - Tingting Huang
- Department of Anatomy, Second Military Medical University, Shanghai 200433, China
| | - Shengsheng Yang
- Department of Biochemistry and Molecular Biology, Second Military Medical University, Shanghai 200433, China
| | - Mingyong Miao
- Department of Biochemistry and Molecular Biology, Second Military Medical University, Shanghai 200433, China
| | - Fang Liu
- Department of Anatomy, Second Military Medical University, Shanghai 200433, China
| | - Jiajun Xu
- Department of Anatomy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
26
|
Combined inhibition of PIM and CDK4/6 suppresses both mTOR signaling and Rb phosphorylation and potentiates PI3K inhibition in cancer cells. Oncotarget 2020; 11:1478-1492. [PMID: 32391118 PMCID: PMC7197449 DOI: 10.18632/oncotarget.27539] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/14/2020] [Indexed: 12/31/2022] Open
Abstract
Aberrant activation of mitogenic signaling pathways in cancer promotes growth and proliferation of cells by activating mTOR and S6 phosphorylation, and D-cyclin kinases and Rb phosphorylation, respectively. Correspondingly, inhibition of phosphorylation of both Rb and S6 is required for robust anti-tumor efficacy of drugs that inhibit cell signaling. The best-established mechanism of mTOR activation in cancer is via PI3K/Akt signaling, but mTOR activity can also be stimulated by CDK4 and PIM kinases. In this study, we show that the CDK4/6 inhibitor abemaciclib inhibits PIM kinase and S6 phosphorylation in cancer cells and concurrent inhibition of PIM, CDK4, and CDK6 suppresses both S6 and Rb phosphorylation. TSC2 or PIK3CA mutations obviate the requirement for PIM kinase and circumvent the inhibition of S6 phosphorylation by abemaciclib. Combination with a PI3K inhibitor restored suppression of S6 phosphorylation and synergized to curtail cell growth. By combining abemaciclib with a PI3K inhibitor, three pathways (Akt, PIM, and CDK4) to mTOR activation are neutralized, suggesting a potential combination strategy for the treatment of PIK3CA-mutant ER+ breast cancer.
Collapse
|
27
|
Malone T, Schäfer L, Simon N, Heavey S, Cuffe S, Finn S, Moore G, Gately K. Current perspectives on targeting PIM kinases to overcome mechanisms of drug resistance and immune evasion in cancer. Pharmacol Ther 2019; 207:107454. [PMID: 31836451 DOI: 10.1016/j.pharmthera.2019.107454] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/03/2019] [Indexed: 12/22/2022]
Abstract
PIM kinases are a class of serine/threonine kinases that play a role in several of the hallmarks of cancer including cell cycle progression, metabolism, inflammation and immune evasion. Their constitutively active nature and unique catalytic structure has led them to be an attractive anticancer target through the use of small molecule inhibitors. This review highlights the enhanced activity of PIM kinases in cancer that can be driven by hypoxia in the tumour microenvironment and the important role that aberrant PIM kinase activity plays in resistance mechanisms to chemotherapy, radiotherapy, anti-angiogenic therapies and targeted therapies. We highlight an interaction of PIM kinases with numerous major oncogenic players, including but not limited to, stabilisation of p53, synergism with c-Myc, and notable parallel signalling with PI3K/Akt. We provide a comprehensive overview of PIM kinase's role as an escape mechanism to targeted therapies including PI3K/mTOR inhibitors, MET inhibitors, anti-HER2/EGFR treatments and the immunosuppressant rapamycin, providing a rationale for co-targeting treatment strategies for a more durable patient response. The current status of PIM kinase inhibitors and their use as a combination therapy with other targeted agents, in addition to the development of novel multi-molecularly targeted single therapeutic agents containing a PIM kinase targeting moiety are discussed.
Collapse
Affiliation(s)
- Tom Malone
- Dept. of Clinical Medicine, Trinity Translational Medicine Institute, St. James's Hospital, Dublin, Ireland
| | - Lea Schäfer
- Dept. of Clinical Medicine, Trinity Translational Medicine Institute, St. James's Hospital, Dublin, Ireland
| | - Nathalie Simon
- Dept. of Clinical Medicine, Trinity Translational Medicine Institute, St. James's Hospital, Dublin, Ireland
| | - Susan Heavey
- Molecular Diagnostics and Therapeutics Group, University College London, London, UK
| | - Sinead Cuffe
- Dept. of Clinical Medicine, Trinity Translational Medicine Institute, St. James's Hospital, Dublin, Ireland
| | - Stephen Finn
- Dept. of Clinical Medicine, Trinity Translational Medicine Institute, St. James's Hospital, Dublin, Ireland
| | - Gillian Moore
- School of Pharmacy and Biomolecular Sciences, RCSI, Dublin, Ireland
| | - Kathy Gately
- Dept. of Clinical Medicine, Trinity Translational Medicine Institute, St. James's Hospital, Dublin, Ireland.
| |
Collapse
|
28
|
Chen J, Tang G. PIM-1 kinase: a potential biomarker of triple-negative breast cancer. Onco Targets Ther 2019; 12:6267-6273. [PMID: 31496730 PMCID: PMC6690594 DOI: 10.2147/ott.s212752] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/30/2019] [Indexed: 01/10/2023] Open
Abstract
Triple-negative breast cancer is associated with a poor prognosis, and effective biomarkers for targeted diagnosis and treatment are lacking. The tumorigenicity of the provirus integration site for Moloney murine leukemia virus 1 (PIM-1) gene has been studied for many years. However, its significance in breast cancer remains unclear. In this review we briefly summarized the physiological characteristics and regulation of PIM-1 kinase, and subsequently focused on the role of PIM-1 in tumors, especially breast cancer. Oncogene PIM-1 was found to be upregulated in breast cancer, especially in triple-negative breast cancer. Moreover, it is involved in tumorigenesis and the development of drug resistance, and linked to poor prognosis. A highly selective probe targeting PIM-1 for imaging has emerged, suggesting that PIM-1 may be a potential biomarker for the accurate diagnosis and targeted therapy of triple-negative breast cancer.
Collapse
Affiliation(s)
- Jieying Chen
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Guangyu Tang
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
29
|
Oncogenic N-Ras and Tet2 haploinsufficiency collaborate to dysregulate hematopoietic stem and progenitor cells. Blood Adv 2019; 2:1259-1271. [PMID: 29866713 DOI: 10.1182/bloodadvances.2018017400] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/30/2018] [Indexed: 12/18/2022] Open
Abstract
Concurrent genetic lesions exist in a majority of patients with hematologic malignancies. Among these, somatic mutations that activate RAS oncogenes and inactivate the epigenetic modifier ten-eleven translocation 2 (TET2) frequently co-occur in human chronic myelomonocytic leukemias (CMMLs) and acute myeloid leukemias, suggesting a cooperativity in malignant transformation. To test this, we applied a conditional murine model that endogenously expressed oncogenic NrasG12D and monoallelic loss of Tet2 and explored the collaborative role specifically within hematopoietic stem and progenitor cells (HSPCs) at disease initiation. We demonstrate that the 2 mutations collaborated to accelerate a transplantable CMML-like disease in vivo, with an overall shortened survival and increased disease penetrance compared with single mutants. At preleukemic stage, N-RasG12D and Tet2 haploinsufficiency together induced balanced hematopoietic stem cell (HSC) proliferation and enhanced competitiveness. NrasG12D/+/Tet2+/- HSCs displayed increased self-renewal in primary and secondary transplantations, with significantly higher reconstitution than single mutants. Strikingly, the 2 mutations together conferred long-term reconstitution and self-renewal potential to multipotent progenitors, a pool of cells that usually have limited self-renewal compared with HSCs. Moreover, HSPCs from NrasG12D/+/Tet2+/- mice displayed increased cytokine sensitivity in response to thrombopoietin. Therefore, our studies establish a novel tractable CMML model and provide insights into how dysregulated signaling pathways and epigenetic modifiers collaborate to modulate HSPC function and promote leukemogenesis.
Collapse
|
30
|
Zhang X, Song M, Kundu JK, Lee MH, Liu ZZ. PIM Kinase as an Executional Target in Cancer. J Cancer Prev 2018; 23:109-116. [PMID: 30370255 PMCID: PMC6197848 DOI: 10.15430/jcp.2018.23.3.109] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 04/25/2018] [Accepted: 04/30/2018] [Indexed: 12/29/2022] Open
Abstract
PIM (proviral integration site for moloney murine leukemia virus) kinase plays a key role as an oncogene in various cancers including myeloma, leukemia, prostate and breast cancers. The aberrant expression and/or activation of PIM kinases in various cancers follow an isoform-specific pattern. While PIM1 is predominantly expressed in hematological and solid tumors, PIM2 and PIM3 are largely expressed in leukemia and solid tumors, respectively. All of PIM kinases cause transcriptional activation of genes involved in cell survival and cell cycle progression in cancer. A variety of pro-tumorigenic signaling molecules, such as MYC, p21Cip1/Waf1/p27kip1, CDC25, Notch1 and BAD have been identified as the downstream targets of PIM kinases. So far, three kinds of adenosine triphosphate-competitive PIM inhibitors, SGI-1776, AZD1208, and LGH447 have been in clinical trials for the treatment of acute myelogenous leukemia, prostate cancer, lymphoma, or multiple myeloma. This review sheds light on the signaling pathways involved in the PIM kinase regulation and current status of developing PIM kinase inhibitors as clinical success in combating human cancer.
Collapse
Affiliation(s)
- Xinning Zhang
- Department of Breast Surgery, Breast Cancer Center, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Mengqiu Song
- Basic Medical College, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Joydeb Kumar Kundu
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Mee-Hyun Lee
- Basic Medical College, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Zhen-Zhen Liu
- Department of Breast Surgery, Breast Cancer Center, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
31
|
Wójcik M, Krawczyńska A, Antushevich H, Herman AP. Post-Receptor Inhibitors of the GHR-JAK2-STAT Pathway in the Growth Hormone Signal Transduction. Int J Mol Sci 2018; 19:E1843. [PMID: 29932147 PMCID: PMC6073700 DOI: 10.3390/ijms19071843] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/15/2018] [Accepted: 06/19/2018] [Indexed: 02/06/2023] Open
Abstract
The growth hormone (GH) plays a key role in the regulation of metabolic processes in an organism. Determination of the correct structure and functioning of the growth hormone receptor (GHR) allowed for a more detailed research of its post-receptor regulators, which substantially influences its signal transduction. This review is focused on the description of the post-receptor inhibitors of the GHR-JAK2-STAT pathway, which is one of the most important pathways in the transduction of the somatotropic axis signal. The aim of this review is the short characterization of the main post-receptor inhibitors, such as: cytokine-inducible SH2-containing protein (CIS), Suppressors of Cytokine Signaling (SOCS) 1, 2 and 3, sirtuin 1 (SIRT1), protein inhibitors of activated STAT (PIAS) 1, 3 and PIAS4, protein tyrosine phosphatases (PTP) 1B and H1, Src homology 2 (SH2) domain containing protein tyrosine phosphatase (SHP) 1, 2 and signal regulatory protein (SIRP) α1. The equilibrium between these regulators activity and inhibition is of special concern because, as many studies showed, even slight imbalance may disrupt the GH activity causing serious diseases. The regulation of the described inhibitors expression and activity may be a point of interest for pharmaceutical industry.
Collapse
Affiliation(s)
- Maciej Wójcik
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, ul. Instytucka 3, 05-110 Jabłonna, Poland.
| | - Agata Krawczyńska
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, ul. Instytucka 3, 05-110 Jabłonna, Poland.
| | - Hanna Antushevich
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, ul. Instytucka 3, 05-110 Jabłonna, Poland.
| | - Andrzej Przemysław Herman
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, ul. Instytucka 3, 05-110 Jabłonna, Poland.
| |
Collapse
|
32
|
Koblish H, Li YL, Shin N, Hall L, Wang Q, Wang K, Covington M, Marando C, Bowman K, Boer J, Burke K, Wynn R, Margulis A, Reuther GW, Lambert QT, Dostalik Roman V, Zhang K, Feng H, Xue CB, Diamond S, Hollis G, Yeleswaram S, Yao W, Huber R, Vaddi K, Scherle P. Preclinical characterization of INCB053914, a novel pan-PIM kinase inhibitor, alone and in combination with anticancer agents, in models of hematologic malignancies. PLoS One 2018; 13:e0199108. [PMID: 29927999 PMCID: PMC6013247 DOI: 10.1371/journal.pone.0199108] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/31/2018] [Indexed: 12/17/2022] Open
Abstract
The Proviral Integration site of Moloney murine leukemia virus (PIM) serine/threonine protein kinases are overexpressed in many hematologic and solid tumor malignancies and play central roles in intracellular signaling networks important in tumorigenesis, including the Janus kinase-signal transducer and activator of transcription (JAK/STAT) and phosphatidylinositol 3-kinase (PI3K)/AKT pathways. The three PIM kinase isozymes (PIM1, PIM2, and PIM3) share similar downstream substrates with other key oncogenic kinases and have differing but mutually compensatory functions across tumors. This supports the therapeutic potential of pan-PIM kinase inhibitors, especially in combination with other anticancer agents chosen based on their role in overlapping signaling networks. Reported here is a preclinical characterization of INCB053914, a novel, potent, and selective adenosine triphosphate-competitive pan-PIM kinase inhibitor. In vitro, INCB053914 inhibited proliferation and the phosphorylation of downstream substrates in cell lines from multiple hematologic malignancies. Effects were confirmed in primary bone marrow blasts from patients with acute myeloid leukemia treated ex vivo and in blood samples from patients receiving INCB053914 in an ongoing phase 1 dose-escalation study. In vivo, single-agent INCB053914 inhibited Bcl-2-associated death promoter protein phosphorylation and dose-dependently inhibited tumor growth in acute myeloid leukemia and multiple myeloma xenografts. Additive or synergistic inhibition of tumor growth was observed when INCB053914 was combined with selective PI3Kδ inhibition, selective JAK1 or JAK1/2 inhibition, or cytarabine. Based on these data, pan-PIM kinase inhibitors, including INCB053914, may have therapeutic utility in hematologic malignancies when combined with other inhibitors of oncogenic kinases or standard chemotherapeutics.
Collapse
Affiliation(s)
- Holly Koblish
- Incyte Corporation, Wilmington, Delaware, United States of America
- * E-mail:
| | - Yun-long Li
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Niu Shin
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Leslie Hall
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Qian Wang
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Kathy Wang
- Incyte Corporation, Wilmington, Delaware, United States of America
| | | | - Cindy Marando
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Kevin Bowman
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Jason Boer
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Krista Burke
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Richard Wynn
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Alex Margulis
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Gary W. Reuther
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Que T. Lambert
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida, United States of America
| | | | - Ke Zhang
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Hao Feng
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Chu-Biao Xue
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Sharon Diamond
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Greg Hollis
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Swamy Yeleswaram
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Wenqing Yao
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Reid Huber
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Kris Vaddi
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Peggy Scherle
- Incyte Corporation, Wilmington, Delaware, United States of America
| |
Collapse
|
33
|
Crawford RR, Potukuchi PK, Schuetz EG, Schuetz JD. Beyond Competitive Inhibition: Regulation of ABC Transporters by Kinases and Protein-Protein Interactions as Potential Mechanisms of Drug-Drug Interactions. Drug Metab Dispos 2018; 46:567-580. [PMID: 29514827 PMCID: PMC5896366 DOI: 10.1124/dmd.118.080663] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 03/02/2018] [Indexed: 12/14/2022] Open
Abstract
ATP-binding cassette (ABC) transporters are transmembrane efflux transporters mediating the extrusion of an array of substrates ranging from amino acids and lipids to xenobiotics, and many therapeutic compounds, including anticancer drugs. The ABC transporters are also recognized as important contributors to pharmacokinetics, especially in drug-drug interactions and adverse drug effects. Drugs and xenobiotics, as well as pathologic conditions, can influence the transcription of ABC transporters, or modify their activity or intracellular localization. Kinases can affect the aforementioned processes for ABC transporters as do protein interactions. In this review, we focus on the ABC transporters ABCB1, ABCB11, ABCC1, ABCC4, and ABCG2 and illustrate how kinases and protein-protein interactions affect these transporters. The clinical relevance of these factors is currently unknown; however, these examples suggest that our understanding of drug-drug interactions will benefit from further knowledge of how kinases and protein-protein interactions affect ABC transporters.
Collapse
Affiliation(s)
- Rebecca R Crawford
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Praveen K Potukuchi
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Erin G Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - John D Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
34
|
Santio NM, Koskinen PJ. PIM kinases: From survival factors to regulators of cell motility. Int J Biochem Cell Biol 2017; 93:74-85. [DOI: 10.1016/j.biocel.2017.10.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/26/2017] [Accepted: 10/31/2017] [Indexed: 01/01/2023]
|
35
|
Differential transcriptional responses to Ebola and Marburg virus infection in bat and human cells. Sci Rep 2016; 6:34589. [PMID: 27713552 PMCID: PMC5054393 DOI: 10.1038/srep34589] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 09/15/2016] [Indexed: 01/04/2023] Open
Abstract
The unprecedented outbreak of Ebola in West Africa resulted in over 28,000 cases and 11,000 deaths, underlining the need for a better understanding of the biology of this highly pathogenic virus to develop specific counter strategies. Two filoviruses, the Ebola and Marburg viruses, result in a severe and often fatal infection in humans. However, bats are natural hosts and survive filovirus infections without obvious symptoms. The molecular basis of this striking difference in the response to filovirus infections is not well understood. We report a systematic overview of differentially expressed genes, activity motifs and pathways in human and bat cells infected with the Ebola and Marburg viruses, and we demonstrate that the replication of filoviruses is more rapid in human cells than in bat cells. We also found that the most strongly regulated genes upon filovirus infection are chemokine ligands and transcription factors. We observed a strong induction of the JAK/STAT pathway, of several genes encoding inhibitors of MAP kinases (DUSP genes) and of PPP1R15A, which is involved in ER stress-induced cell death. We used comparative transcriptomics to provide a data resource that can be used to identify cellular responses that might allow bats to survive filovirus infections.
Collapse
|
36
|
Xu Z, Gwin KA, Li Y, Medina KL. Developmental stage-specific effects of Pim-1 dysregulation on murine bone marrow B cell development. BMC Immunol 2016; 17:16. [PMID: 27287229 PMCID: PMC4902936 DOI: 10.1186/s12865-016-0152-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/23/2016] [Indexed: 02/07/2023] Open
Abstract
Background The serine threonine kinase Pim-1 has documented roles in hematopoietic progenitor and B cell precursor proliferation and survival. Pim-1 is a molecular target of the transcription factor Hoxa9. Previous studies showed that Pim-1 deficiency phenocopied the hematopoietic progenitor defect in hoxa9-/- mice and forced expression of Pim-1 normalized the in vitro proliferation defect inherent to hoxa9-/- hematopoietic progenitors. Pim-1 is induced by cytokine signaling, including the early lymphoid/B lineage regulators Flt3 and IL-7, and expression levels were shown to influence the size of the B cell compartment in bone marrow (BM). Results In this study, we sought to determine if transgenic expression of Pim-1, driven by the immunoglobulin enhancer, Eμ, was sufficient to rescue the lymphoid/B cell precursor defect in hoxa9 or flt3-ligand (flt3l) deficient mice. Unexpectedly, expression of Eμ − Pim1 exacerbated lymphoid progenitor deficiencies in flt3l-/-, and to a lesser extent, hoxa9-/- mice. Furthermore, Eμ − Pim1 expression alone reduced early myeloid and lymphoid, but not erythroid, progenitors. In contrast, Pim-1 deficiency had no significant effect on early lymphoid/B cell development through the Pre-Pro-B cell stage, but caused a significant reduction in IgM− B cell precursors. Importantly, loss of Pim-1 did not phenocopy hoxa9- or flt3l-deficiency on the lymphoid/early B cell progenitor pools. Conclusions These experimental findings demonstrate that Pim-1 overexpression has developmental-stage-specific effects on B lymphopoiesis and myelopoiesis. Importantly, these suggest that Pim-1 deficiency does not contribute significantly to the early lymphoid/B cell developmental deficiency in hoxa9-/- or flt3l-/- mice.
Collapse
Affiliation(s)
- Zhihui Xu
- The Key Laboratory Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130000, People's Republic of China.,Department of Immunology, College of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Kimberly A Gwin
- Department of Immunology, College of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Yulin Li
- The Key Laboratory Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130000, People's Republic of China. .,Department of Pathology, Norman Bethune College of Medicine, Jilin University, Changchun, 130000, People's Republic of China.
| | - Kay L Medina
- Department of Immunology, College of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
37
|
Abstract
The initiation and progression of human cancer is frequently linked to the uncontrolled activation of survival kinases. Two such pro-survival kinases that are commonly amplified in cancer are PIM and Akt. These oncogenic proteins are serine/threonine kinases that regulate tumorigenesis by phosphorylating substrates that control the cell cycle, cellular metabolism, proliferation, and survival. Growing evidence suggests that cross-talk exists between the PIM and Akt kinases, indicating that they control partially overlapping survival signaling pathways that are critical to the initiation, progression, and metastatic spread of many types of cancer. The PI3K/Akt signaling pathway is activated in many human tumors, and it is well established as a promising anticancer target. Likewise, based on the role of PIM kinases in normal and tumor tissues, it is clear that this family of kinases represents an interesting target for anticancer therapy. Pharmacological inhibition of PIM has the potential to significantly influence the efficacy of standard and targeted therapies. This review focuses on the regulation of PIM kinases, their role in tumorigenesis, and the biological impact of their interaction with the Akt signaling pathway on the efficacy of cancer therapy.
Collapse
|
38
|
Gillespie ZE, MacKay K, Sander M, Trost B, Dawicki W, Wickramarathna A, Gordon J, Eramian M, Kill IR, Bridger JM, Kusalik A, Mitchell JA, Eskiw CH. Rapamycin reduces fibroblast proliferation without causing quiescence and induces STAT5A/B-mediated cytokine production. Nucleus 2015; 6:490-506. [PMID: 26652669 PMCID: PMC4915505 DOI: 10.1080/19491034.2015.1128610] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/24/2015] [Accepted: 11/30/2015] [Indexed: 12/25/2022] Open
Abstract
Rapamycin is a well-known inhibitor of the Target of Rapamycin (TOR) signaling cascade; however, the impact of this drug on global genome function and organization in normal primary cells is poorly understood. To explore this impact, we treated primary human foreskin fibroblasts with rapamycin and observed a decrease in cell proliferation without causing cell death. Upon rapamycin treatment chromosomes 18 and 10 were repositioned to a location similar to that of fibroblasts induced into quiescence by serum reduction. Although similar changes in positioning occurred, comparative transcriptome analyses demonstrated significant divergence in gene expression patterns between rapamycin-treated and quiescence-induced fibroblasts. Rapamycin treatment induced the upregulation of cytokine genes, including those from the Interleukin (IL)-6 signaling network, such as IL-8 and the Leukemia Inhibitory Factor (LIF), while quiescent fibroblasts demonstrated up-regulation of genes involved in the complement and coagulation cascade. In addition, genes significantly up-regulated by rapamycin treatment demonstrated increased promoter occupancy of the transcription factor Signal Transducer and Activator of Transcription 5A/B (STAT5A/B). In summary, we demonstrated that the treatment of fibroblasts with rapamycin decreased proliferation, caused chromosome territory repositioning and induced STAT5A/B-mediated changes in gene expression enriched for cytokines.
Collapse
Affiliation(s)
- Zoe E Gillespie
- Department of Food and Bioproduct Sciences; University of Saskatchewan; Saskatoon, Canada
- Institute of Environment, Health and Societies; Brunel University; London, Uxbridge, United Kingdom
| | - Kimberly MacKay
- Department of Computer Science; University of Saskatchewan; Saskatoon, Canada
| | - Michelle Sander
- Department of Food and Bioproduct Sciences; University of Saskatchewan; Saskatoon, Canada
| | - Brett Trost
- Department of Computer Science; University of Saskatchewan; Saskatoon, Canada
| | - Wojciech Dawicki
- Department of Medicine; Division of Respirology, Critical Care and Sleep Medicine; Royal University Hospital; Saskatoon, Canada
| | - Aruna Wickramarathna
- Department of Food and Bioproduct Sciences; University of Saskatchewan; Saskatoon, Canada
| | - John Gordon
- Department of Medicine; Division of Respirology, Critical Care and Sleep Medicine; Royal University Hospital; Saskatoon, Canada
| | - Mark Eramian
- Department of Computer Science; University of Saskatchewan; Saskatoon, Canada
| | - Ian R Kill
- Institute of Environment, Health and Societies; Brunel University; London, Uxbridge, United Kingdom
| | - Joanna M Bridger
- Institute of Environment, Health and Societies; Brunel University; London, Uxbridge, United Kingdom
| | - Anthony Kusalik
- Department of Computer Science; University of Saskatchewan; Saskatoon, Canada
| | - Jennifer A Mitchell
- Department of Cell and Systems Biology; University of Toronto; Toronto, Canada
- Centre for the Analysis of Genome Evolution and Function; University of Toronto, Toronto, ON, Canada
| | - Christopher H Eskiw
- Department of Food and Bioproduct Sciences; University of Saskatchewan; Saskatoon, Canada
- Institute of Environment, Health and Societies; Brunel University; London, Uxbridge, United Kingdom
| |
Collapse
|
39
|
Abstract
Pim oncogenes are highly expressed in many types of hematological and solid cancers. Pim kinases regulate the network of signaling pathways that are critical for tumorigenesis and development, making Pim kinases the attractive drug targets. Currently, two approaches have been employed in designing Pim kinase inhibitors: ATP-mimetics and non-ATP mimetics; but all target the ATP-binding pocket and are ATP-competitive. In this review, we summarize the current progress in understanding the Pim-related structure and biology, and provide insights into the binding modes of some prototypical Pim-1 inhibitors. The challenges as well as opportunities are highlighted for development of Pim kinase inhibitors as potential anticancer agents.
Collapse
|
40
|
Mondello P, Cuzzocrea S, Mian M. Pim kinases in hematological malignancies: where are we now and where are we going? J Hematol Oncol 2014; 7:95. [PMID: 25491234 PMCID: PMC4266197 DOI: 10.1186/s13045-014-0095-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 12/04/2014] [Indexed: 12/21/2022] Open
Abstract
The proviral insertion in murine (PIM) lymphoma proteins are a serine/threonine kinase family composed of three isoformes: Pim-1, Pim-2 and Pim-3. They play a critical role in the control of cell proliferation, survival, homing and migration. Recently, overexpression of Pim kinases has been reported in human tumors, mainly in hematologic malignancies. In vitro and in vivo studies have confirmed their oncogenic potential. Indeed, PIM kinases have shown to be involved in tumorgenesis, to enhance tumor growth and to induce chemo-resistance, which is why they have become an attractive therapeutic target for cancer therapy. Novel molecules inhibiting Pim kinases have been evaluated in preclinical studies, demonstrating to be effective and with a favorable toxicity profile. Given the promising results, some of these compounds are currently under investigation in clinical trials. Herein, we provide an overview of the biological activity of PIM-kinases, their role in hematologic malignancies and future therapeutic opportunities.
Collapse
Affiliation(s)
- Patrizia Mondello
- Department of Human Pathology, University of Messina, Via Consolare Valeria, 98125, Messina, Italy. .,Department of Biological and Environmental Sciences, University of Messina, Messina, Italy.
| | - Salvatore Cuzzocrea
- Department of Biological and Environmental Sciences, University of Messina, Messina, Italy.
| | - Michael Mian
- Department of Hematology, Hospital S. Maurizio, Bolzano/Bozen, Italy. .,Department of Internal Medicine V, Hematology & Oncology, Medical University Innsbruck, Innsbruck, Austria.
| |
Collapse
|
41
|
PIM inhibitors target CD25-positive AML cells through concomitant suppression of STAT5 activation and degradation of MYC oncogene. Blood 2014; 124:1777-89. [DOI: 10.1182/blood-2014-01-551234] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Key Points
CD25 is a predictive biomarker for sensitivity to PIM inhibitors in AML cells. PIM inhibitors may prolong overall/relapse-free survival through attenuating STAT5 activation and destabilizing MYC in CD25+ AML cells.
Collapse
|
42
|
Li YY, Mukaida N. Pathophysiological roles of Pim-3 kinase in pancreatic cancer development and progression. World J Gastroenterol 2014; 20:9392-9404. [PMID: 25071334 PMCID: PMC4110571 DOI: 10.3748/wjg.v20.i28.9392] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 01/22/2014] [Accepted: 03/10/2014] [Indexed: 02/07/2023] Open
Abstract
Pim-3 is a member of the provirus integration site for Moloney murine leukemia virus (Pim) family proteins that exhibit serine/threonine kinase activity. Similar to the other Pim kinases (Pim-1 and Pim-2), Pim-3 is involved in many cellular processes, including cell proliferation, survival, and protein synthesis. Although Pim-3 is expressed in normal vital organs, it is overexpressed particularly in tumor tissues of endoderm-derived organs, including the liver, pancreas, and colon. Silencing of Pim-3 expression can retard in vitro cell proliferation of hepatocellular, pancreatic, and colon carcinoma cell lines by promoting cell apoptosis. Pim-3 lacks the regulatory domains similarly as Pim-1 and Pim-2 lack, and therefore, Pim-3 can exhibit its kinase activity once it is expressed. Pim-3 expression is regulated at transcriptional and post-transcriptional levels by transcription factors (e.g., Ets-1) and post-translational modifiers (e.g., translationally-controlled tumor protein), respectively. Pim-3 could promote growth and angiogenesis of human pancreatic cancer cells in vivo in an orthotopic nude mouse model. Furthermore, a Pim-3 kinase inhibitor inhibited cell proliferation when human pancreatic cancer cells were injected into nude mice, without inducing any major adverse effects. Thus, Pim-3 kinase may serve as a novel molecular target for developing targeting drugs against pancreatic and other types of cancer.
Collapse
|
43
|
SOCS3-mediated blockade reveals major contribution of JAK2/STAT5 signaling pathway to lactation and proliferation of dairy cow mammary epithelial cells in vitro. Molecules 2013; 18:12987-3002. [PMID: 24141248 PMCID: PMC6270101 DOI: 10.3390/molecules181012987] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 09/21/2013] [Accepted: 09/30/2013] [Indexed: 12/27/2022] Open
Abstract
Suppressor of cytokine signaling 3 (SOCS3) is a cytokine-induced negative feedback-loop regulator of cytokine signaling. More and more evidence has proved it to be an inhibitor of signal transducers and activators of transcription 5 (STAT5). Here, we used dairy cow mammary epithelial cells (DCMECs) to analyze the function of SOCS3 and the interaction between SOCS3 and STAT5a. The expression of SOCS3 was found in cytoplasm and nucleus of DCMECs by fluorescent immunostaining. Overexpression and inhibition of SOCS3 brought a remarkable milk protein synthesis change through the regulation of JAK2/STAT5a pathway activity, and SOCS3 expression also decreased SREBP-1c expression and fatty acid synthesis. Inhibited STAT5a activation correlated with reduced SOCS3 expression, which indicated that SOCS3 gene might be one of the targets of STAT5a activation, DCMECs treated with L-methionine (Met) resulted in a decrease of SOCS3 expression. SOCS3 could also decrease cell proliferation and viability by CASY-TT detection. Together, our findings indicate that SOCS3 acts as an inhibitor of JAK2/STAT5a pathway and disturbs fatty acid synthesis by decreasing SREBP-1c expression, which validates its involvement in both milk protein synthesis and fat synthesis. In aggregate, these results reveal that low SOCS3 expression is required for milk synthesis and proliferation of DCMECs in vitro.
Collapse
|
44
|
Yang J, Wang J, Chen K, Guo G, Xi R, Rothman PB, Whitten D, Zhang L, Huang S, Chen JL. eIF4B phosphorylation by pim kinases plays a critical role in cellular transformation by Abl oncogenes. Cancer Res 2013; 73:4898-908. [PMID: 23749639 DOI: 10.1158/0008-5472.can-12-4277] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Alterations in translation occur in cancer cells, but the precise pathogenic processes and mechanistic underpinnings are not well understood. In this study, we report that interactions between Pim family kinases and the translation initiation factor eIF4B are critical for Abl oncogenicity. Pim kinases, Pim-1 and Pim-2, both directly phosphorylated eIF4B on Ser406 and Ser422. Phosphorylation of eIF4B on Ser422 was highly sensitive to pharmacologic or RNA interference-mediated inhibition of Pim kinases. Expression and phosphorylation of eIF4B relied upon Abl kinase activity in both v-Abl- and Bcr-Abl-expressing leukemic cells based on their blockade by the Abl kinase inhibitor imatinib. Ectopic expression of phosphomimetic mutants of eIF4B conferred resistance to apoptosis by the Pim kinase inhibitor SMI-4a in Abl-transformed cells. In contrast, silencing eIF4B sensitized Abl-transformed cells to imatinib-induced apoptosis and also inhibited their growth as engrafted tumors in nude mice. Extending these observations, we found that primary bone marrow cells derived from eIF4B-knockdown transgenic mice were less susceptible to Abl transformation, relative to cells from wild-type mice. Taken together, our results identify eIF4B as a critical substrate of Pim kinases in mediating the activity of Abl oncogenes, and they highlight eIF4B as a candidate therapeutic target for treatment of Abl-induced cancers.
Collapse
Affiliation(s)
- Jianling Yang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Narlik-Grassow M, Blanco-Aparicio C, Carnero A. The PIM family of serine/threonine kinases in cancer. Med Res Rev 2013; 34:136-59. [PMID: 23576269 DOI: 10.1002/med.21284] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The proviral insertion site in Moloney murine leukemia virus, or PIM proteins, are a family of serine/threonine kinases composed of three different isoforms (PIM1, PIM2, and PIM3) that are highly evolutionarily conserved. These proteins are regulated primarily by transcription and stability through pathways that are controlled by Janus kinase/Signal transducer and activator of transcription, JAK/STAT, transcription factors. The PIM family proteins have been found to be overexpressed in hematological malignancies and solid tumors, and their roles in these tumors were confirmed in mouse tumor models. Furthermore, the PIM family proteins have been implicated in the regulation of apoptosis, metabolism, cell cycle, and homing and migration, which has led to the postulation of these proteins as interesting targets for anticancer drug discovery. In the present work, we review the importance of PIM kinases in tumor growth and as drug targets.
Collapse
Affiliation(s)
- Maja Narlik-Grassow
- Experimental Therapeutics Programme, Spanish National Cancer Research Centre, Madrid, Spain
| | | | | |
Collapse
|
46
|
Narlik-Grassow M, Blanco-Aparicio C, Cecilia Y, Perez M, Muñoz-Galvan S, Cañamero M, Carnero A. Conditional transgenic expression of PIM1 kinase in prostate induces inflammation-dependent neoplasia. PLoS One 2013; 8:e60277. [PMID: 23565217 PMCID: PMC3614961 DOI: 10.1371/journal.pone.0060277] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 02/24/2013] [Indexed: 11/19/2022] Open
Abstract
The Pim proteins are a family of highly homologous protein serine/threonine kinases that have been found to be overexpressed in cancer. Elevated levels of Pim1 kinase were first discovered in human leukemia and lymphomas. However, more recently Pim1 was found to be increased in solid tumors, including pancreatic and prostate cancers, and has been proposed as a prognostic marker. Although the Pim kinases have been identified as oncogenes in transgenic models, they have weak transforming abilities on their own. However, they have been shown to greatly enhance the ability of other genes or chemical carcinogens to induce tumors. To explore the role of Pim1 in prostate cancer, we generated conditional Pim1 transgenic mice, expressed Pim1 in prostate epithelium, and analyzed the contribution of PIM1 to neoplastic initiation and progression. Accordingly, we explored the effect of PIM1 overexpression in 3 different settings: upon hormone treatment, during aging, and in combination with the absence of one Pten allele. We have found that Pim1 overexpression increased the severity of mouse prostate intraepithelial neoplasias (mPIN) moderately in all three settings. Furthermore, Pim1 overexpression, in combination with the hormone treatment, increased inflammation surrounding target tissues leading to pyelonephritis in transgenic animals. Analysis of senescence induced in these prostatic lesions showed that the lesions induced in the presence of inflammation exhibited different behavior than those induced in the absence of inflammation. While high grade prostate preneoplastic lesions, mPIN grades III and IV, in the presence of inflammation did not show any senescence markers and demonstrated high levels of Ki67 staining, untreated animals without inflammation showed senescence markers and had low levels of Ki67 staining in similar high grade lesions. Our data suggest that Pim1 might contribute to progression rather than initiation in prostate neoplasia.
Collapse
Affiliation(s)
- Maja Narlik-Grassow
- Experimental Therapeutics programme, Spanish National Cancer Research Centre, Madrid, Spain
| | - Carmen Blanco-Aparicio
- Experimental Therapeutics programme, Spanish National Cancer Research Centre, Madrid, Spain
| | - Yolanda Cecilia
- Experimental Therapeutics programme, Spanish National Cancer Research Centre, Madrid, Spain
| | - Marco Perez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio, Consejo Superior de Investigaciones Cientificas, Universidad de Sevilla, Sevilla, Spain
| | - Sandra Muñoz-Galvan
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio, Consejo Superior de Investigaciones Cientificas, Universidad de Sevilla, Sevilla, Spain
| | - Marta Cañamero
- Biotechnology programme, Spanish National Cancer Research Centre, Madrid, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio, Consejo Superior de Investigaciones Cientificas, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
47
|
Molavi O, Wang P, Zak Z, Gelebart P, Belch A, Lai R. Gene methylation and silencing of SOCS3 in mantle cell lymphoma. Br J Haematol 2013; 161:348-56. [PMID: 23432547 DOI: 10.1111/bjh.12262] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 12/30/2012] [Indexed: 12/31/2022]
Abstract
The significance of loss of SOCS3, a negative regulator of signalling pathways including those of STAT3 and NF-κB, was examined in mantle cell lymphoma (MCL). The protein expression and gene methylation status of SOCS3 were detected using immunohistochemistry/Western blots and methylation-specific polymerase chain reaction, respectively. To evaluate its functional importance, SOCS3 was restored in two SOCS3-negative MCL cell lines using a lentiviral vector. Loss of SOCS3 protein expression was found in 3/4 MCL cell lines and 18/33 (54.5%) tumours. SOCS3 was found consistently methylated in cell lines (3/4) and tumours (7/7) negative for SOCS3, and was unmethylated in all SOCS3-positive cell line (1/1) and tumours (5/5) examined. Treatment of all three SOCS3-negative cell lines with 2'-deoxy-5-azacytidine restored SOCS3 expression. SOCS3 is biologically important in MCL, as lentiviral transfer of SOCS3 in SOCS3-negative cell lines increased their apoptotic activity, downregulated nuclear factor (NF)-κB-p65, cyclin D1 (CCND1), BCL2 and BCL-XL (BCL2L1), and substantially dampened interleukin 10-induced STAT3 activation. In 19 patients aged ≤ 69 years at time of diagnosis, we found that those that carried SOCS3-negative tumours showed a trend toward a worse outcome (P = 0.1, log-rank).
Collapse
Affiliation(s)
- Ommoleila Molavi
- Department of Laboratory Medicine and Pathology, Edmonton, AB, Canada
| | | | | | | | | | | |
Collapse
|
48
|
Kiriazis A, Vahakoski RL, Santio NM, Arnaudova R, Eerola SK, Rainio EM, Aumüller IB, Yli-Kauhaluoma J, Koskinen PJ. Tricyclic Benzo[cd]azulenes selectively inhibit activities of Pim kinases and restrict growth of Epstein-Barr virus-transformed cells. PLoS One 2013; 8:e55409. [PMID: 23405147 PMCID: PMC3566155 DOI: 10.1371/journal.pone.0055409] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Accepted: 12/21/2012] [Indexed: 11/25/2022] Open
Abstract
Oncogenic Pim family kinases are often overexpressed in human hematopoietic malignancies as well as in solid tumours. These kinases contribute to tumorigenesis by promoting cell survival and by enhancing resistance against chemotherapy and radiation therapy. Furthermore, we have recently shown that they increase the metastatic potential of adherent cancer cells. Here we describe identification of tricyclic benzo[cd]azulenes and their derivatives as effective and selective inhibitors of Pim kinases. These compounds inhibit Pim autophosphorylation and abrogate the anti-apoptotic effects of Pim kinases. They also reduce cancer cell motility and suppress proliferation of lymphoblastoid cell lines infected and immortalized by the Epstein-Barr virus. Thus, these novel Pim-selective inhibitors provide promising compounds for both research and therapeutic purposes.
Collapse
Affiliation(s)
- Alexandros Kiriazis
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Helsinki, Finland
- Pharmacy Section, FinPharma Doctoral Program, Finland
| | - Riitta L. Vahakoski
- Department of Biology, University of Turku, Finland
- Drug Discovery Section, FinPharma Doctoral Program, Finland
| | - Niina M. Santio
- Department of Biology, University of Turku, Finland
- Drug Discovery Section, FinPharma Doctoral Program, Finland
| | - Ralica Arnaudova
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Helsinki, Finland
- Department of Biology, University of Turku, Finland
| | | | | | - Ingo B. Aumüller
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Helsinki, Finland
| | - Jari Yli-Kauhaluoma
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Helsinki, Finland
- * E-mail: (JYK); (PJK)
| | - Päivi J. Koskinen
- Department of Biology, University of Turku, Finland
- * E-mail: (JYK); (PJK)
| |
Collapse
|
49
|
Abstract
Basophils have recently been recognized as critical effector cells in allergic reactions and protective immunity against helminths. Precise characterization of basophil biology could help to develop specific therapies that interfere with differentiation, tissue recruitment, or induction of effector functions and thereby ameliorate allergic disorders. The development, homeostasis, and effector functions of basophils are tightly regulated by extrinsic signals and in particular by cytokines. IL-3, GM-CSF, and thymic stromal lymphopoietin activate the STAT5 pathway that promotes proliferation, activation, and cytokine secretion but also induces a negative feedback loop via Pim-1 and SOCS proteins. Basophils further express receptors for IL-18 and IL-33, which are associated with the signaling adaptor MyD88 and activate the NF-κB and MAP kinase pathways. This review focuses on positive and negative regulation of basophils by these cytokines.
Collapse
Affiliation(s)
- David Voehringer
- Department of Infection Biology, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
50
|
Yin J, Shine L, Raycroft F, Deeti S, Reynolds A, Ackerman KM, Glaviano A, O'Farrell S, O'Leary O, Kilty C, Kennedy C, McLoughlin S, Rice M, Russell E, Higgins DG, Hyde DR, Kennedy BN. Inhibition of the Pim1 oncogene results in diminished visual function. PLoS One 2012; 7:e52177. [PMID: 23300608 PMCID: PMC3530609 DOI: 10.1371/journal.pone.0052177] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 11/14/2012] [Indexed: 12/17/2022] Open
Abstract
Our objective was to profile genetic pathways whose differential expression correlates with maturation of visual function in zebrafish. Bioinformatic analysis of transcriptomic data revealed Jak-Stat signalling as the pathway most enriched in the eye, as visual function develops. Real-time PCR, western blotting, immunohistochemistry and in situ hybridization data confirm that multiple Jak-Stat pathway genes are up-regulated in the zebrafish eye between 3–5 days post-fertilisation, times associated with significant maturation of vision. One of the most up-regulated Jak-Stat genes is the proto-oncogene Pim1 kinase, previously associated with haematological malignancies and cancer. Loss of function experiments using Pim1 morpholinos or Pim1 inhibitors result in significant diminishment of visual behaviour and function. In summary, we have identified that enhanced expression of Jak-Stat pathway genes correlates with maturation of visual function and that the Pim1 oncogene is required for normal visual function.
Collapse
Affiliation(s)
- Jun Yin
- UCD School of Medicine and Medical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Lisa Shine
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Francis Raycroft
- Department of Biological Sciences and the Center for Zebrafish Research, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Sudhakar Deeti
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Alison Reynolds
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Kristin M. Ackerman
- Department of Biological Sciences and the Center for Zebrafish Research, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Antonino Glaviano
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Sean O'Farrell
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Olivia O'Leary
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Claire Kilty
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Ciaran Kennedy
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Sarah McLoughlin
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Megan Rice
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Eileen Russell
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Desmond G. Higgins
- UCD School of Medicine and Medical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - David R. Hyde
- Department of Biological Sciences and the Center for Zebrafish Research, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Breandan N. Kennedy
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
- * E-mail:
| |
Collapse
|