1
|
Lee P, Yim R, Miu KK, Fung SH, Liao JJ, Wang Z, Li J, Yung Y, Chu HT, Yip PK, Lee E, Tse E, Kwong YL, Gill H. Epigenetic Silencing of PTEN and Epi-Transcriptional Silencing of MDM2 Underlied Progression to Secondary Acute Myeloid Leukemia in Myelodysplastic Syndrome Treated with Hypomethylating Agents. Int J Mol Sci 2022; 23:5670. [PMID: 35628480 PMCID: PMC9144309 DOI: 10.3390/ijms23105670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/07/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
In myelodysplastic syndrome (MDS), resistance to hypomethylating agents (HMA) portends a poor prognosis, underscoring the importance of understanding the molecular mechanisms leading to HMA-resistance. In this study, P39 and Kasumi-1 cells and their azacitidine-resistant and decitabine-resistant sublines were evaluated comparatively with transcriptomic and methylomic analyses. Expression profiling and genome-wide methylation microarray showed downregulation of PTEN associated with DNA hypermethylation in P39 cell lines resistant to azacitidine and decitabine. This pattern of PTEN dysregulation was also confirmed in a cohort of patients failing treatment with HMA. DNA hypomethylation of MDM2 was detected with downregulation of MDM2 in HMA resistant cell lines. Long-read sequencing revealed significant RNA hypomethylation of MDM2 resulting in alternative splicing and production of a truncated MDM2 transcript in azacitidine-resistant P39 cells. The expression of this MDM2 truncated transcript was also significantly increased in HMA-resistant patients compared with HMA-responsive patients. In conclusion, epigenetic and epi-transcriptomic dysregulation of PTEN and MDM2 were associated with resistance to hypomethylating agents.
Collapse
Affiliation(s)
- Paul Lee
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (P.L.); (R.Y.); (Y.Y.); (H.-T.C.); (P.-K.Y.); (E.L.); (E.T.); (Y.-L.K.)
| | - Rita Yim
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (P.L.); (R.Y.); (Y.Y.); (H.-T.C.); (P.-K.Y.); (E.L.); (E.T.); (Y.-L.K.)
| | - Kai-Kei Miu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; (K.-K.M.); (S.-H.F.); (Z.W.)
| | - Sin-Hang Fung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; (K.-K.M.); (S.-H.F.); (Z.W.)
| | - Jason Jinyue Liao
- Department of Chemical Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China;
| | - Zhangting Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; (K.-K.M.); (S.-H.F.); (Z.W.)
| | - Jun Li
- Department of Infectious Diseases and Public Health, The City University of Hong Kong, Hong Kong, China;
| | - Yammy Yung
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (P.L.); (R.Y.); (Y.Y.); (H.-T.C.); (P.-K.Y.); (E.L.); (E.T.); (Y.-L.K.)
| | - Hiu-Tung Chu
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (P.L.); (R.Y.); (Y.Y.); (H.-T.C.); (P.-K.Y.); (E.L.); (E.T.); (Y.-L.K.)
| | - Pui-Kwan Yip
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (P.L.); (R.Y.); (Y.Y.); (H.-T.C.); (P.-K.Y.); (E.L.); (E.T.); (Y.-L.K.)
| | - Emily Lee
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (P.L.); (R.Y.); (Y.Y.); (H.-T.C.); (P.-K.Y.); (E.L.); (E.T.); (Y.-L.K.)
| | - Eric Tse
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (P.L.); (R.Y.); (Y.Y.); (H.-T.C.); (P.-K.Y.); (E.L.); (E.T.); (Y.-L.K.)
| | - Yok-Lam Kwong
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (P.L.); (R.Y.); (Y.Y.); (H.-T.C.); (P.-K.Y.); (E.L.); (E.T.); (Y.-L.K.)
| | - Harinder Gill
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (P.L.); (R.Y.); (Y.Y.); (H.-T.C.); (P.-K.Y.); (E.L.); (E.T.); (Y.-L.K.)
| |
Collapse
|
2
|
Liu W, Teodorescu P, Halene S, Ghiaur G. The Coming of Age of Preclinical Models of MDS. Front Oncol 2022; 12:815037. [PMID: 35372085 PMCID: PMC8966105 DOI: 10.3389/fonc.2022.815037] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are a heterogeneous group of clonal bone-marrow diseases with ineffective hematopoiesis resulting in cytopenias and morphologic dysplasia of hematopoietic cells. MDS carry a wide spectrum of genetic abnormalities, ranging from chromosomal abnormalities such as deletions/additions, to recurrent mutations affecting the spliceosome, epigenetic modifiers, or transcription factors. As opposed to AML, research in MDS has been hindered by the lack of preclinical models that faithfully replicate the complexity of the disease and capture the heterogeneity. The complex molecular landscape of the disease poses a unique challenge when creating transgenic mouse-models. In addition, primary MDS cells are difficult to manipulate ex vivo limiting in vitro studies and resulting in a paucity of cell lines and patient derived xenograft models. In recent years, progress has been made in the development of both transgenic and xenograft murine models advancing our understanding of individual contributors to MDS pathology as well as the complex primary interplay of genetic and microenvironment aberrations. We here present a comprehensive review of these transgenic and xenograft models for MDS and future directions.
Collapse
Affiliation(s)
- Wei Liu
- Section of Hematology, Yale Cancer Center and Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| | - Patric Teodorescu
- Department of Oncology, The Johns Hopkins Hospital, Johns Hopkins Medicine, Baltimore, MD, United States
| | - Stephanie Halene
- Section of Hematology, Yale Cancer Center and Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| | - Gabriel Ghiaur
- Department of Oncology, The Johns Hopkins Hospital, Johns Hopkins Medicine, Baltimore, MD, United States
| |
Collapse
|
3
|
Wang D, Wu X, Lu D, Li Y, Zhang P. The Melatonin and Enriched Environment Ameliorated Low Protein-Induced Intrauterine Growth Retardation by IGF-1 And mtor Signaling Pathway and Autophagy Inhibition in Rats. Curr Mol Med 2021; 21:246-256. [PMID: 32713334 DOI: 10.2174/1566524020666200726221735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 11/22/2022]
Abstract
CDATA[Aim: The present study investigated whether melatonin (MEL) and enriched environment (EE) might protect against intrauterine growth retardation (IUGR) in rats. METHODS Sprague-Dawley rats were randomly allocated to 3 groups: control (C), model (M) and EE+MEL group. Animals were housed in an enriched environment (EE+MEL group) or remained in a standard environment (C group, M group). IUGR rat model was built by feeding a low protein diet during pregnancy. MEL was administered by gavaging. At day 1 post-birth, the baseline characteristics and serum biochemical parameters, morphology of liver and small intestine, enzyme activities, and mRNA expression levels of fetal rats were determined. The autophagy marker LC3 and Beclin1 were determined by western blot analysis. RESULTS EE+MEL markedly improved the baseline characteristics, hepatic and intestinal morphology of IUGR fetuses. In addition, the lactase activities in the fetal intestine were markedly increased by the EE+MEL. The levels of serum somatostatin (SST), Growth hormone (GH), GH releasing hormone (GHRH), Insulin-like Growth Factor 1 (IGF-1), triiodothyronine (T3), and tetraiodothyronine (T4) were found to be recovered by EE+MEL. In addition, the EE+MEL significantly ameliorated the mRNA expression of SST, GHRH, and GHRH receptor (GHRHR), GH, GHR, IGF-1, and IGF-1 receptor (IGF1R), IGF binding protein-1 (IGFBP1), mammalian target of rapamycin (mTOR), S6 kinase 1 (S6K1) and eukaryotic initiation factor 4E (eIF4E)-binding protein 1 (4EBP1) in fetuses. In IUGR fetal livers, LC3 and Beclin1 were found to be increased at birth, while LC3 and Beclin1 were observed to be significantly decreased in the EE+MEL group. CONCLUSION EE+MEL could improve fetal rats' baseline characteristics, serum biochemical parameters, birth weight, intestinal and hepatic morphology and enzyme activities. These effects could be explained by the activation of the IGF-1/IGFBP1 and IGF-1/mTOR/S6K1/4EBP1 signaling pathway and autophagy inhibition.
Collapse
Affiliation(s)
- Dan Wang
- College of Human Kinesiology, Shenyang Sport University, 36 Jinqiansong East Road Sujiatun District, Shenyang, 110102, Liaoning, China
| | - Xiao Wu
- Department of basic medical, HE's University, Shenyang, Liaoning 110163, China
| | - Dan Lu
- College of clinical, HE's University, Shenyang, Liaoning 110163, China
| | - Yan Li
- Experimental Teaching Center of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang , Liaoning 110016, China
| | - Peng Zhang
- Department of basic medical, HE's University, Shenyang, Liaoning 110163, China
| |
Collapse
|
4
|
Daw S, Law S. The functional interplay of transcription factors and cell adhesion molecules in experimental myelodysplasia including hematopoietic stem progenitor compartment. Mol Cell Biochem 2020; 476:535-551. [PMID: 33011884 DOI: 10.1007/s11010-020-03920-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/19/2020] [Indexed: 12/30/2022]
Abstract
Myelodysplastic syndrome is a heterogenous group of disorder with clonal dysregulated hematopoiesis characterized by bone marrow failure, cytogenetic and molecular abnormalities and variable risk of progression to acute myeloid leukemia (AML). The bone marrow niche plays a major role in maintaining the homeostasis and is often injured by the chemotherapeutic drugs leading to catastrophic consequences like myelodysplastic syndrome. In the present study, we made an attempt to find out the osteoblastic niche related alterations in the myelodysplastic bone marrow through mainly flowcytometric and fluorescent microscopic studies. We have also checked the condition of the myelodysplastic bone through micro computed tomography. The results revealed that the affected osteoblasts of the myelodysplastic bone marrow compelled the hematopoietic stem cell to come out of quiescence and become actively proliferating, and in this scenario the decline in expression of cell adhesion molecules like N-Cadherin, Intercellular adhesion molecule 1 (ICAM) and upregulated focal adhesion kinase (FAK) played a major role. The hike in number of osteoclasts in myelodysplastic cases than control also shattered the balance between bone formation and resorption ratio. We have recorded a dysregulated expression of transcription factors GATA2 and CEBPα (CCAAT-enhancer-binding-protein) in the hematopoietic stem progenitor compartment of the myelodysplastic bone marrow, the main reason behind the presence of abnormal myeloblasts in myelodysplastic cases. Collectively, we can say the coordinated perturbations in the osteoblastic niche, cell adhesion molecules together with the transcription factors has resulted in the uncontrolled proliferation of hematopoietic stem cell, dysregulated myelopoiesis, early trafficking of hematopoietic progenitors to blood compartment and at the same time pancytopenic peripheral blood conditions during the progression of N-Ethyl N Nitroso Urea (ENU) induced myelodysplasia.
Collapse
Affiliation(s)
- Suchismita Daw
- Stem Cell Research and Application Unit, Department of Biochemistry and Medical, Biotechnology, Calcutta School of Tropical Medicine, 108, C.R Avenue, Kolkata, 700073, West Bengal, India
| | - Sujata Law
- Stem Cell Research and Application Unit, Department of Biochemistry and Medical, Biotechnology, Calcutta School of Tropical Medicine, 108, C.R Avenue, Kolkata, 700073, West Bengal, India.
| |
Collapse
|
5
|
Daw S, Chatterjee R, Law A, Law S. Analysis of hematopathology and alteration of JAK1/STAT3/STAT5 signaling axis in experimental myelodysplastic syndrome. Chem Biol Interact 2016; 260:176-185. [PMID: 27725143 DOI: 10.1016/j.cbi.2016.10.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 10/04/2016] [Accepted: 10/06/2016] [Indexed: 11/27/2022]
Abstract
Hematological disorders like myelodysplastic syndrome (MDS) may arise due to cumulative dysregulation of various signalling pathways controlling proliferation, differentiation, maturation and apoptosis of bone marrow cells. This devastating bone marrow condition can be due to consequential abnormalities in haematopoiesis as well as its supportive microenvironment. Although mutations related to JAK/STAT pathway are common in myeloproliferative neoplasms, further studies are required to fully explore the myelodysplastic scenario regarding the concerned pathway. In this study, we have investigated the JAK-STAT signalling pathway which inevitably plays a crucial role in haematopoiesis. MDS was mimicked in a mouse model with an induction of ENU in adult mice. The bone marrow of the control and MDS groups of animals were subjected to a variety of tests, including cell morphology study in peripheral blood and bone marrow, cytochemistry and histochemistry of bone marrow smears, karyotyping and flowcytometric expression analysis of the phosphorylated forms of proteins like JAK1, STAT3 and STAT5 (denoted as pJAK1, pSTAT3 and pSTAT5) and the phenotypic expression of proteins like CD45 and CD71. The results revealed that the morphology of the blood and bone marrow cells were dysplastic compared to the affected blast populations of different lineages. The expression of common leucocyte antigen CD45 was less in comparison to the expression of transferrin receptor CD71 which was increased in the ENU induced MDS mouse model. Moreover, we have observed an upregulated expression of JAK1 followed by STAT5. Therefore, we can conclude that downregulation of CD45 may have helped in the upregulation of JAK-STAT signaling and CD71 expression. This aberrant signaling may be among one of the activated signaling axes that lead to affected hematopoietic lineages in Myelodysplastic syndrome.
Collapse
Affiliation(s)
- Suchismita Daw
- Stem Cell Research and Application Unit, Department of Biochemistry and Medical Biotechnology, Calcutta School of Tropical Medicine, 108, C.R Avenue, Kolkata 700073, West Bengal, India
| | - Ritam Chatterjee
- Stem Cell Research and Application Unit, Department of Biochemistry and Medical Biotechnology, Calcutta School of Tropical Medicine, 108, C.R Avenue, Kolkata 700073, West Bengal, India
| | - Aditya Law
- Stem Cell Research and Application Unit, Department of Biochemistry and Medical Biotechnology, Calcutta School of Tropical Medicine, 108, C.R Avenue, Kolkata 700073, West Bengal, India
| | - Sujata Law
- Stem Cell Research and Application Unit, Department of Biochemistry and Medical Biotechnology, Calcutta School of Tropical Medicine, 108, C.R Avenue, Kolkata 700073, West Bengal, India.
| |
Collapse
|
6
|
Katchi T, Kolandaivel K, Khattar P, Farooq T, Islam H, Liu D. Extramedullary hematopoiesis presented as cytopenia and massive paraspinal masses leading to cord compression in a patient with hereditary persistence of fetal hemoglobin. Biomark Res 2016; 4:17. [PMID: 27595000 PMCID: PMC5009637 DOI: 10.1186/s40364-016-0071-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 08/16/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Extramedullary hematopoeisis (EMH) can occur in various physiological and pathologic states. The spleen is the most common site of EMH. CASE PRESENTATION We report a case with hereditary persistence of fetal hemoglobin with extramedullary hematopoiesis presented as cord compression and cytopenia secondary to multi-paraspinal masses. CONCLUSION Treatment can be a challenge. Relapse is a possibility.
Collapse
Affiliation(s)
- Tasleem Katchi
- Division of Hematology and Oncology, New York Medical College and Westchester Medical Center, Valhalla, NY 10595 USA
| | - Krishna Kolandaivel
- Division of Hematology and Oncology, New York Medical College and Westchester Medical Center, Valhalla, NY 10595 USA
| | - Pallavi Khattar
- Division of Hematology and Oncology, New York Medical College and Westchester Medical Center, Valhalla, NY 10595 USA
| | - Taliya Farooq
- Division of Hematology and Oncology, New York Medical College and Westchester Medical Center, Valhalla, NY 10595 USA
| | - Humayun Islam
- Division of Hematology and Oncology, New York Medical College and Westchester Medical Center, Valhalla, NY 10595 USA
| | - Delong Liu
- Division of Hematology and Oncology, New York Medical College and Westchester Medical Center, Valhalla, NY 10595 USA
| |
Collapse
|
7
|
Tan SY, Smeets MF, Chalk AM, Nandurkar H, Walkley CR, Purton LE, Wall M. Insights into myelodysplastic syndromes from current preclinical models. World J Hematol 2016; 5:1-22. [DOI: 10.5315/wjh.v5.i1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 11/17/2015] [Accepted: 12/14/2015] [Indexed: 02/05/2023] Open
Abstract
In recent years, there has been significant progress made in our understanding of the molecular genetics of myelodysplastic syndromes (MDS). Using massively parallel sequencing techniques, recurring mutations are identified in up to 80% of MDS cases, including many with a normal karyotype. The differential role of some of these mutations in the initiation and progression of MDS is starting to be elucidated. Engineering candidate genes in mice to model MDS has contributed to recent insights into this complex disease. In this review, we examine currently available mouse models, with detailed discussion of selected models. Finally, we highlight some advances made in our understanding of MDS biology, and conclude with discussions of questions that remain unanswered.
Collapse
|
8
|
Morotti A, Panuzzo C, Crivellaro S, Carrà G, Torti D, Guerrasio A, Saglio G. The Role of PTEN in Myeloid Malignancies. Hematol Rep 2015; 7:5844. [PMID: 26734127 PMCID: PMC4691678 DOI: 10.4081/hr.2015.6027] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 10/20/2015] [Indexed: 12/31/2022] Open
Abstract
PTEN deletion in the mouse and in the zebrafish highlights the essential role of this tumor suppressor in the development of myeloid malignancies, in particular acute myeloid leukemia and myeloproliferative disorders. In humans, extensive genetic sequences of myeloid malignancies did not reveal recurrent PTEN mutations and deletions. However, PTEN was shown to be functionally inactivated in several acute myeloid leukemia and chronic myeloid leukemia samples, through both post-trasductional modifications, changes in protein levels and cellular compartmentalization. Notably, non genomic inactivation of PTEN in myeloid malignancies could represent a challenging therapeutic opportunity for these diseases. Targeting those mechanisms that affect PTEN function could indeed promote PTEN reactivation with consequent cancer selective apoptosis induction. In this review we will describe the role of PTEN in the development of myeloid malignancies.
Collapse
Affiliation(s)
- Alessandro Morotti
- Department of Clinical and Biological Sciences, University of Turin , Orbassano, Italy
| | - Cristina Panuzzo
- Department of Clinical and Biological Sciences, University of Turin , Orbassano, Italy
| | - Sabrina Crivellaro
- Department of Clinical and Biological Sciences, University of Turin , Orbassano, Italy
| | - Giovanna Carrà
- Department of Clinical and Biological Sciences, University of Turin , Orbassano, Italy
| | - Davide Torti
- Department of Clinical and Biological Sciences, University of Turin , Orbassano, Italy
| | - Angelo Guerrasio
- Department of Clinical and Biological Sciences, University of Turin , Orbassano, Italy
| | - Giuseppe Saglio
- Department of Clinical and Biological Sciences, University of Turin , Orbassano, Italy
| |
Collapse
|
9
|
Shp2 and Pten have antagonistic roles in myeloproliferation but cooperate to promote erythropoiesis in mammals. Proc Natl Acad Sci U S A 2015; 112:13342-7. [PMID: 26460004 DOI: 10.1073/pnas.1507599112] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Previous data suggested a negative role of phosphatase and tensin homolog (Pten) and a positive function of SH2-containing tyrosine phosphatase (Shp2)/Ptpn11 in myelopoiesis and leukemogenesis. Herein we demonstrate that ablating Shp2 indeed suppressed the myeloproliferative effect of Pten loss, indicating directly opposing functions between pathways regulated by these two enzymes. Surprisingly, the Shp2 and Pten double-knockout mice suffered lethal anemia, a phenotype that reveals previously unappreciated cooperative roles of Pten and Shp2 in erythropoiesis. The lethal anemia was caused collectively by skewed progenitor differentiation and shortened erythrocyte lifespan. Consistently, treatment of Pten-deficient mice with a specific Shp2 inhibitor suppressed myeloproliferative neoplasm while causing anemia. These results identify concerted actions of Pten and Shp2 in promoting erythropoiesis, while acting antagonistically in myeloproliferative neoplasm development. This study illustrates cell type-specific signal cross-talk in blood cell lineages, and will guide better design of pharmaceuticals for leukemia and other types of cancer in the era of precision medicine.
Collapse
|
10
|
Lee DW, Futami M, Carroll M, Feng Y, Wang Z, Fernandez M, Whichard Z, Chen Y, Kornblau S, Shpall EJ, Bueso-Ramos CE, Corey SJ. Loss of SHIP-1 protein expression in high-risk myelodysplastic syndromes is associated with miR-210 and miR-155. Oncogene 2012; 31:4085-94. [PMID: 22249254 DOI: 10.1038/onc.2011.579] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 10/22/2011] [Accepted: 11/07/2011] [Indexed: 02/03/2023]
Abstract
The myelodysplastic syndromes (MDSs) comprise a group of disorders characterized by multistage progression from cytopenias to acute myeloid leukemia (AML). They display exaggerated apoptosis in early stages, but lose this behavior during evolution to AML. The molecular basis for loss of apoptosis is unknown. To investigate this critical event, we analyzed phosphatidylinositol (PI) 3'kinase signaling, implicated as a critical pathway of cell survival control in epithelial and hematological malignancies. PI 3'kinase activates Akt through its production of 3' phosphoinositides. In turn, the phosphoinositides are dephosphorylated by two lipid phosphatases, PTEN and SHIP-1, in myeloid cells. We studied primary MDS-enriched bone marrow cells and bone marrow sections by western blotting, immunohistochemistry, immunocytochemistry and quantitative PCR for components of the SHIP/PTEN/PI 3'kinase signaling circuit. We reported constitutively activated Akt, variable levels of PTEN and uniformly decreased SHIP-1 expression in MDS progenitor cells. Overexpression of SHIP-1, but not the phosphatase-deficient form, inhibited myeloid leukemic growth. Levels of microRNA (miR)-210 and miR-155 transcripts, which target SHIP-1, were increased in CD34(+) MDS cells compared with their normal counterparts. Direct binding of miR-210 to the 3' untranslated region of SHIP-1 was confirmed by luciferase reporter assay. Transfection of a myeloid cell line with miR-210 resulted in loss of SHIP-1 protein expression. These data suggest that miR-155 and miR-210/SHIP-1/Akt pathways could serve as clinical biomarkers for disease progression, and that miR-155 and miR-210 might serve as novel therapeutic targets in MDS.
Collapse
Affiliation(s)
- D W Lee
- Division of Pediatrics, University of Texas-MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Clarke M, Dumon S, Ward C, Jäger R, Freeman S, Dawood B, Sheriff L, Lorvellec M, Kralovics R, Frampton J, García P. MYBL2 haploinsufficiency increases susceptibility to age-related haematopoietic neoplasia. Leukemia 2012; 27:661-70. [PMID: 22910183 PMCID: PMC3593183 DOI: 10.1038/leu.2012.241] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The haematopoietic system is prone to age-related disorders ranging from deficits in functional blood cells to the development of neoplastic states. Such neoplasms often involve recurrent cytogenetic abnormalities, among which a deletion in the long arm of chromosome 20 (del20q) is common in myeloid malignancies. The del20q minimum deleted region contains nine genes, including MYBL2, which encodes a key protein involved in the maintenance of genome integrity. Here, we show that mice expressing half the normal levels of Mybl2 (Mybl2+/Δ) develop a variety of myeloid disorders upon ageing. These include myeloproliferative neoplasms, myelodysplasia (MDS) and myeloid leukaemia, mirroring the human conditions associated with del20q. Moreover, analysis of gene expression profiles from patients with MDS demonstrated reduced levels of MYBL2, regardless of del20q status and demonstrated a strong correlation between low levels of MYBL2 RNA and reduced expression of a subset of genes related to DNA replication and checkpoint control pathways. Paralleling the human data, we found that these pathways are also disturbed in our Mybl2+/Δ mice. This novel mouse model, therefore, represents a valuable tool for studying the initiation and progression of haematological malignancies during ageing, and may provide a platform for preclinical testing of therapeutic approaches.
Collapse
Affiliation(s)
- M Clarke
- Institute of Biomedical Research, Immunity and Infection Department, Birmingham University School of Medical and Dental Science, Edgbaston, Birmingham, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kleppe M, Levine RL. New pieces of a puzzle: the current biological picture of MPN. Biochim Biophys Acta Rev Cancer 2012; 1826:415-22. [PMID: 22824378 DOI: 10.1016/j.bbcan.2012.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Revised: 07/12/2012] [Accepted: 07/12/2012] [Indexed: 12/14/2022]
Abstract
Over the last years, we have witnessed significant improvement in our ability to elucidate the genetic events, which contribute to the pathogenesis of acute and chronic leukemias, and also in patients with myeloproliferative neoplasms (MPN). However, despite significant insight into the role of specific mutations, including the JAK2V617F mutation, in MPN pathogenesis, the precise mechanisms by which specific disease alleles contribute to leukemic transformation in MPN remain elusive. Here we review recent studies aimed at understanding the role of downstream signaling pathways in MPN initiation and phenotype, and discuss how these studies have begun to lead to novel insights with biologic, clinical, and therapeutic relevance.
Collapse
Affiliation(s)
- Maria Kleppe
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | |
Collapse
|
13
|
The PI3K/PKB signaling module as key regulator of hematopoiesis: implications for therapeutic strategies in leukemia. Blood 2012; 119:911-23. [PMID: 22065598 DOI: 10.1182/blood-2011-07-366203] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Abstract
An important mediator of cytokine signaling implicated in regulation of hematopoiesis is the PI3K/protein kinase B (PKB/c-Akt) signaling module. Constitutive activation of this signaling module has been observed in a large group of leukemias. Because activation of this signaling pathway has been demonstrated to be sufficient to induce hematologic malignancies and is thought to correlate with poor prognosis and enhanced drug resistance, it is considered to be a promising target for therapy. A high number of pharmacologic inhibitors directed against either individual or multiple components of this pathway have already been developed to improve therapy. In this review, the safety and efficacy of both single and dual-specificity inhibitors will be discussed as well as the potential of combination therapy with either inhibitors directed against other signal transduction molecules or classic chemotherapy.
Collapse
|
14
|
Class I phosphoinositide 3-kinases in normal and pathologic hematopoietic cells. Curr Top Microbiol Immunol 2012; 362:163-84. [PMID: 23086418 DOI: 10.1007/978-94-007-5025-8_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Class I phosphoinositide 3-kinases which produce the D3-phosphoinositide second messenger phosphatidylinositol 3,4,5-trisphosphate in response to membrane receptors activation play a critical role in cell proliferation, survival, metabolism, and motility. These lipid kinases and the phosphatases regulating the level of D3-phosphoinositides have been an intense area of research these last two decades. The class I phosphoinositide 3-kinases signaling is found aberrantly activated in numerous human cancers, including in malignant hemopathies, and are important therapeutic targets for cancer therapy. Haematopoiesis is an ongoing process which generates the distinct blood cell types from a common hematopoietic stem cell through the action of a variety of cytokines. In the human adult hematopoiesis occurs primarily in the bone marrow, and defects in hematopoiesis result in diseases, such as anemia, thrombocytopenia, myeloproliferative syndromes, or leukemia. Here we give a brief overview of the role of class I phosphoinositide 3-kinases in hematopoietic stem cells, in hematopoietic lineage development and in leukemia, particularly in acute myeloid leukemia and summarize the potential therapeutic implications.
Collapse
|
15
|
Wegrzyn J, Lam JC, Karsan A. Mouse models of myelodysplastic syndromes. Leuk Res 2011; 35:853-62. [PMID: 21466894 DOI: 10.1016/j.leukres.2011.03.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 01/21/2011] [Accepted: 03/07/2011] [Indexed: 02/04/2023]
Abstract
Myelodysplastic syndromes (MDS) are hematopoietic malignancies characterized by peripheral cytopenias in the face of normo- or hypercellular, dysplastic bone marrow that arise from mutations in the hematopoietic stem/progenitor cell (HSPC). The disease is characterized by multiple cytogenetic and molecular defects, which result in an extremely heterogeneous phenotype. Recently, significant efforts have been made to develop appropriate mouse models to study this complex disease. Because of the heterogeneity of MDS, no single model is able to capture the MDS phenotype in its entirety. In this review, we describe several MDS mouse models and discuss the advances made in our understanding of the different disease mechanisms within the malignant clone and the marrow microenvironment. In addition, we describe progress in xenotransplantation models of MDS and discuss questions that remain to be answered.
Collapse
Affiliation(s)
- Joanna Wegrzyn
- Genome Sciences Centre, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
16
|
Abstract
SHIP1 is at the nexus of intracellular signaling pathways in immune cells that mediate bone marrow (BM) graft rejection, production of inflammatory and immunosuppressive cytokines, immunoregulatory cell formation, the BM niche that supports development of the immune system, and immune cancers. This review summarizes how SHIP participates in normal immune physiology or the pathologies that result when SHIP is mutated. This review also proposes that SHIP can have either inhibitory or activating roles in cell signaling that are determined by whether signaling pathways distal to PI3K are promoted by SHIP's substrate (PI(3,4,5)P(3) ) or its product (PI(3,4)P(2) ). This review also proposes the "two PIP hypothesis" that postulates that both SHIP's product and its substrate are necessary for a cancer cell to achieve and sustain a malignant state. Finally, due to the recent discovery of small molecule antagonists and agonists for SHIP, this review discusses potential therapeutic settings where chemical modulation of SHIP might be of benefit.
Collapse
Affiliation(s)
- William G Kerr
- SUNY Upstate Medical University, Syracuse, New York, USA.
| |
Collapse
|
17
|
Tang PC, Lu HJ, Chen YQ, Zheng H, Song P, Wang L, Qin Q, Gong AS. Novel indoline-1- or 3,4-dihydroquinoline-1(2H)-substituted carbothiohydrazides as TPO receptor agonists. Bioorg Med Chem Lett 2010; 20:5670-2. [DOI: 10.1016/j.bmcl.2010.08.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 07/22/2010] [Accepted: 08/05/2010] [Indexed: 10/19/2022]
|
18
|
Starczynowski DT, Karsan A. Innate immune signaling in the myelodysplastic syndromes. Hematol Oncol Clin North Am 2010; 24:343-59. [PMID: 20359630 DOI: 10.1016/j.hoc.2010.02.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Myelodysplastic syndromes (MDS) are heterogeneous clonal hematologic malignancies characterized by cytopenias caused by ineffective hematopoiesis and propensity to progress to acute myeloid leukemia. Innate immunity provides immediate protection against pathogens by coordinating activation of signaling pathways in immune cells. Given the prominent role of the innate immune pathway in regulating hematopoiesis, it is not surprising that aberrant signaling of this pathway is associated with hematologic malignancies. Increased activation of the innate immune pathway may contribute to dysregulated hematopoiesis, dysplasia, and clonal expansion in myelodysplastic syndromes.
Collapse
Affiliation(s)
- Daniel T Starczynowski
- Genome Sciences Centre, British Columbia Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, Canada
| | | |
Collapse
|
19
|
Abstract
Three general approaches have been used to model myelodysplastic syndrome (MDS) in mice, including treatment with mutagens or carcinogens, xenotransplantation of human MDS cells, and genetic engineering of mouse hematopoietic cells. This article discusses the phenotypes observed in available mouse models for MDS with a concentration on a model that leads to aberrant expression of conserved homeobox genes that are important regulators of normal hematopoiesis. Using these models of MDS should allow a more complete understanding of the disease process and provide a platform for preclinical testing of therapeutic approaches.
Collapse
Affiliation(s)
- Sarah H. Beachy
- Postdoctoral Fellow, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20889
| | - Peter D. Aplan
- Senior Investigator, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20889
| |
Collapse
|
20
|
Costinean S, Sandhu SK, Pedersen IM, Tili E, Trotta R, Perrotti D, Ciarlariello D, Neviani P, Harb J, Kauffman LR, Shidham A, Croce CM. Src homology 2 domain-containing inositol-5-phosphatase and CCAAT enhancer-binding protein beta are targeted by miR-155 in B cells of Emicro-MiR-155 transgenic mice. Blood 2009; 114:1374-1382. [PMID: 19520806 PMCID: PMC2727407 DOI: 10.1182/blood-2009-05-220814] [Citation(s) in RCA: 232] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Accepted: 06/05/2009] [Indexed: 12/12/2022] Open
Abstract
We showed that Emicro-MiR-155 transgenic mice develop acute lymphoblastic leukemia/high-grade lymphoma. Most of these leukemias start at approximately 9 months irrespective of the mouse strain. They are preceded by a polyclonal pre-B-cell proliferation, have variable clinical presentation, are transplantable, and develop oligo/monoclonal expansion. In this study, we show that in these transgenic mice the B-cell precursors have the highest MiR-155 transgene expression and are at the origin of the leukemias. We determine that Src homology 2 domain-containing inositol-5-phosphatase (SHIP) and CCAAT enhancer-binding protein beta (C/EBPbeta), 2 important regulators of the interleukin-6 signaling pathway, are direct targets of MiR-155 and become gradually more down-regulated in the leukemic than in the preleukemic mice. We hypothesize that miR-155, by down-modulating Ship and C/EBPbeta, initiates a chain of events that leads to the accumulation of large pre-B cells and acute lymphoblastic leukemia/high-grade lymphoma.
Collapse
Affiliation(s)
- Stefan Costinean
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Src homology 2 domain-containing inositol-5-phosphatase and CCAAT enhancer-binding protein beta are targeted by miR-155 in B cells of Emicro-MiR-155 transgenic mice. Blood 2009. [PMID: 19520806 DOI: 10.1182/blood-2009- 05-220814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We showed that Emicro-MiR-155 transgenic mice develop acute lymphoblastic leukemia/high-grade lymphoma. Most of these leukemias start at approximately 9 months irrespective of the mouse strain. They are preceded by a polyclonal pre-B-cell proliferation, have variable clinical presentation, are transplantable, and develop oligo/monoclonal expansion. In this study, we show that in these transgenic mice the B-cell precursors have the highest MiR-155 transgene expression and are at the origin of the leukemias. We determine that Src homology 2 domain-containing inositol-5-phosphatase (SHIP) and CCAAT enhancer-binding protein beta (C/EBPbeta), 2 important regulators of the interleukin-6 signaling pathway, are direct targets of MiR-155 and become gradually more down-regulated in the leukemic than in the preleukemic mice. We hypothesize that miR-155, by down-modulating Ship and C/EBPbeta, initiates a chain of events that leads to the accumulation of large pre-B cells and acute lymphoblastic leukemia/high-grade lymphoma.
Collapse
|
22
|
SH2-inositol phosphatase 1 negatively influences early megakaryocyte progenitors. PLoS One 2008; 3:e3565. [PMID: 18958162 PMCID: PMC2569203 DOI: 10.1371/journal.pone.0003565] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Accepted: 10/08/2008] [Indexed: 01/12/2023] Open
Abstract
Background The SH2-containing-5′inositol phosphatase-1 (SHIP) influences signals downstream of cytokine/chemokine receptors that play a role in megakaryocytopoiesis, including thrombopoietin, stromal-cell-derived-Factor-1/CXCL-12 and interleukin-3. We hypothesize that SHIP might control megakaryocytopoiesis through effects on proliferation of megakaryocyte progenitors (MKP) and megakaryocytes (MK). Methodology and Principal Findings Herein, we report the megakaryocytic phenotype and MK functional assays of hematopoietic organs of two strains of SHIP deficient mice with deletion of the SHIP promoter/first exon or the inositol phosphatase domain. Both SHIP deficient strains exhibit a profound increase in MKP numbers in bone marrow (BM), spleen and blood as analyzed by flow cytometry (Lin−c-Kit+CD41+) and functional assays (CFU-MK). SHIP deficient MKP display increased phosphorylation of Signal Transducers and Activators of Transcription 3 (STAT-3), protein kinase B (PKB/AKT) and extracellular signal-regulated kinases (ERKs). Despite increased MKP content, total body number of mature MK (Lin−c-kit−CD41+) are not significantly changed as SHIP deficient BM contains reduced MK while spleen MK numbers are increased. Reduction of CXCR-4 expression in SHIP deficient MK may influence MK localization to the spleen instead of the BM. Endomitosis, process involved in MK maturation, was preserved in SHIP deficient MK. Circulating platelets and red blood cells are also reduced in SHIP deficient mice. Conclusions/Significance SHIP may play an important role in regulation of essential signaling pathways that control early megakaryocytopoiesis in vivo.
Collapse
|
23
|
Loss of MLL5 results in pleiotropic hematopoietic defects, reduced neutrophil immune function, and extreme sensitivity to DNA demethylation. Blood 2008; 113:1432-43. [PMID: 18854576 DOI: 10.1182/blood-2008-06-162263] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
MLL5 is a divergent member of the Drosophila Trithorax-related (SET) domain and plant homeodomain (PHD) domain-containing chromatin regulators that are involved in the regulation of transcriptional "memory" during differentiation. Human MLL5 is located on chromosome 7q22, which frequently is deleted in myeloid leukemias, suggesting a possible role in hemopoiesis. To address this question, we generated a loss-of-function allele (Mll5(tm1Apa)) in the murine Mll5 locus. Unlike other Mll genes, Mll5(tm1Apa) homozygous mice are viable but display defects in immunity and hematopoiesis. First, Mll5(tm1Apa) homozygous mice show increased susceptibility to spontaneous eye infections, associated with a cell-autonomous impairment of neutrophil function. Second, Mll5(tm1Apa/tm1Apa) mice exhibit a mild impairment of erythropoiesis. Third, Mll5(tm1Apa/tm1Apa) hematopoietic stem cells (HSCs) have impaired competitive repopulating capacity both under normal conditions and when subjected to self-renewal stimulation by NUP98-HOXA10. Fourth, Mll5(tm1Apa) homozygous HSCs show a dramatic sensitivity to DNA demethylation-induced differentiation (5-azadeoxycytidine). Taken together, our data show that MLL5 is involved in terminal myeloid differentiation and the regulation of HSC self-renewal by a mechanism that involves DNA methylation. These data warrant investigation of MLL5 expression levels as a predictive marker of demethylating-agent response in patients with myelodysplastic syndromes and leukemias and identify MLL5 as a key regulator of normal hematopoiesis.
Collapse
|
24
|
PIP3 pathway in regulatory T cells and autoimmunity. Immunol Res 2008; 39:194-224. [PMID: 17917066 DOI: 10.1007/s12026-007-0075-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 01/07/2023]
Abstract
Regulatory T cells (Tregs) play an important role in preventing both autoimmune and inflammatory diseases. Many recent studies have focused on defining the signal transduction pathways essential for the development and the function of Tregs. Increasing evidence suggest that T-cell receptor (TCR), interleukin-2 (IL-2) receptor (IL-2R), and co-stimulatory receptor signaling are important in the early development, peripheral homeostasis, and function of Tregs. The phosphoinositide-3 kinase (PI3K)-regulated pathway (PIP3 pathway) is one of the major signaling pathways activated upon TCR, IL-2R, and CD28 stimulation, leading to T-cell activation, proliferation, and cell survival. Activation of the PIP3 pathway is also negatively regulated by two phosphatidylinositol phosphatases SHIP and PTEN. Several mouse models deficient for the molecules involved in PIP3 pathway suggest that impairment of PIP3 signaling leads to dysregulation of immune responses and, in some cases, autoimmunity. This review will summarize the current understanding of the importance of the PIP3 pathway in T-cell signaling and the possible roles this pathway performs in the development and the function of Tregs.
Collapse
|
25
|
Séverin S, Gratacap MP, Lenain N, Alvarez L, Hollande E, Penninger JM, Gachet C, Plantavid M, Payrastre B. Deficiency of Src homology 2 domain-containing inositol 5-phosphatase 1 affects platelet responses and thrombus growth. J Clin Invest 2007; 117:944-52. [PMID: 17347685 PMCID: PMC1810573 DOI: 10.1172/jci29967] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Accepted: 01/09/2007] [Indexed: 12/16/2022] Open
Abstract
Platelets are critical for normal hemostasis. Their deregulation can lead to bleeding or to arterial thrombosis, a primary cause of heart attack and ischemic stroke. Src homology 2 domain-containing inositol 5-phosphatase 1 (SHIP1) is a 5-phosphatase capable of dephosphorylating the phosphatidylinositol 3,4,5-trisphosphate second messenger into phosphatidylinositol 3,4-bisphosphate. SHIP1 plays a critical role in regulating the level of these 2 lipids in platelets. Using SHIP1-deficient mice, we found that its loss affects platelet aggregation in response to several agonists with minor effects on fibrinogen binding and beta(3) integrin tyrosine phosphorylation. Accordingly, SHIP1-null mice showed defects in arterial thrombus formation in response to a localized laser-induced injury. Moreover, these mice had a prolonged tail bleeding time. Upon stimulation, SHIP1-deficient platelets showed large membrane extensions, abnormalities in the open canalicular system, and a dramatic decrease in close cell-cell contacts. Interestingly, SHIP1 appeared to be required for platelet contractility, thrombus organization, and fibrin clot retraction. These data indicate that SHIP1 is an important element of the platelet signaling machinery to support normal hemostasis. To our knowledge, this is the first report unraveling an important function of SHIP1 in the activation of hematopoietic cells, in contrast to its well-documented role in the negative regulation of lymphocytes.
Collapse
Affiliation(s)
- Sonia Séverin
- INSERM U 563, Centre de Physiopathologie de Toulouse Purpan et Université Paul Sabatier, Département d’ Oncogenèse et Signalisation dans les Cellules Hématopoïétiques, Toulouse, France.
INSERM U 311, Etablissement Français du Sang-Alsace, Strasbourg, France.
Laboratoire de Biologie Cellulaire et Moléculaire des Epithéliums, Université Paul Sabatier, Toulouse, France.
Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Marie-Pierre Gratacap
- INSERM U 563, Centre de Physiopathologie de Toulouse Purpan et Université Paul Sabatier, Département d’ Oncogenèse et Signalisation dans les Cellules Hématopoïétiques, Toulouse, France.
INSERM U 311, Etablissement Français du Sang-Alsace, Strasbourg, France.
Laboratoire de Biologie Cellulaire et Moléculaire des Epithéliums, Université Paul Sabatier, Toulouse, France.
Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Nadège Lenain
- INSERM U 563, Centre de Physiopathologie de Toulouse Purpan et Université Paul Sabatier, Département d’ Oncogenèse et Signalisation dans les Cellules Hématopoïétiques, Toulouse, France.
INSERM U 311, Etablissement Français du Sang-Alsace, Strasbourg, France.
Laboratoire de Biologie Cellulaire et Moléculaire des Epithéliums, Université Paul Sabatier, Toulouse, France.
Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Laetitia Alvarez
- INSERM U 563, Centre de Physiopathologie de Toulouse Purpan et Université Paul Sabatier, Département d’ Oncogenèse et Signalisation dans les Cellules Hématopoïétiques, Toulouse, France.
INSERM U 311, Etablissement Français du Sang-Alsace, Strasbourg, France.
Laboratoire de Biologie Cellulaire et Moléculaire des Epithéliums, Université Paul Sabatier, Toulouse, France.
Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Etienne Hollande
- INSERM U 563, Centre de Physiopathologie de Toulouse Purpan et Université Paul Sabatier, Département d’ Oncogenèse et Signalisation dans les Cellules Hématopoïétiques, Toulouse, France.
INSERM U 311, Etablissement Français du Sang-Alsace, Strasbourg, France.
Laboratoire de Biologie Cellulaire et Moléculaire des Epithéliums, Université Paul Sabatier, Toulouse, France.
Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Josef M. Penninger
- INSERM U 563, Centre de Physiopathologie de Toulouse Purpan et Université Paul Sabatier, Département d’ Oncogenèse et Signalisation dans les Cellules Hématopoïétiques, Toulouse, France.
INSERM U 311, Etablissement Français du Sang-Alsace, Strasbourg, France.
Laboratoire de Biologie Cellulaire et Moléculaire des Epithéliums, Université Paul Sabatier, Toulouse, France.
Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Christian Gachet
- INSERM U 563, Centre de Physiopathologie de Toulouse Purpan et Université Paul Sabatier, Département d’ Oncogenèse et Signalisation dans les Cellules Hématopoïétiques, Toulouse, France.
INSERM U 311, Etablissement Français du Sang-Alsace, Strasbourg, France.
Laboratoire de Biologie Cellulaire et Moléculaire des Epithéliums, Université Paul Sabatier, Toulouse, France.
Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Monique Plantavid
- INSERM U 563, Centre de Physiopathologie de Toulouse Purpan et Université Paul Sabatier, Département d’ Oncogenèse et Signalisation dans les Cellules Hématopoïétiques, Toulouse, France.
INSERM U 311, Etablissement Français du Sang-Alsace, Strasbourg, France.
Laboratoire de Biologie Cellulaire et Moléculaire des Epithéliums, Université Paul Sabatier, Toulouse, France.
Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Bernard Payrastre
- INSERM U 563, Centre de Physiopathologie de Toulouse Purpan et Université Paul Sabatier, Département d’ Oncogenèse et Signalisation dans les Cellules Hématopoïétiques, Toulouse, France.
INSERM U 311, Etablissement Français du Sang-Alsace, Strasbourg, France.
Laboratoire de Biologie Cellulaire et Moléculaire des Epithéliums, Université Paul Sabatier, Toulouse, France.
Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| |
Collapse
|
26
|
Okahara F, Itoh K, Nakagawara A, Murakami M, Kanaho Y, Maehama T. Critical role of PICT-1, a tumor suppressor candidate, in phosphatidylinositol 3,4,5-trisphosphate signals and tumorigenic transformation. Mol Biol Cell 2006; 17:4888-95. [PMID: 16971513 PMCID: PMC1635402 DOI: 10.1091/mbc.e06-04-0301] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN) regulates diverse cellular functions by dephosphorylating the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate (PIP(3)). Recent study revealed that PICT-1/GLTSCR2 bound to and stabilized PTEN protein in cells, implicating its roles in PTEN-governed PIP(3) signals. In this study, we demonstrate that RNA interference-mediated knockdown of PICT-1 in HeLa cells down-regulated endogenous PTEN and resulted in the activation of PIP(3) downstream effectors, such as protein kinase B/Akt. Furthermore, the PICT-1 knockdown promoted HeLa cell proliferation; however the proliferation of PTEN-null cells was not altered by the PICT-1 knockdown, suggesting its dependency on PTEN status. In addition, apoptosis of HeLa cells induced by staurosporine or serum-depletion was alleviated by the PICT-1 knockdown in the similar PTEN-dependent manner. Most strikingly, the PICT-1 knockdown in HeLa and NIH3T3 cells promoted anchorage-independent growth, a hallmark of tumorigenic transformation. Furthermore, PICT-1 was aberrantly expressed in 18 (41%) of 44 human neuroblastoma specimens, and the PICT-1 loss was associated with reduced PTEN protein expression in spite of the existence of PTEN mRNA. Collectively, these results suggest that PICT-1 plays a role in PIP(3) signals through controlling PTEN protein stability and the impairment in the PICT-1-PTEN regulatory unit may become a causative factor in human tumor(s).
Collapse
Affiliation(s)
- Fumiaki Okahara
- *Biomembrane Signaling Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 113-8613, Japan
- Department of Physiological Chemistry, Graduate School of Comprehensive Human Sciences and Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Kouichi Itoh
- Laboratory of Molecular Pharmacology, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, Kagawa 769-2193, Japan
| | - Akira Nakagawara
- Division of Biochemistry, Chiba Cancer Center Research Institute, Chiba 260-8717, Japan; and
| | - Makoto Murakami
- *Biomembrane Signaling Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 113-8613, Japan
- PRESTO, Japan Science and Technology Corporation, Saitama 332-0012, Japan
| | - Yasunori Kanaho
- Department of Physiological Chemistry, Graduate School of Comprehensive Human Sciences and Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Tomohiko Maehama
- *Biomembrane Signaling Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 113-8613, Japan
| |
Collapse
|
27
|
Lin YW, Slape C, Zhang Z, Aplan PD. NUP98-HOXD13 transgenic mice develop a highly penetrant, severe myelodysplastic syndrome that progresses to acute leukemia. Blood 2005; 106:287-95. [PMID: 15755899 PMCID: PMC1201424 DOI: 10.1182/blood-2004-12-4794] [Citation(s) in RCA: 185] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The myelodysplastic syndromes (MDSs) are a group of clonal hematopoietic stem-cell disorders characterized by ineffective hematopoiesis and dysplasia. A wide spectrum of genetic aberrations has been associated with MDS, including chromosomal translocations involving the NUP98 gene. Using a NUP98-HOXD13 fusion gene, we have developed a mouse model that faithfully recapitulates all of the key features of MDS, including peripheral blood cytopenias, bone marrow dysplasia, and apoptosis, and transformation to acute leukemia. The MDS that develops in NUP98-HOXD13 transgenic mice is uniformly fatal. Within 14 months, all of the mice died of either leukemic transformation or severe anemia and leucopenia as a result of progressive MDS. The NUP98-HOXD13 fusion gene inhibits megakaryocytic differentiation and increases apoptosis in the bone marrow, suggesting a mechanism leading to ineffective hematopoiesis in the presence of a hypercellular bone marrow. These mice provide an accurate preclinical model that can be used for the evaluation of MDS therapy and biology.
Collapse
Affiliation(s)
- Ying-Wei Lin
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20889, USA
| | | | | | | |
Collapse
|