1
|
Li Y, Luo Z, Liu Z, Zhu X, Reinach PS, Li L, Chen W. IL-23 Promotes γδT Cell Activity in Dry Eye Disease Progression. Invest Ophthalmol Vis Sci 2025; 66:10. [PMID: 39903182 PMCID: PMC11801388 DOI: 10.1167/iovs.66.2.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 01/10/2025] [Indexed: 02/06/2025] Open
Abstract
Purpose Conjunctival-resident γδT cells, the predominant ocular source of interleukin-17A (IL-17A), play crucial roles in dry eye disease (DED) pathogenesis. The upstream regulators of these cells are unknown. This study evaluated the role of conjunctival IL-23 expression in mediating γδT cell generation and elucidated its contribution to dry eye inflammatory responses. Methods Single-cell RNA sequencing (scRNA-seq) was used to identify and quantify conjunctival mRNA molecules in γδT cells in mice. The IL-23 level increased in wild-type (WT) and decreased in γδT-deficient (TCRδ-/-) mice after dry eye was induced via an intelligently controlled environmental system (ICES). Flow cytometry and transcriptome sequencing were used to investigate the impact of the changes in IL-23 expression on human γδT cells. Results The expression of the IL-23 receptor (IL-23R) was greater in γδT cells than in other conjunctival cell types, such as CD4+ T cells, CD8+ T cells and epithelial cells. An increase in IL-23 led to an increase in γδT cell density, which was proportional to dry eye severity. However, in the TCRδ-/- mice, the upregulation of IL-23 failed to increase the expression level of IL-17A and the severity of dry eye. Furthermore, increases in the expression of IL-23 and the number of γδT cells were evident in the ocular surface cells of patients who developed visual display terminal syndrome. Conclusions An increase in conjunctival IL-23 expression contributes to the induction of the DED inflammatory response through interactions with its cognate receptor on γδT cells and the promotion of their proliferation. The findings of this study suggest that the suppression of IL-17A through the blockade of IL-23R activation may be a viable target for improving the management of inflammation in DED patients.
Collapse
Affiliation(s)
- Yanxiao Li
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Zan Luo
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Zihao Liu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xinhao Zhu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Peter S. Reinach
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ling Li
- Ningbo Eye Institute, Ningbo Eye Hospital, Wenzhou Medical University, Ningbo, China
| | - Wei Chen
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- Ningbo Eye Institute, Ningbo Eye Hospital, Wenzhou Medical University, Ningbo, China
| |
Collapse
|
2
|
Ruiz Pérez M, Vandenabeele P, Tougaard P. The thymus road to a T cell: migration, selection, and atrophy. Front Immunol 2024; 15:1443910. [PMID: 39257583 PMCID: PMC11384998 DOI: 10.3389/fimmu.2024.1443910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/08/2024] [Indexed: 09/12/2024] Open
Abstract
The thymus plays a pivotal role in generating a highly-diverse repertoire of T lymphocytes while preventing autoimmunity. Thymus seeding progenitors (TSPs) are a heterogeneous group of multipotent progenitors that migrate to the thymus via CCR7 and CCR9 receptors. While NOTCH guides thymus progenitors toward T cell fate, the absence or disruption of NOTCH signaling renders the thymus microenvironment permissive to other cell fates. Following T cell commitment, developing T cells undergo multiple selection checkpoints by engaging with the extracellular matrix, and interacting with thymic epithelial cells (TECs) and other immune subsets across the different compartments of the thymus. The different selection checkpoints assess the T cell receptor (TCR) performance, with failure resulting in either repurposing (agonist selection), or cell death. Additionally, environmental cues such as inflammation and endocrine signaling induce acute thymus atrophy, contributing to the demise of most developing T cells during thymic selection. We discuss the occurrence of acute thymus atrophy in response to systemic inflammation. The thymus demonstrates high plasticity, shaping inflammation by abrogating T cell development and undergoing profound structural changes, and facilitating regeneration and restoration of T cell development once inflammation is resolved. Despite the challenges, thymic selection ensures a highly diverse T cell repertoire capable of discerning between self and non-self antigens, ultimately egressing to secondary lymphoid organs where they complete their maturation and exert their functions.
Collapse
Affiliation(s)
- Mario Ruiz Pérez
- Molecular Signaling and Cell Death Unit, VIB-UGent, Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Peter Vandenabeele
- Molecular Signaling and Cell Death Unit, VIB-UGent, Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Peter Tougaard
- Molecular Signaling and Cell Death Unit, VIB-UGent, Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| |
Collapse
|
3
|
Cui Z, Zhao F, Chen X, Li J, Jin X, Han Y, Wang L, Zhou Y, Lu L. NPAT Supports CD8 +Immature Single-Positive Thymocyte Proliferation and Thymic Development. THE JOURNAL OF IMMUNOLOGY 2022; 209:916-925. [DOI: 10.4049/jimmunol.2200214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/23/2022] [Indexed: 11/07/2022]
|
4
|
Enhanced differentiation of functional human T cells in NSGW41 mice with tissue-specific expression of human interleukin-7. Leukemia 2021; 35:3561-3567. [PMID: 33976371 PMCID: PMC8632686 DOI: 10.1038/s41375-021-01259-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Humanized mouse models have become increasingly valuable tools to study human hematopoiesis and infectious diseases. However, human T-cell differentiation remains inefficient. We generated mice expressing human interleukin-7 (IL-7), a critical growth and survival factor for T cells, under the control of murine IL-7 regulatory elements. After transfer of human cord blood-derived hematopoietic stem and progenitor cells, transgenic mice on the NSGW41 background, termed NSGW41hIL7, showed elevated and prolonged human cellularity in the thymus while maintaining physiological ratios of thymocyte subsets. As a consequence, numbers of functional human T cells in the periphery were increased without evidence for pathological lymphoproliferation or aberrant expansion of effector or memory-like T cells. We conclude that the novel NSGW41hIL7 strain represents an optimized mouse model for humanization to better understand human T-cell differentiation in vivo and to generate a human immune system with a better approximation of human lymphocyte ratios.
Collapse
|
5
|
Zhang Y, Li B, Bai Q, Wang P, Wei G, Li Z, Hu L, Tian Q, Zhou J, Huang Q, Wang Z, Yue S, Wu J, Yang L, Zhou X, Jiang L, Ni T, Ye L, Wu Y. The lncRNA Snhg1-Vps13D vesicle trafficking system promotes memory CD8 T cell establishment via regulating the dual effects of IL-7 signaling. Signal Transduct Target Ther 2021; 6:126. [PMID: 33758164 PMCID: PMC7987995 DOI: 10.1038/s41392-021-00492-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/18/2020] [Accepted: 01/13/2021] [Indexed: 12/11/2022] Open
Abstract
The efficient induction and long-term persistence of pathogen-specific memory CD8 T cells are pivotal to rapidly curb the reinfection. Recent studies indicated that long-noncoding RNAs expression is highly cell- and stage-specific during T cell development and differentiation, suggesting their potential roles in T cell programs. However, the key lncRNAs playing crucial roles in memory CD8 T cell establishment remain to be clarified. Through CD8 T cell subsets profiling of lncRNAs, this study found a key lncRNA-Snhg1 with the conserved naivehi-effectorlo-memoryhi expression pattern in CD8 T cells of both mice and human, that can promote memory formation while impeding effector CD8 in acute viral infection. Further, Snhg1 was found interacting with the conserved vesicle trafficking protein Vps13D to promote IL-7Rα membrane location specifically. With the deep mechanism probing, the results show Snhg1-Vps13D regulated IL-7 signaling with its dual effects in memory CD8 generation, which not just because of the sustaining role of STAT5-BCL-2 axis for memory survival, but more through the STAT3-TCF1-Blimp1 axis for transcriptional launch program of memory differentiation. Moreover, we performed further study with finding a similar high-low-high expression pattern of human SNHG1/VPS13D/IL7R/TCF7 in CD8 T cell subsets from PBMC samples of the convalescent COVID-19 patients. The central role of Snhg1-Vps13D-IL-7R-TCF1 axis in memory CD8 establishment makes it a potential target for improving the vaccination effects to control the ongoing pandemic.
Collapse
Affiliation(s)
- Yanyan Zhang
- Institute of Immunology PLA, Third Military Medical University, Chongqing, 400038, China. .,Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 401121, China.
| | - Baohua Li
- Institute of Immunology PLA, Third Military Medical University, Chongqing, 400038, China
| | - Qiang Bai
- Institute of Immunology PLA, Third Military Medical University, Chongqing, 400038, China.,Laboratory of Immunophysiology, GIGA Institute, Liège University, Liège, 4000, Belgium.,Faculty of Veterinary Medicine, Liège University, Liège, 4000, Belgium
| | - Pengcheng Wang
- Institute of Immunology PLA, Third Military Medical University, Chongqing, 400038, China
| | - Gang Wei
- Human Phenome Institute, Fudan University, Shanghai, 200438, China
| | - Zhirong Li
- Institute of Immunology PLA, Third Military Medical University, Chongqing, 400038, China
| | - Li Hu
- Institute of Immunology PLA, Third Military Medical University, Chongqing, 400038, China
| | - Qin Tian
- Institute of Immunology PLA, Third Military Medical University, Chongqing, 400038, China
| | - Jing Zhou
- Institute of Immunology PLA, Third Military Medical University, Chongqing, 400038, China
| | - Qizhao Huang
- Institute of Immunology PLA, Third Military Medical University, Chongqing, 400038, China
| | - Zhiming Wang
- Institute of Immunology PLA, Third Military Medical University, Chongqing, 400038, China
| | - Shuai Yue
- Institute of Immunology PLA, Third Military Medical University, Chongqing, 400038, China
| | - Jialin Wu
- Institute of Immunology PLA, Third Military Medical University, Chongqing, 400038, China
| | - Liuqing Yang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, 77030, TX, USA
| | - Xinyuan Zhou
- Institute of Immunology PLA, Third Military Medical University, Chongqing, 400038, China
| | - Lubin Jiang
- Institute Pasteur of Shanghai, Chinese Academy of Sciences (CAS), Shanghai, 200031, China
| | - Ting Ni
- Human Phenome Institute, Fudan University, Shanghai, 200438, China
| | - Lilin Ye
- Institute of Immunology PLA, Third Military Medical University, Chongqing, 400038, China.
| | - Yuzhang Wu
- Institute of Immunology PLA, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
6
|
Zhang Y, Li B, Bai Q, Wang P, Wei G, Li Z, Hu L, Tian Q, Zhou J, Huang Q, Wang Z, Yue S, Wu J, Yang L, Zhou X, Jiang L, Ni T, Ye L, Wu Y. The lncRNA Snhg1-Vps13D vesicle trafficking system promotes memory CD8 T cell establishment via regulating the dual effects of IL-7 signaling. Signal Transduct Target Ther 2021. [DOI: https://doi.org/10.1038/s41392-021-00492-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
AbstractThe efficient induction and long-term persistence of pathogen-specific memory CD8 T cells are pivotal to rapidly curb the reinfection. Recent studies indicated that long-noncoding RNAs expression is highly cell- and stage-specific during T cell development and differentiation, suggesting their potential roles in T cell programs. However, the key lncRNAs playing crucial roles in memory CD8 T cell establishment remain to be clarified. Through CD8 T cell subsets profiling of lncRNAs, this study found a key lncRNA-Snhg1 with the conserved naivehi-effectorlo-memoryhi expression pattern in CD8 T cells of both mice and human, that can promote memory formation while impeding effector CD8 in acute viral infection. Further, Snhg1 was found interacting with the conserved vesicle trafficking protein Vps13D to promote IL-7Rα membrane location specifically. With the deep mechanism probing, the results show Snhg1-Vps13D regulated IL-7 signaling with its dual effects in memory CD8 generation, which not just because of the sustaining role of STAT5-BCL-2 axis for memory survival, but more through the STAT3-TCF1-Blimp1 axis for transcriptional launch program of memory differentiation. Moreover, we performed further study with finding a similar high-low-high expression pattern of human SNHG1/VPS13D/IL7R/TCF7 in CD8 T cell subsets from PBMC samples of the convalescent COVID-19 patients. The central role of Snhg1-Vps13D-IL-7R-TCF1 axis in memory CD8 establishment makes it a potential target for improving the vaccination effects to control the ongoing pandemic.
Collapse
|
7
|
Gao Y, Liu R, He C, Basile J, Vesterlund M, Wahren-Herlenius M, Espinoza A, Hokka-Zakrisson C, Zadjali F, Yoshimura A, Karlsson M, Carow B, Rottenberg ME. SOCS3 Expression by Thymic Stromal Cells Is Required for Normal T Cell Development. Front Immunol 2021; 12:642173. [PMID: 33815395 PMCID: PMC8012910 DOI: 10.3389/fimmu.2021.642173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
The suppressor of cytokine signaling 3 (SOCS3) is a major regulator of immune responses and inflammation as it negatively regulates cytokine signaling. Here, the role of SOCS3 in thymic T cell formation was studied in Socs3fl/flActin-creER mice (Δsocs3) with a tamoxifen inducible and ubiquitous Socs3 deficiency. Δsocs3 thymi showed a 90% loss of cellularity and altered cortico-medullary organization. Thymocyte differentiation and proliferation was impaired at the early double negative (CD4-CD8-) cell stage and apoptosis was increased during the double positive (CD4+CD8+) cell stage, resulting in the reduction of recent thymic emigrants in peripheral organs. Using bone marrow chimeras, transplanting thymic organoids and using mice deficient of SOCS3 in thymocytes we found that expression in thymic stromal cells rather than in thymocytes was critical for T cell development. We found that SOCS3 in thymic epithelial cells (TECs) binds to the E3 ubiquitin ligase TRIM 21 and that Trim21−/− mice showed increased thymic cellularity. Δsocs3 TECs showed alterations in the expression of genes involved in positive and negative selection and lympho-stromal interactions. SOCS3-dependent signal inhibition of the common gp130 subunit of the IL-6 receptor family was redundant for T cell formation. Together, SOCS3 expression in thymic stroma cells is critical for T cell development and for maintenance of thymus architecture.
Collapse
Affiliation(s)
- Yu Gao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ruining Liu
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Chenfei He
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Juan Basile
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Mattias Vesterlund
- SciLife Lab, Department of Oncology-Patohology, Karolinska Institutet, Stockholm, Sweden
| | - Marie Wahren-Herlenius
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden.,Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | | | - Fahad Zadjali
- College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Mikael Karlsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Berit Carow
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Martin E Rottenberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
8
|
Schreiber M, Weigelt M, Karasinsky A, Anastassiadis K, Schallenberg S, Petzold C, Bonifacio E, Kretschmer K, Hommel A. Inducible IL-7 Hyperexpression Influences Lymphocyte Homeostasis and Function and Increases Allograft Rejection. Front Immunol 2019; 10:742. [PMID: 31024566 PMCID: PMC6467976 DOI: 10.3389/fimmu.2019.00742] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/19/2019] [Indexed: 12/11/2022] Open
Abstract
The IL-7/IL-7R pathway is essential for lymphocyte development and disturbances in the pathway can lead to immune deficiency or T cell mediated destruction. Here, the effect of transient hyperexpression of IL-7 was investigated on immune regulation and allograft rejection under immunosuppression. An experimental in vivo immunosuppressive mouse model of IL-7 hyperexpression was developed using transgenic mice (C57BL/6 background) carrying a tetracycline inducible IL-7 expression cassette, which allowed the temporally controlled induction of IL-7 hyperexpression by Dexamethasone and Doxycycline treatment. Upon induction of IL-7, the B220+ c-kit+ Pro/Pre-B I compartment in the bone marrow increased as compared to control mice in a serum IL-7 concentration-correlated manner. IL-7 hyperexpression also preferentially increased the population size of memory CD8+ T cells in secondary lymphoid organs, and reduced the proportion of CD4+Foxp3+ T regulatory cells. Of relevance to disease, conventional CD4+ T cells from an IL-7-rich milieu escaped T regulatory cell-mediated suppression in vitro and in a model of autoimmune diabetes in vivo. These findings were validated using an IL-7/anti-IL7 complex treatment mouse model to create an IL-7 rich environment. To study the effect of IL-7 on islet graft survival in a mismatched allograft model, BALB/c mice were rendered diabetic by streptozotocin und transplanted with IL-7-inducible or control islets from C57BL/6 mice. As expected, Dexamethasone and Doxycycline treatment prolonged graft median survival as compared to the untreated control group in this transplantation mouse model. However, upon induction of local IL-7 hyperexpression in the transplanted islets, graft survival time was decreased and this was accompanied by an increased CD4+ and CD8+ T cell infiltration in the islets. Altogether, the findings show that transient elevations of IL-7 can impair immune regulation and lead to graft loss also under immune suppression.
Collapse
Affiliation(s)
- Maria Schreiber
- Preclinical Approaches to Stem Cell Therapy/Diabetes, DFG-Center for Regenerative Therapies Dresden Cluster of Excellence, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany.,Molecular and Cellular Immunology/Immune Regulation, DFG-Center for Regenerative Therapies Dresden Cluster of Excellence, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Marc Weigelt
- Preclinical Approaches to Stem Cell Therapy/Diabetes, DFG-Center for Regenerative Therapies Dresden Cluster of Excellence, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany.,TU Dresden Faculty of Medicine, Paul Langerhans Institute Dresden, University Clinic Carl Gustav Carus, Helmholtz Centre Munich, Dresden, Germany
| | - Anne Karasinsky
- Preclinical Approaches to Stem Cell Therapy/Diabetes, DFG-Center for Regenerative Therapies Dresden Cluster of Excellence, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | | | - Sonja Schallenberg
- Molecular and Cellular Immunology/Immune Regulation, DFG-Center for Regenerative Therapies Dresden Cluster of Excellence, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Cathleen Petzold
- Molecular and Cellular Immunology/Immune Regulation, DFG-Center for Regenerative Therapies Dresden Cluster of Excellence, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Ezio Bonifacio
- Preclinical Approaches to Stem Cell Therapy/Diabetes, DFG-Center for Regenerative Therapies Dresden Cluster of Excellence, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany.,TU Dresden Faculty of Medicine, Paul Langerhans Institute Dresden, University Clinic Carl Gustav Carus, Helmholtz Centre Munich, Dresden, Germany
| | - Karsten Kretschmer
- Molecular and Cellular Immunology/Immune Regulation, DFG-Center for Regenerative Therapies Dresden Cluster of Excellence, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany.,TU Dresden Faculty of Medicine, Paul Langerhans Institute Dresden, University Clinic Carl Gustav Carus, Helmholtz Centre Munich, Dresden, Germany
| | - Angela Hommel
- Preclinical Approaches to Stem Cell Therapy/Diabetes, DFG-Center for Regenerative Therapies Dresden Cluster of Excellence, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany.,TU Dresden Faculty of Medicine, Paul Langerhans Institute Dresden, University Clinic Carl Gustav Carus, Helmholtz Centre Munich, Dresden, Germany
| |
Collapse
|
9
|
Goossens S, Wang J, Tremblay CS, De Medts J, T'Sas S, Nguyen T, Saw J, Haigh K, Curtis DJ, Van Vlierberghe P, Berx G, Taghon T, Haigh JJ. ZEB2 and LMO2 drive immature T-cell lymphoblastic leukemia via distinct oncogenic mechanisms. Haematologica 2019; 104:1608-1616. [PMID: 30679322 PMCID: PMC6669144 DOI: 10.3324/haematol.2018.207837] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 01/18/2019] [Indexed: 12/29/2022] Open
Abstract
ZEB1 and ZEB2 are structurally related E-box binding homeobox transcription factors that induce epithelial to mesenchymal transitions during development and disease. As such, they regulate cancer cell invasion, dissemination and metastasis of solid tumors. In addition, their expression is associated with the gain of cancer stem cell properties and resistance to therapy. Using conditional loss-of-function mice, we previously demonstrated that Zeb2 also plays pivotal roles in hematopoiesis, controlling important cell fate decisions, lineage commitment and fidelity. In addition, upon Zeb2 overexpression, mice spontaneously develop immature T-cell lymphoblastic leukemia. Here we show that pre-leukemic Zeb2-overexpressing thymocytes are characterized by a differentiation delay at beta-selection due to aberrant activation of the interleukin-7 receptor signaling pathway. Notably, and in contrast to Lmo2-overexpressing thymocytes, these pre-leukemic Zeb2-overexpressing T-cell progenitors display no acquired self-renewal properties. Finally, Zeb2 activation in more differentiated T-cell precursor cells can also drive malignant T-cell development, suggesting that the early T-cell differentiation delay is not essential for Zeb2-mediated leukemic transformation. Altogether, our data suggest that Zeb2 and Lmo2 drive malignant transformation of immature T-cell progenitors via distinct molecular mechanisms.
Collapse
Affiliation(s)
- Steven Goossens
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium .,Department for Biomedical Molecular Biology, VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Jueqiong Wang
- Mammalian Functional Genetics Group, Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | - Cedric S Tremblay
- Stem Cell Research Group, Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | - Jelle De Medts
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Sara T'Sas
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,Department for Biomedical Molecular Biology, VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Thao Nguyen
- Mammalian Functional Genetics Group, Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | - Jesslyn Saw
- Stem Cell Research Group, Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | - Katharina Haigh
- Mammalian Functional Genetics Group, Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | - David J Curtis
- Stem Cell Research Group, Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | - Pieter Van Vlierberghe
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Geert Berx
- Department for Biomedical Molecular Biology, VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Tom Taghon
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Jody J Haigh
- Mammalian Functional Genetics Group, Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia.,Department of Pharmacology and Therapeutics, Rady Faulty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.,Research Institute in Oncology and Hematology (RIOH), Cancer Care Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
10
|
Aspinall R, Lang PO. Interventions to restore appropriate immune function in the elderly. IMMUNITY & AGEING 2018; 15:5. [PMID: 29416551 PMCID: PMC5785902 DOI: 10.1186/s12979-017-0111-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 12/28/2017] [Indexed: 01/03/2023]
Abstract
Advanced age is one indicator of likely immune dysfunction. As worldwide, the global population contains progressively more and more older individuals there is likelihood of an increased prevalence and incidence of infectious diseases due to common and emergent pathogens. The resultant increase in mortality and morbidity would be matched by the risk of functional decline and disability. Maintaining immune function at a plateau throughout life may therefore be associated with considerable cost savings. The aim of improving immune function in older individuals may be achieved through considering a therapeutic approach to rejuvenate, stimulate or support the indigenous immune system to perform in a more optimal manner. In terms of cost effectiveness a therapeutic approach may prove difficult because of issues associated with; identifying those who would benefit the most from this treatment, identifying the type of treatment which would suit them and identifying whether the treatment was successful. The alternative of supporting or providing a stronger stimulus through vaccination, whilst more cost effective, may be a more valuable option in the short term. Both approaches will be addressed in this review.
Collapse
Affiliation(s)
- Richard Aspinall
- Rivock Ltd, Bury St Edmunds, UK.,3Anglia Ruskin University, Cambridge, UK
| | - Pierre Olivier Lang
- 2Geriatric and Geriatric Rehabilitation Division, Department of Medicine, University Hospital of Lausanne, Lausanne, Switzerland.,3Anglia Ruskin University, Cambridge, UK
| |
Collapse
|
11
|
Pike KA, Hatzihristidis T, Bussières-Marmen S, Robert F, Desai N, Miranda-Saavedra D, Pelletier J, Tremblay ML. TC-PTP regulates the IL-7 transcriptional response during murine early T cell development. Sci Rep 2017; 7:13275. [PMID: 29038451 PMCID: PMC5643372 DOI: 10.1038/s41598-017-13673-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 09/27/2017] [Indexed: 01/02/2023] Open
Abstract
Cytokines play a critical role in directing the discrete and gradual transcriptional changes that define T cell development. The interleukin-7 receptor (IL-7R), via its activation of the JAK-STAT pathway, promotes gene programs that change dynamically as cells progress through T cell differentiation. The molecular mechanism(s) directing differential gene expression downstream of the IL-7R are not fully elucidated. Here, we have identified T cell protein tyrosine phosphatase (TC-PTP), also known as PTPN2, as a negative regulator of IL-7R-STAT signaling in T cell progenitors, contributing to both the quantitative and qualitative nature of STAT-gene targeting. Novel genetic strategies used to modulate TC-PTP expression demonstrate that depletion of TC-PTP expression heightens the phosphorylation of STAT family members, causing aberrant expression of an interferon-response gene profile. Such molecular re-programming results in deregulation of early development checkpoints culminating in inefficient differentiation of CD4+CD8+ double positive cells. TC-PTP is therefore shown to be required to safeguard the dynamic transcriptome necessary for efficient T cell differentiation.
Collapse
Affiliation(s)
- K A Pike
- Rosalind and Morris Goodman Cancer Centre, McGill University, Montréal, QC H3A 1A3, Canada
| | - T Hatzihristidis
- Rosalind and Morris Goodman Cancer Centre, McGill University, Montréal, QC H3A 1A3, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, QC H3A 1A3, Canada
| | - S Bussières-Marmen
- Rosalind and Morris Goodman Cancer Centre, McGill University, Montréal, QC H3A 1A3, Canada.,Department of Biochemistry, McGill University, Montréal, QC H3A 1A3, Canada
| | - F Robert
- Rosalind and Morris Goodman Cancer Centre, McGill University, Montréal, QC H3A 1A3, Canada
| | - N Desai
- Rosalind and Morris Goodman Cancer Centre, McGill University, Montréal, QC H3A 1A3, Canada.,Department of Biochemistry, McGill University, Montréal, QC H3A 1A3, Canada
| | - D Miranda-Saavedra
- Centro de Biología Molecular Severo Ochoa, CSIC/Universidad Autónoma de Madrid, 28049, Madrid, Spain.,Department of Computer Science, University of Oxford, Wolfson Building Parks Road, OXFORD, OX1 3QD, UK
| | - J Pelletier
- Rosalind and Morris Goodman Cancer Centre, McGill University, Montréal, QC H3A 1A3, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, QC H3A 1A3, Canada
| | - M L Tremblay
- Rosalind and Morris Goodman Cancer Centre, McGill University, Montréal, QC H3A 1A3, Canada. .,Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, QC H3A 1A3, Canada. .,Department of Biochemistry, McGill University, Montréal, QC H3A 1A3, Canada.
| |
Collapse
|
12
|
Interleukin-7 in the transition of bone marrow progenitors to the thymus. Immunol Cell Biol 2017; 95:916-924. [PMID: 28811625 DOI: 10.1038/icb.2017.68] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 08/01/2017] [Accepted: 08/01/2017] [Indexed: 02/03/2023]
Abstract
Interleukin-7 (IL-7) is essential for the development of T cells in humans and mice where deficiencies in IL-7 signaling result in severe immunodeficiency. T cells require IL-7 at multiple points during development; however, it is unclear when IL-7 is first necessary. We observed that mice with impaired IL-7 signaling had a large reduction in the number of early thymic progenitors (ETPs) while mice that overexpress IL-7 had greatly increased numbers of ETPs. These results indicated that the development of ETPs is sensitive to IL-7. Bone marrow progenitors of ETP are present in normal numbers in mice with impaired IL-7 signaling (IL-7Rα449F) and were efficiently recruited to the thymus. Furthermore, ETPs and their progenitors from IL-7Rα449F mice did not undergo increased apoptosis and proliferate normally compared to WT cells. Mixed bone marrow chimeras demonstrated that IL-7 signaling has a cell-intrinsic role in ETP development but was not required for development of bone marrow progenitors. We have shown a novel role for IL-7 signaling in the development of ETPs that is distinct from classic mechanisms of IL-7 regulating survival and proliferation.
Collapse
|
13
|
Image-guided intrathymic injection of multipotent stem cells supports lifelong T-cell immunity and facilitates targeted immunotherapy. Blood 2014; 123:2797-805. [PMID: 24652996 DOI: 10.1182/blood-2013-10-535401] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
T-cell deficiency related to disease, medical treatment, or aging represents a major clinical challenge and is associated with significant morbidity and mortality in cancer and bone marrow transplantation recipients. This study describes several innovative and clinically relevant strategies to manipulate thymic function based on an interventional radiology technique for intrathymic injection of cells or drugs. We show that intrathymic injection of multipotent hematopoietic stem/progenitor cells into irradiated syngeneic or allogeneic young or aged recipients resulted in efficient and long-lasting generation of functional donor T cells. Persistence of intrathymic donor cells was associated with intrathymic presence of cells resembling long-term hematopoietic stem cells, suggesting a self-renewal capacity of the intrathymically injected cells. Furthermore, our approach enabled the induction of long-term antigen-specific T-cell-mediated antitumor immunity following intrathymic injection of progenitor cells harboring a transgenic T-cell receptor gene. The intrathymic injection of interleukin-7 prior to irradiation conferred radioprotection. In addition, thymopoiesis of aged mice improved with a single intrathymic administration of low-dose keratinocyte growth factor, an effect that was sustained even in the setting of radiation-induced injury. Taken together, we established a preclinical framework for the development of novel clinical protocols to establish lifelong antigen-specific T-cell immunity.
Collapse
|
14
|
Hakim FT, Gress RE. Immunosenescence: immune deficits in the elderly and therapeutic strategies to enhance immune competence. Expert Rev Clin Immunol 2014; 1:443-58. [DOI: 10.1586/1744666x.1.3.443] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
15
|
Lai L, Zhang M, Song Y, Rood D. Recombinant IL-7/HGFβ hybrid cytokine enhances T cell recovery in mice following allogeneic bone marrow transplantation. PLoS One 2013; 8:e82998. [PMID: 24349415 PMCID: PMC3861470 DOI: 10.1371/journal.pone.0082998] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 11/08/2013] [Indexed: 11/23/2022] Open
Abstract
T cell immunodeficiency is a major complication of bone marrow (BM) transplantation (BMT). Therefore, approaches to enhance T cell reconstitution after BMT are required. We have purified a hybrid cytokine, consisting of IL-7 and the β-chain of hepatocyte growth factor (HGFβ) (IL-7/HGFβ), from a unique long-term BM culture system. We have cloned and expressed the IL-7/HGFβ gene in which the IL-7 and HGFβ genes are connected by a flexible linker to generate rIL-7/HGFβ protein. Here, we show that rIL-7/HGFβ treatment enhances thymopoiesis after allogeneic BMT. Although rIL-7 treatment also enhances the number of thymocytes, rIL-7/HGFβ hybrid cytokine was more effective than was rIL-7 and the mechanisms by which rIL-7 and rIL-7/HGFβ increase the numbers of thymocytes are different. rIL-7 enhances the survival of double negative (DN), CD4 and CD8 single positive (SP) thymocytes. In contrast, rIL-7/HGFβ enhances the proliferation of the DN, SP thymocytes, as well as the survival of CD4 and CD8 double positive (DP) thymocytes. rIL-7/HGFβ treatment also increases the numbers of early thymocyte progenitors (ETPs) and thymic epithelial cells (TECs). The enhanced thymic reconstitution in the rIL-7/HGFβ-treated allogeneic BMT recipients results in increased number and functional activities of peripheral T cells. Graft-versus-host-disease (GVHD) is not induced in the rIL-7/HGFβ-treated BMT mice. Therefore, rIL-7/HGFβ may offer a new tool for the prevention and/or treatment of T cell immunodeficiency following BMT.
Collapse
Affiliation(s)
- Laijun Lai
- Department of Allied Health Sciences, University of Connecticut, Storrs, Connecticut, United States of America
- University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, Connecticut, United States of America
- * E-mail:
| | - Mingfeng Zhang
- Department of Allied Health Sciences, University of Connecticut, Storrs, Connecticut, United States of America
| | - Yinhong Song
- Department of Allied Health Sciences, University of Connecticut, Storrs, Connecticut, United States of America
| | - Debra Rood
- Department of Allied Health Sciences, University of Connecticut, Storrs, Connecticut, United States of America
| |
Collapse
|
16
|
Chemical castration of melanoma patients does not increase the frequency of tumor-specific CD4 and CD8 T cells after peptide vaccination. J Immunother 2013; 36:276-86. [PMID: 23603862 DOI: 10.1097/cji.0b013e31829419f3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Peptide vaccination against tumor-associated antigens remains one of the most common methods of immunization in cancer vaccine clinical trials. Although peptide vaccination has been reported to increase circulating antigen-specific T-cells, they have had limited clinical efficacy and there is a necessity to increase their capacity to generate strong antitumor responses. We sought to improve the clinical efficacy of peptide-based vaccines in cancer immunotherapy of metastatic melanoma using a LHRH agonist (leuprolide) as adjuvant. Seventy HLA-A*0201 stage IIb-IV melanoma patients were vaccinated with class I HLA-A*0201-restricted gp100209-2M peptide and stratified for HLA-DP4 restriction. HLA-DP4 patients were also vaccinated with class II HLA-DP4-restricted MAGE-3243-258 peptide. Patients from both groups were randomized to receive 2 doses of leuprolide or not. Here we report the increase in PBMC TREC levels at week 24 after peptide vaccination, which was independent of the leuprolide treatment. This change was mirrored by a small increase in the TREC-enriched CD8CD45RAROCD27CD103, but not the TREC-enriched CD4CD45RAROCD31 T-cell population. Serum concentration of 2 important factors for thymopoiesis was measured: insulin growth factor 1 (IGF-1) levels were not changed, whereas a moderate increase in IL-7 levels was noted in the sera of all patients 6 weeks after vaccination. Increased expression of CD127 (IL-7 receptor-α) at week 24, compared with baseline, was only seen in the CD8CD45RAROCD27CD103 T-cell population. Our results suggest that leuprolide has no effect on thymic output when used as peptide vaccine adjuvant, but IFA-based peptide vaccination may unexpectedly affect the thymus by increasing thymic output of new T cells.
Collapse
|
17
|
Schroeder JH, Bell LS, Janas ML, Turner M. Pharmacological inhibition of glycogen synthase kinase 3 regulates T cell development in vitro. PLoS One 2013; 8:e58501. [PMID: 23526989 PMCID: PMC3603984 DOI: 10.1371/journal.pone.0058501] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 02/06/2013] [Indexed: 11/19/2022] Open
Abstract
The development of functional T cells requires receptor-mediated transition through multiple checkpoints in the thymus. Double negative 3 (DN3) thymocytes are selected for the presence of a rearranged TCR beta chain in a process termed β-selection which requires signalling via the pre-TCR, Notch1 and CXCL12. Signal integration by these receptors converges on core pathways including the Phosphatidylinositol-3-kinase (PI3K) pathway. Glycogen Synthase Kinase 3 (GSK3) is generally thought to be negatively regulated by the PI3K pathway but its role in β-selection has not been characterised. Here we show that developmental progression of DN3 thymocytes is promoted following inhibition of GSK3 by the synthetic compound CHIR99021. CHIR99021 allows differentiation in the absence of pre-TCR-, Notch1- or CXCL12-mediated signalling. It antagonizes IL-7-mediated inhibition of DP thymocyte differentiation and increases IL-7-promoted cell recovery. These data indicate a potentially important role for inactivation of GSK3 during β-selection. They might help to establish an in vitro stromal cell-free culture system of thymocyte development and offer a new platform for screening regulators of proliferation, differentiation and apoptosis.
Collapse
Affiliation(s)
- Jan-Hendrik Schroeder
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Lewis S. Bell
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Michelle L. Janas
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Martin Turner
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
18
|
Patel ES, Okada S, Hachey K, Yang LJ, Durum SK, Moreb JS, Chang LJ. Regulation of in vitro human T cell development through interleukin-7 deprivation and anti-CD3 stimulation. BMC Immunol 2012; 13:46. [PMID: 22897934 PMCID: PMC3496569 DOI: 10.1186/1471-2172-13-46] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 06/20/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The role of IL-7 and pre-TCR signaling during T cell development has been well characterized in murine but not in human system. We and others have reported that human BM hematopoietic progenitor cells (HPCs) display poor proliferation, inefficient double negative (DN) to double positive (DP) transition and no functional maturation in the in vitro OP9-Delta-like 1 (DL1) culture system. RESULTS In this study, we investigated the importance of optimal IL-7 and pre-TCR signaling during adult human T cell development. Using a modified OP9-DL1 culture ectopically expressing IL-7 and Fms-like tyrosine kinase 3 ligand (Flt3L), we demonstrated enhanced T cell precursor expansion. IL-7 removal at various time points during T cell development promoted a slight increase of DP cells; however, these cells did not differentiate further and underwent cell death. As pre-TCR signaling rescues DN cells from programmed cell death, we treated the culture with anti-CD3 antibody. Upon pre-TCR stimulation, the IL-7 deprived T precursors differentiated into CD3+TCRαβ+DP cells and further matured into functional CD4 T cells, albeit displayed a skewed TCR Vβ repertoire. CONCLUSIONS Our study establishes for the first time a critical control for differentiation and maturation of adult human T cells from HPCs by concomitant regulation of IL-7 and pre-TCR signaling.
Collapse
Affiliation(s)
- Ekta S Patel
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
El-Kassar N, Flomerfelt FA, Choudhury B, Hugar LA, Chua KS, Kapoor V, Lucas PJ, Gress RE. High levels of IL-7 cause dysregulation of thymocyte development. Int Immunol 2012; 24:661-71. [PMID: 22899673 DOI: 10.1093/intimm/dxs067] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
IL-7 signaling is required for thymocyte development and its loss has a severe deleterious effect on thymus function. Thymocyte-stromal cell interactions and other mechanisms tightly regulate IL-7 expression. We show that disruption of that regulation by over-expression of IL-7 inhibits T-cell development and promotes extensive B-cell lymphopoiesis in the thymus. Our data reveal that high levels of IL-7 negate Notch-1 function in thymocytes found in IL-7 transgenic mice and in co-culture with OP9-DL1 cells. While high levels of IL-7R are present on thymocytes, increased suppressor of cytokine signaling-1 expression blunts IL-7 downstream signaling, resulting in hypo-phosphorylation of proteins in the PI3K-Akt pathway. Consequently, GSK3β remains active and inhibits Notch-1 signaling as observed by decreased Hes-1 and Deltex expression in thymic progenitors. This is the first demonstration that high levels of IL-7 antagonize Notch-1 signaling and suggest that IL-7 may affect T- versus B-lineage choice in the thymus.
Collapse
Affiliation(s)
- Nahed El-Kassar
- Experimental Immunology and Transplantation Branch, National Cancer Institute, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Patel ES, Chang LJ. Synergistic effects of interleukin-7 and pre-T cell receptor signaling in human T cell development. J Biol Chem 2012; 287:33826-35. [PMID: 22859301 DOI: 10.1074/jbc.m112.380113] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The role of IL-7 in pre-T cell receptor (TCR) signaling during human T cell development is poorly understood. To study this, we engineered Molt3, a T cell progenitor T-acute lymphoblastic leukemia cell line, using lentiviral IL-7 receptor α (IL-7Rα) to serve as a model system. IL-7 promoted pre-TCR activation in IL-7Rα(hi) Molt3 as illustrated by CD25 up-regulation after anti-CD3 stimulation. Anti-CD3 treatment activated Akt and Erk1/2 signaling pathways as proven using specific inhibitors, and IL-7 further enhanced both signaling pathways. The close association of IL-7Rα with CD3ζ in the pre-TCR complex was illustrated through live imaging confocal fluorescence microscopy. These results demonstrate a direct and cooperative role of IL-7 in pre-TCR signaling.
Collapse
Affiliation(s)
- Ekta S Patel
- Department of Molecular Genetics, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| | | |
Collapse
|
21
|
Kim GY, Ligons DL, Hong C, Luckey MA, Keller HR, Tai X, Lucas PJ, Gress RE, Park JH. An in vivo IL-7 requirement for peripheral Foxp3+ regulatory T cell homeostasis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 188:5859-66. [PMID: 22593613 PMCID: PMC3370137 DOI: 10.4049/jimmunol.1102328] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
All T cells are dependent on IL-7 for their development and for homeostasis. Foxp3(+) regulatory T cells (Tregs) are unique among T cells in that they are dependent on IL-2. Whether such IL-2 dependency is distinct from or in addition to an IL-7 requirement has been a confounding issue, particularly because of the absence of an adequate experimental system to address this question. In this study, we present a novel in vivo mouse model where IL-2 expression is intact but IL-7 expression was geographically limited to the thymus. Consequently, IL-7 is not available in peripheral tissues. Such mice were generated by introducing a thymocyte-specific IL-7 transgene onto an IL-7 null background. In these mice, T cell development in the thymus, including Foxp3(+) Treg numbers, was completely restored, which correlates with the thymus-specific expression of transgenic IL-7. In peripheral cells, however, IL-7 expression was terminated, which resulted in a general paucity of T cells and a dramatic reduction of Foxp3(+) Treg numbers. Loss of Tregs was further accompanied by a significant reduction in Foxp3(+) expression levels. These data suggest that peripheral IL-7 is not only necessary for Treg survival but also for upregulating Foxp3 expression. Collectively, we assessed the effect of a selective peripheral IL-7 deficiency in the presence of a fully functional thymus, and we document a critical requirement for in vivo IL-7 in T cell maintenance and specifically in Foxp3(+) cell homeostasis.
Collapse
Affiliation(s)
- Grace Y. Kim
- Exp. Immunology Branch, National Cancer Inst., NIH, Bethesda, MD
- The Johns Hopkins University, School of Medicine, Baltimore, MD
- Howard Hughes Medical Institute-NIH Research Scholars Program, Bethesda, MD, USA
| | | | - Changwan Hong
- Exp. Immunology Branch, National Cancer Inst., NIH, Bethesda, MD
| | - Megan A. Luckey
- Exp. Immunology Branch, National Cancer Inst., NIH, Bethesda, MD
| | - Hilary R. Keller
- Exp. Immunology Branch, National Cancer Inst., NIH, Bethesda, MD
| | - Xuguang Tai
- Exp. Immunology Branch, National Cancer Inst., NIH, Bethesda, MD
| | - Philip J. Lucas
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD
| | - Ronald E. Gress
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD
| | - Jung-Hyun Park
- Exp. Immunology Branch, National Cancer Inst., NIH, Bethesda, MD
| |
Collapse
|
22
|
Hong C, Luckey M, Park JH. Intrathymic IL-7: the where, when, and why of IL-7 signaling during T cell development. Semin Immunol 2012; 24:151-8. [PMID: 22421571 PMCID: PMC3358706 DOI: 10.1016/j.smim.2012.02.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Accepted: 02/15/2012] [Indexed: 12/26/2022]
Abstract
The thymus is the birthplace of all T lineage cells. But the thymus is also a cradle as it provides the environment for further maturation and differentiation of immature thymocytes. While many factors contribute to make the thymus a unique place for T cell development, here we review the essential role of intrathymic interleukin-7 (IL-7). In the absence of IL-7 signaling, survival, proliferation and differentiation of immature thymocytes are all severely impaired. Consequently, IL-7 is critical to nurture and guide T precursor cells through the diverse steps of thymic maturation. Interestingly, even as IL-7 signaling is such a critical factor, IL-7 signaling must be also actively suppressed during specific stages of T cell differentiation. These contradictory observations are puzzling but can be satisfactorily explained when understanding the developmental context of IL-7 signaling. In this regard, here we will discuss the spatiotemporal expression of intrathymic IL-7 and address the stage-specific effects of IL-7 signaling in developing thymocytes. Specifically, we will review other facets of intrathymic IL-7 beyond its role as a pro-survival factor and so clarify and reaffirm the unique role of IL-7 as a prime factor in T cell development and differentiation.
Collapse
Affiliation(s)
- Changwan Hong
- Exp. Immunol. Branch, National Cancer Inst., NIH, Bethesda, MD 20892-1360
| | - Megan Luckey
- Exp. Immunol. Branch, National Cancer Inst., NIH, Bethesda, MD 20892-1360
| | - Jung-Hyun Park
- Exp. Immunol. Branch, National Cancer Inst., NIH, Bethesda, MD 20892-1360
| |
Collapse
|
23
|
Adachi Y, Hiramatsu S, Tokuda N, Sharifi K, Ebrahimi M, Islam A, Kagawa Y, Koshy Vaidyan L, Sawada T, Hamano K, Owada Y. Fatty acid-binding protein 4 (FABP4) and FABP5 modulate cytokine production in the mouse thymic epithelial cells. Histochem Cell Biol 2012; 138:397-406. [PMID: 22585040 DOI: 10.1007/s00418-012-0963-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2012] [Indexed: 12/11/2022]
Abstract
Thymic stromal cells, including cortical thymic epithelial cells (cTEC) produce many humoral factors, such as cytokines and eicosanoids to modulate thymocyte homeostasis, thereby regulating the peripheral immune responses. In this study, we identified fatty acid-binding protein (FABP4), an intracellular fatty acid chaperone, in the mouse thymus, and examined its role in the control of cytokine production in comparison with FABP5. By immunofluorescent staining, FABP4(+) cells enclosing the thymocytes were scattered throughout the thymic cortex with a spatial difference from the FABP5(+) cell that were distributed widely throughout the cTEC. The FABP4(+) cells were immunopositive for MHC class II, NLDC145 and cytokeratin 8, and were identified as part of cTEC. The FABP4(+) cells were identified as thymic nurse cells (TNC), a subpopulation of cTEC, by their active phagocytosis of apoptotic thymocytes. Furthermore, FABP4 expression was confirmed in the isolated TNC at the gene and protein levels. To explore the function of FABP in TNC, TSt-4/DLL1 cells stably expressing either FABP4 or FABP5 were established and the gene expressions of various cytokines were examined. The gene expression of interleukin (IL)-7 and IL-18 was increased both in FABP4 and FABP5 over-expressing cells compared with controls, and moreover, the increase in their expressions by adding of stearic acids was significantly enhanced in the FABP4 over-expressing cells. These data suggest that both FABPs are involved in the maintenance of T lymphocyte homeostasis through the modulation of cytokine production, which is possibly regulated by cellular fatty acid-mediated signaling in TEC, including TNC.
Collapse
Affiliation(s)
- Yasuhiro Adachi
- Department of Organ Anatomy, Graduate School of Medicine, Yamaguchi University, 1-1-1, Minami-kogushi, Ube, Yamaguchi 755-8505, Japan,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Wang NX, Bazdar DA, Sieg SF, von Recum HA. Microparticle delivery of Interleukin-7 to boost T-cell proliferation and survival. Biotechnol Bioeng 2012; 109:1835-43. [DOI: 10.1002/bit.24431] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 12/14/2011] [Accepted: 12/27/2011] [Indexed: 11/10/2022]
|
25
|
Aspinall R, Prentice AM, Ngom PT. Interleukin 7 from maternal milk crosses the intestinal barrier and modulates T-cell development in offspring. PLoS One 2011; 6:e20812. [PMID: 21738587 PMCID: PMC3127952 DOI: 10.1371/journal.pone.0020812] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 05/10/2011] [Indexed: 12/28/2022] Open
Abstract
Background Breastfeeding protects against illnesses and death in hazardous environments, an effect partly mediated by improved immune function. One hypothesis suggests that factors within milk supplement the inadequate immune response of the offspring, but this has not been able to account for a series of observations showing that factors within maternally derived milk may supplement the development of the immune system through a direct effect on the primary lymphoid organs. In a previous human study we reported evidence suggesting a link between IL-7 in breast milk and the thymic output of infants. Here we report evidence in mice of direct action of maternally-derived IL-7 on T cell development in the offspring. Methods and Findings We have used recombinant IL-7 labelled with a fluorescent dye to trace the movement in live mice of IL-7 from the stomach across the gut and into the lymphoid tissues. To validate the functional ability of maternally derived IL-7 we cross fostered IL-7 knock-out mice onto normal wild type mothers. Subsets of thymocytes and populations of peripheral T cells were significantly higher than those found in knock-out mice receiving milk from IL-7 knock-out mothers. Conclusions/Significance Our study provides direct evidence that interleukin 7, a factor which is critical in the development of T lymphocytes, when maternally derived can transfer across the intestine of the offspring, increase T cell production in the thymus and support the survival of T cells in the peripheral secondary lymphoid tissue.
Collapse
Affiliation(s)
- Richard Aspinall
- Department of Immunology, Imperial College London, London, United Kingdom.
| | | | | |
Collapse
|
26
|
Silva A, Laranjeira AB, Martins LR, Cardoso BA, Demengeot J, Yunes JA, Seddon B, Barata JT. IL-7 Contributes to the Progression of Human T-cell Acute Lymphoblastic Leukemias. Cancer Res 2011; 71:4780-9. [DOI: 10.1158/0008-5472.can-10-3606] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Jin J, Goldschneider I, Lai L. In Vivo Administration of the Recombinant IL-7/Hepatocyte Growth Factor β Hybrid Cytokine Efficiently Restores Thymopoiesis and Naive T Cell Generation in Lethally Irradiated Mice after Syngeneic Bone Marrow Transplantation. THE JOURNAL OF IMMUNOLOGY 2011; 186:1915-22. [DOI: 10.4049/jimmunol.1001238] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
Abstract
Interleukin (IL)-7 is required for T-cell development as well as for the survival and homeostasis of mature T-cells. In the thymus, the double negative (DN) CD4(-) CD8(-) thymocyte progenitor transition into double positive CD4+ CD8+ cells requires Notch and IL-7 signaling. Importantly, IL-7 seems to have a dose effect on T-cell development and, at high doses, DN progression is blocked. Naïve T-cells in the thymus, and after their exit to the periphery, are dependent on IL-7 and TCR signaling for survival. Upon antigen exposure, they proliferate and differentiate into memory T-cells. Because IL-7 intervenes at all stages of T-cell development and maintenance, it has been introduced recently into clinical trials as an immunotherapeutic agent for cancer patients (of particular note, those who had undergone T-cell depleting therapy) in an attempt to increase their population sizes of CD4+ and CD8+ cells overall, and specifically of CD8+ (CD45RA+)CCR7+ and/or CD27+), CD4+ (CD45RA+CD31+), and CD4+ central memory T-cells (CD45RA(-)CCR7+). Interestingly, IL-7 in humans induced a preferential expansion of naïve T-cells, resulting in a broader T-cell repertoire than before the treatment; this effect was independent of age. This suggests that IL-7 therapy could enhance immune responses in patients with limited naïve T-cell numbers as in aged patients or after disease-induced or iatrogenic T-cell depletion. This overview highlights the role of IL-7 on T-cells in mice and humans.
Collapse
Affiliation(s)
- Nahed ElKassar
- Experimental Immunology and Transplantation Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | | |
Collapse
|
29
|
Selective ablation of the YxxM motif of IL-7Rα suppresses lymphomagenesis but maintains lymphocyte development. Oncogene 2010; 29:3854-64. [DOI: 10.1038/onc.2010.133] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
30
|
The interaction of LCK and the CD4 co-receptor alters the dose response of T-cells to interleukin-7. Immunol Lett 2010; 131:170-81. [PMID: 20433867 DOI: 10.1016/j.imlet.2010.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 03/31/2010] [Accepted: 04/20/2010] [Indexed: 11/20/2022]
Abstract
CD8 and CD4 T-cells grow optimally under different concentrations of the cytokine, interleukin-7 (IL-7). While CD8 T-cells expand at high doses of IL-7, CD4 T-cells favor low doses. To examine the reason for the preference of CD4 T-cells for lower doses of the cytokine, we used IL-7 dependent T-cells to study signal transduction upon a range of IL-7 concentrations. We found that the high dose responsiveness of CD8 T-cells to IL-7 could be altered if these cells also expressed CD4. Using the phosphorylation of STAT5 as an indicator of growth, we found that the co-receptor associated kinase, LCK, contributed to phospho-STAT5 levels. Phospho-STAT5 was elevated at high dose IL-7 for CD8 T-cells and at low dose IL-7 for CD4 T-cells, which was reversed upon LCK inhibition. Examining the direct association of LCK with CD4 using a T- cell line that over-expresses CD4, we determined that CD4 could directly sequester LCK. Non-CD4 T-cells were not restricted in this manner and levels of phospho-STAT5 increased proportionally to the IL-7 dose. Our studies, therefore, show that the response of a T-cell to IL-7 can be modulated by the availability of LCK.
Collapse
|
31
|
Identification of an NK/T cell-restricted progenitor in adult bone marrow contributing to bone marrow- and thymic-dependent NK cells. Blood 2010; 116:183-92. [PMID: 20421450 DOI: 10.1182/blood-2009-10-247130] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Although bone marrow (BM) is the main site of natural killer (NK)-cell development in adult mice, recent studies have identified a distinct thymic-dependent NK pathway, implicating a possible close link between NK- and T-cell development in adult hematopoiesis. To investigate whether a potential NK-/T-lineage restriction of multipotent progenitors might take place already in the BM, we tested the full lineage potentials of NK-cell progenitors in adult BM. Notably, although Lin(-)CD122(+)NK1.1(-)DX5(-) NK-cell progenitors failed to commit to the B and myeloid lineages, they sustained a combined NK- and T-cell potential in vivo and in vitro at the single-cell level. Whereas T-cell development from NK/T progenitors is Notch-dependent, their contribution to thymic and BM NK cells remains Notch-independent. These findings demonstrate the existence of bipotent NK-/T-cell progenitors in adult BM.
Collapse
|
32
|
Park JH, Adoro S, Guinter T, Erman B, Alag AS, Catalfamo M, Kimura MY, Cui Y, Lucas PJ, Gress RE, Kubo M, Hennighausen L, Feigenbaum L, Singer A. Signaling by intrathymic cytokines, not T cell antigen receptors, specifies CD8 lineage choice and promotes the differentiation of cytotoxic-lineage T cells. Nat Immunol 2010; 11:257-64. [PMID: 20118929 PMCID: PMC3555225 DOI: 10.1038/ni.1840] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 12/29/2009] [Indexed: 12/11/2022]
Abstract
Immature CD4(+)CD8(+) (double-positive (DP)) thymocytes are signaled via T cell antigen receptors (TCRs) to undergo positive selection and become responsive to intrathymic cytokines such as interleukin 7 (IL-7). We report here that cytokine signaling is required for positively selected thymocytes to express the transcription factor Runx3, specify CD8 lineage choice and differentiate into cytotoxic-lineage T cells. In DP thymocytes genetically engineered to be cytokine responsive, IL-7 signaling induced TCR-unsignaled DP thymocytes to express Runx3 and to differentiate into mature CD8(+) T cells, completely circumventing positive selection. We conclude that TCR-mediated positive selection converts DP cells into cytokine-responsive thymocytes, but it is subsequent signaling by intrathymic cytokines that specifies CD8 lineage choice and promotes differentiation into cytotoxic-lineage T cells.
Collapse
Affiliation(s)
- Jung-Hyun Park
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Zlamy M, Prelog M. Thymectomy in early childhood: a model for premature T cell immunosenescence? Rejuvenation Res 2010; 12:249-58. [PMID: 19673593 DOI: 10.1089/rej.2009.0864] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The thymus is the main source of recent thymic emigrants (RTE) and naïve T cells. The aging of the immune system (immunosenescence) is characterized by loss of thymic function, decreased numbers of RTE, peripheral proliferation of mature T cells, and oligoclonal expansions of specific T cell subpopulations. As shown in several studies, thymectomized patients demonstrate signs of premature immunosenescence reminiscent of aged people, such as decreased proportions of naïve T cells and RTE, a compensatory increase of mature T cell subpopulations with increased proliferation rates, restriction of the T cell receptor repertoire, and a delayed response to new antigens and vaccinations. This review demonstrates that, despite some limitations, childhood thymectomy may serve as an useful model for premature immunosenescence, mimicking changes expected after physiological thymus involution in the elderly. Thus, it may prove an insightful tool for obtaining better understanding of human naïve T cell development, thymic function, and maintenance of the naïve T cell pool.
Collapse
Affiliation(s)
- Manuela Zlamy
- Department of Pediatrics, Pediatrics I, Medical University Innsbruck, Austria
| | | |
Collapse
|
34
|
Abstract
Interleukin-7 (IL-7) is required for the development and survival of T cells and plays a critical role in modulating T-cell homeostasis. This review will address current understanding of IL-7 biology, review recent clinical experiences and discuss potential future clinical applications of IL-7, or IL-7 blockade, in the setting of disease.
Collapse
Affiliation(s)
- C M Capitini
- Immunology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | | | | |
Collapse
|
35
|
Magri M, Yatim A, Benne C, Balbo M, Henry A, Serraf A, Sakano S, Gazzolo L, Lévy Y, Lelièvre JD. Notch ligands potentiate IL-7-driven proliferation and survival of human thymocyte precursors. Eur J Immunol 2009; 39:1231-40. [PMID: 19350552 DOI: 10.1002/eji.200838765] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Notch and IL-7 are both well-characterized factors involved in T-cell development. In contrast to the mouse model, their precise requirements in the differentiation and/or proliferation of various stages of human thymic development have not been fully explored. Here, we demonstrate that IL-7 alone is sufficient to induce the differentiation of ex vivo purified CD34(+) triple negative (TN) surface (s) CD3(-) CD4(-)CD8(-) (CD3(-)CD4(-)CD8(-)), CD4 immature single positive (ISP) (sCD3(-)CD4(+)CD8(-)) and double positive (DP) (sCD3(-)CD4(+)CD8(+)) human thymic precursors to mature DP expressing sCD3 (sCD3(+)CD4(+)CD8(+)). We show that activation of Notch signaling by its ligands Delta-1 or Delta-4 potentiates IL-7-driven proliferation and survival of CD34(+) TN and to a lesser extent of CD4(+) ISP precursors. This effect of Notch is related to a sustained induction of IL-7 receptor alpha chain expression on thymocytes through a decreased methylation of its gene promoter. Thus, we show here that proliferation and differentiation of T-cell precursors are differentially modulated by IL-7 depending on the presence or absence of external signals. These results may have important implications for the clinical use of this cytokine as a strategy aimed at improving immune restoration.
Collapse
|
36
|
Abstract
Lymphocyte homeostasis is tightly regulated in vivo by various factors including cytokines, antigens, and costimulatory signals. Central to this regulation is the intricate balance between survival and apoptosis determined by pro- and antiapoptotic factors, including Bcl-2/Bcl-xL of the Bcl-2 family in the intrinsic death pathway and Fas/FADD of the TNF death receptor superfamily in the extrinsic death pathway. Recent studies have identified a critical role for autophagy, a well-conserved catabolic process in eukaryotic cells, in T and B lymphocyte homeostasis. Autophagy is essential for mature T lymphocyte survival and proliferation. In addition, autophagy can promote T cell death in defined physiologic or pathologic conditions. Autophagy also contributes to the survival of subsets of B lymphocytes, including developing pre-B cells as well as B1 B cells in vivo. Thus, autophagy represents a novel pathway regulating both developing and mature lymphocytes. Future studies are required to investigate the role of autophagy in regulating T and B cell homeostasis during immune responses to pathogens, as well as to define the mechanisms by which autophagy regulates lymphocyte death and survival.
Collapse
|
37
|
Nikolich-Zugich J. Ageing and life-long maintenance of T-cell subsets in the face of latent persistent infections. Nat Rev Immunol 2008; 8:512-22. [PMID: 18469829 PMCID: PMC5573867 DOI: 10.1038/nri2318] [Citation(s) in RCA: 331] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A decline in T-cell immunity is one of the most consistent and most profound deficiencies of the elderly. Therapeutic correction of this decline often restores immune responsiveness and immune defence. T-cell immune decline in the elderly has at least two underpinnings: a drop in the responsiveness of naive T cells to stimulation (cell-autonomous defects) and a reduction in naive T-cell numbers and diversity that leads to a dominant memory T-cell pool (T-cell population imbalance). This article discusses two key causes of age-related T-cell population imbalance: homeostatic cycling or proliferative expansion in the peripheral T-cell pool, and latent persistent infections, which repeatedly stimulate the T-cell pool over the lifetime of the individual. The reduction in production of naive T cells by the thymus forces the ageing organism to rely on compensatory homeostatic mechanisms to maintain the balance between naive and memory T-cell pools. Although this may be initially successful, recent evidence suggests that late in life these mechanisms exhaust their usefulness and actually contribute to a further demise of the remaining naive T cells. Latent persistent infections, particularly with herpesviruses, lead to life-long periodic restimulation of the immune system, here, evidence is presented for the role of viral reactivation in this restimulation using a mouse model of herpesvirus infection and ageing. Relative roles and the interplay between the homeostatic and viral factors are discussed, with the former having a surprisingly prominent role. Finally, modes of immune rejuvenation and anti-ageing intervention are debated in light of these advances in our knowledge.
A decline in T-cell immunity is a major cause of morbidity and mortality from infectious diseases in the elderly. Janko Nikolich-Žugich weighs up the relative roles of and the interplay between homeostatic factors and persistent viruses in immune senescence. A diverse and well-balanced repertoire of T cells is thought to be crucial for the efficacious defence against infection with new or re-emerging pathogens throughout life. In the last third of the mammalian lifespan, the maintenance of a balanced T-cell repertoire becomes highly challenging because of the changes in T-cell production and consumption. In this Review, I question whether latent persistent pathogens might be key factors that drive this imbalance and whether they determine the extent of age-associated immune deficiency.
Collapse
Affiliation(s)
- Janko Nikolich-Zugich
- Department of Immunobiology and the Arizona Center on Aging, University of Arizona, Tucson, Arizona 85724, USA.
| |
Collapse
|
38
|
Aspinall R, Mitchell W. Reversal of age-associated thymic atrophy: Treatments, delivery, and side effects. Exp Gerontol 2008; 43:700-705. [DOI: 10.1016/j.exger.2008.04.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 04/04/2008] [Accepted: 04/14/2008] [Indexed: 10/22/2022]
|
39
|
Croom HA, Izon DJ, Chong MM, Curtis DJ, Roberts AW, Kay TW, Hilton DJ, Alexander WS, Starr R. Perturbed thymopoiesis in vitro in the absence of suppressor of cytokine signalling 1 and 3. Mol Immunol 2008; 45:2888-96. [PMID: 18321577 PMCID: PMC4291229 DOI: 10.1016/j.molimm.2008.01.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 01/22/2008] [Accepted: 01/25/2008] [Indexed: 01/25/2023]
Abstract
Cytokine signals are central to the differentiation of thymocytes and their stepwise progression through defined developmental stages. The intensity and duration of cytokine signals are regulated by the suppressor of cytokine signalling (SOCS) proteins. A clear role for SOCS1 during the later stages of thymopoiesis has been established, but little is known about its role during early thymopoiesis, nor the function of its closest relative, SOCS3. Here, we find that both SOCS1 and SOCS3 are expressed during early thymopoiesis, with expression coincident during the double negative (DN)2 and DN3 stages. We examined thymocyte differentiation in vitro by co-culture of SOCS-deficient bone marrow cells with OP9 cells expressing the Notch ligand Delta-like1 (OP9-DL1). Cells lacking SOCS1 were retarded at the DN3:DN4 transition and appeared unable to differentiate into double positive (DP) thymocytes. Cells lacking both SOCS1 and SOCS3 were more severely affected, and displayed an earlier block in T cell differentiation at DN2, the stage at which expression of SOCS1 and SOCS3 coincides. This indicates that, in addition to their specific roles, SOCS1 and SOCS3 share overlapping roles during thymopoiesis. This is the first demonstration of functional redundancy within the SOCS family, and has uncovered a vital role for SOCS1 and SOCS3 during two important checkpoints in early T cell development.
Collapse
Affiliation(s)
- Hayley A. Croom
- Signal Transduction Laboratory, St Vincent’s Institute, 9 Princes St, Fitzroy, VIC 3065
| | - David J. Izon
- Haematology and Leukaemia, St Vincent’s Institute, 9 Princes St, Fitzroy, VIC 3065
| | - Mark M. Chong
- Immunology and Diabetes, St Vincent’s Institute, 9 Princes St, Fitzroy, VIC 3065
| | - David J. Curtis
- Rotary Bone Marrow Research Laboratories, Royal Melbourne Hospital, 1G Royal Parade, Parkville, VIC 3050, Australia
| | - Andrew W. Roberts
- Division of Cancer and Haematology, Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC 3050, Australia
| | - Thomas W.H. Kay
- Immunology and Diabetes, St Vincent’s Institute, 9 Princes St, Fitzroy, VIC 3065
| | - Douglas J. Hilton
- Division of Molecular Medicine, Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC 3050, Australia
| | - Warren S. Alexander
- Division of Cancer and Haematology, Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC 3050, Australia
| | - Robyn Starr
- Signal Transduction Laboratory, St Vincent’s Institute, 9 Princes St, Fitzroy, VIC 3065
| |
Collapse
|
40
|
Zhang B, Duan Z, Zhao Y. Mouse models with human immunity and their application in biomedical research. J Cell Mol Med 2008; 13:1043-58. [PMID: 18419795 PMCID: PMC4496103 DOI: 10.1111/j.1582-4934.2008.00347.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Biomedical research in human beings is largely restricted to in vitro studies that lack complexity of a living organism. To overcome this limitation, humanized mouse models are developed based on immunodeficient characteristics of severe combined immunodeficiency (SCID) or recombination activating gene (Rag)(null) mice, which can accept xenografts. Peripheral constitution of human immunity in SCID or Rag(null) mice has been achieved by transplantation of mature human immune cells, foetal human thymus, bone marrow, liver tissues, lymph nodes or a combination of these, although efficiency needs to be improved. These mouse models with constituted human immunity (defined as humanized mice in the present text) have been widely used to investigate the basic principles of human immunobiology as well as complex pathomechanisms and potential therapies of human diseases. Here, elements of an ideal humanized mouse model are highlighted including genetic and non-genetic modification of recipient mice, transplantation strategies and proposals to improve engraftments. The applications of the humanized mice to study the development and response of human immune cells, human autoimmune diseases, virus infections, transplantation biology and tumour biology are reviewed as well.
Collapse
Affiliation(s)
- Baojun Zhang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | | | | |
Collapse
|
41
|
Impaired thymopoiesis in interleukin-7 receptor transgenic mice is not corrected by Bcl-2. Cell Immunol 2008; 250:31-9. [PMID: 18321477 DOI: 10.1016/j.cellimm.2008.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Revised: 01/11/2008] [Accepted: 01/11/2008] [Indexed: 12/14/2022]
Abstract
Murine thymocytes down-regulate IL-7 responsiveness following beta-selection and reacquire sensitivity after positive selection. To assess the potential consequences of IL-7 signaling during this phase of development, transgenic IL-7 receptor alpha (IL-7Ralpha) mice were evaluated for IL-7 responsiveness as gauged by STAT-5 phosphorylation. Transgenic IL-7Ralpha expression increased the percentage of thymocytes responsive to IL-7 yet resulted in a decrease in total thymic cellularity. Aberrant thymocyte development in transgenic mice was first manifested by a reduction of DN3 thymocytes that correlated with lower Bcl-2 expression. Surprisingly, transgenic restoration of Bcl-2 expression did not correct thymic hypocellularity induced by IL-7Ralpha overexpression. These findings demonstrate that failure to appropriately downregulate IL-7Ralpha expression interferes with thymocyte development past the pro-T stage resulting in significantly lower levels of mature thymocytes.
Collapse
|
42
|
Bruinsma M, van Soest PL, Leenen PJM, Lambrecht BN, Cupedo T, Löwenberg B, Cornelissen JJ, Braakman E. Keratinocyte growth factor induces expansion of murine peripheral CD4+Foxp3+ regulatory T cells and increases their thymic output. THE JOURNAL OF IMMUNOLOGY 2008; 179:7424-30. [PMID: 18025186 DOI: 10.4049/jimmunol.179.11.7424] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Keratinocyte growth factor (KGF) has been shown to reduce the incidence and severity of graft-versus-host disease by prevention of epithelial damage and by modulating alloreactivity. Since regulatory T cells (Treg) play a crucial role in immune modulation, we evaluated the effects of exogenous KGF on peripheral CD4(+)Foxp3(+) Treg and the generation of Treg in the thymus of normal mice. A 3-day course of KGF induced a rapid selective increase in the number of highly suppressive CD4(+)Foxp3(+) Treg. Blood Treg numbers remained elevated for >2 mo, but the frequency normalized after 2 wk due to a concomitant increase in CD4(+)Foxp3(-) T cells. Analysis of single joint TCR excision circles frequency and Ki-67 expression in peripheral blood Treg showed that the early selective increase of Treg was predominantly accounted for by peripheral expansion. Thymectomy before KGF administration did not affect the early selective increase of Treg but abrogated the late increase in CD4(+) T cell numbers, thereby showing its dependence on thymic output. Collectively, these results show that KGF induces an increase in blood CD4(+)Foxp3(+) Treg numbers via two independent mechanisms. First by selective peripheral expansion of Treg and thereafter by enhanced thymic output of newly developed Treg.
Collapse
Affiliation(s)
- Marieke Bruinsma
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Wang H, Pierce LJ, Spangrude GJ. Distinct roles of IL-7 and stem cell factor in the OP9-DL1 T-cell differentiation culture system. Exp Hematol 2007; 34:1730-40. [PMID: 17157170 PMCID: PMC1762031 DOI: 10.1016/j.exphem.2006.08.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Revised: 07/08/2006] [Accepted: 08/02/2006] [Indexed: 01/16/2023]
Abstract
OBJECTIVE The OP9-DL1 culture system is an in vitro model for T-cell development in which activation of the Notch pathway by Delta-like 1 promotes differentiation of mature T cells from progenitors. The roles of specific cytokines in this culture system have not been well defined, and controversy regarding the role of IL-7 has recently emerged. We examined the roles played by IL-7, Flt3 ligand, and stem cell factor (SCF) in differentiation of adult bone marrow cells in the OP9-DL1 culture system. METHODS Hematopoietic progenitor cells isolated from mouse bone marrow were cultured with OP9 or OP9-DL1 stromal cells and evaluated for T and B lymphocyte differentiation using immunofluorescent staining. RESULTS IL-7 provided both survival/proliferation and differentiation signals in a dose-dependent manner. T-cell development from the CD4/CD8 double-negative (DN) stage to the CD4/CD8 double-positive (DP) stage required IL-7 provided by the stromal cells, while differentiation from the DP to the CD8 single-positive (SP) stage required addition of exogenous IL-7. SCF favored the proliferation of DN lymphoid progenitors and inhibited differentiation to the DP stage in a dose-dependent manner. Conversely, blocking the function of SCF expressed endogenously by OP9-DL1 cells inhibited proliferation of lymphoid progenitors and accelerated T-lineage differentiation. Flt3 ligand promoted proliferation without affecting differentiation. CONCLUSION These results validate the OP9-DL1 model for the analysis of T-cell development from bone marrow-derived progenitor cells, and demonstrate specific roles of SCF, IL-7, and Flt3L in promoting efficient T-lineage differentiation.
Collapse
Affiliation(s)
| | - L. Jeanne Pierce
- Division of Hematology, Department of Internal Medicine, The University of Utah, Salt Lake City, Utah, USA
| | - Gerald J. Spangrude
- Department of Pathology
- Division of Hematology, Department of Internal Medicine, The University of Utah, Salt Lake City, Utah, USA
- Corresponding author: Gerald J. Spangrude, Ph.D., University of Utah, Division of Hematology Rm 4C416, 30 N 1900 East, Salt Lake City, UT 84132-2022, voice: (801)-585-5544
| |
Collapse
|
44
|
Abstract
Non-human primates (NHP) have become an indispensable model in studying the common and dangerous human chronic infections, including HIV/SIV, Hepatitis C virus, and tuberculosis. More recently, we and others have used aged NHP to model human immune aging. Chronic infections and aging are both characterized by a significant depletion of defined lymphocyte subsets and the compensatory attempts to regenerate the immune system. As the efficacious antiviral drugs and novel methods to improve and boost the immune system emerge, therapeutic immune regeneration has become a realistic goal in both the physiologic and pathologic settings. This article will summarize our current knowledge on this topic and will discuss future research directions as well as the potential and power of translational studies in non-human primate models of infection, aging and bone marrow transplantation.
Collapse
Affiliation(s)
- Janko Nikolich-Zugich
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Oregon Health & Science University, West Campus, 505 NW 185th Avenue, Beaverton, OR 97006, USA.
| |
Collapse
|
45
|
Bessette K, Lang ML, Fava RA, Grundy M, Heinen J, Horne L, Spolski R, Al-Shami A, Morse HC, Leonard WJ, Kelly JA. A Stat5b transgene is capable of inducing CD8+ lymphoblastic lymphoma in the absence of normal TCR/MHC signaling. Blood 2007; 111:344-50. [PMID: 17890450 PMCID: PMC2200817 DOI: 10.1182/blood-2007-04-084707] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Stat5 proteins are critical signaling molecules activated by many cytokines. Within the immune system, Stat5 plays important roles related to the development of thymocytes and proliferation of T cells. Stat5 has been implicated in malignant transformation, and moreover, the activated tyrosine phosphorylated form of Stat5 is frequently observed in human lymphomas. We previously demonstrated the oncogenic potential of Stat5, with thymic lymphoblastic lymphomas developing in a significant proportion of transgenic (TG) mice overexpressing Stat5a or Stat5b in lymphocytes. In addition, immunization or expression of a T-cell receptor (TCR) transgene augmented the rate of tumor formation. Here, we investigate the mechanism of Stat5-mediated lymphomagenesis by exploring the contributions of major histocompatibility complex (MHC)/TCR and pre-TCR signals. We present data demonstrating that Stat5b TG mice unexpectedly develop CD8(+) lymphoma even in the absence of either pre-TCR signaling or normal thymic selection. Indeed, acceleration of Stat5b transgene-mediated lymphoma occurred on TCRalpha(-/-) and pre-TCRalpha(-/-) backgrounds. In light of these data, we propose a model in which alterations in T-cell development at the double-negative/double-positive (DN/DP) stages cooperate with cytokine-mediated pathways in immature thymocytes to give rise to lymphoblastic T-cell lymphomas in Stat5b TG mice.
Collapse
MESH Headings
- Animals
- CD8-Positive T-Lymphocytes/pathology
- CD8-Positive T-Lymphocytes/physiology
- Cell Transformation, Neoplastic/immunology
- Killer Cells, Natural/pathology
- Killer Cells, Natural/physiology
- Major Histocompatibility Complex/physiology
- Mice
- Mice, Transgenic
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- STAT5 Transcription Factor/genetics
- STAT5 Transcription Factor/metabolism
- Signal Transduction/immunology
- T-Lymphocytes/pathology
- T-Lymphocytes/physiology
- Transgenes/physiology
Collapse
Affiliation(s)
- Katherine Bessette
- White River Junction Veteran's Association, White River Junction, VT, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Clise-Dwyer K, Huston GE, Buck AL, Duso DK, Swain SL. Environmental and intrinsic factors lead to antigen unresponsiveness in CD4(+) recent thymic emigrants from aged mice. THE JOURNAL OF IMMUNOLOGY 2007; 178:1321-31. [PMID: 17237378 DOI: 10.4049/jimmunol.178.3.1321] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Naive CD4 cells from aged mice respond inefficiently to Ag, but the factors that underlie the age-associated defects remain unclear. We have used two approaches to isolate recent thymic emigrants (RTE) in young and aged mice and have compared their capacity to respond to antigenic stimulation ex vivo. An in situ intrathymic CFSE injection labeled developing thymocytes and allowed the identification of RTE in secondary lymphoid tissues. Analysis of CFSE-labeled RTE and control unlabeled naive CD4 cells indicated that cells from aged mice were defective in their ability to increase intracellular Ca(2+) concentration following TCR cross-linking. Aged naive and RTE CD4 also secreted less IL-2 and proliferated less than that of comparable young CD4 populations. Defects in effector generation in aged RTE were overcome by the addition of IL-2 to cultures. RTE from both polyclonal and TCR transgenic mice were compromised, indicating that defects were independent of TCR specificity. In the second model, the cotransfer of congenic marker-labeled young and aged BM cells into young and aged syngeneic hosts revealed that hyporesponsiveness in aged RTE was caused by a combination of defects intrinsic to CD4 progenitors and defects induced by the aged environment. Depletion of peripheral CD4 cells in aged mice led to production of new RTE that were not defective. The results of this study suggest that defects induced by environmental and lineage intrinsic factors act together to reduce responses to Ag in aged naive CD4 cells and that these defects can be overcome in aged CD4 cells produced during recovery from lymphopenia.
Collapse
|
47
|
Wang G. Estimation of the proliferation and maturation functions in a physiologically structured model of thymocyte development. J Math Biol 2007; 54:761-86. [PMID: 17211672 DOI: 10.1007/s00285-006-0068-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Revised: 11/03/2006] [Indexed: 10/23/2022]
Abstract
The thymus provides a stable microenvironment for post-natal thymocyte development that is finely regulated by a complicated network of cytokines, chemokines, cell-cell contacts, etc., the dysregulations of which contribute to many immunologic diseases including malignant lymphomas. A physiologically structured model in the form of first order partial differential equation (PDE) was developed to simulate the whole process. The combined effects of the thymic microenvironment were conceptualized into two (proliferation and differentiation) fields to serve as kernels of the PDE. In this paper, a novel method is developed to estimate the maturity-time structures of the two fields based solely on cell population data that are experimentally viable. Numerical examples demonstrate the effectiveness of the present method in revealing the two-dimensional (maturity and time) landscapes of the thymic microenvironment.
Collapse
Affiliation(s)
- Guanyu Wang
- Department of Physics, George Washington University, Washington, DC 20052, USA.
| |
Collapse
|
48
|
Abstract
IL-7 is a member of the common gamma-chain family of cytokines sharing a common gamma-chain in their receptor. Beyond its long-established pivotal role in immune development, it has been more recently recognized as a critically important regulator of peripheral naïve and memory T cell homeostasis while its role in postdevelopment thymic function remains at best, poorly defined, and controversial. Its multiple immune-enhancing properties, most notably in the maintenance of T cell homeostasis, make it a very attractive candidate for immunotherapy in a wide variety of clinical situations. Following many years of rich preclinical data in murine and simian models, IL-7 is now emerging in human phase I trials as a very promising immunotherapeutic agent. Human in vivo data discussed here are derived from the phase I study initiated at the National Cancer Institute in collaboration with Cytheris, Inc., in a cohort of subjects with incurable malignancy.
Collapse
Affiliation(s)
- Claude Sportès
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | | |
Collapse
|
49
|
Swainson L, Kinet S, Mongellaz C, Sourisseau M, Henriques T, Taylor N. IL-7-induced proliferation of recent thymic emigrants requires activation of the PI3K pathway. Blood 2006; 109:1034-42. [PMID: 17023582 DOI: 10.1182/blood-2006-06-027912] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The IL-7 cytokine promotes the survival of a diverse T-cell pool, thereby ensuring an efficient immune response. Moreover, IL-7 induces the proliferation of recent thymic emigrants (RTEs) in neonates. Here, we demonstrate that the survival and proliferative effects of IL-7 on human RTEs can be distinguished on the basis of dose as well as duration of IL-7 administration. A dose of 0.1 ng/mL IL-7 is sufficient to promote viability, whereas cell-cycle entry is observed only at doses higher than 1 ng/mL. Moreover, a short 1-hour exposure to high-dose IL-7 (10 ng/mL) induces long-term survival but continuous IL-7 exposure is necessary for optimal cell-cycle entry and proliferation. We find that distinct signaling intermediates are activated under conditions of IL-7-induced survival and proliferation; STAT5 tyrosine phosphorylation does not correlate with proliferation, whereas up-regulation of the glucose transporter Glut-1 as well as increased glucose uptake are markers of IL-7-induced cell cycle entry. Glut-1 is directly regulated by PI3K and, indeed, inhibiting PI3K activity abrogates IL-7-induced proliferation. Our finding that the survival and proliferation of RTEs are differentially modulated by the dose and kinetics of exogenous IL-7 has important implications for the clinical use of this cytokine.
Collapse
|
50
|
David-Fung ES, Yui MA, Morales M, Wang H, Taghon T, Diamond RA, Rothenberg EV. Progression of regulatory gene expression states in fetal and adult pro-T-cell development. Immunol Rev 2006; 209:212-36. [PMID: 16448545 PMCID: PMC4157939 DOI: 10.1111/j.0105-2896.2006.00355.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Precursors entering the T-cell developmental pathway traverse a progression of states characterized by distinctive patterns of gene expression. Of particular interest are regulatory genes, which ultimately control the dwell time of cells in each state and establish the mechanisms that propel them forward to subsequent states. Under particular genetic and developmental circumstances, the transitions between these states occur with different timing, and environmental feedbacks may shift the steady-state accumulations of cells in each state. The fetal transit through pro-T-cell stages is faster than in the adult and subject to somewhat different genetic requirements. To explore causes of such variation, this review presents previously unpublished data on differentiation gene activation in pro-T cells of pre-T-cell receptor-deficient mutant mice and a quantitative comparison of the profiles of transcription factor gene expression in pro-T-cell subsets of fetal and adult wildtype mice. Against a background of consistent gene expression, several regulatory genes show marked differences between fetal and adult expression profiles, including those encoding two basic helix-loop-helix antagonist Id factors, the Ets family factor SpiB and the Notch target gene Deltex1. The results also reveal global differences in regulatory alterations triggered by the first T-cell receptor-dependent selection events in fetal and adult thymopoiesis.
Collapse
|