1
|
Shao B, Zhang JY, Ren SH, Qin YF, Wang HD, Gao YC, Kong DJ, Hu YH, Qin H, Li GM, Wang H. Recombinant human IL-37 attenuates acute cardiac allograft rejection in mice. Cytokine 2024; 179:156598. [PMID: 38583255 DOI: 10.1016/j.cyto.2024.156598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/19/2024] [Accepted: 04/03/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND Allograft rejection remains a major obstacle to long-term graft survival. Although previous studies have demonstrated that IL-37 exhibited significant immunomodulatory effects in various diseases, research on its role in solid organ transplantation has not been fully elucidated. In this study, the therapeutic effect of recombinant human IL-37 (rhIL-37) was evaluated in a mouse cardiac allotransplantation model. METHODS The C57BL/6 recipients mouse receiving BALB/c donor hearts were treated with rhIL-37. Graft pathological and immunohistology changes, immune cell populations, and cytokine profiles were analyzed on postoperative day (POD) 7. The proliferative capacities of Th1, Th17, and Treg subpopulations were assessed in vitro. Furthermore, the role of the p-mTOR pathway in rhIL-37-induced CD4+ cell inhibition was also elucidated. RESULTS Compared to untreated groups, treatment of rhIL-37 achieved long-term cardiac allograft survival and effectively alleviated allograft rejection indicated by markedly reduced infiltration of CD4+ and CD11c+ cells and ameliorated graft pathological changes. rhIL-37 displayed significantly less splenic populations of Th1 and Th17 cells, as well as matured dendritic cells. The percentages of Tregs in splenocytes were significantly increased in the therapy group. Furthermore, rhIL-37 markedly decreased the levels of TNF-α and IFN-γ, but increased the level of IL-10 in the recipients. In addition, rhIL-37 inhibited the expression of p-mTOR in CD4+ cells of splenocytes. In vitro, similar to the in vivo experiments, rhIL-37 caused a decrease in the proportion of Th1 and Th17, as well as an increase in the proportion of Treg and a reduction in p-mTOR expression in CD4+ cells. CONCLUSIONS We demonstrated that rhIL-37 effectively suppress acute rejection and induce long-term allograft acceptance. The results highlight that IL-37 could be novel and promising candidate for prevention of allograft rejection.
Collapse
Affiliation(s)
- Bo Shao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - Jing-Yi Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - Shao-Hua Ren
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - Ya-Fei Qin
- Department of Vascular Surgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China.
| | - Hong-da Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - Yong-Chang Gao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - De-Jun Kong
- School of Medicine, Nankai University, Tianjin, China.
| | - Yong-Hao Hu
- Department of Lymphatic Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
| | - Hong Qin
- Department of Breast and Thyroid Surgery, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China.
| | - Guang-Ming Li
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Hao Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Key Laboratory of Precise Vascular Reconstruction and Organ Function Repair.
| |
Collapse
|
2
|
Liu D, Che X, Wu G. Deciphering the role of neddylation in tumor microenvironment modulation: common outcome of multiple signaling pathways. Biomark Res 2024; 12:5. [PMID: 38191508 PMCID: PMC10773064 DOI: 10.1186/s40364-023-00545-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/10/2023] [Indexed: 01/10/2024] Open
Abstract
Neddylation is a post-translational modification process, similar to ubiquitination, that controls several biological processes. Notably, it is often aberrantly activated in neoplasms and plays a critical role in the intricate dynamics of the tumor microenvironment (TME). This regulatory influence of neddylation permeates extensively and profoundly within the TME, affecting the behavior of tumor cells, immune cells, angiogenesis, and the extracellular matrix. Usually, neddylation promotes tumor progression towards increased malignancy. In this review, we highlight the latest understanding of the intricate molecular mechanisms that target neddylation to modulate the TME by affecting various signaling pathways. There is emerging evidence that the targeted disruption of the neddylation modification process, specifically the inhibition of cullin-RING ligases (CRLs) functionality, presents a promising avenue for targeted therapy. MLN4924, a small-molecule inhibitor of the neddylation pathway, precisely targets the neural precursor cell-expressed developmentally downregulated protein 8 activating enzyme (NAE). In recent years, significant advancements have been made in the field of neddylation modification therapy, particularly the integration of MLN4924 with chemotherapy or targeted therapy. This combined approach has demonstrated notable success in the treatment of a variety of hematological and solid tumors. Here, we investigated the inhibitory effects of MLN4924 on neddylation and summarized the current therapeutic outcomes of MLN4924 against various tumors. In conclusion, this review provides a comprehensive, up-to-date, and thorough overview of neddylation modifications, and offers insight into the critical importance of this cellular process in tumorigenesis.
Collapse
Affiliation(s)
- Dequan Liu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Xiangyu Che
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| | - Guangzhen Wu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| |
Collapse
|
3
|
Li F, Wang X, Shi J, Wu S, Xing W, He Y. Anti-inflammatory effect of dental pulp stem cells. Front Immunol 2023; 14:1284868. [PMID: 38077342 PMCID: PMC10701738 DOI: 10.3389/fimmu.2023.1284868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Dental pulp stem cells (DPSCs) have received a lot of attention as a regenerative medicine tool with strong immunomodulatory capabilities. The excessive inflammatory response involves a variety of immune cells, cytokines, and has a considerable impact on tissue regeneration. The use of DPSCs for controlling inflammation for the purpose of treating inflammation-related diseases and autoimmune disorders such as supraspinal nerve inflammation, inflammation of the pulmonary airways, systemic lupus erythematosus, and diabetes mellitus is likely to be safer and more regenerative than traditional medicines. The mechanism of the anti-inflammatory and immunomodulatory effects of DPSCs is relatively complex, and it may be that they themselves or some of the substances they secrete regulate a variety of immune cells through inflammatory immune-related signaling pathways. Most of the current studies are still at the laboratory cellular level and animal model level, and it is believed that through the efforts of more researchers, DPSCs/SHED are expected to be transformed into excellent drugs for the clinical treatment of related diseases.
Collapse
Affiliation(s)
- FenYao Li
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - XinXin Wang
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Jin Shi
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - ShuTing Wu
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - WenBo Xing
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Yan He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Colamatteo A, Fusco C, Micillo T, D'Hooghe T, de Candia P, Alviggi C, Longobardi S, Matarese G. Immunobiology of pregnancy: from basic science to translational medicine. Trends Mol Med 2023; 29:711-725. [PMID: 37331882 DOI: 10.1016/j.molmed.2023.05.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023]
Abstract
Embryo implantation failure and spontaneous abortions represent the main causes of infertility in developed countries. Unfortunately, incomplete knowledge of the multiple factors involved in implantation and fetal development keeps the success rate of medically assisted procreation techniques relatively low. According to recent literature, cellular and molecular mechanisms of 'immunogenic tolerance' towards the embryo are crucial to establish an 'anti-inflammatory' state permissive of a healthy pregnancy. In this review we dissect the role played by the immune system in the endometrial-embryo crosstalk, with a particular emphasis towards the fork-head-box-p3 (Foxp3+) CD4+CD25+ regulatory T (Treg) cells and discuss the most recent therapeutic advances in the context of early immune-mediated pregnancy loss.
Collapse
Affiliation(s)
- Alessandra Colamatteo
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Clorinda Fusco
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Napoli, Italy; Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", Consiglio Nazionale delle Ricerche, Napoli, Italy
| | - Teresa Micillo
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Thomas D'Hooghe
- Global Medical Affairs Fertility, Merck Healthcare KGaA, Darmstadt, Germany; Research Group Reproductive Medicine, Department of Development and Regeneration, Organ Systems, Group Biomedical Sciences, KU Leuven (University of Leuven), Leuven, Belgium; Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Paola de Candia
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Carlo Alviggi
- Dipartimento di Sanità Pubblica, Università degli Studi di Napoli "Federico II", Napoli, Italy
| | | | - Giuseppe Matarese
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Napoli, Italy; Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", Consiglio Nazionale delle Ricerche, Napoli, Italy.
| |
Collapse
|
5
|
Giannoukakis N. Tolerogenic dendritic cells in type 1 diabetes: no longer a concept. Front Immunol 2023; 14:1212641. [PMID: 37388741 PMCID: PMC10303908 DOI: 10.3389/fimmu.2023.1212641] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/31/2023] [Indexed: 07/01/2023] Open
Abstract
Tolerogenic dendritic cells (tDC) arrest the progression of autoimmune-driven dysglycemia into clinical, insulin-requiring type 1 diabetes (T1D) and preserve a critical mass of β cells able to restore some degree of normoglycemia in new-onset clinical disease. The safety of tDC, generated ex vivo from peripheral blood leukocytes, has been demonstrated in phase I clinical studies. Accumulating evidence shows that tDC act via multiple layers of immune regulation arresting the action of pancreatic β cell-targeting effector lymphocytes. tDC share a number of phenotypes and mechanisms of action, independent of the method by which they are generated ex vivo. In the context of safety, this yields confidence that the time has come to test the best characterized tDC in phase II clinical trials in T1D, especially given that tDC are already being tested for other autoimmune conditions. The time is also now to refine purity markers and to "universalize" the methods by which tDC are generated. This review summarizes the current state of tDC therapy for T1D, presents points of intersection of the mechanisms of action that the different embodiments use to induce tolerance, and offers insights into outstanding matters to address as phase II studies are imminent. Finally, we present a proposal for co-administration and serially-alternating administration of tDC and T-regulatory cells (Tregs) as a synergistic and complementary approach to prevent and treat T1D.
Collapse
Affiliation(s)
- Nick Giannoukakis
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
6
|
Shi G, Zhou Y, Liu W, Chen C, Wei Y, Yan X, Wu L, Wang W, Sun L, Zhang T. Bone-derived MSCs encapsulated in alginate hydrogel prevent collagen-induced arthritis in mice through the activation of adenosine A 2A/2B receptors in tolerogenic dendritic cells. Acta Pharm Sin B 2023; 13:2778-2794. [PMID: 37425054 PMCID: PMC10326293 DOI: 10.1016/j.apsb.2023.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 07/11/2023] Open
Abstract
Tolerogenic dendritic cells (tolDCs) facilitate the suppression of autoimmune responses by differentiating regulatory T cells (Treg). The dysfunction of immunotolerance results in the development of autoimmune diseases, such as rheumatoid arthritis (RA). As multipotent progenitor cells, mesenchymal stem cells (MSCs), can regulate dendritic cells (DCs) to restore their immunosuppressive function and prevent disease development. However, the underlying mechanisms of MSCs in regulating DCs still need to be better defined. Simultaneously, the delivery system for MSCs also influences their function. Herein, MSCs are encapsulated in alginate hydrogel to improve cell survival and retention in situ, maximizing efficacy in vivo. The three-dimensional co-culture of encapsulated MSCs with DCs demonstrates that MSCs can inhibit the maturation of DCs and the secretion of pro-inflammatory cytokines. In the collagen-induced arthritis (CIA) mice model, alginate hydrogel encapsulated MSCs induce a significantly higher expression of CD39+CD73+ on MSCs. These enzymes hydrolyze ATP to adenosine and activate A2A/2B receptors on immature DCs, further promoting the phenotypic transformation of DCs to tolDCs and regulating naïve T cells to Tregs. Therefore, encapsulated MSCs obviously alleviate the inflammatory response and prevent CIA progression. This finding clarifies the mechanism of MSCs-DCs crosstalk in eliciting the immunosuppression effect and provides insights into hydrogel-promoted stem cell therapy for autoimmune diseases.
Collapse
Affiliation(s)
- Gaona Shi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yu Zhou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Wenshuai Liu
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Chengjuan Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yazi Wei
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xinlong Yan
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Lei Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Lan Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Tiantai Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
7
|
Liu Z, Yang C, Liu X, Xu X, Zhao X, Fu R. Therapeutic strategies to enhance immune response induced by multiple myeloma cells. Front Immunol 2023; 14:1169541. [PMID: 37275861 PMCID: PMC10232766 DOI: 10.3389/fimmu.2023.1169541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/08/2023] [Indexed: 06/07/2023] Open
Abstract
Multiple myeloma (MM)as a haematological malignancy is still incurable. In addition to the presence of somatic genetic mutations in myeloma patients, the presence of immunosuppressive microenvironment greatly affects the outcome of treatment. Although the discovery of immunotherapy makes it possible to break the risk of high toxicity and side effects of traditional chemotherapeutic drugs, there are still obstacles of ineffective treatment or disease recurrence. In this review, we discuss therapeutic strategies to further enhance the specific anti-tumor immune response by activating the immunogenicity of MM cells themselves. New ideas for future myeloma therapeutic approaches are provided.
Collapse
|
8
|
Ott LC, Cuenca AG. Innate immune cellular therapeutics in transplantation. FRONTIERS IN TRANSPLANTATION 2023; 2:1067512. [PMID: 37994308 PMCID: PMC10664839 DOI: 10.3389/frtra.2023.1067512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Successful organ transplantation provides an opportunity to extend the lives of patients with end-stage organ failure. Selectively suppressing the donor-specific alloimmune response, however, remains challenging without the continuous use of non-specific immunosuppressive medications, which have multiple adverse effects including elevated risks of infection, chronic kidney injury, cardiovascular disease, and cancer. Efforts to promote allograft tolerance have focused on manipulating the adaptive immune response, but long-term allograft survival rates remain disappointing. In recent years, the innate immune system has become an attractive therapeutic target for the prevention and treatment of transplant organ rejection. Indeed, contemporary studies demonstrate that innate immune cells participate in both the initial alloimmune response and chronic allograft rejection and undergo non-permanent functional reprogramming in a phenomenon termed "trained immunity." Several types of innate immune cells are currently under investigation as potential therapeutics in transplantation, including myeloid-derived suppressor cells, dendritic cells, regulatory macrophages, natural killer cells, and innate lymphoid cells. In this review, we discuss the features and functions of these cell types, with a focus on their role in the alloimmune response. We examine their potential application as therapeutics to prevent or treat allograft rejection, as well as challenges in their clinical translation and future directions for investigation.
Collapse
Affiliation(s)
- Leah C Ott
- Department of General Surgery, Boston Children's Hospital, Boston, MA, United States
| | - Alex G Cuenca
- Department of General Surgery, Boston Children's Hospital, Boston, MA, United States
| |
Collapse
|
9
|
Decoding lymphomyeloid divergence and immune hyporesponsiveness in G-CSF-primed human bone marrow by single-cell RNA-seq. Cell Discov 2022; 8:59. [PMID: 35732626 PMCID: PMC9217915 DOI: 10.1038/s41421-022-00417-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/28/2022] [Indexed: 12/17/2022] Open
Abstract
Granulocyte colony-stimulating factor (G-CSF) has been widely used to mobilize bone marrow hematopoietic stem/progenitor cells for transplantation in the treatment of hematological malignancies for decades. Additionally, G-CSF is also accepted as an essential mediator in immune regulation, leading to reduced graft-versus-host disease following transplantation. Despite the important clinical roles of G-CSF, a comprehensive, unbiased, and high-resolution survey into the cellular and molecular ecosystem of the human G-CSF-primed bone marrow (G-BM) is lacking so far. Here, we employed single-cell RNA sequencing to profile hematopoietic cells in human bone marrow from two healthy donors before and after 5-day G-CSF administration. Through unbiased bioinformatics analysis, our data systematically showed the alterations in the transcriptional landscape of hematopoietic cells in G-BM, and revealed that G-CSF-induced myeloid-biased differentiation initiated from the stage of lymphoid-primed multipotent progenitors. We also illustrated the cellular and molecular basis of hyporesponsiveness of T cells and natural killer (NK) cells caused by G-CSF stimulation, including the potential direct mechanisms and indirect regulations mediated by ligand–receptor interactions. Taken together, our data extend the understanding of lymphomyeloid divergence and potential mechanisms involved in hyporesponsiveness of T and NK cells in human G-BM, which might provide basis for optimization of stem cell transplantation in hematological malignancy treatment.
Collapse
|
10
|
Belyaeva IV, Kosova AN, Vasiliev AG. Tuberculosis and Autoimmunity. PATHOPHYSIOLOGY 2022; 29:298-318. [PMID: 35736650 PMCID: PMC9228380 DOI: 10.3390/pathophysiology29020022] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 12/17/2022] Open
Abstract
Tuberculosis remains a common and dangerous chronic bacterial infection worldwide. It is long-established that pathogenesis of many autoimmune diseases is mainly promoted by inadequate immune responses to bacterial agents, among them Mycobacterium tuberculosis. Tuberculosis is a multifaceted process having many different outcomes and complications. Autoimmunity is one of the processes characteristic of tuberculosis; the presence of autoantibodies was documented by a large amount of evidence. The role of autoantibodies in pathogenesis of tuberculosis is not quite clear and widely disputed. They are regarded as: (1) a result of imbalanced immune response being reactive in nature, (2) a critical part of TB pathogenicity, (3) a beginning of autoimmune disease, (4) a protective mechanism helping to eliminate microbes and infected cells, and (5) playing dual role, pathogenic and protective. There is no single autoimmunity-mechanism development in tuberculosis; different pathways may be suggested. It may be excessive cell death and insufficient clearance of dead cells, impaired autophagy, enhanced activation of macrophages and dendritic cells, environmental influences such as vitamin D insufficiency, and genetic polymorphism, both of Mycobacterium tuberculosis and host.
Collapse
|
11
|
Metabolic Reprogramming of Innate Immune Cells as a Possible Source of New Therapeutic Approaches in Autoimmunity. Cells 2022; 11:cells11101663. [PMID: 35626700 PMCID: PMC9140143 DOI: 10.3390/cells11101663] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/05/2022] [Accepted: 05/13/2022] [Indexed: 11/19/2022] Open
Abstract
Immune cells undergo different metabolic pathways or immunometabolisms to interact with various antigens. Immunometabolism links immunological and metabolic processes and is critical for innate and adaptive immunity. Although metabolic reprogramming is necessary for cell differentiation and proliferation, it may mediate the imbalance of immune homeostasis, leading to the pathogenesis and development of some diseases, such as autoimmune diseases. Here, we discuss the effects of metabolic changes in autoimmune diseases, exerted by the leading actors of innate immunity, and their role in autoimmunity pathogenesis, suggesting many immunotherapeutic approaches.
Collapse
|
12
|
Sobkowiak-Sobierajska A, Lindemans C, Sykora T, Wachowiak J, Dalle JH, Bonig H, Gennery A, Lawitschka A. Management of Chronic Graft-vs.-Host Disease in Children and Adolescents With ALL: Present Status and Model for a Personalised Management Plan. Front Pediatr 2022; 10:808103. [PMID: 35252060 PMCID: PMC8894895 DOI: 10.3389/fped.2022.808103] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/24/2022] [Indexed: 12/18/2022] Open
Abstract
Herein we review current practice regarding the management of chronic graft-vs.-host disease (cGvHD) in paediatric patients after allogeneic haematopoietic stem cell transplantation (HSCT) for acute lymphoblastic leukaemia (ALL). Topics covered include: (i) the epidemiology of cGvHD; (ii) an overview of advances in our understanding cGvHD pathogenesis; (iii) current knowledge regarding risk factors for cGvHD and prevention strategies complemented by biomarkers; (iii) the paediatric aspects of the 2014 National Institutes for Health-defined diagnosis and grading of cGvHD; and (iv) current options for cGvHD treatment. We cover topical therapy and newly approved tyrosine kinase inhibitors, emphasising the use of immunomodulatory approaches in the context of the delicate counterbalance between immunosuppression and immune reconstitution as well as risks of relapse and infectious complications. We examine real-world approaches of response assessment and tapering schedules of treatment. Furthermore, we report on the optimal timepoints for therapeutic interventions and changes in relation to immune reconstitution and risk of relapse/infection. Additionally, we review the different options for anti-infectious prophylaxis. Finally, we put forth a theory of a holistic view of paediatric cGvHD and its associated manifestations and propose a checklist for individualised risk evaluation with aggregated considerations including site-specific cGvHD evaluation with attention to each individual's GvHD history, previous medical history, comorbidities, and personal tolerance and psychosocial circumstances. To complement this checklist, we present a treatment algorithm using representative patients to inform the personalised management plans for patients with cGvHD after HSCT for ALL who are at high risk of relapse.
Collapse
Affiliation(s)
| | - Caroline Lindemans
- Department of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Pediatric Blood and Bone Marrow Transplantation, Princess Máxima Center, Utrecht, Netherlands
| | - Tomas Sykora
- Department of Pediatric Hematology and Oncology - Haematopoietic Stem Cell Transplantation Unit, National Institute of Children's Diseases and Medical Faculty, Comenius University, Bratislava, Slovakia
| | - Jacek Wachowiak
- Department of Pediatric Oncology, Hematology and Transplantology, Poznan University of Medical Sciences, Poznan, Poland
| | - Jean-Hugues Dalle
- Hematology and Immunology Department, Robert-Debré Hospital, Assistance Publique-Hôpitaux de Paris and University of Paris, Paris, France
| | - Halvard Bonig
- Goethe University Medical Center, Institute of Transfusion Medicine and Immunohematology, and German Red Cross Blood Center Frankfurt, Frankfurt, Germany
| | - Andrew Gennery
- Medical School, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Anita Lawitschka
- Stem Cell Transplantation Unit, St. Anna Children's Hospital, Medical University Vienna, Vienna, Austria.,St. Anna Children's Cancer Research Institute, Vienna, Austria
| |
Collapse
|
13
|
Tabares-Guevara JH, Villa-Pulgarin JA, Hernandez JC. Atherosclerosis: immunopathogenesis and strategies for immunotherapy. Immunotherapy 2021; 13:1231-1244. [PMID: 34382409 DOI: 10.2217/imt-2021-0009] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Atherosclerosis, a chronic inflammatory condition in which atheroma accumulates within the intima of the arterial wall, is a life-threatening manifestation of cardiovascular disease, due to atheroma rupture, chronic luminal narrowing and thrombosis. Current knowledge of the role of a protective immune response in atherosclerotic lesions has provided promising opportunities to develop new immunotherapeutic strategies. In particular, Tregs exert an atheroprotective role by releasing anti-inflammatory cytokines (IL-10/TGF-β) and suppressing autoreactive T lymphocytes. In vivo animal experiments have shown that this can be achieved by developing vaccines that stimulate immunological tolerance to atheroma antigens. Here, we present an overview of the current knowledge of the proatherogenic immune response, and we discuss the strategies currently used as immunoregulatory therapy.
Collapse
Affiliation(s)
| | - Janny A Villa-Pulgarin
- Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Medellín, Colombia
| | - Juan C Hernandez
- Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
| |
Collapse
|
14
|
Perišić Nanut M, Pečar Fonović U, Jakoš T, Kos J. The Role of Cysteine Peptidases in Hematopoietic Stem Cell Differentiation and Modulation of Immune System Function. Front Immunol 2021; 12:680279. [PMID: 34335582 PMCID: PMC8322073 DOI: 10.3389/fimmu.2021.680279] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 07/01/2021] [Indexed: 01/21/2023] Open
Abstract
Cysteine cathepsins are primarily involved in the degradation and recycling of proteins in endo-lysosomal compartments but are also gaining recognition as pivotal proteolytic contributors to various immune functions. Through their extracellular proteolytic activities within the hematopoietic stem cell niche, they are involved in progenitor cell mobilization and differentiation. Cysteine cathepsins, such as cathepsins L and S contribute to antigen-induced adaptive immunity through major histocompatibility complex class II antigen presentation whereas cathepsin X regulates T-cell migration. By regulating toll-like receptor signaling and cytokine secretion cysteine cathepsins activate innate immune cells and affect their functional differentiation. Cathepsins C and H are expressed in cytotoxic T lymphocytes and natural killer cells and are involved in processing of pro-granzymes into proteolytically active forms. Cytoplasmic activities of cathepsins B and L contribute to the maintenance of homeostasis of the adaptive immune response by regulating cell death of T and B lymphocytes. The expression pattern, localization, and activity of cysteine cathepsins is tightly connected to their function in immune cells. Furthermore, cysteine cathepsins together with their endogenous inhibitors, serve as mediators in the interplay between cancer and immune cells that results in immune cell anergy. The aim of the present article is to review the mechanisms of dysregulation of cysteine cathepsins and their inhibitors in relation to immune dysfunction to address new possibilities for regulation of their function.
Collapse
Affiliation(s)
| | | | - Tanja Jakoš
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Janko Kos
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia.,Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
15
|
Mao C, Gorbet MJ, Singh A, Ranjan A, Fiering S. In situ vaccination with nanoparticles for cancer immunotherapy: understanding the immunology. Int J Hyperthermia 2021; 37:4-17. [PMID: 33455477 DOI: 10.1080/02656736.2020.1810333] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
FDA approval of anti-CTLA4 in 2011 for melanoma immunotherapy was paradigm shifting and dramatically accelerated cancer immunotherapy research. The investment and effort have been exceptionally large, with a commensurate impressive pace of discovery. Historical and current research has validated the following key points: tumors are recognized by the immune system; tumors develop an immunosuppressive environment which suppresses the antitumor immune response; successful immunotherapy must overcome that tumor-mediated immunosuppression. While cancer immunotherapy research expanded, a parallel effort developing nanoparticles (NP) for cancer diagnosis and therapy also received major investment and expanded. Initially the two efforts appeared to have minimal synergy. Systemically administered nanoparticles are rapidly ingested by phagocytic leukocytes, and therefore nanotechnologists developed strategies to avoid NP ingestion by leukocytes in order to accomplish nanoparticle accumulation in tumors rather than liver and spleen. Recently, nanotechnology and cancer immunotherapy have increasingly merged since phagocytic leukocytes are the key to reversing the local tumor immunosuppression and the tendency of NP to be phagocytosed can be exploited to manipulate phagocytes for immunotherapy. This review focuses on in situ vaccination (ISV), an immunotherapy approach that can utilize direct injection of immunostimulatory reagents, including NPs, into tumors to disrupt the local immunosuppression, stimulate effective immune response against the treated tumor, and most importantly, generate a systemic antitumor immune response to eliminate metastatic tumors. While there are many specific options for using NP for ISV (reviewed further in this special issue), this review focuses on immunology concepts needed to understand and design successful NP ISV approaches.
Collapse
Affiliation(s)
- Chenkai Mao
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Michael-Joseph Gorbet
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, USA
| | - Akansha Singh
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, USA
| | - Ashish Ranjan
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, USA
| | - Steven Fiering
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.,Norris Cotton Cancer Center, Geisel School of Medicine and Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| |
Collapse
|
16
|
Ríos-Ríos WDJ, Sosa-Luis SA, Torres-Aguilar H. Current advances in using tolerogenic dendritic cells as a therapeutic alternative in the treatment of type 1 diabetes. World J Diabetes 2021; 12:603-615. [PMID: 33995848 PMCID: PMC8107985 DOI: 10.4239/wjd.v12.i5.603] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/26/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease characterized by the destruction of insulin-producing β-cells of the pancreatic islets by autoreactive T cells, leading to high blood glucose levels and severe long-term complications. The typical treatment indicated in T1D is exogenous insulin administration, which controls glucose levels; however, it does not stop the autoimmune process. Various strategies have been implemented aimed at stopping β-cell destruction, such as cellular therapy. Dendritic cells (DCs) as an alternative in cellular therapy have gained great interest for autoimmune disease therapy due to their plasticity to acquire immunoregulatory properties both in vivo and in vitro, performing functions such as anti-inflammatory cytokine secretion and suppression of autoreactive lymphocytes, which are dependent of their tolerogenic phenotype, displayed by features such as semimature phenotype, low surface expression of stimulatory molecules to prime T cells, as well as the elevated expression of inhibitory markers. DCs may be obtained and propagated easily in optimal amounts from peripheral blood or bone marrow precursors, such as monocytes or hematopoietic stem cells, respectively; therefore, various protocols have been established for tolerogenic (tol)DCs manufacturing for therapeutic research in the treatment of T1D. In this review, we address the current advances in the use of tolDCs for T1D therapy, encompassing protocols for their manufacturing, the data obtained from preclinical studies carried out, and the status of clinical research evaluating the safety, feasibility, and effectiveness of tolDCs.
Collapse
Affiliation(s)
- William de Jesús Ríos-Ríos
- Department of Biochemical Sciences Faculty, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68120, Mexico
| | - Sorely Adelina Sosa-Luis
- Department of Molecular Biomedicine, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, Mexico
| | - Honorio Torres-Aguilar
- Department of Biochemical Sciences Faculty, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68120, Mexico
| |
Collapse
|
17
|
Altunöz D, Sayi Yazgan A. Helicobacter-stimulated IL-10-producing B cells suppress differentiation of lipopolysaccharide/Helicobacter felis-activated stimulatory dendritic cells. ACTA ACUST UNITED AC 2021; 45:214-224. [PMID: 33907502 PMCID: PMC8068769 DOI: 10.3906/biy-2012-11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/24/2021] [Indexed: 01/09/2023]
Abstract
Regulatory B cells (Bregs) produce antiinflammatory cytokines and inhibits proinflammatory response. Recently, immunosuppressive roles of Bregs in the effector functions of dendritic cells (DCs) were demonstrated. However, cross talk between Bregs and DCs in Helicobacter infection remains unknown. Here, we showed that direct stimulation of bone marrow-derived DCs (BM-DCs) with Helicobacter felis (H. felis) antigen upregulates their CD86 surface expression and causes the production of interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), interleukin-12 (IL-12), and interleukin-10 (IL-10). Furthermore, prestimulation of DCs with supernatants derived from both Helicobacter-stimulated IL-10– B (Hfstim-IL-10– B) or IL-10+ B (Hfstim-IL-10+) cells suppresses the secretion of TNF-α and IL-6, but does not affect the expression of CD86 and secretion of IL-12 by lipopolysaccharide (LPS) or H. felis-activated BM-DCs. Remarkably, soluble factors secreted by Hfstim-IL-10– B cells, but not by Hfstim-IL-10+ B cells, suppress the secretion of IL-10 by BM-DCs upon subsequent LPS stimulation. In contrast, prestimulation with BM-DCs with supernatants of Hfstim-IL-10+ B cells before H. felis antigen stimulation induces significantly their IL-10 production. Collectively, our data indicated that prestimulation with soluble factors secreted by Hfstim-IL-10+ B cells, DCs exhibit a tolerogenic phenotype in response to LPS or Helicobacter antigen by secreting high levels of IL-10, but decreased levels of IL-6 and TNF-α.
Collapse
Affiliation(s)
- Doğuş Altunöz
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, İstanbul Technical University, İstanbul Turkey
| | - Ayça Sayi Yazgan
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, İstanbul Technical University, İstanbul Turkey
| |
Collapse
|
18
|
Ness S, Lin S, Gordon JR. Regulatory Dendritic Cells, T Cell Tolerance, and Dendritic Cell Therapy for Immunologic Disease. Front Immunol 2021; 12:633436. [PMID: 33777019 PMCID: PMC7988082 DOI: 10.3389/fimmu.2021.633436] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DC) are antigen-presenting cells that can communicate with T cells both directly and indirectly, regulating our adaptive immune responses against environmental and self-antigens. Under some microenvironmental conditions DC develop into anti-inflammatory cells which can induce immunologic tolerance. A substantial body of literature has confirmed that in such settings regulatory DC (DCreg) induce T cell tolerance by suppression of effector T cells as well as by induction of regulatory T cells (Treg). Many in vitro studies have been undertaken with human DCreg which, as a surrogate marker of antigen-specific tolerogenic potential, only poorly activate allogeneic T cell responses. Fewer studies have addressed the abilities of, or mechanisms by which these human DCreg suppress autologous effector T cell responses and induce infectious tolerance-promoting Treg responses. Moreover, the agents and properties that render DC as tolerogenic are many and varied, as are the cells’ relative regulatory activities and mechanisms of action. Herein we review the most current human and, where gaps exist, murine DCreg literature that addresses the cellular and molecular biology of these cells. We also address the clinical relevance of human DCreg, highlighting the outcomes of pre-clinical mouse and non-human primate studies and early phase clinical trials that have been undertaken, as well as the impact of innate immune receptors and symbiotic microbial signaling on the immunobiology of DCreg.
Collapse
Affiliation(s)
- Sara Ness
- Department of Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Shiming Lin
- Department of Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - John R Gordon
- Department of Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada.,Division of Respirology, Critical Care and Sleep Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
19
|
Interferon-α-Induced Dendritic Cells Generated with Human Platelet Lysate Exhibit Elevated Antigen Presenting Ability to Cytotoxic T Lymphocytes. Vaccines (Basel) 2020; 9:vaccines9010010. [PMID: 33374342 PMCID: PMC7823331 DOI: 10.3390/vaccines9010010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 01/06/2023] Open
Abstract
Given the recent advancements of immune checkpoint inhibitors, there is considerable interest in cancer immunotherapy provided through dendritic cell (DC)-based vaccination. Although many studies have been conducted to determine the potency of DC vaccines against cancer, the clinical outcomes are not yet optimal, and further improvement is necessary. In this study, we evaluated the potential ability of human platelet lysate (HPL) to produce interferon-α-induced DCs (IFN-DCs). In the presence of HPL, IFN-DCs (HPL-IFN-DCs) displayed high viability, yield, and purity. Furthermore, HPL-IFN-DCs displayed increased CD14, CD56, and CCR7 expressions compared with IFN-DCs produced without HPL; HPL-IFN-DCs induced an extremely higher number of antigen-specific cytotoxic T lymphocytes (CTLs) than IFN-DCs, which was evaluated with a human leukocyte antigen (HLA)-restricted melanoma antigen recognized by T cells 1 (MART-1) peptide. Additionally, the endocytic and proteolytic activities of HPL-IFN-DCs were increased. Cytokine production of interleukin (IL)-6, IL-10, and tumor necrosis factor (TNF)-α was also elevated in HPL-IFN-DCs, which may account for the enhanced CTL, endocytic, and proteolytic activities. Our findings suggest that ex-vivo-generated HPL-IFN-DCs are a novel monocyte-derived type of DC with high endocytic and proteolytic activities, thus highlighting a unique strategy for DC-based immunotherapies.
Collapse
|
20
|
Todorova D, Zhang Y, Chen Q, Liu J, He J, Fu X, Xu Y. hESC-derived immune suppressive dendritic cells induce immune tolerance of parental hESC-derived allografts. EBioMedicine 2020; 62:103120. [PMID: 33242828 PMCID: PMC7695963 DOI: 10.1016/j.ebiom.2020.103120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 09/28/2020] [Accepted: 10/26/2020] [Indexed: 12/21/2022] Open
Abstract
Background With their inherent capability of unlimited self-renewal and unique potential to differentiate into functional cells of the three germ layers, human embryonic stem cells (hESCs) hold great potential in regenerative medicine. A major challenge in the application of hESC-based cell therapy is the allogeneic immune rejection of hESC-derived allografts. Methods We derived dendritic cell-like cells (DCLs) from wild type and CTLA4-Ig/PD-L1 knock-in hESCs, denoted WT DCLs and CP DCLs. The expression of DC-related genes and surface molecules was evaluated, as well as their DCL capacity to stimulate allogeneic T cells and induce regulatory T (Treg) cells in vitro. Using an immune system humanized mouse model, we investigated whether the adoptive transfer of CP DCLs can induce long-term immune tolerance of parental hESC-derived smooth muscle and cardiomyocyte allografts. Findings CP DCLs can maintain immune suppressive properties after robust inflammatory stimulation and induce Treg cells. While CP DCLs survive transiently in vivo, they induce long-term immune tolerance of parental hESC-derived allografts. Interpretation This strategy does not cause systemic immune suppression but induces immune tolerance specific for DCL-specific HLAs, and thus it presents a safe and effective approach to induce immune tolerance of allografts derived from any clinically approved hESC line. Funding NSFC, leading talents of Guangdong Province Program (No. 00201516), Key R&D Program of Guangdong Province (2019B020235003), Science and Technology Innovation Committee of Shenzhen Municipality (JCYJ20180504170301309), National High-tech R&D Program (863 Program No. 2015AA020310), Shenzhen “Sanming” Project of Medicine (SZSM201602102), Development and Reform Commission of Shenzhen Municipality (S2016004730009), CIRM (DISC2–10559).
Collapse
Affiliation(s)
- Dilyana Todorova
- Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Yue Zhang
- Guangzhou University of Chinese Medicine, Second Clinical Medical College, 232 Waihuan Road E, Guangzhou, Guangdong 510006, China
| | - Qu Chen
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518033, China
| | - Jingfeng Liu
- Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Jingjin He
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518033, China
| | - Xuemei Fu
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518033, China; Shenzhen Children's Hospital, Shenzhen 518026, China..
| | - Yang Xu
- Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Guangzhou University of Chinese Medicine, Second Clinical Medical College, 232 Waihuan Road E, Guangzhou, Guangdong 510006, China; The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518033, China.
| |
Collapse
|
21
|
Abbasi-Kenarsari H, Heidari N, Baghaei K, Amani D, Zali MR, Gaffari Khaligh S, Shafiee A, Hashemi SM. Synergistic therapeutic effect of mesenchymal stem cells and tolerogenic dendritic cells in an acute colitis mouse model. Int Immunopharmacol 2020; 88:107006. [PMID: 33182049 DOI: 10.1016/j.intimp.2020.107006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 08/24/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023]
Abstract
Cell-based therapy with tolerizing cells has been applied for the treatment of inflammatory bowel disease (IBD) in previous experimental and clinical studies with promising results. In the current study, we utilized the dextran sulfate sodium (DSS)-induced colitis model, to investigate if tolerogenic dendritic cell-mesenchymal stem cell (tDC-MSC) combination therapy can augment the therapeutic effects of single transplantation of each cell type. The effect of MSC and tDC co-transplantation on the severity of colitis was assessed by daily monitoring of body weight, stool consistency, and rectal bleeding, and compared with control groups. Moreover, the colon length, colon weight, myeloperoxidase (MPO) activity were measured and evaluated with histological analysis of colon tissues. The Treg cell percentage and cytokine levels in spleens and mesenteric lymph nodes (MLNs) were measured by flow cytometry and ELISA, respectively. The results showed co-transplantation of MSCs and tDCs was more effective in alleviating the clinical and histological manifestations of colitis than monotherapy, especially when compared with MSC alone. The protective effects of tDC-MSC were accompanied by the induction of Treg cells and increased the production of anti-inflammatory cytokines in spleens and mesenteric lymph nodes. Together, co-transplantation of MSCs and tDCs could be a promising and effective therapeutic approach in the treatment of IBD.
Collapse
Affiliation(s)
- Hajar Abbasi-Kenarsari
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Heidari
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorder Research Center, Research Institute for Gastroenterology and Liver Disease, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Davar Amani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Disease Research Center, Research Institute for Gastroenterology and Liver Disease, Shahid Beheshti University of Medical Science, Tehran, Iran
| | | | - Abbas Shafiee
- UQ Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Yang X, Geng J, Meng H. Glucocorticoid receptor modulates dendritic cell function in ulcerative colitis. Histol Histopathol 2020; 35:1379-1389. [PMID: 32706033 DOI: 10.14670/hh-18-241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Ulcerative colitis (UC) is a serious form of inflammatory bowel disease (IBD) occurring worldwide. Although anti-TNF therapy is found to be effective in over 70% of patients with UC, nearly one-third are still deprived of effective treatment. Because glucocorticoids (GC) can effectively inhibit granulocyte-recruitment into the mucosa, cytokine secretion and T cell activation, they are used widely in the treatment of UC. However, remission is observed in only 55% of the patients after one year of steroid use due to a condition known as steroid response. Additionally, it has been noted that 20%-40% of the patients with UC do not respond to GC treatment. Researchers have revealed that the number of dendritic cells (DCs) in patients with UC tends to increase in the colonic mucosa. Many studies have determined that the removal of peripheral DCs through the adsorption and separation of granulocytes and monocytes could improve tolerance of the intestine to its symbiotic flora. Based on these results, further insights regarding the beneficial effects of Adacolumn apheresis in patients subjected to this treatment could be revealed. GC can effectively inhibit the activation of DCs by reducing the levels of major histocompatibility complex class II (MHC II) molecules, which is critical for controlling the recruitment of granulocytes. Therefore, alternative biological and new individualized therapies based on these approaches need to be evaluated to counter UC. In this review, progress in research associated with the regulatory effect of glucocorticoid receptors on DCs under conditions of UC is discussed, thus providing insights and identifying potential targets which could be employed in the treatment strategies against UC.
Collapse
Affiliation(s)
- Xinxin Yang
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jingshu Geng
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hongxue Meng
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, China.,Department of Pathology, Harbin Medical University, Harbin, China.
| |
Collapse
|
23
|
Qian C, Yang LJ, Cui H. Recent Advances in Nanotechnology for Dendritic Cell-Based Immunotherapy. Front Pharmacol 2020; 11:960. [PMID: 32694998 PMCID: PMC7338589 DOI: 10.3389/fphar.2020.00960] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/12/2020] [Indexed: 12/20/2022] Open
Abstract
Dendritic cells (DCs) are the most important antigen-presenting cells that determine cancer immune responses by regulating immune activation and tolerance, especially in the initiation stage of specific responses. Manipulation of DCs to enhance specific antitumor immune response is considered to be a powerful tool for tumor eradication. Nanotechnology, which can incorporate multifunction components and show spatiotemporal control properties, is of great interest and is widely investigated for its ability to improve immune response activity against cancer and even for prevention and avoiding recurrence. In this mini-review, we aim to provide a general view of DC-based immunotherapy, including that involving the promising nanotechnology. Particularly we discuss: (1) manipulation or engineering of DCs for adoptive vaccination, (2) employing DCs as a combination to more existing therapeutics in tumor treatment, and (3) direct modulation of DCs in vivo to enhance antigen presentation efficacy and priming T cells subsequently. We comprehensively discuss the updates on the application of nanotechnology in DC-based immunotherapy and provide some insights on the challenges and opportunities of DC-based immunotherapeutics, including the potential of nanotechnology, against cancers.
Collapse
Affiliation(s)
| | | | - Hong Cui
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
24
|
Du X, Chang S, Guo W, Zhang S, Chen ZK. Progress in Liver Transplant Tolerance and Tolerance-Inducing Cellular Therapies. Front Immunol 2020; 11:1326. [PMID: 32670292 PMCID: PMC7326808 DOI: 10.3389/fimmu.2020.01326] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022] Open
Abstract
Liver transplantation is currently the most effective method for treating end-stage liver disease. However, recipients still need long-term immunosuppressive drug treatment to control allogeneic immune rejection, which may cause various complications and affect the long-term survival of the recipient. Many liver transplant researchers constantly pursue the induction of immune tolerance in liver transplant recipients, immunosuppression withdrawal, and the maintenance of good and stable graft function. Although allogeneic liver transplantation is more tolerated than transplantation of other solid organs, and it shows a certain incidence of spontaneous tolerance, there is still great risk for general recipients. With the gradual progress in our understanding of immune regulatory mechanisms, a variety of immune regulatory cells have been discovered, and good results have been obtained in rodent and non-human primate transplant models. As immune cell therapies can induce long-term stable tolerance, they provide a good prospect for the induction of tolerance in clinical liver transplantation. At present, many transplant centers have carried out tolerance-inducing clinical trials in liver transplant recipients, and some have achieved gratifying results. This article will review the current status of liver transplant tolerance and the research progress of different cellular immunotherapies to induce this tolerance, which can provide more support for future clinical applications.
Collapse
Affiliation(s)
- Xiaoxiao Du
- Henan Key Laboratory of Digestive Organ Transplantation, Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, ZhengZhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Sheng Chang
- Key Laboratory of Organ Transplantation, Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Wenzhi Guo
- Henan Key Laboratory of Digestive Organ Transplantation, Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, ZhengZhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuijun Zhang
- Henan Key Laboratory of Digestive Organ Transplantation, Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, ZhengZhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhonghua Klaus Chen
- Key Laboratory of Organ Transplantation, Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
25
|
Ginefra P, Lorusso G, Vannini N. Innate Immune Cells and Their Contribution to T-Cell-Based Immunotherapy. Int J Mol Sci 2020; 21:ijms21124441. [PMID: 32580431 PMCID: PMC7352556 DOI: 10.3390/ijms21124441] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/15/2022] Open
Abstract
In recent years, immunotherapy has become the most promising therapy for a variety of cancer types. The development of immune checkpoint blockade (ICB) therapies, the adoptive transfer of tumor-specific T cells (adoptive cell therapy (ACT)) or the generation of T cells engineered with chimeric antigen receptors (CAR) have been successfully applied to elicit durable immunological responses in cancer patients. However, not all the patients respond to these therapies, leaving a consistent gap of therapeutic improvement that still needs to be filled. The innate immune components of the tumor microenvironment play a pivotal role in the activation and modulation of the adaptive immune response against the tumor. Indeed, several efforts are made to develop strategies aimed to harness innate immune cells in the context of cancer immunotherapy. In this review, we describe the contribution of innate immune cells in T-cell-based cancer immunotherapy and the therapeutic approaches implemented to broaden the efficacy of these therapies in cancer patients.
Collapse
Affiliation(s)
- Pierpaolo Ginefra
- Laboratory of Immunosenescence and Stem Cell Metabolism, Department of Oncology, Ludwig Cancer Institute, University of Lausanne, 1066 Epalinges, Switzerland;
| | - Girieca Lorusso
- Experimental and Translational Oncology, Department of Oncology, Microbiology, Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland;
| | - Nicola Vannini
- Laboratory of Immunosenescence and Stem Cell Metabolism, Department of Oncology, Ludwig Cancer Institute, University of Lausanne, 1066 Epalinges, Switzerland;
- Correspondence:
| |
Collapse
|
26
|
Thorp EB, Boada C, Jarbath C, Luo X. Nanoparticle Platforms for Antigen-Specific Immune Tolerance. Front Immunol 2020; 11:945. [PMID: 32508829 PMCID: PMC7251028 DOI: 10.3389/fimmu.2020.00945] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/22/2020] [Indexed: 12/13/2022] Open
Abstract
Innovative approaches in nanoparticle design have facilitated the creation of new formulations of nanoparticles that are capable of selectively calibrating the immune response. These nanomaterials may be engineered to interact with specific cellular and molecular targets. Recent advancements in nanoparticle synthesis have enabled surface functionalization of particles that mimic the diversity of ligands on the cell surface. Platforms synthesized using these design principles, called "biomimetic" nanoparticles, have achieved increasingly sophisticated targeting specificity and cellular trafficking capabilities. This holds great promise for next generation therapies that seek to achieve immune tolerance. In this review, we discuss the importance of physical design parameters including size, shape, and biomimetic surface functionalization, on the biodistribution, safety and efficacy of biologic nanoparticles. We will also explore potential applications for immune tolerance for organ or stem cell transplantation.
Collapse
Affiliation(s)
- Edward B. Thorp
- Departments of Pathology & Pediatrics at Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Christian Boada
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Clarens Jarbath
- Departments of Pathology & Pediatrics at Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Xunrong Luo
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
- Duke Transplant Center, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
27
|
Johnson L, Duschl A, Himly M. Nanotechnology-Based Vaccines for Allergen-Specific Immunotherapy: Potentials and Challenges of Conventional and Novel Adjuvants under Research. Vaccines (Basel) 2020; 8:vaccines8020237. [PMID: 32443671 PMCID: PMC7349961 DOI: 10.3390/vaccines8020237] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/16/2020] [Accepted: 05/16/2020] [Indexed: 12/12/2022] Open
Abstract
The increasing prevalence of allergic diseases demands efficient therapeutic strategies for their mitigation. Allergen-specific immunotherapy (AIT) is the only causal rather than symptomatic treatment method available for allergy. Currently, AIT is being administered using immune response modifiers or adjuvants. Adjuvants aid in the induction of a vigorous and long-lasting immune response, thereby improving the efficiency of AIT. The successful development of a novel adjuvant requires a thorough understanding of the conventional and novel adjuvants under development. Thus, this review discusses the potentials and challenges of these adjuvants and their mechanism of action. Vaccine development based on nanoparticles is a promising strategy for AIT, due to their inherent physicochemical properties, along with their ease of production and ability to stimulate innate immunity. Although nanoparticles have provided promising results as an adjuvant for AIT in in vivo studies, a deeper insight into the interaction of nanoparticle-allergen complexes with the immune system is necessary. This review focuses on the methods of harnessing the adjuvant effect of nanoparticles by detailing the molecular mechanisms underlying the immune response, which includes allergen uptake, processing, presentation, and induction of T cell differentiation.
Collapse
|
28
|
Valencia-Ortega J, Saucedo R, Peña-Cano MI, Hernández-Valencia M, Cruz-Durán JG. Immune tolerance at the maternal-placental interface in healthy pregnancy and pre-eclampsia. J Obstet Gynaecol Res 2020; 46:1067-1076. [PMID: 32428989 DOI: 10.1111/jog.14309] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/17/2020] [Accepted: 04/30/2020] [Indexed: 12/15/2022]
Abstract
AIM The objective of this review is to describe the immunological mechanisms which facilitate maternal tolerance at the maternal-placental interface, and to discuss how these mechanisms are disrupted in pre-eclampsia. METHODS A literature review was performed based on the analysis of papers available on PubMed. The most important and relevant studies regarding the immunological mechanisms which facilitate maternal tolerance in healthy pregnancy and pre-eclampsia are presented in this article. RESULTS The maternal-placental interface is the site where the immune tolerance begins and develops. Within the innate immunity, natural killer cells, macrophages and dendritic cells play a pivotal role in tolerance through regulation of inflammation. On the other hand, within the adaptive immunity, the correct increase of regulatory T cells is crucial for ensuring immune tolerance toward placental cells. Disturbances in maternal tolerance can lead to the appearance of pregnancy complications such as pre-eclampsia, which has a considerable impact on perinatal morbidity and mortality. CONCLUSION Our partial knowledge of immunological mechanisms involved in tolerance at the maternal-placental interface indicates that pre-eclampsia is characterized by alterations of this maternal immune tolerance, which could represent the origin of the disease.
Collapse
Affiliation(s)
- Jorge Valencia-Ortega
- Endocrine Research Unit, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Renata Saucedo
- Endocrine Research Unit, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - María I Peña-Cano
- Faculty of Chemistry, Universidad Autónoma del Estado de México, Toluca, Mexico
| | - Marcelino Hernández-Valencia
- Endocrine Research Unit, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - José G Cruz-Durán
- UMAE Hospital de Gineco-Obstetricia No. 3, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| |
Collapse
|
29
|
Crispim PCA, Jammal MP, Murta EFC, Nomelini RS. Endometriosis: What is the Influence of Immune Cells? Immunol Invest 2020; 50:372-388. [DOI: 10.1080/08820139.2020.1764577] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Paula Carolina Arvelos Crispim
- Research Institute of Oncology (Ipon)/Department of Gynecology and Obstetrics, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| | - Millena Prata Jammal
- Research Institute of Oncology (Ipon)/Department of Gynecology and Obstetrics, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| | - Eddie Fernando Candido Murta
- Research Institute of Oncology (Ipon)/Department of Gynecology and Obstetrics, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| | - Rosekeila Simões Nomelini
- Research Institute of Oncology (Ipon)/Department of Gynecology and Obstetrics, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| |
Collapse
|
30
|
Tang H, Lai Y, Zheng J, Chen K, Jiang H, Xu G. MiR-146a Promotes Tolerogenic Properties of Dendritic Cells and through Targeting Notch1 Signaling. Immunol Invest 2020; 49:555-570. [PMID: 31957545 DOI: 10.1080/08820139.2019.1708385] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND MiR-146a has been shown to negatively regulate innate immune, inflammatory response and antiviral pathway, however, its role in the tolerogenic responses remains largely unknown. This study aimed to investigate the role of miR-146a in the OVA-induced allergic inflammation of dendritic cells (DCs). METHODS Bone marrow-derived DCs (BMDCs) were treated with OVA (100 µg/ml) for 24 h. MiR-146a expressions were assessed by quantitative RT-PCR. BMDCs were transfected with miR-146a mimics or inhibitor. Cell surface markers were analyzed by flow cytometry. Cytokine levels were determined by ELISA assay. Mixed lymphocyte culture assay was adopted to assess CD4 + T-cell differentiation. The 3' UTR luciferase reporter assay was utilized to determine the miRNA target sequence. RESULTS OVA treatment significantly up-regulated miR-146a in BMDCs in a dose- and time-dependent manner. In the OVA-treated DCs, overexpression of miR-146a (mimics transfection) down-regulated the surface markers (CD80, CD86) and increased production of anti-inflammatory cytokines TGF-β1 and IL-10 but decreased pro-inflammatory cytokine IL-12. MiR-146a overexpression promoted immature DC to induce regulatory T cells (Treg) differentiation. By contrast, transfection of miR-146a inhibitor into DC exhibited the opposite trends. Notch1 was a direct target of miR-146a, and Notch1 knock-down induced similar effects as miR-146a mimics transfection in BMDCs. Moreover, the effect of miR-146a inhibitor on OVA-induced DC was attenuated by Notch1 knock-down. CONCLUSION miRNA-146a promoted tolerogenic properties of DCs, at least partially, through targeting Notch1 signaling.
Collapse
Affiliation(s)
- Haocheng Tang
- Department of Otorhinolaryngology Head and Neck Surgery, Nanfang Hospital of Southern Medical University , Guangzhou, China
| | - Yinyan Lai
- Hospital of Otorhinolaryngology, the First Affiliated Hospital of Sun Yat-sen University , Guangzhou, China
| | - Jing Zheng
- Hospital of Otorhinolaryngology Head and Neck Surgery, Hainan General Hospital , Haikou, China
| | - Kaitian Chen
- Hospital of Otorhinolaryngology, the First Affiliated Hospital of Sun Yat-sen University , Guangzhou, China
| | - Hongyan Jiang
- Hospital of Otorhinolaryngology Head and Neck Surgery, Hainan General Hospital , Haikou, China
| | - Geng Xu
- Hospital of Otorhinolaryngology, the First Affiliated Hospital of Sun Yat-sen University , Guangzhou, China
| |
Collapse
|
31
|
Deniz AAH, Abdik EA, Abdik H, Aydın S, Şahin F, Taşlı PN. Zooming in across the Skin: A Macro-to-Molecular Panorama. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1247:157-200. [PMID: 31953808 DOI: 10.1007/5584_2019_442] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
32
|
Machado FC, Girola N, Maia VSC, Bergami-Santos PC, Morais AS, Azevedo RA, Figueiredo CR, Barbuto JAM, Travassos LR. Immunomodulatory Protective Effects of Rb9 Cyclic-Peptide in a Metastatic Melanoma Setting and the Involvement of Dendritic Cells. Front Immunol 2020; 10:3122. [PMID: 32010152 PMCID: PMC6974543 DOI: 10.3389/fimmu.2019.03122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/23/2019] [Indexed: 11/30/2022] Open
Abstract
The cyclic VHCDR3-derived peptide (Rb9) from RebMab200 antibody, directed to a NaPi2B phosphate-transport protein, displayed anti-metastatic melanoma activity at 50–300 μg intraperitoneally injected in syngeneic mice. Immune deficient mice failed to respond to the peptide protective effect. Rb9 induced increased CD8+ T and low Foxp3+ T cell infiltration in lung metastases and high IFN-γ and low TGF-β in lymphoid organs. The peptide co-localized with F-actin and a nuclear site in dendritic cells and specifically bound to MIF and CD74 in a dot-blot setting. Murine bone-marrow dendritic cells preincubated with Rb9 for 6 h were treated with MIF for short time periods. The modulated responses showed stimulation of CD74 and inhibition of pPI3K, pERK, and pNF-κB as compared to MIF alone. Rb9 in a melanoma-conditioned medium, stimulated the M1 type conversion in bone marrow-macrophages. Functional aspects of Rb9 in vivo were studied in therapeutic and prophylactic protocols using a melanoma metastatic model. In both protocols Rb9 exhibited a marked anti-melanoma protection. Human dendritic cells were also investigated showing increased expression of surface markers in response to Rb9 incubation. Rb9 either stimulated or slightly inhibited moDCs submitted to inhibitory (TGF-β and IL-10) or activating (LPS) conditions, respectively. Lymphocyte proliferation was obtained with moDCs stimulated by Rb9 and tumor cell lysate. In moDCs from cancer patients Rb9 exerted immunomodulatory activities depending on their functional status. The peptide may inhibit over-stimulated cells, stimulate poorly activated and suppressed cells, or cause instead, little phenotypic and functional alterations. Recently, the interaction MIF-CD74 has been associated to PD-L1 expression and IFN-γ, suggesting a target for melanoma treatment. The effects described for Rb9 and the protection against metastatic melanoma may suggest the possibility of a peptide reagent that could be relevant when associated to modern immunotherapeutic procedures.
Collapse
Affiliation(s)
- Fabrício C Machado
- Recepta Bio, São Paulo, Brazil.,Experimental Oncology Unit, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | - Natália Girola
- Recepta Bio, São Paulo, Brazil.,Experimental Oncology Unit, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | - Vera S C Maia
- Recepta Bio, São Paulo, Brazil.,Experimental Oncology Unit, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | - Patrícia C Bergami-Santos
- Recepta Bio, São Paulo, Brazil.,Tumor Immunology Laboratory, Department of Immunology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | | | - Ricardo A Azevedo
- Experimental Oncology Unit, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | - Carlos R Figueiredo
- Experimental Oncology Unit, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil.,MediCity, University of Turku, Turku, Finland
| | - José A M Barbuto
- Recepta Bio, São Paulo, Brazil.,Tumor Immunology Laboratory, Department of Immunology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | - Luiz R Travassos
- Recepta Bio, São Paulo, Brazil.,Experimental Oncology Unit, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
33
|
Analyzing the Metabolic Phenotype of Bone Marrow-Derived Dendritic Cells by Assessing Their Oxygen Consumption and Extracellular Acidification. Methods Mol Biol 2020; 2184:185-196. [PMID: 32808226 DOI: 10.1007/978-1-0716-0802-9_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Dendritic cells (DCs) are the bridge between innate and T cell-dependent adaptive immunity, and are promising therapeutic targets for cancer and immune-mediated disorders. In the recent past, DCs have gained significant interest to manipulate them for the treatment of cancer and immune-mediated disorders. This can be achieved by differentiating them into either immunogenic or tolerogenic DCs (TolDCs), by modulating their metabolic pathways, including glycolysis, oxidative phosphorylation, and fatty acid metabolism, to orchestrate their desired function. For immunogenic DCs, this maturation shifts the metabolic profile to a glycolytic metabolic state and leads to the use of glucose as a carbon source, whereas TolDCs prefer oxidative phosphorylation (OXPHOS) and fatty acid oxidation for their energy resource.Understanding the metabolic regulation of DC subsets and functions at large not only will improve our understanding of DC biology and immune regulation, but can also open up opportunities for treating immune-mediated ailments and cancers by tweaking endogenous T-cell responses through DC-based immunotherapies. Here we describe a method to analyze this dichotomous metabolic reprogramming of the DCs for generating reliable and effective DC cell therapy products. We, hereby, report how to measure the OXPHOS and glycolysis level of DCs. We focus on the metabolic reprogramming of TolDCs using a pharmacological nuclear factor (erythroid-derived 2)-like-2 factor (Nrf2) activator as an example to illustrate the metabolic profile of TolDCs.
Collapse
|
34
|
Martínez C, Juarranz Y, Gutiérrez-Cañas I, Carrión M, Pérez-García S, Villanueva-Romero R, Castro D, Lamana A, Mellado M, González-Álvaro I, Gomariz RP. A Clinical Approach for the Use of VIP Axis in Inflammatory and Autoimmune Diseases. Int J Mol Sci 2019; 21:E65. [PMID: 31861827 PMCID: PMC6982157 DOI: 10.3390/ijms21010065] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022] Open
Abstract
The neuroendocrine and immune systems are coordinated to maintain the homeostasis of the organism, generating bidirectional communication through shared mediators and receptors. Vasoactive intestinal peptide (VIP) is the paradigm of an endogenous neuropeptide produced by neurons and endocrine and immune cells, involved in the control of both innate and adaptive immune responses. Exogenous administration of VIP exerts therapeutic effects in models of autoimmune/inflammatory diseases mediated by G-protein-coupled receptors (VPAC1 and VPAC2). Currently, there are no curative therapies for inflammatory and autoimmune diseases, and patients present complex diagnostic, therapeutic, and prognostic problems in daily clinical practice due to their heterogeneous nature. This review focuses on the biology of VIP and VIP receptor signaling, as well as its protective effects as an immunomodulatory factor. Recent progress in improving the stability, selectivity, and effectiveness of VIP/receptors analogues and new routes of administration are highlighted, as well as important advances in their use as biomarkers, contributing to their potential application in precision medicine. On the 50th anniversary of VIP's discovery, this review presents a spectrum of potential clinical benefits applied to inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Carmen Martínez
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Yasmina Juarranz
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Irene Gutiérrez-Cañas
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Mar Carrión
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Selene Pérez-García
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Raúl Villanueva-Romero
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - David Castro
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Amalia Lamana
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Mario Mellado
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología (CNB)/CSIC, 28049 Madrid, Spain;
| | - Isidoro González-Álvaro
- Servicio de Reumatología, Instituto de Investigación Médica, Hospital Universitario La Princesa, 28006 Madrid, Spain;
| | - Rosa P. Gomariz
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| |
Collapse
|
35
|
Abstract
Multiple myeloma (MM) is a B-cell malignancy characterized by the abnormal proliferation of clonal plasma cells in the bone marrow leading to end-organ manifestations. Despite the advancement in the therapy and care of patients with MM, relapse and resistance to standard therapy remain significant. The development of immunotherapy as a treatment modality for many types of cancers has led investigators to explore its use in MM in order to elicit myeloma-targeted immune responses, especially given that immune dysregulation is an underlying feature in the pathogenesis and progression of MM. In this concise review, we discuss the different advances in the immune-based therapy of MM, from immunomodulation, vaccines, to monoclonal antibodies, checkpoint inhibitors, adoptive T-cell therapies, and future promising therapies under investigation.
Collapse
|
36
|
Wei Y, Lan Y, Zhong Y, Yu K, Xu W, Zhu R, Sun H, Ding Y, Wang Y, Zeng Q. Interleukin-38 alleviates cardiac remodelling after myocardial infarction. J Cell Mol Med 2019; 24:371-384. [PMID: 31746138 PMCID: PMC6933378 DOI: 10.1111/jcmm.14741] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/12/2019] [Accepted: 09/23/2019] [Indexed: 12/21/2022] Open
Abstract
Excessive immune‐mediated inflammatory reaction plays a deleterious role in ventricular remodelling after myocardial infarction (MI). Interleukin (IL)‐38 is a newly characterized cytokine of the IL‐1 family and has been reported to exert a protective effect in some autoimmune diseases. However, its role in cardiac remodelling post‐MI remains unknown. In this study, we found that the expression of IL‐38 was increased in infarcted heart after MI induced in C57BL/6 mice by permanent ligation of the left anterior descending artery. In addition, our data showed that ventricular remodelling after MI was significantly ameliorated after recombinant IL‐38 injection in mice. This amelioration was demonstrated by better cardiac function, restricted inflammatory response, attenuated myocardial injury and decreased myocardial fibrosis. Our results in vitro revealed that IL‐38 affects the phenotype of dendritic cells (DCs) and IL‐38 plus troponin I (TNI)‐treated tolerogenic DCs dampened adaptive immune response when co‐cultured with CD4+T cells. In conclusion, IL‐38 plays a protective effect in ventricular remodelling post‐MI, one possibility by influencing DCs to attenuate inflammatory response. Therefore, targeting IL‐38 may hold a new therapeutic potential in treating MI.
Collapse
Affiliation(s)
- Yuzhen Wei
- Institute of Cardiology, Union Hospital, TongJi Medical College, Huahzong University of Science and Technology, Wuhan, China
| | - Yin Lan
- Institute of Cardiology, Union Hospital, TongJi Medical College, Huahzong University of Science and Technology, Wuhan, China
| | - Yucheng Zhong
- Institute of Cardiology, Union Hospital, TongJi Medical College, Huahzong University of Science and Technology, Wuhan, China
| | - Kunwu Yu
- Institute of Cardiology, Union Hospital, TongJi Medical College, Huahzong University of Science and Technology, Wuhan, China
| | - Wenbin Xu
- Institute of Cardiology, Union Hospital, TongJi Medical College, Huahzong University of Science and Technology, Wuhan, China
| | - Ruirui Zhu
- Institute of Cardiology, Union Hospital, TongJi Medical College, Huahzong University of Science and Technology, Wuhan, China
| | - Haitao Sun
- Institute of Cardiology, Union Hospital, TongJi Medical College, Huahzong University of Science and Technology, Wuhan, China
| | - Yan Ding
- Institute of Cardiology, Union Hospital, TongJi Medical College, Huahzong University of Science and Technology, Wuhan, China
| | - Yue Wang
- Institute of Cardiology, Union Hospital, TongJi Medical College, Huahzong University of Science and Technology, Wuhan, China
| | - Qiutang Zeng
- Institute of Cardiology, Union Hospital, TongJi Medical College, Huahzong University of Science and Technology, Wuhan, China
| |
Collapse
|
37
|
Ritprajak P, Kaewraemruaen C, Hirankarn N. Current Paradigms of Tolerogenic Dendritic Cells and Clinical Implications for Systemic Lupus Erythematosus. Cells 2019; 8:cells8101291. [PMID: 31640263 PMCID: PMC6830089 DOI: 10.3390/cells8101291] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/05/2019] [Accepted: 10/16/2019] [Indexed: 12/12/2022] Open
Abstract
Tolerogenic dendritic cells (tolDCs) are central players in the initiation and maintenance of immune tolerance and subsequent prevention of autoimmunity. Recent advances in treatment of autoimmune diseases including systemic lupus erythematosus (SLE) have focused on inducing specific tolerance to avoid long-term use of immunosuppressive drugs. Therefore, DC-targeted therapies to either suppress DC immunogenicity or to promote DC tolerogenicity are of high interest. This review describes details of the typical characteristics of in vivo and ex vivo tolDC, which will help to select a protocol that can generate tolDC with high functional quality for clinical treatment of autoimmune disease in individual patients. In addition, we discuss the recent studies uncovering metabolic pathways and their interrelation intertwined with DC tolerogenicity. This review also highlights the clinical implications of tolDC-based therapy for SLE treatment, examines the current clinical therapeutics in patients with SLE, which can generate tolDC in vivo, and further discusses on possibility and limitation on each strategy. This synthesis provides new perspectives on development of novel therapeutic approaches for SLE and other autoimmune diseases.
Collapse
Affiliation(s)
- Patcharee Ritprajak
- Research Unit in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand.
- Department of Microbiology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Chamraj Kaewraemruaen
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Nattiya Hirankarn
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand.
- Immunology Unit, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
38
|
Jakoš T, Pišlar A, Jewett A, Kos J. Cysteine Cathepsins in Tumor-Associated Immune Cells. Front Immunol 2019; 10:2037. [PMID: 31555270 PMCID: PMC6724555 DOI: 10.3389/fimmu.2019.02037] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/12/2019] [Indexed: 12/23/2022] Open
Abstract
Cysteine cathepsins are key regulators of the innate and adaptive arms of the immune system. Their expression, activity, and subcellular localization are associated with the distinct development and differentiation stages of immune cells. They promote the activation of innate myeloid immune cells since they contribute to toll-like receptor signaling and to cytokine secretion. Furthermore, they control lysosomal biogenesis and autophagic flux, thus affecting innate immune cell survival and polarization. They also regulate bidirectional communication between the cell exterior and the cytoskeleton, thus influencing cell interactions, morphology, and motility. Importantly, cysteine cathepsins contribute to the priming of adaptive immune cells by controlling antigen presentation and are involved in cytotoxic granule mediated killing in cytotoxic T lymphocytes and natural killer cells. Cathepins'aberrant activity can be prevented by their endogenous inhibitors, cystatins. However, dysregulated proteolysis contributes significantly to tumor progression also by modulation of the antitumor immune response. Especially tumor-associated myeloid cells, such as tumor-associated macrophages and myeloid-derived suppressor cells, which are known for their tumor promoting and immunosuppressive functions, constitute the major source of excessive cysteine cathepsin activity in cancer. Since they are enriched in the tumor microenvironment, cysteine cathepsins represent exciting targets for development of new diagnostic and therapeutic moieties.
Collapse
Affiliation(s)
- Tanja Jakoš
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Anja Pišlar
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Anahid Jewett
- UCLA School of Dentistry and Medicine, Los Angeles, CA, United States
| | - Janko Kos
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia.,Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
39
|
Stamatopoulos A, Stamatopoulos T, Gamie Z, Kenanidis E, Ribeiro RDC, Rankin KS, Gerrand C, Dalgarno K, Tsiridis E. Mesenchymal stromal cells for bone sarcoma treatment: Roadmap to clinical practice. J Bone Oncol 2019; 16:100231. [PMID: 30956944 PMCID: PMC6434099 DOI: 10.1016/j.jbo.2019.100231] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/14/2019] [Accepted: 03/18/2019] [Indexed: 12/12/2022] Open
Abstract
Over the past few decades, there has been growing interest in understanding the molecular mechanisms of cancer pathogenesis and progression, as it is still associated with high morbidity and mortality. Current management of large bone sarcomas typically includes the complex therapeutic approach of limb salvage or sacrifice combined with pre- and postoperative multidrug chemotherapy and/or radiotherapy, and is still associated with high recurrence rates. The development of cellular strategies against specific characteristics of tumour cells appears to be promising, as they can target cancer cells selectively. Recently, Mesenchymal Stromal Cells (MSCs) have been the subject of significant research in orthopaedic clinical practice through their use in regenerative medicine. Further research has been directed at the use of MSCs for more personalized bone sarcoma treatments, taking advantage of their wide range of potential biological functions, which can be augmented by using tissue engineering approaches to promote healing of large defects. In this review, we explore the use of MSCs in bone sarcoma treatment, by analyzing MSCs and tumour cell interactions, transduction of MSCs to target sarcoma, and their clinical applications on humans concerning bone regeneration after bone sarcoma extraction.
Collapse
Key Words
- 5-FC, 5-fluorocytosine
- AAT, a1-antitrypsin
- APCs, antigen presenting cells
- ASC, adipose-derived stromal/stem cells
- Abs, antibodies
- Ang1, angiopoietin-1
- BD, bone defect
- BMMSCs, bone marrow-derived mesenchymal stromal cells
- Biology
- Bone
- CAM, cell adhesion molecules
- CCL5, chemokine ligand 5
- CCR2, chemokine receptor 2
- CD, classification determinants
- CD, cytosine deaminase
- CLUAP1, clusterin associated protein 1
- CSPG4, Chondroitin sulfate proteoglycan 4
- CX3CL1, chemokine (C-X3-C motif) ligand 1
- CXCL12/CXCR4, C-X-C chemokine ligand 12/ C-X-C chemokine receptor 4
- CXCL12/CXCR7, C-X-C chemokine ligand 12/ C-X-C chemokine receptor 7
- CXCR4, chemokine receptor type 4
- Cell
- DBM, Demineralized Bone Marrow
- DKK1, dickkopf-related protein 1
- ECM, extracellular matrix
- EMT, epithelial-mesenchymal transition
- FGF-2, fibroblast growth factors-2
- FGF-7, fibroblast growth factors-7
- GD2, disialoganglioside 2
- HER2, human epidermal growth factor receptor 2
- HGF, hepatocyte growth factor
- HMGB1/RACE, high mobility group box-1 protein/ receptor for advanced glycation end-products
- IDO, indoleamine 2,3-dioxygenase
- IFN-α, interferon alpha
- IFN-β, interferon beta
- IFN-γ, interferon gamma
- IGF-1R, insulin-like growth factor 1 receptor
- IL-10, interleukin-10
- IL-12, interleukin-12
- IL-18, interleukin-18
- IL-1b, interleukin-1b
- IL-21, interleukin-21
- IL-2a, interleukin-2a
- IL-6, interleukin-6
- IL-8, interleukin-8
- IL11RA, Interleukin 11 Receptor Subunit Alpha
- MAGE, melanoma antigen gene
- MCP-1, monocyte chemoattractant protein-1
- MMP-2, matrix metalloproteinase-2
- MMP2/9, matrix metalloproteinase-2/9
- MRP, multidrug resistance protein
- MSCs, mesenchymal stem/stromal cells
- Mesenchymal
- NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells
- OPG, osteoprotegerin
- Orthopaedic
- PBS, phosphate-buffered saline
- PDGF, platelet-derived growth factor
- PDX, patient derived xenograft
- PEDF, pigment epithelium-derived factor
- PGE2, prostaglandin E2
- PI3K/Akt, phosphoinositide 3-kinase/protein kinase B
- PTX, paclitaxel
- RANK, receptor activator of nuclear factor kappa-B
- RANKL, receptor activator of nuclear factor kappa-B ligand
- RBCs, red blood cells
- RES, reticuloendothelial system
- RNA, ribonucleic acid
- Regeneration
- SC, stem cells
- SCF, stem cells factor
- SDF-1, stromal cell-derived factor 1
- STAT-3, signal transducer and activator of transcription 3
- Sarcoma
- Stromal
- TAAs, tumour-associated antigens
- TCR, T cell receptor
- TGF-b, transforming growth factor beta
- TGF-b1, transforming growth factor beta 1
- TNF, tumour necrosis factor
- TNF-a, tumour necrosis factor alpha
- TRAIL, tumour necrosis factor related apoptosis-inducing ligand
- Tissue
- VEGF, vascular endothelial growth factor
- VEGFR, vascular endothelial growth factor receptor
- WBCs, white blood cell
- hMSCs, human mesenchymal stromal cells
- rh-TRAIL, recombinant human tumour necrosis factor related apoptosis-inducing ligand
Collapse
Affiliation(s)
- Alexandros Stamatopoulos
- Academic Orthopaedic Unit, Papageorgiou General Hospital, Aristotle University Medical School, West Ring Road of Thessaloniki, Pavlos Melas Area, N. Efkarpia, 56403 Thessaloniki, Greece
- Center of Orthopaedics and Regenerative Medicine (C.O.RE.), Center for Interdisciplinary Research and Innovation (C.I.R.I.), Aristotle University Thessaloniki, Greece
| | - Theodosios Stamatopoulos
- Academic Orthopaedic Unit, Papageorgiou General Hospital, Aristotle University Medical School, West Ring Road of Thessaloniki, Pavlos Melas Area, N. Efkarpia, 56403 Thessaloniki, Greece
- Center of Orthopaedics and Regenerative Medicine (C.O.RE.), Center for Interdisciplinary Research and Innovation (C.I.R.I.), Aristotle University Thessaloniki, Greece
| | - Zakareya Gamie
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Eustathios Kenanidis
- Academic Orthopaedic Unit, Papageorgiou General Hospital, Aristotle University Medical School, West Ring Road of Thessaloniki, Pavlos Melas Area, N. Efkarpia, 56403 Thessaloniki, Greece
- Center of Orthopaedics and Regenerative Medicine (C.O.RE.), Center for Interdisciplinary Research and Innovation (C.I.R.I.), Aristotle University Thessaloniki, Greece
| | - Ricardo Da Conceicao Ribeiro
- School of Mechanical and Systems Engineering, Stephenson Building, Claremont Road, Newcastle upon Tyne NE1 7RU, UK
| | - Kenneth Samora Rankin
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Craig Gerrand
- Royal National Orthopaedic Hospital, Brockley Hill, Stanmore, HA7 4LP, UK
| | - Kenneth Dalgarno
- School of Mechanical and Systems Engineering, Stephenson Building, Claremont Road, Newcastle upon Tyne NE1 7RU, UK
| | - Eleftherios Tsiridis
- Academic Orthopaedic Unit, Papageorgiou General Hospital, Aristotle University Medical School, West Ring Road of Thessaloniki, Pavlos Melas Area, N. Efkarpia, 56403 Thessaloniki, Greece
- Center of Orthopaedics and Regenerative Medicine (C.O.RE.), Center for Interdisciplinary Research and Innovation (C.I.R.I.), Aristotle University Thessaloniki, Greece
| |
Collapse
|
40
|
Yaftiyan A, Eskandarian M, Jahangiri AH, Kazemi Sefat NA, Moazzeni SM. Leukemia inhibitory factor (LIF) modulates the development of dendritic cells in a dual manner. Immunopharmacol Immunotoxicol 2019; 41:455-462. [DOI: 10.1080/08923973.2019.1619761] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Atefeh Yaftiyan
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Eskandarian
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amir Hossein Jahangiri
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Seyed Mohammad Moazzeni
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
41
|
Kaushansky N, Kaminitz A, Allouche-Arnon H, Ben-Nun A. Modulation of MS-like disease by a multi epitope protein is mediated by induction of CD11c +CD11b +Gr1 + myeloid-derived dendritic cells. J Neuroimmunol 2019; 333:476953. [PMID: 31108399 DOI: 10.1016/j.jneuroim.2019.04.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/24/2019] [Accepted: 04/24/2019] [Indexed: 12/16/2022]
Abstract
Specific neutralization of the pathogenic autoimmune cells is the ultimate goal in therapy of Multiple Sclerosis (MS). However, the pathogenic autoimmunity in MS, can be directed against several major target antigens, and therefore targeting pathogenic T-cells directed against a single target antigen is unlikely to be effective. To overcome this multiplicity and the potential complexity of pathogenic autoreactivities in MS, we have put forward the concept of concomitant multi-antigen/multi-epitope targeting as, a conceivably more effective approach to immunotherapy of MS. We constructed an (Experimental Autoimmune Encephalomeylitis (EAE)/MS-related synthetic human Target Autoantigen Gene (MS-shMultiTAG) designed to encode in tandem only EAE/MS related epitopes of all known encephalitogenic proteins. The MS-related protein product (designated Y-MSPc) was immunofunctional and upon tolerogenic administration, it effectively suppressed and reversed EAE induced by a single encephalitogenic protein. Furthermore, Y-MSPc also fully abrogated the development of "complex EAE" induced by a mixture of five encephalitogenic T-cell lines, each specific for a different encephalitogenic epitope of MBP, MOG, PLP, MOBP and OSP. Strikingly, Y-MSPc was consistently more effective than treatment with the single disease-specific peptide or with the peptide cocktail, both in suppressing the development of "classical" or "complex" EAE and in ameliorating ongoing disease. Overall, the modulation of EAE by Y-MSPc was associated with anergizing the pathogenic autoreactive T-cells, downregulation of Th1/Th17 cytokine secretion and upregulation of TGF-β secretion. Moreover, we show that both suppression and treatment of ongoing EAE by tolerogenic administration of Y-MSPc is associated also with a remarkable increase in a unique subset of dendritic-cells (DCs), CD11c+CD11b+Gr1+-myeloid derived DCs in both spleen and CNS of treated mice. These DCs, which are with strong immunoregulatory characteristics and are functional in down-modulation of MS-like-disease displayed increased production of IL-4, IL-10 and TGF-β and low IL-12. Functionally, these myeloid DCs suppress the in-vitro proliferation of myelin-specific T-cells and more importantly, the cells were functional in-vivo, as their adoptive transfer into EAE induced mice resulted in strong suppression of the disease, associated with a remarkable induction of CD4 + FoxP3+ regulatory cells. These results, which highlight the efficacy of "multi-epitope-targeting" agent in induction of functional regulatory CD11c+CD11b+Gr1+myeloid DCs, further indicate the potential role of these DCs in maintaining peripheral tolerance and their involvement in downregulation of MS-like-disease.
Collapse
Affiliation(s)
- N Kaushansky
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel.
| | - A Kaminitz
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - H Allouche-Arnon
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - A Ben-Nun
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
42
|
Liu S, Hao C, Bao L, Zhao D, Zhang H, Hou J, Wang D, Chen H, Feng F, Yao W. Silica Particles Mediate Phenotypic and Functional Alteration of Dendritic Cells and Induce Th2 Cell Polarization. Front Immunol 2019; 10:787. [PMID: 31068929 PMCID: PMC6491578 DOI: 10.3389/fimmu.2019.00787] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 03/25/2019] [Indexed: 01/01/2023] Open
Abstract
During silicosis, immune cells, including macrophages, T cells, B cells, and NK cells, participate in fibrosis development through alteration of the immune status. Dendritic cells (DCs) are professional antigen-presenting cells (APCs) with a key role in initiating immune responses and sustaining immune tolerance to maintain homeostasis. The relative contribution of DCs to silicosis progression is not well-documented. In the current study, we investigated the phenotypic and functional alterations of peripheral blood mononuclear cell (PBMC)-derived DCs of Sprague-Dawley (SD) rat during immune responses to silica exposure. We established models for direct and indirect exposure of DCs to silica by either treating DCs with silica or coculturing them with alveolar macrophages (AMs) treated with silica, respectively. The functional activity of DCs was analyzed by measuring their expression of costimulatory molecules, fluorescent microparticle uptake, cytokine production, and ability to mediate T cell polarization in vitro. In vivo, we demonstrated that silica could induce DC migration in response to silica exposure. Our results show that cytokine production by DCs was increased in response to direct silica direct exposure, while indirect silica exposure led to reduced cytokine levels. Moreover, the phagocytic capacity of DCs increased in cocultures after silica exposure. Gene and protein expression analyses showed that silica exposure altered the expression levels of Toll-like receptor pathway proteins and inflammatory factors. DC surface expression of the costimulatory molecules, CD80, CD86, and major histocompatibility complex, was inhibited by exposure to silica, which mediated a Th2-polarizing response in vitro. In rats, silica exposure induced migration of DCs from the peripheral blood into the alveoli. These results demonstrate that direct and indirect exposure to silica particles alter the phenotype and function of DCs, thereby regulating immune responses. Such changes may contribute to the development of silicosis by altering DC phenotype, function, and migration and by influencing the balance between Th1 and Th2 cells.
Collapse
Affiliation(s)
- Suna Liu
- Department of Henan Newborn Screening Center, Department of Pediatrics, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Changfu Hao
- Department of Public Health, Zhengzhou University, Zhengzhou, China
| | - Lei Bao
- Department of Public Health, Zhengzhou University, Zhengzhou, China
| | - Dehua Zhao
- Department of Henan Newborn Screening Center, Department of Pediatrics, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongyi Zhang
- Hospital Infection Management, The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Jianyong Hou
- Department of Public Health, Zhengzhou University, Zhengzhou, China
| | - Di Wang
- Department of Public Health, Zhengzhou University, Zhengzhou, China
| | - Huiting Chen
- Department of Public Health, Zhengzhou University, Zhengzhou, China
| | - Feifei Feng
- Department of Public Health, Zhengzhou University, Zhengzhou, China
| | - Wu Yao
- Department of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
43
|
Katsel P, Haroutunian V. Is Alzheimer disease a failure of mobilizing immune defense? Lessons from cognitively fit oldest-old. DIALOGUES IN CLINICAL NEUROSCIENCE 2019. [PMID: 31607776 PMCID: PMC6780355 DOI: 10.31887/dcns.2019.21.1/vharoutunian] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Multifaceted evidence supports the hypothesis that inflammatory-immune mechanisms contribute to Alzheimer disease (AD) neuropathology and genetic association of several immune specific genes (TREM2, CR1, and CD33) suggests that maladaptive immune responses may be pivotal drivers of AD pathogenesis. We reviewed microglia-related data from postmortem AD studies and examined supporting evidence from AD animal models to answer the following questions: i) What is the temporal sequence of immune activation in AD progression and what is its impact on cognition? ii) Are there discordant, “primed”, microglia responses in AD vs successful cognitive aging? iii) Does central nervous system (CNS) repair in aging depend on recruitment of the elements of cellular adaptive immune response such as effector T cells, and can the recruitment of systemic immune cells ameliorate AD neuropathology? iv) How effective are the immune-system-based therapeutic approaches currently employed for the treatment of AD?
Collapse
Affiliation(s)
- Pavel Katsel
- Department of Psychiatry, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vahram Haroutunian
- Department of Neuroscience, The Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mental Illness Research, Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY, USA
| |
Collapse
|
44
|
Miceli V, Pampalone M, Vella S, Carreca AP, Amico G, Conaldi PG. Comparison of Immunosuppressive and Angiogenic Properties of Human Amnion-Derived Mesenchymal Stem Cells between 2D and 3D Culture Systems. Stem Cells Int 2019; 2019:7486279. [PMID: 30911299 PMCID: PMC6397962 DOI: 10.1155/2019/7486279] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/15/2018] [Accepted: 11/27/2018] [Indexed: 02/06/2023] Open
Abstract
The secretion of potential therapeutic factors by mesenchymal stem cells (MSCs) has aroused much interest given the benefits that it can bring in the field of regenerative medicine. Indeed, the in vitro multipotency of these cells and the secretive capacity of both angiogenic and immunomodulatory factors suggest a role in tissue repair and regeneration. However, during culture, MSCs rapidly lose the expression of key transcription factors associated with multipotency and self-renewal, as well as the ability to produce functional paracrine factors. In our study, we show that a three-dimensional (3D) culture method is effective to induce MSC spheroid formation, to maintain the multipotency and to improve the paracrine activity of a specific population of human amnion-derived MSCs (hAMSCs). The regenerative potential of both 3D culture-derived conditioned medium (3D CM) and their exosomes (EXO) was assessed against 2D culture products. In particular, tubulogenesis assays revealed increased capillary maturation in the presence of 3D CM compared with both 2D CM and 2D EXO. Furthermore, 3D CM had a greater effect on inhibition of PBMC proliferation than both 2D CM and 2D EXO. To support this data, hAMSC spheroids kept in our 3D culture system remained viable and multipotent and secreted considerable amounts of both angiogenic and immunosuppressive factors, which were detected at lower levels in 2D cultures. This work reveals the placenta as an important source of MSCs that can be used for eventual clinical applications as cell-free therapies.
Collapse
Affiliation(s)
- Vitale Miceli
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
| | - Mariangela Pampalone
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
- Ri.MED Foundation, Palermo, Italy
| | | | | | - Giandomenico Amico
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
- Ri.MED Foundation, Palermo, Italy
| | | |
Collapse
|
45
|
Djedovic N, Jevtić B, Mansilla MJ, Petković F, Blaževski J, Timotijević G, Navarro-Barriuso J, Martinez-Caceres E, Mostarica Stojković M, Miljković Đ. Comparison of dendritic cells obtained from autoimmunty-prone and resistant rats. Immunobiology 2019; 224:470-476. [PMID: 30765133 DOI: 10.1016/j.imbio.2019.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/16/2019] [Indexed: 01/07/2023]
Abstract
Dendritic cells (DC) are responsible for the initiation and shaping of the adaptive immune response and are in the focus of autoimmunity research. We were interested in comparison of DC obtained from autoimmunity-prone Dark Agouti (DA) rats and autoimmunity-resistant Albino Oxford (AO) rats. DC were generated from bone marrow precursors and matured (mDC) by lipopolysaccharide. Tolerogenic DC (tolDC) obtained by vitamin D3 treatment were studied in parallel. Profile of cytokine production was different in AO and DA mDC and tolDC. Expression of MHC class II molecules and CD86 were higher in DA DC, while vitamin D3 reduced their expression in dendritic cells of both strains. Allogeneic proliferation of CD4+ T cells was reduced by AO tolDC, but not with DA tolDC in comparison to respective mDC. Finally, expression of various genes identified as differentially expressed in human mDC and tolDC was also analyzed in AO and DA DC. Again, AO and DA DC differed in the expression of the analyzed genes. To conclude, AO and DA DC differ in production of cytokines, expression of antigen presentation-related molecules and in regulation of CD4+ T proliferation. The difference is valuable for understanding the divergence of the strains in their susceptibility to autoimmunity.
Collapse
Affiliation(s)
- Neda Djedovic
- Department of Immunology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Serbia
| | - Bojan Jevtić
- Department of Immunology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Serbia
| | - M José Mansilla
- Immunology Division, Germans Trias i Pujol University Hospital and Research Institute, Badalona, Spain; Department of Cellular Biology, Physiology, and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Filip Petković
- Department of Immunology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Serbia
| | - Jana Blaževski
- Department of Immunology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Serbia
| | - Gordana Timotijević
- Laboratory for Plant Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Serbia
| | - Juan Navarro-Barriuso
- Immunology Division, Germans Trias i Pujol University Hospital and Research Institute, Badalona, Spain; Department of Cellular Biology, Physiology, and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Eva Martinez-Caceres
- Immunology Division, Germans Trias i Pujol University Hospital and Research Institute, Badalona, Spain
| | | | - Đorđe Miljković
- Department of Immunology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Serbia.
| |
Collapse
|
46
|
Biomaterials: Foreign Bodies or Tuners for the Immune Response? Int J Mol Sci 2019; 20:ijms20030636. [PMID: 30717232 PMCID: PMC6386828 DOI: 10.3390/ijms20030636] [Citation(s) in RCA: 383] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/22/2019] [Accepted: 01/28/2019] [Indexed: 12/11/2022] Open
Abstract
The perspectives of regenerative medicine are still severely hampered by the host response to biomaterial implantation, despite the robustness of technologies that hold the promise to recover the functionality of damaged organs and tissues. In this scenario, the cellular and molecular events that decide on implant success and tissue regeneration are played at the interface between the foreign body and the host inflammation, determined by innate and adaptive immune responses. To avoid adverse events, rather than the use of inert scaffolds, current state of the art points to the use of immunomodulatory biomaterials and their knowledge-based use to reduce neutrophil activation, and optimize M1 to M2 macrophage polarization, Th1 to Th2 lymphocyte switch, and Treg induction. Despite the fact that the field is still evolving and much remains to be accomplished, recent research breakthroughs have provided a broader insight on the correct choice of biomaterial physicochemical modifications to tune the reaction of the host immune system to implanted biomaterial and to favor integration and healing.
Collapse
|
47
|
Christodoulou I, Goulielmaki M, Devetzi M, Panagiotidis M, Koliakos G, Zoumpourlis V. Mesenchymal stem cells in preclinical cancer cytotherapy: a systematic review. Stem Cell Res Ther 2018; 9:336. [PMID: 30526687 PMCID: PMC6286545 DOI: 10.1186/s13287-018-1078-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSC) comprise a heterogeneous population of rapidly proliferating cells that can be isolated from adult (e.g., bone marrow, adipose tissue) as well as fetal (e.g., umbilical cord) tissues (termed bone marrow (BM)-, adipose tissue (AT)-, and umbilical cord (UC)-MSC, respectively) and are capable of differentiation into a wide range of non-hematopoietic cell types. An additional, unique attribute of MSC is their ability to home to tumor sites and to interact with the local supportive microenvironment which rapidly conceptualized into MSC-based experimental cancer cytotherapy at the turn of the century. Towards this purpose, both naïve (unmodified) and genetically modified MSC (GM-MSC; used as delivery vehicles for the controlled expression and release of antitumorigenic molecules) have been employed using well-established in vitro and in vivo cancer models, albeit with variable success. The first approach is hampered by contradictory findings regarding the effects of naïve MSC of different origins on tumor growth and metastasis, largely attributed to inherent biological heterogeneity of MSC as well as experimental discrepancies. In the second case, although the anti-cancer effect of GM-MSC is markedly improved over that of naïve cells, it is yet apparent that some protocols are more efficient against some types of cancer than others. Regardless, in order to maximize therapeutic consistency and efficacy, a deeper understanding of the complex interaction between MSC and the tumor microenvironment is required, as well as examination of the role of key experimental parameters in shaping the final cytotherapy outcome. This systematic review represents, to the best of our knowledge, the first thorough evaluation of the impact of experimental anti-cancer therapies based on MSC of human origin (with special focus on human BM-/AT-/UC-MSC). Importantly, we dissect the commonalities and differences as well as address the shortcomings of work accumulated over the last two decades and discuss how this information can serve as a guide map for optimal experimental design implementation ultimately aiding the effective transition into clinical trials.
Collapse
Affiliation(s)
- Ioannis Christodoulou
- Institute of Biological Research and Biotechnology, National Hellenic Research Foundation (NHRF), Konstantinou 48 Av., 116 35, Athens, Greece
| | - Maria Goulielmaki
- Institute of Biological Research and Biotechnology, National Hellenic Research Foundation (NHRF), Konstantinou 48 Av., 116 35, Athens, Greece
| | - Marina Devetzi
- Institute of Biological Research and Biotechnology, National Hellenic Research Foundation (NHRF), Konstantinou 48 Av., 116 35, Athens, Greece
| | | | | | - Vassilis Zoumpourlis
- Institute of Biological Research and Biotechnology, National Hellenic Research Foundation (NHRF), Konstantinou 48 Av., 116 35, Athens, Greece.
| |
Collapse
|
48
|
Lybaert L, Vermaelen K, De Geest BG, Nuhn L. Immunoengineering through cancer vaccines – A personalized and multi-step vaccine approach towards precise cancer immunity. J Control Release 2018; 289:125-145. [DOI: 10.1016/j.jconrel.2018.09.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 02/07/2023]
|
49
|
In Vivo Irradiation of Mice Induces Activation of Dendritic Cells. Int J Mol Sci 2018; 19:ijms19082391. [PMID: 30110907 PMCID: PMC6121955 DOI: 10.3390/ijms19082391] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 08/09/2018] [Indexed: 11/17/2022] Open
Abstract
It is becoming clear that ionizing radiation positively influences certain immune parameters, which opens the possibility for combining radio- and immunotherapies in cancer treatment. The presence of functionally competent dendritic cells (DCs) is crucial in mounting a successful antitumor immune response. While it has been shown that DCs are relatively radioresistant, few and contradictory data are available on how ionizing radiation alters the functional integrity of these cells. Therefore, our objective was to investigate the effect of whole-body irradiation on the function of splenic DCs. C57Bl/6 mice were irradiated with 0.1, 0.25, and 2 Gy X-rays and changes in the phenotype of splenic DCs were compared to unirradiated controls. An increase was seen in DC surface markers influencing DC-T cell interactions. In vivo cytokine production was determined by direct intracellular cytokine staining. Irradiation with 2 Gy induced a 1.6-fold increase in IL-1α production, while the combination of irradiation and lipopolysaccharide (LPS) treatment induced a 3.9-fold increase, indicating a strong synergism between irradiation and LPS stimulation. Interaction of DCs with effector and regulatory T cells was investigated in a mixed lymphocyte reaction. While DCs from control animals induced stronger proliferation of regulatory T cells, DCs from animals irradiated with 2 Gy induced stronger proliferation of effector T cells. Antigen uptake and presentation was investigated by measuring the capacity of DCs to internalize and present ovalbumine (OVA)-derived peptides on their major histocompatibility complex (MHCI) molecules. Irradiation with 2 Gy did not influence antigen uptake or presentation, while low doses stimulated antigen uptake and reduced the level of antigen presentation. In conclusion, high-dose in vivo irradiation induced increased expression of T cell costimulatory markers, enhanced production of proinflammatory cytokines and a stronger stimulation of effector T cell proliferation than that of regulatory T cells. However, it did not influence DC antigen uptake or presentation. On the other hand, low-dose irradiation increased antigen uptake and lowered antigen presentation of DCs, indicating that low- and high-dose irradiation act on different pathways in DCs.
Collapse
|
50
|
β-Glucan induces autophagy in dendritic cells and influences T-cell differentiation. Med Microbiol Immunol 2018; 208:39-48. [DOI: 10.1007/s00430-018-0556-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/04/2018] [Indexed: 12/26/2022]
|