1
|
Parida L, Paul A, Mohanty J, Sahoo PK. Molecular insights into septin 2 protein in rohu (Labeo rohita): revealing expression dynamics, antimicrobial activity and functional characteristics. Int J Biol Macromol 2025; 293:139353. [PMID: 39743099 DOI: 10.1016/j.ijbiomac.2024.139353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/07/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
Septins are evolutionarily conserved GTP-binding proteins mediating innate immunity, autophagy and inflammation in higher animals; however, they are yet to be fully characterized in fish. The study encompasses cloning of complete septin 2 cDNA from the rohu carp (Labeo rohita) that consisted of an open reading frame of 1050 bp and phylogenetic amino acid similarity of 99.43 % to cyprinid Onychostoma macrolepis. Septin 2 was ubiquitously expressed in different tissues of healthy rohu, and during early developmental stages. Septin 2 transcript levels were increased in response to three infection models i.e. Aeromonas hydrophila, poly I:C, and Argulus siamensis, indicating its role in immunity. A synthetic antimicrobial peptide derived from the septin 2 gene revealed in vitro bactericidal activity. A produced recombinant protein of septin 2 (~40 kDa) when injected into rohu modulated the expression of various immune-related genes. Further, in vivo studies of this protein demonstrated protection against A. hydrophila (71 % relative percent survival) and delayed mortality against ectoparasite A. siamensis. A developed sandwich ELISA revealed enhanced septin 2 level post A. hydrophila infection. The present study provides a new understanding of the septin 2 gene's multifunctional role in rohu and its importance in fish antimicrobial defence.
Collapse
Affiliation(s)
- Lopamudra Parida
- National Referral Laboratory for Freshwater Fish Diseases, Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture (CIFA), Kausalyaganga, Bhubaneswar 751002, India
| | - Anirban Paul
- National Referral Laboratory for Freshwater Fish Diseases, Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture (CIFA), Kausalyaganga, Bhubaneswar 751002, India
| | - Jyotirmaya Mohanty
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture (CIFA), Kausalyaganga, Bhubaneswar 751002, India
| | - Pramoda Kumar Sahoo
- National Referral Laboratory for Freshwater Fish Diseases, Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture (CIFA), Kausalyaganga, Bhubaneswar 751002, India.
| |
Collapse
|
2
|
Zhang X, Li Z, Peng Q, Liu C, Wu Y, Wen Y, Zheng R, Xu C, Tian J, Zheng X, Yan Q, Wang J, Ma J. Epstein-Barr virus suppresses N 6-methyladenosine modification of TLR9 to promote immune evasion. J Biol Chem 2024; 300:107226. [PMID: 38537697 PMCID: PMC11061751 DOI: 10.1016/j.jbc.2024.107226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/08/2024] [Accepted: 03/17/2024] [Indexed: 04/26/2024] Open
Abstract
Epstein-Barr virus (EBV) is a human tumor virus associated with a variety of malignancies, including nasopharyngeal carcinoma, gastric cancers, and B-cell lymphomas. N6-methyladenosine (m6A) modifications modulate a wide range of cellular processes and participate in the regulation of virus-host cell interactions. Here, we discovered that EBV infection downregulates toll-like receptor 9 (TLR9) m6A modification levels and thus inhibits TLR9 expression. TLR9 has multiple m6A modification sites. Knockdown of METTL3, an m6A "writer", decreases TLR9 protein expression by inhibiting its mRNA stability. Mechanistically, Epstein-Barr nuclear antigen 1 increases METTL3 protein degradation via K48-linked ubiquitin-proteasome pathway. Additionally, YTHDF1 was identified as an m6A "reader" of TLR9, enhancing TLR9 expression by promoting mRNA translation in an m6A -dependent manner, which suggests that EBV inhibits TLR9 translation by "hijacking" host m6A modification mechanism. Using the METTL3 inhibitor STM2457 inhibits TLR9-induced B cell proliferation and immunoglobulin secretion, and opposes TLR9-induced immune responses to assist tumor cell immune escape. In clinical lymphoma samples, the expression of METTL3, YTHDF1, and TLR9 was highly correlated with immune cells infiltration. This study reveals a novel mechanism that EBV represses the important innate immunity molecule TLR9 through modulating the host m6A modification system.
Collapse
Affiliation(s)
- Xiaoyue Zhang
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China; NHC Key Laboratory of Carcinogenesis, Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan, China
| | - Zhengshuo Li
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China; NHC Key Laboratory of Carcinogenesis, Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan, China
| | - Qiu Peng
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China; NHC Key Laboratory of Carcinogenesis, Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan, China
| | - Can Liu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China; NHC Key Laboratory of Carcinogenesis, Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan, China
| | - Yangge Wu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China; NHC Key Laboratory of Carcinogenesis, Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan, China
| | - Yuqing Wen
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China; NHC Key Laboratory of Carcinogenesis, Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan, China
| | - Run Zheng
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China; NHC Key Laboratory of Carcinogenesis, Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan, China
| | - Chenxiao Xu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China; NHC Key Laboratory of Carcinogenesis, Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan, China
| | - Junrui Tian
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China; NHC Key Laboratory of Carcinogenesis, Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan, China
| | - Xiang Zheng
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Qun Yan
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Jia Wang
- Department of Immunology, Changzhi Medical College, Changzhi, Shanxi, China.
| | - Jian Ma
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China; NHC Key Laboratory of Carcinogenesis, Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan, China.
| |
Collapse
|
3
|
Khanolkar A, Liu G, Simpson Schneider BM. Defining the Basal and Immunomodulatory Mediator-Induced Phosphoprotein Signature in Pediatric B Cell Acute Lymphoblastic Leukemia (B-ALL) Diagnostic Samples. Int J Mol Sci 2023; 24:13937. [PMID: 37762241 PMCID: PMC10531382 DOI: 10.3390/ijms241813937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
It is theorized that dysregulated immune responses to infectious insults contribute to the development of pediatric B-ALL. In this context, our understanding of the immunomodulatory-mediator-induced signaling responses of leukemic blasts in pediatric B-ALL diagnostic samples is rather limited. Hence, in this study, we defined the signaling landscape of leukemic blasts, as well as normal mature B cells and T cells residing in diagnostic samples from 63 pediatric B-ALL patients. These samples were interrogated with a range of immunomodulatory-mediators within 24 h of collection, and phosflow analyses of downstream proximal signaling nodes were performed. Our data reveal evidence of basal hyperphosphorylation across a broad swath of these signaling nodes in leukemic blasts in contrast to normal mature B cells and T cells in the same sample. We also detected similarities in the phosphoprotein signature between blasts and mature B cells in response to IFNγ and IL-2 treatment, but significant divergence in the phosphoprotein signature was observed between blasts and mature B cells in response to IL-4, IL-7, IL-10, IL-21 and CD40 ligand treatment. Our results demonstrate the existence of both symmetry and asymmetry in the phosphoprotein signature between leukemic and non-leukemic cells in pediatric B-ALL diagnostic samples.
Collapse
Affiliation(s)
- Aaruni Khanolkar
- Department of Pathology, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
- Department of Pathology, Northwestern University, Chicago, IL 60611, USA
| | - Guorong Liu
- Department of Pathology, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
| | | |
Collapse
|
4
|
Akesolo O, Buey B, Beltrán-Visiedo M, Giraldos D, Marzo I, Latorre E. Toll-like receptors: new targets for multiple myeloma treatment? Biochem Pharmacol 2022; 199:114992. [DOI: 10.1016/j.bcp.2022.114992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/08/2022] [Accepted: 03/08/2022] [Indexed: 02/08/2023]
|
5
|
Karime C, Wang J, Woodhead G, Mody K, Hennemeyer CT, Borad MJ, Mahadevan D, Chandana SR, Babiker H. Tilsotolimod: an investigational synthetic toll-like receptor 9 (TLR9) agonist for the treatment of refractory solid tumors and melanoma. Expert Opin Investig Drugs 2021; 31:1-13. [PMID: 34913781 DOI: 10.1080/13543784.2022.2019706] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Cancer immunotherapy has seen tremendous strides in the past 15 years, with the introduction of several novel immunotherapeutic agents. Nevertheless, as clinical practice has shown, significant challenges remain with a considerable number of patients responding sub-optimally to available therapeutic options. Research has demonstrated the important immunoregulatory role of the tumor microenvironment (TME), with the potential to either hinder or promote an effective anti-tumor immune response. As such, scientific efforts have focused on investigating novel candidate immunomodulatory agents with the potential to alter the TME toward a more immunopotentiating composition. AREAS COVERED Herein, we discuss the novel investigational toll-like receptor 9 agonist tilsotolimod currently undergoing phase II and III clinical trials for advanced refractory cancer, highlighting its mode of action, efficacy, tolerability, and potential future applications in the treatment of cancer. To this effect, we conducted an exhaustive Web of Science and PubMed search to evaluate available research on tilsotolimod as of August 2021. EXPERT OPINION With encouraging early clinical results demonstrating extensive TME immunomodulation and abscopal effects on distant tumor lesions, tilsotolimod has emerged as a potential candidate immunomodulatory agent with the possibility to augment currently available immunotherapy and provide novel avenues of treatment for patients with advanced refectory cancer.
Collapse
Affiliation(s)
| | - Jing Wang
- Department of Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Gregory Woodhead
- Department of Medical Imaging, University of Arizona Collage of Medicine, Tucson, AZ, USA
| | - Kabir Mody
- Department of Medicine, Division of Hematology Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Charles T Hennemeyer
- Department of Medical Imaging, University of Arizona Collage of Medicine, Tucson, AZ, USA
| | - Mitesh J Borad
- Department of Medicine, Division of Hematology Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Daruka Mahadevan
- Division of Hematology and Oncology, University of Texas Health San Antonio, TX, USA
| | - Sreenivasa R Chandana
- Department of Medicine, Michigan State University, East Lansing, MI, USA.,Phase I Program, Start Midwest, Grand Rapids, MI, USA
| | - Hani Babiker
- Department of Medicine, Division of Hematology Oncology, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
6
|
Virdis P, Migheli R, Bordoni V, Fiorentino FP, Sanna L, Marchesi I, Pintore G, Galleri G, Muroni MR, Bagella L, Fozza C, De Miglio MR, Podda L. Clarifying the molecular mechanism of tomentosin‑induced antiproliferative and proapoptotic effects in human multiple myeloma via gene expression profile and genetic interaction network analysis. Int J Mol Med 2021; 48:213. [PMID: 34643251 PMCID: PMC8522960 DOI: 10.3892/ijmm.2021.5046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/02/2021] [Indexed: 12/29/2022] Open
Abstract
Multiple myeloma (MM) is an aggressive B cell malignancy. Substantial progress has been made in the therapeutic context for patients with MM, however it still represents an incurable disease due to drug resistance and recurrence. Development of more effective or synergistic therapeutic approaches undoubtedly represents an unmet clinical need. Tomentosin is a bioactive natural sesquiterpene lactone extracted by various plants with therapeutic properties, including anti‑neoplastic effects. In the present study, the potential antitumor activity of tomentosin was evaluated on the human RPMI‑8226 cell line, treated with increasing tomentosin concentration for cytotoxicity screening. The data suggested that both cell cycle arrest and cell apoptosis could explain the antiproliferative effects of tomentosin and may result in the inhibition of RPMI‑8226 cell viability. To assess differentially expressed genes contributing to tomentosin activity and identify its mechanism of action, a microarray gene expression profile was performed, identifying 126 genes deregulated by tomentosin. To address the systems biology and identify how tomentosin deregulates gene expression in MM from a systems perspective, all deregulated genes were submitted to enrichment and molecular network analysis. The Protein‑Protein Interaction (PPI) network analysis showed that tomentosin in human MM induced the downregulation of genes involved in several pathways known to lead immune‑system processes, such as cytokine‑cytokine receptor interaction, chemokine or NF‑κB signaling pathway, as well as genes involved in pathways playing a central role in cellular neoplastic processes, such as growth, proliferation, migration, invasion and apoptosis. Tomentosin also induced endoplasmic reticulum stress via upregulation of cyclic AMP‑dependent transcription factor ATF‑4 and DNA damage‑inducible transcript 3 protein genes, suggesting that in the presence of tomentosin the protective unfolded protein response signaling may induce cell apoptosis. The functional connections analysis executed using the Connectivity Map tool, suggested that the effects of tomentosin on RPMI‑8226 cells might be similar to those exerted by heat shock proteins inhibitors. Taken together, these data suggested that tomentosin may be a potential drug candidate for the treatment of MM.
Collapse
Affiliation(s)
- Patrizia Virdis
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, I-07100 Sassari, Sardinia, Italy
| | - Rossana Migheli
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, I-07100 Sassari, Sardinia, Italy
| | - Valentina Bordoni
- Department of Biomedical Sciences, University of Sassari, I-07100 Sassari, Sardinia, Italy
| | | | - Luca Sanna
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, I-07100 Sassari, Sardinia, Italy
| | - Irene Marchesi
- Kitos Biotech Srls, Porto Conte Ricerche, I-07100 Sassari, Sardinia, Italy
| | - Giorgio Pintore
- Department of Chemistry and Pharmacy, University of Sassari, I-07100 Sassari, Sardinia, Italy
| | - Grazia Galleri
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, I-07100 Sassari, Sardinia, Italy
| | - Maria Rosaria Muroni
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, I-07100 Sassari, Sardinia, Italy
| | - Luigi Bagella
- Department of Biomedical Sciences, University of Sassari, I-07100 Sassari, Sardinia, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Claudio Fozza
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, I-07100 Sassari, Sardinia, Italy
| | - Maria Rosaria De Miglio
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, I-07100 Sassari, Sardinia, Italy
| | - Luigi Podda
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, I-07100 Sassari, Sardinia, Italy
| |
Collapse
|
7
|
AbdelMassih AF, Menshawey R, Ismail JH, Husseiny RJ, Husseiny YM, Yacoub S, Kamel A, Hozaien R, Yacoub E, Menshawey E, Abdelmalek A, Abouelazaem A, Elhatw A, Aboelmaaty A, Shahib A, Mansour A, Kamal A, Mohamed B, Atif B, Ghabreal B, Abdelmalak C, Ibrahim D, Elsaify E, Magdy F, Hanna FG, Hafez H, Dahir H, Merhom K, Ahmed M, Bishara M, Tawfik M, Youssef M, El Sharnouby M, Hamouda M, Ammar M, Ali N, Daniel N, El-Husseiny N, Abdelraouf N, Abdelhameed NK, Ahmed R, Othman R, Mohamadein R, Allam R, Elgendy R, Shebl R, Elsherbiney S, Fouad S, Emel S, Owais S, Hetta S, El-Saman S, Abdelalim S, Galal S, Asar Y, Osman Y, Khalaf Y, Aziz Y, Khafagy Y, Gamal N, Castaldi B. PPAR agonists as effective adjuvants for COVID-19 vaccines, by modifying immunogenetics: a review of literature. J Genet Eng Biotechnol 2021; 19:82. [PMID: 34057580 PMCID: PMC8165506 DOI: 10.1186/s43141-021-00179-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/14/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Several coronavirus vaccine have been fast-tracked to halt the pandemic, the usage of immune adjuvants that can boost immunological memory has come up to the surface. This is particularly of importance in view of the rates of failure of seroconversion and re-infection after COVID-19 infection, which could make the vaccine role and response debatable. Peroxisome proliferator-activated receptors (PPARs) have an established immune-modulatory role, but their effects as adjuvants to vaccination have not been explored to date. It is increasingly recognized that PPAR agonists can upregulate the levels of anti-apoptotic factors such as MCL-1. Such effect can improve the results of vaccination by enhancing the longevity of long-lived plasma cells (LLPCs). The interaction between PPAR agonists and the immune system does not halt here, as T cell memory is also stimulated through enhanced T regulatory cells, antagonizing PD-L1 and switching the metabolism of T cells to fatty acid oxidation, which has a remarkable effect on the persistence of T memory cells. What is even of a more significant value is the effect of PPAR gamma on ensuring a profound secretion of antibodies upon re-exposure to the offending antigen through upregulating lipoxin B4, therefore potentially assisting the vaccine response and deterring re-infection. SHORT CONCLUSION In view of the above, we suggest the use of PPAR as adjuvants to vaccines in general especially the emerging COVID-19 vaccine due to their role in enhancing immunologic memory through DNA-dependent mechanisms.
Collapse
Affiliation(s)
- Antoine Fakhry AbdelMassih
- Pediatric Cardiology Unit, Pediatrics' Department, Cairo University Children Hospital, Faculty of Medicine, Cairo University, Kasr Al Ainy Street, Cairo, 12411, Egypt.
- Pediatric Cardio-Oncology Department, Children Cancer Hospital of Egypt (57357), Cairo, Egypt.
| | - Rahma Menshawey
- Research Accessibility Team, Student and Internship research program, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Jumana H Ismail
- Pulmonology Department, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Reem J Husseiny
- Research Accessibility Team, Student and Internship research program, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Yousef M Husseiny
- Research Accessibility Team, Student and Internship research program, Faculty of Medicine, New Giza University, 6th of October City, Egypt
| | - Shenoda Yacoub
- Research Accessibility Team, Student and Internship research program, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Aya Kamel
- Research Accessibility Team, Student and Internship research program, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Rafeef Hozaien
- Research Accessibility Team, Student and Internship research program, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Elaria Yacoub
- Research Accessibility Team, Student and Internship research program, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Esraa Menshawey
- Research Accessibility Team, Student and Internship research program, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Abanoub Abdelmalek
- Research Accessibility Team, Student and Internship research program, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Ahmed Abouelazaem
- Research Accessibility Team, Student and Internship research program, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Ahmed Elhatw
- Research Accessibility Team, Student and Internship research program, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Ahmed Aboelmaaty
- Research Accessibility Team, Student and Internship research program, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Alaaelrahman Shahib
- Research Accessibility Team, Student and Internship research program, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Amany Mansour
- Research Accessibility Team, Student and Internship research program, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Aya Kamal
- Research Accessibility Team, Student and Internship research program, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Basant Mohamed
- Research Accessibility Team, Student and Internship research program, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Bemen Atif
- Research Accessibility Team, Student and Internship research program, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Beshoy Ghabreal
- Research Accessibility Team, Student and Internship research program, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Catherine Abdelmalak
- Research Accessibility Team, Student and Internship research program, Faculty of Medicine, Cairo University, Giza, Egypt
| | - David Ibrahim
- Research Accessibility Team, Student and Internship research program, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Ebtesam Elsaify
- Research Accessibility Team, Student and Internship research program, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Farah Magdy
- Research Accessibility Team, Student and Internship research program, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Farid G Hanna
- Research Accessibility Team, Student and Internship research program, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Hadeer Hafez
- Research Accessibility Team, Student and Internship research program, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Hafsa Dahir
- Research Accessibility Team, Student and Internship research program, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Kerlos Merhom
- Research Accessibility Team, Student and Internship research program, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Maram Ahmed
- Research Accessibility Team, Student and Internship research program, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Mariam Bishara
- Research Accessibility Team, Student and Internship research program, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Mina Tawfik
- Research Accessibility Team, Student and Internship research program, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Mina Youssef
- University at Buffalo School of Medicine and Biomedical, Buffalo, USA
| | - Mohamed El Sharnouby
- Research Accessibility Team, Student and Internship research program, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Mourad Hamouda
- Research Accessibility Team, Student and Internship research program, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Musheera Ammar
- Research Accessibility Team, Student and Internship research program, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Nada Ali
- Research Accessibility Team, Student and Internship research program, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Nada Daniel
- Research Accessibility Team, Student and Internship research program, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Nadine El-Husseiny
- Faculty of Dentistry, Cairo University, Giza, Egypt
- Pixagon graphic design Agency, Cairo, Egypt
| | - Noha Abdelraouf
- Research Accessibility Team, Student and Internship research program, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Nuran K Abdelhameed
- Research Accessibility Team, Student and Internship research program, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Radwa Ahmed
- Research Accessibility Team, Student and Internship research program, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Radwa Othman
- Research Accessibility Team, Student and Internship research program, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Rahma Mohamadein
- Research Accessibility Team, Student and Internship research program, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Rana Allam
- Research Accessibility Team, Student and Internship research program, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Rana Elgendy
- Research Accessibility Team, Student and Internship research program, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Rana Shebl
- Research Accessibility Team, Student and Internship research program, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Saged Elsherbiney
- Research Accessibility Team, Student and Internship research program, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Sarah Fouad
- Research Accessibility Team, Student and Internship research program, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Sara Emel
- Research Accessibility Team, Student and Internship research program, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Sara Owais
- Research Accessibility Team, Student and Internship research program, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Sarah Hetta
- Research Accessibility Team, Student and Internship research program, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Samah El-Saman
- Research Accessibility Team, Student and Internship research program, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Shaimaa Abdelalim
- Research Accessibility Team, Student and Internship research program, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Sherin Galal
- Research Accessibility Team, Student and Internship research program, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Yara Asar
- Research Accessibility Team, Student and Internship research program, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Yara Osman
- Research Accessibility Team, Student and Internship research program, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Yasmeen Khalaf
- Research Accessibility Team, Student and Internship research program, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Youstina Aziz
- Research Accessibility Team, Student and Internship research program, Faculty of Medicine, 6th October University, 6th of October City, Egypt
| | - Yousra Khafagy
- Research Accessibility Team, Student and Internship research program, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Nervana Gamal
- Research Accessibility Team, Student and Internship research program, Faculty of Medicine, Cairo University, Giza, Egypt
| | | |
Collapse
|
8
|
The Role of TLR-4 and Galectin-3 Interaction in Acute Pancreatitis. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2020. [DOI: 10.2478/sjecr-2019-0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Toll-like receptor-4 (TLR-4) is a member of evolutionarily conserved type I transmembrane proteins that can initiate sterile inflammatory cascade in the pancreas. Expression of TLR-4 is up-regulated in pancreatic tissue, as well as, on peripheral blood innate immune cells in human and experimental models of acute pancreatitis. TLR-4 plays important pro-inflammatory roles during development of acute pancreatitis: it recognize alarmins released from injured acinar cells and promotes activation and infiltration of innate immune cells after the premature and intraacinar activation of tripsinogen. Galectin-3 is β-galactoside-binding lectin that plays pro-inflammatory roles in a variety autoimmune diseases, acute bacterial infections and during tumorigenesis. It is reported that Galectin-3 is alarmin in experimental models of neuroinflammation and binds to TLR-4 promoting the pro-inflammatory phenotype of microglia. Also, in experimental model of acute pancreatitis Galectin-3 is colocalized with TLR-4 on innate inflammatory cells resulted in enhanced production of inflammatory cytokines, TNF-α and IL-1β, increased infiltration of pro-inflammatory N1 neutrophils, macrophages and dendritic cells and increased damage of pancreatic tissue. This review paper discusses the role of TLR-4/Gal-3 axis in the pathogenesis of acute pancreatitis.
Collapse
|
9
|
Targeting Multiple Myeloma through the Biology of Long-Lived Plasma Cells. Cancers (Basel) 2020; 12:cancers12082117. [PMID: 32751699 PMCID: PMC7466116 DOI: 10.3390/cancers12082117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 07/17/2020] [Indexed: 12/20/2022] Open
Abstract
Multiple myeloma (MM) is a hematological malignancy of terminally differentiated bone marrow (BM) resident B lymphocytes known as plasma cells (PC). PC that reside in the bone marrow include a distinct population of long-lived plasma cells (LLPC) that have the capacity to live for very long periods of time (decades in the human population). LLPC biology is critical for understanding MM disease induction and progression because MM shares many of the same extrinsic and intrinsic survival programs as LLPC. Extrinsic survival signals required for LLPC survival include soluble factors and cellular partners in the bone marrow microenvironment. Intrinsic programs that enhance cellular fidelity are also required for LLPC survival including increased autophagy, metabolic fitness, the unfolded protein response (UPR), and enhanced responsiveness to endoplasmic reticulum (ER) stress. Targeting LLPC cell survival mechanisms have led to standard of care treatments for MM including proteasome inhibition (Bortezomib), steroids (Dexamethasone), and immunomodulatory drugs (Lenalidomide). MM patients that relapse often do so by circumventing LLPC survival pathways targeted by treatment. Understanding the mechanisms by which LLPC are able to survive can allow us insight into the treatment of MM, which allows for the enhancement of therapeutic strategies in MM both at diagnosis and upon patient relapse.
Collapse
|
10
|
Eleftheriadis T, Pissas G, Antoniadi G, Filippidis G, Liakopoulos V, Stefanidis I. Urate crystals trigger B-cell receptor signal transduction and induce B-cell proliferation. J Basic Clin Physiol Pharmacol 2020; 31:/j/jbcpp.ahead-of-print/jbcpp-2019-0054/jbcpp-2019-0054.xml. [PMID: 31927516 DOI: 10.1515/jbcpp-2019-0054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
Background Urate in its crystal form is a known danger-associated molecular pattern, which after its internalization activates cells of the innate immune system. However, by inducing lipid raft sequestration and clustering of membrane-bound proteins with immunoreceptor tyrosine-based activation motifs, urate crystals can also activate cells of the innate immune system without previous internalization. Also, urate crystals trigger T-cell receptor signal transduction and induce T-cell proliferation. In this study, we evaluated whether urate crystals can also initiate B-cell receptor (BCR) signal transduction and promote B-cell proliferation. Methods B cells were isolated from the blood of 10 individuals and cultured with or without urate at a concentration of 10 mg/dL, at which crystallization occurs. Phosphorylated Igα (CD79A) and c-Myc were assessed by Western blotting and B-cell proliferation with BrdU assay. Results Urate increased the level of phosphorylated Igα, a component of the BCR complex. Phosphorylation of Igα is the very proximal event in BCR signal transduction. Also, urate increased the expression of c-Myc, an essential transcription factor for BCR-induced B-cell proliferation. Finally, urate induces B-cell proliferation. Conclusions Urate crystals trigger BCR signal transduction and induce B-cell proliferation. The clinical significance of urate-induced B-cell activation remains to be elucidated.
Collapse
Affiliation(s)
- Theodoros Eleftheriadis
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Biopolis, Mezourlo Hill, 41110 Larissa, Greece, Phone: 00302413501665, Fax: 00302413501667
| | - Georgios Pissas
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Georgia Antoniadi
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Georgios Filippidis
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Vassilios Liakopoulos
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Ioannis Stefanidis
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| |
Collapse
|
11
|
Chen E, Bakr MM, Firth N, Love RM. Inflammatory cell expression of Toll-like receptor-2 (TLR2) within refractory periapical granuloma. F1000Res 2018; 7:1819. [PMID: 30631444 PMCID: PMC6281009 DOI: 10.12688/f1000research.16678.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/01/2018] [Indexed: 12/20/2022] Open
Abstract
Background: Toll-like receptor-2 (TLR2) is highly important within the immune system. Characterization of the expression of TLR2 within inflammatory cells in periapical lesions could help in diagnosis and management of refractory cases. The aim of the study is identification of Toll-like receptor (TLR2) through immunohistochemical and immunofluroscence expression in inflammatory cells within refractory periapical granuloma cases. Methods: Eight cases of refractory periapical granuloma were selected out of 772 cases. Histological examination and immunohistochemical staining with polyclonal rabbit antihuman TLR2, monoclonal mouse antihuman CD38, CD68 and CD83 primary antibodies, as well as immunofluorescence staining with goat anti-rabbit TLR2, donkey anti-mouse CD38, CD68 and CD83 primary antibodies was conducted. Positive controls, negative controls and experimental sections with no primary antibody were included in the study. Qualitative analysis and double immunofluorescence technique was used to characterize the TLR + cells. Results: In periapical granuloma, lymphocytes (CD38 cells) expressed the most amount of TLR reactivity followed by macrophages (CD68 cells), and odontogenic epithelial cells. Neutrophils, red blood cells (RBCs) and collagen ground substance were negative to TLR2. Conclusion: TLR2 was highly expressed by lymphocytes and plasma cells indicative of their major role in the inflammatory process and antigen recognition in refractory periapical granuloma. Dendritic cells expressing TLR2 were low in number suggesting a minor role in sustaining these lesions.
Collapse
Affiliation(s)
- Eric Chen
- School of Dentistry, University of Otago, North Dunedin, Dunedin, 9016, New Zealand
| | - Mahmoud M. Bakr
- School of Dentistry and Oral Health, Griffith University, Southport, Queensland, 4215, Australia
| | - Norman Firth
- School of Dentistry, The University of Queensland, Herston, Queensland, 4006, Australia
| | - Robert M. Love
- School of Dentistry, University of Otago, North Dunedin, Dunedin, 9016, New Zealand
- School of Dentistry and Oral Health, Griffith University, Southport, Queensland, 4215, Australia
| |
Collapse
|
12
|
CGPS: A machine learning-based approach integrating multiple gene set analysis tools for better prioritization of biologically relevant pathways. J Genet Genomics 2018; 45:489-504. [PMID: 30292791 DOI: 10.1016/j.jgg.2018.08.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 08/11/2018] [Accepted: 08/13/2018] [Indexed: 12/20/2022]
Abstract
Gene set enrichment (GSE) analyses play an important role in the interpretation of large-scale transcriptome datasets. Multiple GSE tools can be integrated into a single method as obtaining optimal results is challenging due to the plethora of GSE tools and their discrepant performances. Several existing ensemble methods lead to different scores in sorting pathways as integrated results; furthermore, it is difficult for users to choose a single ensemble score to obtain optimal final results. Here, we develop an ensemble method using a machine learning approach called Combined Gene set analysis incorporating Prioritization and Sensitivity (CGPS) that integrates the results provided by nine prominent GSE tools into a single ensemble score (R score) to sort pathways as integrated results. Moreover, to the best of our knowledge, CGPS is the first GSE ensemble method built based on a priori knowledge of pathways and phenotypes. Compared with 10 widely used individual methods and five types of ensemble scores from two ensemble methods, we demonstrate that sorting pathways based on the R score can better prioritize relevant pathways, as established by an evaluation of 120 simulated datasets and 45 real datasets. Additionally, CGPS is applied to expression data involving the drug panobinostat, which is an anticancer treatment against multiple myeloma. The results identify cell processes associated with cancer, such as the p53 signaling pathway (hsa04115); by contrast, according to two ensemble methods (EnrichmentBrowser and EGSEA), this pathway has a rank higher than 20, which may cause users to miss the pathway in their analyses. We show that this method, which is based on a priori knowledge, can capture valuable biological information from numerous types of gene set collections, such as KEGG pathways, GO terms, Reactome, and BioCarta. CGPS is publicly available as a standalone source code at ftp://ftp.cbi.pku.edu.cn/pub/CGPS_download/cgps-1.0.0.tar.gz.
Collapse
|
13
|
TLR2 Expression on Leukemic B Cells from Patients with Chronic Lymphocytic Leukemia. Arch Immunol Ther Exp (Warsz) 2018; 67:55-65. [PMID: 30196472 PMCID: PMC6433797 DOI: 10.1007/s00005-018-0523-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 07/06/2018] [Indexed: 02/06/2023]
Abstract
Antigenic stimulation is considered as a possible trigger of neoplastic transformation in chronic lymphocytic leukemia (CLL). B-cell receptor plays a key role in the interactions between the microenvironment and leukemic cells; however, an important role has also been attributed to Toll-like receptors (TLRs). It is believed that disorders of TLR expression may play a part in the pathogenesis of CLL. In this study, we investigated the potential role of TLR2 in CLL by analyzing its expression on leukemic B cells in correlation with clinical and laboratory parameters characterizing disease activity and patients’ immune status. We assessed the frequencies of TLR2+/CD19+ cells by the flow cytometry method in peripheral blood of 119 patients with CLL. The percentage of TLR2+/CD19+ cells was significantly lower in patients with CLL as compared to the healthy volunteers. There was also a lower percentage of TLR2+/CD19+ cells in CLL patients with poor prognostic factors, such as ZAP70 and/or CD38 expression, 17p and/or 11q deletion. On the other hand, among patients with del(13q14) associated with favorable prognosis, the percentage of TLR2+/CD19+ cells was higher than among those with del(11q22) and/or del(17p13) as well as in the control group. We found an association between low percentage of CD19+/CD5+/TLR2+ cells and shorter time to treatment. We also demonstrated the relationship between low percentage of CD19+/CD5+ TLR2-positive and overall survival (OS) of CLL patients. CLL patients with a proportion of 1.6% TLR2-positive B CD5+ cells (according to the receiver operating characteristic curve analysis) or more had a longer time to treatment and longer OS than the group with a lower percentage of TLR2 positive cells. To sum up, the results of the study suggest that low TLR2 expression is associated with poor prognosis in CLL patients. The monitoring of CD19+/CD5+/TLR2+ cells number may provide useful information on disease activity. Level of TLR2 expression on leukemic B cells may be an important factor of immunological dysfunction for patients with CLL. Our study suggests that TLR2 could becomes potential biological markers for the clinical outcome in patients with CLL.
Collapse
|
14
|
Capp JP, Bataille R. Multiple Myeloma Exemplifies a Model of Cancer Based on Tissue Disruption as the Initiator Event. Front Oncol 2018; 8:355. [PMID: 30250824 PMCID: PMC6140628 DOI: 10.3389/fonc.2018.00355] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/13/2018] [Indexed: 12/17/2022] Open
Abstract
The standard model of multiple myeloma (MM) oncogenesis is based on the genetic instability of MM cells and presents its evolution as the emergence of clones with more and more aggressive genotypes, giving them surviving and proliferating advantage. The micro-environment has a passive role. In contrast, many works have shown that the progression of MM is also characterized by the selection of clones with extended phenotypes able to destroy bone trabeculae, suggesting a major role for early micro-environmental disruption. We present a model of MM oncogenesis in which genetic instability is the consequence of the disruption of normal interactions between plasma cells and their environment, the bone remodeling compartment. These interactions, which normally ensure the stability of the genotypes and phenotypes of normal plasma cells could be disrupted by many factors as soon as the early steps of the disease (MGUS, pre-MGUS states). Therapeutical implications of the model are presented.
Collapse
Affiliation(s)
- Jean-Pascal Capp
- LISBP, UMR CNRS 5504, UMR INRA 792, INSA Toulouse, University of Toulouse, Toulouse, France
| | - Régis Bataille
- Faculty of Medecine, University of Angers, Angers, France
| |
Collapse
|
15
|
Verney A, Traverse-Glehen A, Callet-Bauchu E, Jallades L, Magaud JP, Salles G, Genestier L, Baseggio L. Toll-like receptor expression and function differ between splenic marginal zone B cell lymphoma and splenic diffuse red pulp B cell lymphoma. Oncotarget 2018; 9:23589-23598. [PMID: 29805758 PMCID: PMC5955093 DOI: 10.18632/oncotarget.25283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 04/07/2018] [Indexed: 11/25/2022] Open
Abstract
In splenic marginal zone lymphoma (SMZL), specific and functional Toll-like Receptor (TLR) patterns have been recently described, suggesting their involvement in tumoral proliferation. Splenic diffuse red pulp lymphoma with villous lymphocytes (SDRPL) is close to but distinct from SMZL, justifying here the comparison of TLR patterns and functionality in both entities. Distinct TLR profiles were observed in both lymphoma subtypes. SDRPL B cells showed higher expression of TLR7 and to a lesser degree TLR9, in comparison to SMZL B cells. In both entities, TLR7 and TLR9 pathways appeared functional, as shown by IL-6 production upon TLR7 and TLR9 agonists stimulations. Interestingly, circulating SDRPL, but not SMZL B cells, constitutively expressed CD86. In addition, stimulation with both TLR7 and TLR9 agonists significantly increased CD80 expression in circulating SDRPL but not SMZL B cells. Finally, TLR7 and TLR9 stimulations had no impact on proliferation and apoptosis of SMZL or SDRPL B cells. In conclusion, SMZL and SDRPL may derive from different splenic memory B cells with specific immunological features that can be used as diagnosis markers in the peripheral blood.
Collapse
Affiliation(s)
- Aurélie Verney
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Alexandra Traverse-Glehen
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France.,Service d'Anatomie-pathologique, Centre Hospitalier Lyon-Sud/Hospices Civils de Lyon, Pierre-Bénite, France
| | - Evelyne Callet-Bauchu
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France.,Laboratoire d'Hématologie Cellulaire, Centre Hospitalier Lyon-Sud/Hospices Civils de Lyon, Pierre-Bénite, France
| | - Laurent Jallades
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France.,Laboratoire d'Hématologie Cellulaire, Centre Hospitalier Lyon-Sud/Hospices Civils de Lyon, Pierre-Bénite, France
| | - Jean-Pierre Magaud
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France.,Laboratoire d'Hématologie Cellulaire, Centre Hospitalier Lyon-Sud/Hospices Civils de Lyon, Pierre-Bénite, France
| | - Gilles Salles
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France.,Service d'Hématologie, Centre Hospitalier Lyon-Sud/Hospices Civils de Lyon, Pierre-Bénite, France
| | - Laurent Genestier
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Lucile Baseggio
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France.,Laboratoire d'Hématologie Cellulaire, Centre Hospitalier Lyon-Sud/Hospices Civils de Lyon, Pierre-Bénite, France
| |
Collapse
|
16
|
Chen Y, Yousaf MN, Mehal WZ. Role of sterile inflammation in fatty liver diseases. LIVER RESEARCH 2018. [DOI: 10.1016/j.livres.2018.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Kikuchi J, Kuroda Y, Koyama D, Osada N, Izumi T, Yasui H, Kawase T, Ichinohe T, Furukawa Y. Myeloma Cells Are Activated in Bone Marrow Microenvironment by the CD180/MD-1 Complex, Which Senses Lipopolysaccharide. Cancer Res 2018; 78:1766-1778. [PMID: 29363546 DOI: 10.1158/0008-5472.can-17-2446] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 12/03/2017] [Accepted: 01/19/2018] [Indexed: 11/16/2022]
Abstract
Multiple myeloma (MM) cells acquire dormancy and drug resistance via interaction with bone marrow stroma cells (BMSC) in a hypoxic microenvironment. Elucidating the mechanisms underlying the regrowth of dormant clones may contribute to further improvement of the prognosis of MM patients. In this study, we find that the CD180/MD-1 complex, a noncanonical lipopolysaccharide (LPS) receptor, is expressed on MM cells but not on normal counterparts, and its abundance is markedly upregulated under adherent and hypoxic conditions. Bacterial LPS and anti-CD180 antibody, but not other Toll-like receptor ligands, enhanced the growth of MM cells via activation of MAP kinases ERK and JNK in positive correlation with expression levels of CD180. Administration of LPS significantly increased the number of CD180/CD138 double-positive cells in a murine xenograft model when MM cells were inoculated with direct attachment to BMSC. Knockdown of CD180 canceled the LPS response in vitro and in vivo Promoter analyses identified IKZF1 (Ikaros) as a pivotal transcriptional activator of the CD180 gene. Both cell adhesion and hypoxia activated transcription of the CD180 gene by increasing Ikaros expression and its binding to the promoter region. Pharmacological targeting of Ikaros by the immunomodulatory drug lenalidomide ameliorated the response of MM cells to LPS in a CD180-dependent manner in vitro and in vivo Thus, the CD180/MD-1 pathway may represent a novel mechanism of growth regulation of MM cells in a BM milieu and may be a therapeutic target of preventing the regrowth of dormant MM cells.Significance: This study describes a novel mechanism by which myeloma cells are regulated in the bone marrow, where drug resistance and dormancy can evolve after treatment, with potential therapeutic implications for treating this often untreatable blood cancer. Cancer Res; 78(7); 1766-78. ©2018 AACR.
Collapse
Affiliation(s)
- Jiro Kikuchi
- Division of Stem Cell Regulation, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Yoshiaki Kuroda
- Division of Stem Cell Regulation, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Daisuke Koyama
- Division of Stem Cell Regulation, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Naoki Osada
- Division of Stem Cell Regulation, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Tohru Izumi
- Division of Hematology, Tochigi Cancer Center, Utsunomiya, Tochigi, Japan
| | - Hiroshi Yasui
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takakazu Kawase
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Tatsuo Ichinohe
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Yusuke Furukawa
- Division of Stem Cell Regulation, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan.
| |
Collapse
|
18
|
Baird JR, Monjazeb AM, Shah O, McGee H, Murphy WJ, Crittenden MR, Gough MJ. Stimulating Innate Immunity to Enhance Radiation Therapy-Induced Tumor Control. Int J Radiat Oncol Biol Phys 2017; 99:362-373. [PMID: 28871985 PMCID: PMC5604475 DOI: 10.1016/j.ijrobp.2017.04.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/02/2017] [Indexed: 12/29/2022]
Abstract
Novel ligands that target Toll-like receptors and other innate recognition pathways represent a potent strategy for modulating innate immunity to generate antitumor immunity. Although many of the current clinically successful immunotherapies target adaptive T-cell responses, both preclinical and clinical studies suggest that adjuvants have the potential to enhance the scope and efficacy of cancer immunotherapy. Radiation may be a particularly good partner to combine with innate immune therapies, because it is a highly efficient means to kill cancer cells but may fail to send the appropriate inflammatory signals needed to act as an efficient endogenous vaccine. This may explain why although radiation therapy is a highly used cancer treatment, true abscopal effects-regression of disease outside the field without additional systemic therapy-are extremely rare. This review focuses on efforts to combine innate immune stimuli as adjuvants with radiation, creating a distinct and complementary approach from T cell-targeted therapies to enhance antitumor immunity.
Collapse
Affiliation(s)
- Jason R Baird
- Earle A. Chiles Research Institute, Providence Cancer Center, Portland, Oregon
| | - Arta M Monjazeb
- Department of Radiation Oncology, UC Davis Comprehensive Cancer Center, Sacramento, California; Laboratory of Cancer Immunology, UC Davis Comprehensive Cancer Center, Sacramento, California
| | - Omid Shah
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Heather McGee
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - William J Murphy
- Laboratory of Cancer Immunology, UC Davis Comprehensive Cancer Center, Sacramento, California
| | - Marka R Crittenden
- Earle A. Chiles Research Institute, Providence Cancer Center, Portland, Oregon; The Oregon Clinic, Portland, Oregon
| | - Michael J Gough
- Earle A. Chiles Research Institute, Providence Cancer Center, Portland, Oregon.
| |
Collapse
|
19
|
Soares RR, Antinarelli LMR, Abramo C, Macedo GC, Coimbra ES, Scopel KKG. What do we know about the role of regulatory B cells (Breg) during the course of infection of two major parasitic diseases, malaria and leishmaniasis? Pathog Glob Health 2017; 111:107-115. [PMID: 28353409 PMCID: PMC5445636 DOI: 10.1080/20477724.2017.1308902] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Parasitic diseases, such as malaria and leishmaniasis, are relevant public health problems worldwide. For both diseases, the alarming number of clinical cases and deaths reported annually has justified the incentives directed to better understanding of host's factors associated with susceptibility to infection or protection. In this context, over recent years, some studies have given special attention to B lymphocytes with a regulator phenotype, known as Breg cells. Essentially important in the maintenance of immunological tolerance, especially in autoimmune disease models such as rheumatoid arthritis and experimentally induced autoimmune encephalomyelitis, the function of these lymphocytes has so far been poorly explored during the course of diseases caused by parasites. As the activation of Breg cells has been proposed as a possible therapeutic or vaccine strategy against several diseases, here we reviewed studies focused on understanding the relation of parasite and Breg cells in malaria and leishmaniasis, and the possible implications of these strategies in the course of both infections.
Collapse
|
20
|
Heterogeneity of Toll-like receptor 9 signaling in B cell malignancies and its potential therapeutic application. J Transl Med 2017; 15:51. [PMID: 28241765 PMCID: PMC5329966 DOI: 10.1186/s12967-017-1152-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 02/17/2017] [Indexed: 12/11/2022] Open
Abstract
Toll-like receptor 9 (TLR9) is expressed in a variety of B-cell malignancies and works as a bridge between innate and adaptive immunity. CpG oligodeoxynucleotides (CpG ODNs), TLR9 agonists, are able to induce anticancer immune responses and exert direct effects against cancer cells, serving as cancer therapeutic agents. Therefore, TLR9 might be a potential therapeutic target for drug development. However, several new evidences have revealed that direct effects of TLR9 agonists on B-cell malignancies is controversial. For example, CpG ODNs can induce apoptosis in certain type of chronic lymphocytic leukemia and lymphoma cells, while induce proliferation in multiple myeloma and other types of lymphoma cells. In this review, we summarize current understanding of the heterogeneity in responses of normal and malignant B cells to TLR9 agonists, due to differences in TLR9 expression levels, genetic alterations (such as MyD88 mutation), and signaling pathway activation. Especially, the downstream molecules of NF-κB signaling pathway play an important role in the heterogeneous response. In order to provide possibilities for therapeutic manipulation of TLR9 agonists in the treatment of these disorders, the preclinical and clinical advances in using CpG ODNs alone and in combination therapies are also summarized in this review.
Collapse
|
21
|
Monti M, Iommelli F, De Rosa V, Carriero MV, Miceli R, Camerlingo R, Di Minno G, Del Vecchio S. Integrin-dependent cell adhesion to neutrophil extracellular traps through engagement of fibronectin in neutrophil-like cells. PLoS One 2017; 12:e0171362. [PMID: 28166238 PMCID: PMC5293257 DOI: 10.1371/journal.pone.0171362] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 01/18/2017] [Indexed: 12/22/2022] Open
Abstract
Neutrophil extracellular traps (NETs), originally recognized as a host defense mechanism, were reported to promote thrombosis and metastatic dissemination of cancer cells. Here we tested the role of integrins α5β1 and ανβ3 in the adhesion of cancer cells to NETs. Neutrophil-like cells stimulated with calcium ionophore (A23187) were used as a stable source of cell-free NETs-enriched suspensions. Using NETs as an adhesion substrate, two human K562 cell lines, differentially expressing α5β1 and ανβ3 integrins, were subjected to adhesion assays in the presence or absence of DNAse 1, blocking antibodies against α5β1 or ανβ3, alone or in combination with DNAse 1, and Proteinase K. As expected DNAse 1 treatment strongly inhibited adhesion of both cell lines to NETs. An equivalent significant reduction of cell adhesion to NETs was obtained after treatment of cells with blocking antibodies against α5β1 or ανβ3 indicating that both integrins were able to mediate cell adhesion to NETs. Furthermore, the combination of DNAse 1 and anti-integrin antibody treatment almost completely blocked cell adhesion. Western blot analysis and immunoprecipitation experiments showed a dose-dependent increase of fibronectin levels in samples from stimulated neutrophil-like cells and a direct or indirect interaction of fibronectin with histone H3. Finally, co-immunolocalization studies with confocal microscopy showed that fibronectin and citrullinated histone H3 co-localize inside the web-structure of NETs. In conclusion, our study showed that α5β1 and ανβ3 integrins mediate cell adhesion to NETs by binding to their common substrate fibronectin. Therefore, in addition to mechanical trapping and aspecific adsorption of different cell types driven by DNA/histone complexes, NETs may provide specific binding sites for integrin-mediated cell adhesion of neutrophils, platelets, endothelial and cancer cells thus promoting intimate interactions among these cells.
Collapse
Affiliation(s)
- Marcello Monti
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli “Federico II”, Naples, Italy
| | - Francesca Iommelli
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Viviana De Rosa
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Maria Vincenza Carriero
- Dipartimento di Oncologia Sperimentale, IRCCS Istituto Nazionale Tumori “Fondazione G. Pascale”, Naples, Italy
| | - Roberta Miceli
- Dipartimento di Oncologia Sperimentale, IRCCS Istituto Nazionale Tumori “Fondazione G. Pascale”, Naples, Italy
| | - Rosa Camerlingo
- Dipartimento di Oncologia Sperimentale, IRCCS Istituto Nazionale Tumori “Fondazione G. Pascale”, Naples, Italy
| | - Giovanni Di Minno
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli “Federico II”, Naples, Italy
| | - Silvana Del Vecchio
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche, Naples, Italy
- Dipartimento di Scienze Biomediche Avanzate, Università degli Studi di Napoli “Federico II”, Naples, Italy
- * E-mail:
| |
Collapse
|
22
|
Feist M, Kemper J, Taruttis F, Rehberg T, Engelmann JC, Gronwald W, Hummel M, Spang R, Kube D. Synergy of interleukin 10 and toll-like receptor 9 signalling in B cell proliferation: Implications for lymphoma pathogenesis. Int J Cancer 2016; 140:1147-1158. [PMID: 27668411 DOI: 10.1002/ijc.30444] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 09/02/2016] [Indexed: 12/18/2022]
Abstract
A network of autocrine and paracrine signals defines B cell homeostasis and is thought to be involved in transformation processes. Investigating interactions of these microenvironmental factors and their relation to proto-oncogenes as c-Myc (MYC) is fundamental to understand the biology of B cell lymphoma. Therefore, B cells with conditional MYC expression were stimulated with CD40L, insulin-like growth factor 1, α-IgM, Interleukin-10 (IL10) and CpG alone or in combination. The impact of forty different interventions on cell proliferation was investigated in MYC deprived cells and calculated by linear regression. Combination of CpG and IL10 led to a strong synergistic activation of cell proliferation (S-phase/doubling of total cell number) comparable to cells with high MYC expression. A synergistic up-regulation of CDK4, CDK6 and CCND3 expression by IL10 and CpG treatment was causal for this proliferative effect as shown by qRT-PCR analysis and inhibition of the CDK4/6 complex by PD0332991. Furthermore, treatment of stimulated MYC deprived cells with MLN120b, ACHP, Pyridone 6 or Ruxolitinib showed that IL10/CpG induced proliferation and CDK4 expression were JAK/STAT3 and IKK/NF-κB dependent. This was further supported by STAT3 and p65/RELA knockdown experiments, showing strongest effects on cell proliferation and CDK4 expression after double knockdown. Additionally, chromatin immunoprecipitation revealed a dual binding of STAT3 and p65 to the proximal promotor of CDK4 after IL10/CpG treatment. Therefore, the observed synergism of IL10R and TLR9 signalling was able to induce proliferation in a comparable way as aberrant MYC and might play a role in B cell homeostasis or transformation.
Collapse
Affiliation(s)
- Maren Feist
- Clinic of Haematology and Medical Oncology, University Medical Centre of the Georg-August University Göttingen, Göttingen, Germany.,BMBF e:Bio Network, MMML-Myc-Sys
| | - Judith Kemper
- Clinic of Haematology and Medical Oncology, University Medical Centre of the Georg-August University Göttingen, Göttingen, Germany
| | - Franziska Taruttis
- BMBF e:Bio Network, MMML-Myc-Sys.,Statistical Bioinformatics, Institute of Functional Genomics, University of Regensburg, Germany
| | - Thorsten Rehberg
- Statistical Bioinformatics, Institute of Functional Genomics, University of Regensburg, Germany
| | - Julia C Engelmann
- BMBF e:Bio Network, MMML-Myc-Sys.,Statistical Bioinformatics, Institute of Functional Genomics, University of Regensburg, Germany
| | - Wolfram Gronwald
- BMBF e:Bio Network, MMML-Myc-Sys.,Institute of Functional Genomics, University of Regensburg, Germany
| | - Michael Hummel
- BMBF e:Bio Network, MMML-Myc-Sys.,Institute for Pathology, Campus Benjamin Franklin, Charité Berlin, Germany
| | - Rainer Spang
- BMBF e:Bio Network, MMML-Myc-Sys.,Statistical Bioinformatics, Institute of Functional Genomics, University of Regensburg, Germany
| | - Dieter Kube
- Clinic of Haematology and Medical Oncology, University Medical Centre of the Georg-August University Göttingen, Göttingen, Germany.,BMBF e:Bio Network, MMML-Myc-Sys
| |
Collapse
|
23
|
Batool M, Anwar MA, Choi S. Toll-like receptors targeting technology for the treatment of lymphoma. Expert Opin Drug Discov 2016; 11:1047-1059. [PMID: 27602749 DOI: 10.1080/17460441.2016.1233964] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION The crucial role of Toll-like Receptors (TLRs) in innate and adaptive immune systems is well discussed in the literature. In cancer, TLRs act as a double-edged sword that can promote or suppress tumor growth. Areas covered: In this article, the authors uncover the potential role of TLRs in lymphomas, which are cancers related to the lymphatic system and blood cells. TLRs are de facto inflammation-inducing receptors that can either worsen disease or ameliorate lymphoma treatment. From this perspective, the usage of TLRs to modulate the immune system toward lymphoma regression is desirable. Various strategies have been used so far, and novel ways are being sought out to cure lymphoma. Expert opinion: TLR ligands have successfully been used to improve patient health; however, these receptors must be finely tuned to further optimize therapy. For a better outcome, novel specific ligands, improved pharmacodynamics, and unique targets should be discerned. Ligands with conjugated molecules, nanoparticles, and targeted drug delivery can highly optimize the therapy for lymphoma with various etiologies.
Collapse
Affiliation(s)
- Maria Batool
- a Department of Molecular Science and Technology , Ajou University , Suwon , Korea
| | - Muhammad Ayaz Anwar
- a Department of Molecular Science and Technology , Ajou University , Suwon , Korea
| | - Sangdun Choi
- a Department of Molecular Science and Technology , Ajou University , Suwon , Korea
| |
Collapse
|
24
|
Distinct Differentiation Programs Triggered by IL-6 and LPS in Teleost IgM(+) B Cells in The Absence of Germinal Centers. Sci Rep 2016; 6:30004. [PMID: 27481356 PMCID: PMC4969607 DOI: 10.1038/srep30004] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/28/2016] [Indexed: 12/21/2022] Open
Abstract
Although originally identified as a B cell differentiation factor, it is now known that mammalian interleukin-6 (IL-6) only regulates B cells committed to plasma cells in response to T-dependent (TD) antigens within germinal centers (GCs). Even though adaptive immunity is present in teleost fish, these species lack lymph nodes and GCs. Thus, the aim of the present study was to establish the role of trout IL-6 on B cells, comparing its effects to those induced by bacterial lipopolysaccharide (LPS). We demonstrate that the effects of teleost IL-6 on naïve spleen B cells include proliferation, activation of NF-κB, increased IgM secretion, up-regulation of Blimp1 transcription and decreased MHC-II surface expression that point to trout IL-6 as a differentiation factor for IgM antibody-secreting cells (ASCs). However, LPS induced the secretion of IgM without up-regulating Blimp1, driving the cells towards an intermediate activation state in which antigen presenting mechanisms are elicited together with antibody secretion and expression of pro-inflammatory genes. Our results reveal that, in trout, IL-6 is a differentiation factor for B cells, stimulating IgM responses in the absence of follicular structures, and suggest that it was after follicular structures appeared that this cytokine evolved to modulate TD responses within the GC.
Collapse
|
25
|
Sánchez-Cuaxospa M, Contreras-Ramos A, Pérez-Figueroa E, Medina-Sansón A, Jiménez-Hernández E, Torres-Nava JR, Rojas-Castillo E, Maldonado-Bernal C. Low expression of Toll-like receptors in peripheral blood mononuclear cells of pediatric patients with acute lymphoblastic leukemia. Int J Oncol 2016; 49:675-81. [PMID: 27277333 DOI: 10.3892/ijo.2016.3569] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 05/16/2016] [Indexed: 11/06/2022] Open
Abstract
Cancer is the second most common cause of death among children aged 1-14 years. Leukemia accounts for one-third of all childhood cancers, 78% of which is acute lymphoblastic leukemia (ALL). The development of cancer has been associated with malignant cells that express low levels of immunogenic molecules, which facilitates their escape from the antineoplastic immune response. It is thought that it may be possible to rescue the antineoplastic immune response through the activation of recognition receptors, such as Toll-like receptors (TLRs), which activate the innate immune system. TLRs are type I membrane glycoproteins expressed mainly in immune system cells such as monocytes, neutrophils, macrophages, dendritic cells, T, B and natural killer cells. The aim of the present study was to evaluate the expression of TLR1, TLR3, TLR4, TLR7 and TLR9 in peripheral blood mononuclear cells (PBMCs) in patients with ALL and prior to any treatment. PBMCs were obtained from 50 pediatric patients diagnosed with ALL and from 20 children attending the ophthalmology and orthopedics services. The mean fluorescence intensity was obtained by analysis of immunofluorescence. We found lower expression levels of TLR1, TLR3, TLR4, TLR7 and TLR9 in PBMCs from patients with ALL compared with those from control patients. We also observed that the PBMCs from patients with Pre-B and B ALL had lower TLR4 expression than controls and patients with Pro-B, Pre-B, B and T ALL had lower TLR7 expression than controls. The present study is the first to demonstrate reduced expression of TLRs in PBMCs from pediatric patients with ALL. This finding is of great relevance and may partly explain the reduction in the antineoplastic immune response in patients with ALL.
Collapse
Affiliation(s)
- María Sánchez-Cuaxospa
- Immunology and Proteomic Research Laboratory, Children's Hospital of Mexico Federico Gómez, Mexico City, Mexico
| | - Alejandra Contreras-Ramos
- Laboratory of Developmental Biology, Children's Hospital of Mexico Federico Gómez, Mexico City, Mexico
| | - Erandi Pérez-Figueroa
- Immunology and Proteomic Research Laboratory, Children's Hospital of Mexico Federico Gómez, Mexico City, Mexico
| | - Aurora Medina-Sansón
- Department of Hematology and Oncology, Children's Hospital of Mexico Federico Gómez, Mexico City, Mexico
| | | | | | - Emilio Rojas-Castillo
- Institute of Biomedical Sciences, National Autonomous University of Mexico, Mexico City, Mexico
| | - Carmen Maldonado-Bernal
- Immunology and Proteomic Research Laboratory, Children's Hospital of Mexico Federico Gómez, Mexico City, Mexico
| |
Collapse
|
26
|
Mastorci K, Muraro E, Pasini E, Furlan C, Sigalotti L, Cinco M, Dolcetti R, Fratta E. Toll-Like Receptor 1/2 and 5 Ligands Enhance the Expression of Cyclin D1 and D3 and Induce Proliferation in Mantle Cell Lymphoma. PLoS One 2016; 11:e0153823. [PMID: 27123851 PMCID: PMC4849792 DOI: 10.1371/journal.pone.0153823] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 04/04/2016] [Indexed: 12/28/2022] Open
Abstract
Mantle cell lymphoma (MCL) is an aggressive B-cell non-Hodgkin’s lymphoma with a still undefined etiology. Several lines of evidence are consistent with the possible involvement of peculiar microenvironmental stimuli sustaining tumor cell growth and survival, as the activation of Toll-like receptors (TLR) 4 and 9. However, little is known about the contribution of other TLRs of pathogenic relevance in the development of MCL. This study reports evidence that MCL cell lines and primary MCL cells express different levels of TLR2 and TLR5, and that their triggering is able to further activate the Akt, MAPK, and NF-κB signaling cascades, known to be altered in MCL cells. This leads to the enhancement of cyclin D1 and D3 over-expression, occurring at post-translational level through a mechanism that likely involves the Akt/GSK-3α/β pathway. Interestingly, in primary B cells, TLR1/2 or TLR5 ligands increase protein level of cyclin D1, which is not usually expressed in normal B cells, and cyclin D3 when associated with CD40 ligand (CD40L), IL-4, and anti-human-IgM co-stimulus. Finally, the activation of TLR1/2 and TLR5 results in an increased proliferation of MCL cell lines and, in the presence of co-stimulation with CD40L, IL-4, and anti-human-IgM also of primary MCL cells and normal B lymphocytes. These effects befall together with an enhanced IL-6 production in primary cultures. Overall, our findings suggest that ligands for TLR1/2 or TLR5 may provide critical stimuli able to sustain the growth and the malignant phenotype of MCL cells. Further studies aimed at identifying the natural source of these TLR ligands and their possible pathogenic association with MCL are warranted in order to better understand MCL development, but also to define new therapeutic targets for counteracting the tumor promoting effects of lymphoma microenvironment.
Collapse
Affiliation(s)
- Katy Mastorci
- Cancer Bio-Immunotherapy Unit, Department of Translational Research, Centro di Riferimento Oncologico, IRCCS—National Cancer Institute, Aviano (PN), Italy
| | - Elena Muraro
- Cancer Bio-Immunotherapy Unit, Department of Translational Research, Centro di Riferimento Oncologico, IRCCS—National Cancer Institute, Aviano (PN), Italy
- * E-mail:
| | - Elisa Pasini
- Cancer Bio-Immunotherapy Unit, Department of Translational Research, Centro di Riferimento Oncologico, IRCCS—National Cancer Institute, Aviano (PN), Italy
- Princess Margaret Cancer Centre, University Health Network and TECHNA Institute for the Advancement of Technology for Health, TMDT, Room 11–314, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Chiara Furlan
- Cancer Bio-Immunotherapy Unit, Department of Translational Research, Centro di Riferimento Oncologico, IRCCS—National Cancer Institute, Aviano (PN), Italy
| | - Luca Sigalotti
- Cancer Bio-Immunotherapy Unit, Department of Translational Research, Centro di Riferimento Oncologico, IRCCS—National Cancer Institute, Aviano (PN), Italy
| | - Marina Cinco
- Spirochete Laboratory, Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Riccardo Dolcetti
- Cancer Bio-Immunotherapy Unit, Department of Translational Research, Centro di Riferimento Oncologico, IRCCS—National Cancer Institute, Aviano (PN), Italy
- University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Australia
| | - Elisabetta Fratta
- Cancer Bio-Immunotherapy Unit, Department of Translational Research, Centro di Riferimento Oncologico, IRCCS—National Cancer Institute, Aviano (PN), Italy
- * E-mail:
| |
Collapse
|
27
|
Sharifi L, Mirshafiey A, Rezaei N, Azizi G, Magaji Hamid K, Amirzargar AA, Asgardoon MH, Aghamohammadi A. The role of toll-like receptors in B-cell development and immunopathogenesis of common variable immunodeficiency. Expert Rev Clin Immunol 2015; 12:195-207. [PMID: 26654573 DOI: 10.1586/1744666x.2016.1114885] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Common variable immunodeficiency (CVID) is the most frequent symptomatic primary immune deficiency and is characterized by hypogammaglobulinemia, defect in specific antibody response and increased susceptibility to recurrent infections, malignancy and autoimmunity. Patients with CVID often have defects in post-antigenic B-cell differentiation, with fewer memory B cells and impaired isotype switching. Toll-like receptors (TLRs) are expressed on various immune cells as key elements of innate and adaptive immunity. TLR signaling in B cells plays multiple roles in cell differentiation and activation, class-switch recombination and cytokine and antibody production. Moreover, recent studies have shown functional alteration of TLRs responses in CVID patients including poor cell proliferation, impaired upregulation of co-stimulatory molecules and failure in cytokine and immunoglobulin production. The purpose of the present review is to discuss the role of TLRs in B-cell development and function as well as their role in the immunopathogenesis of CVID.
Collapse
Affiliation(s)
- Laleh Sharifi
- a Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran
| | - Abbas Mirshafiey
- a Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran.,b Department of Immunology, School of Public Health , Tehran University of Medical Sciences , Tehran , Iran
| | - Nima Rezaei
- a Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran.,c Department of Immunology, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Gholamreza Azizi
- d Imam Hassan Mojtaba Hospital , Alborz University of Medical Sciences , Karaj , Iran
| | - Kabir Magaji Hamid
- b Department of Immunology, School of Public Health , Tehran University of Medical Sciences , Tehran , Iran.,e Immunology Department, Faculty of Medical Laboratory Sciences , Usmanu Danfodiyo University , Sokoto , Nigeria
| | - Ali Akbar Amirzargar
- c Department of Immunology, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Mohammad Hossein Asgardoon
- a Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran
| | - Asghar Aghamohammadi
- a Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
28
|
Bagratuni T, Terpos E, Eleutherakis-Papaiakovou E, Kalapanida D, Gavriatopoulou M, Migkou M, Liacos CI, Tasidou A, Matsouka C, Mparmparousi D, Dimopoulos MA, Kastritis E. TLR4/TIRAP polymorphisms are associated with progression and survival of patients with symptomatic myeloma. Br J Haematol 2015; 172:44-7. [PMID: 26564000 DOI: 10.1111/bjh.13786] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/03/2015] [Indexed: 12/01/2022]
Abstract
Myeloma cells thrive in an environment of sustained inflammation, which impacts the development and evolution of the disease, as well as drug resistance. We evaluated the impact of genetic polymorphisms in the Toll-like receptor 4 (TLR4) pathway, which have been implicated in different inflammatory responses in the outcomes of patients with symptomatic multiple myeloma (MM) who have received contemporary therapies. We found that the presence of single nucleotide polymorphisms (SNPs) in both the TLR4 and toll/interleukin-1 receptor (TIR)-associated protein (TIRAP) genes was associated with lower response to primary therapy mainly for patients who received immunomodulatory drugs but not in patients treated with bortezomib-based therapies. Furthermore, TIRAP SNP was associated with a significantly shorter progression-free survival and overall survival, independently of other prognostic factors, such as age, transplant, International Staging System stage, lactate dehydrogenase and cytogenetics. This is the first study to demonstrate the effect of SNPs in TLR4/TIRAP in MM. Our data indicate that genetic variability in the immune system may be associated with different responses to antimyeloma therapies and may be a critical component affecting the natural history of the disease, providing the basis for further investigation of the role of these pathways in myeloma.
Collapse
Affiliation(s)
- Tina Bagratuni
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Terpos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Despoina Kalapanida
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Gavriatopoulou
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| | - Magdalini Migkou
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| | - Christine-Ivy Liacos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| | - Anna Tasidou
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| | - Charis Matsouka
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| | - Despoina Mparmparousi
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| | - Meletios A Dimopoulos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| | - Efstathios Kastritis
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
29
|
Mayeur-Rousse C, Guy J, Miguet L, Bouyer S, Geneviève F, Robillard N, Solly F, Maar A, Bené MC, Mauvieux L. CD180 expression in B-cell lymphomas: A multicenter GEIL study. CYTOMETRY PART B-CLINICAL CYTOMETRY 2015; 90:462-6. [PMID: 26384474 DOI: 10.1002/cyto.b.21325] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 08/21/2015] [Accepted: 09/11/2015] [Indexed: 11/11/2022]
Abstract
CD180, a related member of the Toll-like receptor family, is lost or underexpressed at the plasma membrane in circulating cells of various B-cell lymphomas except marginal zone lymphomas (MZL). In order to confirm its clinical relevance in routine analysis, we evaluated prospectively the expression of CD180 in 236 patients from 5 French University Hospital laboratories on behalf of the GEIL. Highly comparable results were obtained in all centers using the EuroFlow standardization protocol. We observed that CD180 median fluorescence (MdFI) was significantly higher in MZL and hairy cell leukaemia (HCL) compared to all other B-cell proliferations (P < 0.05). CD180 intensity could distinguish lymphomas with numerous villous lymphocytes from other MZL. ROC curve analysis identified a CD180 MdFI threshold for which the diagnosis of MZL could be assessed with 77% sensitivity and 92% specificity. This study showed that CD180 can be considered as a single positive robust marker of MZL and should be therefore included in flow cytometry panels for the diagnosis of mature B-cell neoplasms. Harmonization process is of great interest in order to evaluate new markers in multicentric studies and to set up decisional thresholds. © 2015 International Clinical Cytometry Society.
Collapse
Affiliation(s)
| | - Julien Guy
- Laboratoire D'hématologie, CHU De Dijon, Dijon, France
| | - Laurent Miguet
- Laboratoire D'hématologie, CHU De Hautepierre, Strasbourg, France.,EA 3430, Université De Strasbourg, Faculté De Médecine De Strasbourg, Fédération De Médecine Translationnelle De Strasbourg, Strasbourg, France
| | - Sabrina Bouyer
- Laboratoire D'hématologie, CHU La Milétrie, Poitiers, France
| | | | | | - Françoise Solly
- Laboratoire D'hématologie, CHU De Saint-Etienne, Saint-Etienne, France
| | - Aida Maar
- Laboratoire D'hématologie, CHU De Hautepierre, Strasbourg, France
| | - Marie C Bené
- Laboratoire D'hématologie, CHU De Nantes, Nantes, France
| | - Laurent Mauvieux
- Laboratoire D'hématologie, CHU De Hautepierre, Strasbourg, France.,EA 3430, Université De Strasbourg, Faculté De Médecine De Strasbourg, Fédération De Médecine Translationnelle De Strasbourg, Strasbourg, France
| | | |
Collapse
|
30
|
Dysregulated B-cell TLR2 expression and elevated regulatory B-cell frequency precede the diagnosis of AIDS-related non-Hodgkin lymphoma. AIDS 2015; 29:1659-64. [PMID: 26372276 DOI: 10.1097/qad.0000000000000687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES In antiretroviral therapy (ART)-treated patients, to determine if AIDS-related non-Hodgkin lymphoma (AIDS-NHL) is preceded by: elevated frequency of potentially malignant abnormal activated/germinal center-like B cells, elevated serum prevalence of B-cell stimulatory Toll-like receptor (TLR) ligands resulting from HIV infection-associated microbial translocation, dysregulated B-cell TLR expression/signaling, and perturbations in the frequency of immunoregulatory cells. DESIGN A case-control study nested with a cohort study of HIV-infected women. METHODS Prediagnostic AIDS-NHL cases (n = 12, collected 1-12 months before diagnosis) and controls (n = 42) from the Women's Interagency HIV Study cohort, were matched for HIV and ART status, age, race, and CD4 lymphocyte count. Serum levels of TLR ligands, the prevalence of malignancy-associated abnormal activated/germinal center-like (CD19CD10CD71CD86AID) B cells, TLR2 expression on B cells, expression of TLR2-modulating micro-RNA, and the frequency of regulatory T and B cells were assessed. RESULTS Diagnosis of AIDS-NHL was preceded by a significantly elevated frequency of activated/germinal center-like CD19CD10CD71CD86AID B cells (P = 0.0072), elevated serum prevalence of the TLR2 ligand, and significantly elevated B-cell TLR2 expression (P = 0.0015), positively correlating with the frequency of activated/germinal center-like B cells (rho = 0.7273, P = 0.0144). In cases, a purified subset of activated/germinal center-like B cells exhibited decreased expression of microRNAs that modulate TLR2 signaling, including miR-21, 146a, 146b, and 155. Finally, cases also exhibited significantly elevated frequencies of antitumor immunity inhibitory regulatory B cells (P = 0.0024), but not regulatory T cells. CONCLUSIONS Our findings suggest that increased microbial translocation and dysregulated TLR expression/signaling, coupled with an elevated frequency of regulatory B cells, precede the diagnosis of AIDS-NHL in HIV-infected ART-treated patients.
Collapse
|
31
|
Dysregulated B-cell TLR2 expression and elevated regulatory B-cell frequency precede the diagnosis of AIDS-related non-Hodgkin lymphoma. AIDS 2015. [DOI: 10.1097/qad.000000000000068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Antosz H, Wojciechowska K, Sajewicz J, Choroszyńska D, Marzec-Kotarska B, Osiak M, Pająk N, Tomczak W, Jargiełło-Baszak M, Baszak J. IL-6, IL-10, c-Jun and STAT3 expression in B-CLL. Blood Cells Mol Dis 2015; 54:258-65. [DOI: 10.1016/j.bcmd.2014.11.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 09/09/2014] [Accepted: 11/13/2014] [Indexed: 11/25/2022]
|
33
|
Rybka J, Butrym A, Wróbel T, Jaźwiec B, Stefanko E, Dobrzyńska O, Poręba R, Kuliczkowski K. The expression of Toll-like receptors in patients with acute myeloid leukemia treated with induction chemotherapy. Leuk Res 2015; 39:318-22. [PMID: 25624047 DOI: 10.1016/j.leukres.2015.01.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 12/30/2014] [Accepted: 01/06/2015] [Indexed: 12/21/2022]
Abstract
Toll-like receptors play an important role in the host defense against microorganisms. TLRs are mainly expressed in human immune-related cells, such as monocytes, neutrophils, macrophages, dendritic cells, T cells, B cells and NK cells. The expression or up-regulation of TLRs has been demonstrated in some tumors and tumor cell lines but the role of TLRs in pathogenesis and development of acute leukemias remains unclear. The aim of this study was to evaluate the expression of TLR2, TLR4 and TLR9 and their significance as prognostic factors in patients with acute leukemias treated with induction chemotherapy. 103 patients with newly diagnosed acute myeloid leukemia (AML) were evaluated (47 females and 56 males). The median age of patients was 51 years. Using quantitative reverse transcriptase PCR, the mRNA expression of genes TLR2, TLR4 and TLR9 was measured. The mRNA expression of TLR2 and TLR4 was significantly higher in patients with NR than in patients with CR and CRi. We especially observed that mRNA expression of TLR2 and TLR4 was significantly higher in patients with myelomonocytic and monoblastic acute leukemia than in patients with other types of AML. The mRNA expression of TLR2 and TLR4 was higher in AML patients than in healthy individuals, although there was no statistically significant difference. Patients with higher mRNA expression of TLR2 and TLR4 had significantly shorter OS than patients with lower mRNA expression of TLR2 and TLR4. Multivariate analysis showed that mRNA expression of TLR2 and the age of patients were independent factors associated with treatment response. Our results suggest that TLRs could be an independent prognostic factor for response rate after induction therapy in patients with acute myeloid leukemias.
Collapse
Affiliation(s)
- Justyna Rybka
- Department of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland.
| | - Aleksandra Butrym
- Department of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| | - Tomasz Wróbel
- Department of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| | - Bożena Jaźwiec
- Department of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| | - Ewa Stefanko
- Department of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| | - Olga Dobrzyńska
- Department of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| | - Rafał Poręba
- Department of Internal Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Kazimierz Kuliczkowski
- Department of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
34
|
Role of toll-like receptors in multiple myeloma and recent advances. Exp Hematol 2014; 43:158-67. [PMID: 25462020 DOI: 10.1016/j.exphem.2014.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 11/02/2014] [Accepted: 11/10/2014] [Indexed: 12/22/2022]
Abstract
Multiple myeloma (MM) is a hematologic malignancy characterized as an abnormal proliferation and invasion of plasma cells into the bone marrow. Toll-like receptors (ТLRs) connect the innate and adaptive immune responses and represent a significant and potentially linking element between inflammation and cancer. When TLRs bind to their ligands, they trigger two major signaling pathways such that both share overlapping downstream signals: one is a myeloid differentiation primary response 88 (MyD88)-dependent production and activation of nuclear factor-κB, whereas the other is a MyD88-independent production of type-I interferon. Whereas the MyD88 pathway results in proinflammatory cytokine production, the other pathway stimulates cell proliferation. Dysregulations of these pathways may eventually lead to abnormal cell proliferation and MM. Despite recent biomedical advances, MM continues to be an incurable disease. There are an increasing number of TLR-based therapeutic approaches currently being tested in a number of preclinical and clinical studies. We here attempt to outline in detail the currently available information on TLRs in various types of cancer.
Collapse
|
35
|
Differential expression of Toll-like receptor (TLR) and B cell receptor (BCR) signaling molecules in primary diffuse large B-cell lymphoma of the central nervous system. J Neurooncol 2014; 121:289-96. [PMID: 25391967 DOI: 10.1007/s11060-014-1655-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 10/26/2014] [Indexed: 12/22/2022]
Abstract
Primary diffuse large B-cell lymphoma of the central nervous system (CNS DLBCL) is a distinct and aggressive lymphoma that is confined to CNS. Since, central nervous system is barrier-protected and immunologically silent; role of TLR/BCR signaling in pathogenesis and biology of CNS DLBCL is intriguing. Genomic mutations in key regulators of TLR/BCR signaling pathway (MYD88/CD79B/CARD11) have recently been reported in this disease. These observations raised possible implications in novel targeted therapies; however, expression pattern of molecules related to TLR/BCR pathways in this lymphoma remains unknown. We have analyzed the expression of 19 genes encoding TLR/BCR pathways and targets in CNS DLBCLs (n = 20) by Nanostring nCounter™ analysis and compared it with expression patterns in purified reactive B-lymphocytes and systemic diffuse large B cell lymphoma (DLBCL) (n = 20). Relative expression of TLR4, TLR5, TLR9, CD79B and BLNK was higher in CNS DLBCLs than in control B-lymphocytes; where as TLR7, MALT1, BCL10, CD79A and LYN was lower in CNS DLBCLs (P < 0.0001). When compared with systemic DLBCL samples, higher expression of TLR9, CD79B, CARD11, LYN and BLNK was noted in CNS DLBCL (>1.5 fold change; P < 0.01). The B cell receptor molecules like BLNK and CD79B were also associated with higher expression of MYD88 dependent TLRs (TLR4/5/9). In conclusion, we have shown over expression of TLR/BCR related genes or their targets, where genomic mutations have commonly been identified in CNS DLBCL. We have also demonstrated that TLR over expression closely relate with up regulation of genes associated with BCR pathway like CD79B/BLNK and CARD11, which play an important role in NF-kB pathway activation. Our results provide an important insight into the possibility of TLR and/or B-cell receptor signaling molecules as possible therapeutic targets in CNS DLBCL.
Collapse
|
36
|
Park HY, Go H, Song HR, Kim S, Ha GH, Jeon YK, Kim JE, Lee H, Cho H, Kang HC, Chung HY, Kim CW, Chung DH, Lee CW. Pellino 1 promotes lymphomagenesis by deregulating BCL6 polyubiquitination. J Clin Invest 2014; 124:4976-88. [PMID: 25295537 DOI: 10.1172/jci75667] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 09/04/2014] [Indexed: 12/13/2022] Open
Abstract
The signal-responsive E3 ubiquitin ligase pellino 1 (PELI1) regulates TLR and T cell receptor (TCR) signaling and contributes to the maintenance of autoimmunity; however, little is known about the consequence of mutations that result in upregulation of PELI1. Here, we developed transgenic mice that constitutively express human PELI1 and determined that these mice have a shorter lifespan due to tumor formation. Constitutive expression of PELI1 resulted in ligand-independent hyperactivation of B cells and facilitated the development of a wide range of lymphoid tumors, with prominent B cell infiltration observed across multiple organs. PELI1 directly interacted with the oncoprotein B cell chronic lymphocytic leukemia (BCL6) and induced lysine 63-mediated BCL6 polyubiquitination. In samples from patients with diffuse large B cell lymphomas (DLBCLs), PELI1 expression levels positively correlated with BCL6 expression, and PELI1 overexpression was closely associated with poor prognosis in DLBCLs. Together, these results suggest that increased PELI1 expression and subsequent induction of BCL6 promotes lymphomagenesis and that this pathway may be a potential target for therapeutic strategies to treat B cell lymphomas.
Collapse
|
37
|
Isaza-Correa JM, Liang Z, van den Berg A, Diepstra A, Visser L. Toll-like receptors in the pathogenesis of human B cell malignancies. J Hematol Oncol 2014; 7:57. [PMID: 25112836 PMCID: PMC4237867 DOI: 10.1186/s13045-014-0057-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 07/28/2014] [Indexed: 12/20/2022] Open
Abstract
Toll-like receptors (TLRs) are important players in B-cell activation, maturation and memory and may be involved in the pathogenesis of B-cell lymphomas. Accumulating studies show differential expression in this heterogeneous group of cancers. Stimulation with TLR specific ligands, or agonists of their ligands, leads to aberrant responses in the malignant B-cells. According to current data, TLRs can be implicated in malignant transformation, tumor progression and immune evasion processes. Most of the studies focused on multiple myeloma and chronic lymphocytic leukemia, but in the last decade the putative role of TLRs in other types of B-cell lymphomas has gained much interest. The aim of this review is to discuss recent findings on the role of TLRs in normal B cell functioning and their role in the pathogenesis of B-cell malignancies.
Collapse
|
38
|
Toll-like receptor (TLR)-1/2 triggering of multiple myeloma cells modulates their adhesion to bone marrow stromal cells and enhances bortezomib-induced apoptosis. PLoS One 2014; 9:e96608. [PMID: 24794258 PMCID: PMC4008602 DOI: 10.1371/journal.pone.0096608] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 04/09/2014] [Indexed: 01/03/2023] Open
Abstract
In multiple myeloma (MM), the malignant plasma cells usually localize to the bone marrow where they develop drug resistance due to adhesion to stromal cells and various environmental signals. Hence, modulation of this interaction is expected to influence drug sensitivity of MM cells. Toll-like receptor (TLR) ligands have displayed heterogeneous effects on B-cell malignancies and also on MM cells in a few recent studies, but effects on adhesion and drug sensitivity of myeloma cells in the context of bone marrow stromal cells (BMSCs) have never been investigated. In the present study, we explored the modulatory effects of TLR1/2 ligand (Pam3CSK4) on adhesion of human myeloma cells to BMSCs. It is shown that TLR1/2 triggering has opposite effects in different HMCLs on their adhesion to BMSCs. Fravel, L363, UM-6, UM-9 and U266 showed increased adhesion to BMSC in parallel with an increased surface expression of integrin molecules α4 and αVβ3. OPM-1, OPM-2 and NCI-H929 showed a dose-dependent decrease in adhesion upon TLR activation following a downregulation of β7 integrin expression. Importantly, TLR1/2 triggering increased cytotoxic and apoptotic effects of bortezomib in myeloma cells independent of the effect on stromal cell adhesion. Moreover, the apoptosis-enhancing effect of Pam3CSK4 paralleled induction of cleaved caspase-3 protein in FACS analysis suggesting a caspase-dependent mechanism. Our findings uncover a novel role of TLR activation in MM cells in the context of bone marrow microenvironment. Stimulation of TLR1/2 bypasses the protective shield of BMSCs and may be an interesting strategy to enhance drug sensitivity of multiple myeloma cells.
Collapse
|
39
|
Trotta T, Porro C, Calvello R, Panaro MA. Biological role of Toll-like receptor-4 in the brain. J Neuroimmunol 2014; 268:1-12. [PMID: 24529856 DOI: 10.1016/j.jneuroim.2014.01.014] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 12/12/2013] [Accepted: 01/28/2014] [Indexed: 01/07/2023]
Abstract
The Toll-like receptors (TLRs) are a family of microbe-sensing receptors that play a central role in the regulation of the host immune system. TLR4 has been described in the brain and seems to regulate some physiological processes, such as neurogenesis. TLR4 has also been reported to play a role during neurodegenerative disorders, including Alzheimer's disease, amyotrophic lateral sclerosis, multiple sclerosis and Parkinson's disease. This review is focused on reports concerning recent insights into the role and activation mechanisms of TLR4 in the brain, in pathological and physiological conditions, as well as the therapeutic benefit that could derive from TLR4 modulation.
Collapse
Affiliation(s)
- Teresa Trotta
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy.
| | - Chiara Porro
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Rosa Calvello
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Maria Antonietta Panaro
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| |
Collapse
|
40
|
Toll-like receptors in lymphoid malignancies: Double-edged sword. Crit Rev Oncol Hematol 2014; 89:262-83. [DOI: 10.1016/j.critrevonc.2013.08.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 08/04/2013] [Accepted: 08/20/2013] [Indexed: 12/31/2022] Open
|
41
|
Landscape of somatic mutations and clonal evolution in mantle cell lymphoma. Proc Natl Acad Sci U S A 2013; 110:18250-5. [PMID: 24145436 DOI: 10.1073/pnas.1314608110] [Citation(s) in RCA: 407] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mantle cell lymphoma (MCL) is an aggressive tumor, but a subset of patients may follow an indolent clinical course. To understand the mechanisms underlying this biological heterogeneity, we performed whole-genome and/or whole-exome sequencing on 29 MCL cases and their respective matched normal DNA, as well as 6 MCL cell lines. Recurrently mutated genes were investigated by targeted sequencing in an independent cohort of 172 MCL patients. We identified 25 significantly mutated genes, including known drivers such as ataxia-telangectasia mutated (ATM), cyclin D1 (CCND1), and the tumor suppressor TP53; mutated genes encoding the anti-apoptotic protein BIRC3 and Toll-like receptor 2 (TLR2); and the chromatin modifiers WHSC1, MLL2, and MEF2B. We also found NOTCH2 mutations as an alternative phenomenon to NOTCH1 mutations in aggressive tumors with a dismal prognosis. Analysis of two simultaneous or subsequent MCL samples by whole-genome/whole-exome (n = 8) or targeted (n = 19) sequencing revealed subclonal heterogeneity at diagnosis in samples from different topographic sites and modulation of the initial mutational profile at the progression of the disease. Some mutations were predominantly clonal or subclonal, indicating an early or late event in tumor evolution, respectively. Our study identifies molecular mechanisms contributing to MCL pathogenesis and offers potential targets for therapeutic intervention.
Collapse
|
42
|
Urbonaviciute V, Starke C, Pirschel W, Pohle S, Frey S, Daniel C, Amann K, Schett G, Herrmann M, Voll RE. Toll-like receptor 2 is required for autoantibody production and development of renal disease in pristane-induced lupus. ACTA ACUST UNITED AC 2013; 65:1612-23. [PMID: 23450347 DOI: 10.1002/art.37914] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 02/19/2013] [Indexed: 12/22/2022]
Abstract
OBJECTIVE The mechanisms involved in breaking immunologic tolerance against nuclear autoantigens in systemic lupus erythematosus (SLE) are not fully understood. Our recent studies in nonautoimmune mice provided evidence of an important role of Toll-like receptor 2 (TLR-2) in antichromatin autoantibody induction by high mobility group box chromosomal protein 1-nucleosome complexes derived from apoptotic cells. The objective of this study was to investigate whether TLR-2 signaling is required for the induction of autoantibodies and the development of SLE-like disease in murine pristane-induced lupus. METHODS Lupus-like disease in C57BL/6 and TLR-2(-/-) mice was induced by pristane injection. The numbers of immune cells and serum cytokine concentrations were determined by flow cytometry. Renal disease was assessed by quantification of proteinuria, histologic analyses, and enzyme-linked immunospot assay. RESULTS Pristane-injected TLR-2(-/-) mice generated reduced numbers of splenic CD138+/cytoplasmic κL/λL chain-positive plasma cells and displayed diminished IgG responses against double-stranded DNA, histones, nucleosomes, some extractable nuclear autoantigens, and cardiolipin when compared with wild- type controls. TLR-2 deficiency prevented the pristane-induced systemic release of interleukin-6 (IL-6) and IL-10. The absence of TLR-2 attenuated peritoneal recruitment of CD11c+ cells and formation of lipogranulomas. Importantly, the renal disease that developed in pristane-treated TLR-2(-/-) mice was less severe than that in control mice, as reflected by milder proteinuria, reduced glomerular deposition of IgG and complement, and decreased renal infiltration of autoantibody-secreting cells. CONCLUSION TLR-2 is required for the production of prototypical lupus autoantibodies and the development of renal disease in pristane-induced murine lupus. Interference with TLR-2 signaling may be a promising novel strategy for the treatment of SLE.
Collapse
Affiliation(s)
- Vilma Urbonaviciute
- University Hospital Erlangen and University of Erlangen-Nuremberg, Erlangen, Germany; Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Kato A, Hulse KE, Tan BK, Schleimer RP. B-lymphocyte lineage cells and the respiratory system. J Allergy Clin Immunol 2013; 131:933-57; quiz 958. [PMID: 23540615 DOI: 10.1016/j.jaci.2013.02.023] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 02/20/2013] [Accepted: 02/21/2013] [Indexed: 12/12/2022]
Abstract
Adaptive humoral immune responses in the airways are mediated by B cells and plasma cells that express highly evolved and specific receptors and produce immunoglobulins of most isotypes. In some cases, such as autoimmune diseases or inflammatory diseases caused by excessive exposure to foreign antigens, these same immune cells can cause disease by virtue of overly vigorous responses. This review discusses the generation, differentiation, signaling, activation, and recruitment pathways of B cells and plasma cells, with special emphasis on unique characteristics of subsets of these cells functioning within the respiratory system. The primary sensitization events that generate B cells responsible for effector responses throughout the airways usually occur in the upper airways, tonsils, and adenoid structures that make up the Waldeyer ring. On secondary exposure to antigen in the airways, antigen-processing dendritic cells migrate into secondary lymphoid organs, such as lymph nodes, that drain the upper and lower airways, and further B-cell expansion takes place at those sites. Antigen exposure in the upper or lower airways can also drive expansion of B-lineage cells in the airway mucosal tissue and lead to the formation of inducible lymphoid follicles or aggregates that can mediate local immunity or disease.
Collapse
Affiliation(s)
- Atsushi Kato
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | |
Collapse
|
44
|
Abdi J, Mutis T, Garssen J, Redegeld F. Stimulation of Toll-like receptor-1/2 combined with Velcade increases cytotoxicity to human multiple myeloma cells. Blood Cancer J 2013; 3:e119. [PMID: 23727662 PMCID: PMC3674459 DOI: 10.1038/bcj.2013.17] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
An increasing body of evidence supports the important role of adhesion to bone marrow microenvironment components for survival and drug resistance of multiple myeloma (MM) cells. Previous studies suggested that stimulation of Toll-like receptors by endogenous ligands released during inflammation and tissue damage may be pro-tumorigenic, but no studies have been performed in relation to modulation of cell adhesion and drug cytotoxicity. Here, we investigated the effect of TLR1/2 activation on adhesion of human myeloma cells to fibronectin, and their sensitivity to the proteasome inhibitor Velcade. It was found that TLR1/2 activation with Pam3CSK4 increased the cytotoxicity of Velcade in L363, OPM-2 and U266 human myeloma cells. This effect was not related to a decreased adhesion of the cells to fibronectin, but TLR1/2 activation stimulated the caspase-3 activity in Velcade-treated myeloma cells, which may be responsible for the enhanced cell death. Inhibitors of NF-κB and MAPK reduced the stimulatory effect. These findings indicate that TLR activation of MM cells could bypass protective effects of cell adhesion and suggest that TLR signaling may also have antitumorigenic potential.
Collapse
Affiliation(s)
- J Abdi
- Faculty of Science, Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
45
|
Characterization of the Toll-like receptor expression profile in human multiple myeloma cells. PLoS One 2013; 8:e60671. [PMID: 23593278 PMCID: PMC3620465 DOI: 10.1371/journal.pone.0060671] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 03/01/2013] [Indexed: 12/13/2022] Open
Abstract
Expression and function of Toll-like receptors (TLRs) in multiple myeloma (MM) has recently become the focus of several studies. Knowledge of expression and biology of these receptors in MM will provide us with a new insight into the role of an inflammatory environment in disease progression or pathogenesis of MM. However, to date a quite heterogeneous expression pattern of TLRs in MM particularly at gene level has been described while information on the TLR expression at the protein level is largely unavailable. In this study, we investigated the TLR expression in human myeloma cell lines (HMCLs) Fravel, L363, UM6, UM9, OPM1, OPM2, U266, RPMI 8226, XG1, and NCI H929 and primary cells from MM patients at both mRNA and protein level (western blot and flow cytometry). We found that all cell lines and primary cells expressed TLR1, TLR3, TLR4, TLR7, TLR8, and TLR9 mRNA and protein. TLR2 and TLR5 were expressed by the majority of HMCLs at mRNA but were not detectable at protein level, while primary samples showed a low level of TLR2, TLR3 and TLR5 protein expression. Our results indicate that MM cells express a broad range of TLRs with a degree of disparity between gene and protein expression pattern. The clear expression of TLRs in MM cells indicates a propensity for responding to tumor-induced inflammatory signals, which seem inevitable in the MM bone marrow environment.
Collapse
|
46
|
The Role of PPARs in Placental Immunology: A Systematic Review of the Literature. PPAR Res 2013; 2013:970276. [PMID: 23554810 PMCID: PMC3608350 DOI: 10.1155/2013/970276] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 02/18/2013] [Indexed: 01/19/2023] Open
Abstract
Pregnancy is a state of immunotolerance, and pregnancy outcome is strongly linked to the correct activation and balancing of the maternal immune system. Besides abortion as possible result of improper early pregnancy development, other pregnancy associated conditions like preeclampsia (PE), intrauterine growth retardation (IUGR), preterm labour, or gestational diabetes mellitus (GDM) are linked to immunologic overactivation and dysregulation. Both the innate and the adaptive immune system, and therefore B and T lymphocytes, natural killer cells (NK), macrophages and dendritic cells (DCs) are all involved in trophoblast invasion, pregnancy maintenance, and development of pregnancy disorders. Peroxisome proliferator activated receptors (PPARs) are nuclear transcription factors with three known isotypes: PPARα, PPARβ/δ, and PPARγ. They are expressed in most human organs and their function extends from regulating metabolism, homeostasis, and carcinogenesis to immune response. In the recent years, PPARs have been identified in most reproductive tissues and in all lines of immune cells. Only in few cases, the role of PPARs in reproductive immunology has been elucidated though the role of PPARs in immune answer and immunotolerance is evident. Within this paper we would like to give an update on today's knowledge about PPARs and immune cells in reproduction and highlight interesting interferences in regard of future therapeutic targets.
Collapse
|
47
|
Antosz H, Sajewicz J, Marzec-Kotarska B, Dmoszyńska A, Baszak J, Jargiełło-Baszak M. Aberrant TIRAP and MyD88 expression in B-cell chronic lymphocytic leukemia. Blood Cells Mol Dis 2013; 51:48-55. [PMID: 23419703 DOI: 10.1016/j.bcmd.2013.01.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 01/10/2013] [Indexed: 12/21/2022]
Abstract
TIRAP and Myd88 are adaptor proteins for Toll-like receptors-2 and -4 (TLR2/4) which are engaged in transducing the signal to downstream molecules. Several studies have shown the increased role of infection factors in pathogenesis of B cell chronic lymphocytic leukemia (B-CLL). This prompted us to test whether there is a correlation between MyD88-TIRAP dynamics before and after inflammatory stimuli. We determined the mRNA and protein expression of TIRAP and MyD88 in CD5(+)CD19(+) B-CLL cells and in a subpopulation of normal B CD19(+) lymphocytes. Additionally we determined the influence of lipopolysaccharide Escherichia coli - TLR4-ligand (LPS) and Staphylococcus aureus strain Cowan I - TLR2-ligand (SAC) on TIR-domain-containing adaptor protein, also called MyD88 adaptor-like (TIRAP) and myeloid differentiation primary response protein 88 (MyD88) expression. We have found that the mRNA and protein expression of TIRAP and MyD88 in B-CLL lymphocytes is lower compared with that in normal B lymphocytes. LPS and SAC stimulation in normal lymphocytes significantly altered neither TIRAP nor MyD88 mRNA expression, whereas TIRAP protein level substantially decreased after TLR agonist treatment. We did not observe any changes in MyD88 protein level after B lymphocyte stimulation. There was a significant increase in TIRAP mRNA expression after LPS and SAC stimulation of B-CLL cells. MyD88 mRNA expression levels in B-CLL lymphocytes slightly decreased upon treatment with either stimulator. Stimulation with TLR agonists did not cause changes in TIRAP and MyD88 expression at the protein level in B-CLL lymphocytes. The results of our study suggest that there may exist a, yet unknown, defect of TIRAP and MyD88 proteins in B-CLL lymphocytes.
Collapse
Affiliation(s)
- Halina Antosz
- Department of Clinical Genetics, Medical University of Lublin, Lublin, Poland.
| | | | | | | | | | | |
Collapse
|
48
|
Sharma N, Akhade AS, Qadri A. Sphingosine-1-phosphate suppresses TLR-induced CXCL8 secretion from human T cells. J Leukoc Biol 2013; 93:521-8. [PMID: 23345392 DOI: 10.1189/jlb.0712328] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
T cells produce a number of cytokines and chemokines upon stimulation with TLR agonists in the presence or absence of TCR signals. Here, we show that secretion of neutrophil chemoattractant CXCL8 from human T cell line Jurkat in response to stimulation with TLR agonists is reduced when cell stimulation is carried out in presence of serum. Serum does not, however, inhibit TCR-activated secretion of CXCL8 nor does it down-regulate TLR-costimulated IL-2 secretion from activated T cells. The molecule that can mimic the ability to bring about suppression in CXCL8 from TLR-activated T cells is serum-borne bioactive lipid, S1P. Serum and S1P-mediated inhibition require intracellular calcium. S1P also suppresses CXCL8 secretion from peripheral blood-derived human T cells activated ex vivo with various TLR ligands. Our findings reveal a previously unrecognized role for S1P in regulating TLR-induced CXCL8 secretion from human T cells.
Collapse
|
49
|
Schrader A, Meyer K, von Bonin F, Vockerodt M, Walther N, Hand E, Ulrich A, Matulewicz K, Lenze D, Hummel M, Kieser A, Engelke M, Trümper L, Kube D. Global gene expression changes of in vitro stimulated human transformed germinal centre B cells as surrogate for oncogenic pathway activation in individual aggressive B cell lymphomas. Cell Commun Signal 2012; 10:43. [PMID: 23253402 PMCID: PMC3566944 DOI: 10.1186/1478-811x-10-43] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 11/25/2012] [Indexed: 12/25/2022] Open
Abstract
Background Aggressive Non-Hodgkin lymphomas (NHL) are a group of lymphomas derived from germinal centre B cells which display a heterogeneous pattern of oncogenic pathway activation. We postulate that specific immune response associated signalling, affecting gene transcription networks, may be associated with the activation of different oncogenic pathways in aggressive Non-Hodgkin lymphomas (NHL). Methodology The B cell receptor (BCR), CD40, B-cell activating factor (BAFF)-receptors and Interleukin (IL) 21 receptor and Toll like receptor 4 (TLR4) were stimulated in human transformed germinal centre B cells by treatment with anti IgM F(ab)2-fragments, CD40L, BAFF, IL21 and LPS respectively. The changes in gene expression following the activation of Jak/STAT, NF-кB, MAPK, Ca2+ and PI3K signalling triggered by these stimuli was assessed using microarray analysis. The expression of top 100 genes which had a change in gene expression following stimulation was investigated in gene expression profiles of patients with Aggressive non-Hodgkin Lymphoma (NHL). Results αIgM stimulation led to the largest number of changes in gene expression, affecting overall 6596 genes. While CD40L stimulation changed the expression of 1194 genes and IL21 stimulation affected 902 genes, only 283 and 129 genes were modulated by lipopolysaccharide or BAFF receptor stimulation, respectively. Interestingly, genes associated with a Burkitt-like phenotype, such as MYC, BCL6 or LEF1, were affected by αIgM. Unique and shared gene expression was delineated. NHL-patients were sorted according to their similarity in the expression of TOP100 affected genes to stimulated transformed germinal centre B cells The αIgM gene module discriminated individual DLBCL in a similar manner to CD40L or IL21 gene modules. DLBCLs with low module activation often carry chromosomal MYC aberrations. DLBCLs with high module activation show strong expression of genes involved in cell-cell communication, immune responses or negative feedback loops. Using chemical inhibitors for selected kinases we show that mitogen activated protein kinase- and phosphoinositide 3 kinase-signalling are dominantly involved in regulating genes included in the αIgM gene module. Conclusion We provide an in vitro model system to investigate pathway activation in lymphomas. We defined the extent to which different immune response associated pathways are responsible for differences in gene expression which distinguish individual DLBCL cases. Our results support the view that tonic or constitutively active MAPK/ERK pathways are an important part of oncogenic signalling in NHL. The experimental model can now be applied to study the therapeutic potential of deregulated oncogenic pathways and to develop individual treatment strategies for lymphoma patients.
Collapse
Affiliation(s)
- Alexandra Schrader
- Department of Haematology and Oncology, University Medical Centre Göttingen, Göttingen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Garraud O, Borhis G, Badr G, Degrelle S, Pozzetto B, Cognasse F, Richard Y. Revisiting the B-cell compartment in mouse and humans: more than one B-cell subset exists in the marginal zone and beyond. BMC Immunol 2012; 13:63. [PMID: 23194300 PMCID: PMC3526508 DOI: 10.1186/1471-2172-13-63] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 11/05/2012] [Indexed: 01/19/2023] Open
Abstract
The immunological roles of B-cells are being revealed as increasingly complex by functions that are largely beyond their commitment to differentiate into plasma cells and produce antibodies, the key molecular protagonists of innate immunity, and also by their compartmentalisation, a more recently acknowledged property of this immune cell category. For decades, B-cells have been recognised by their expression of an immunoglobulin that serves the function of an antigen receptor, which mediates intracellular signalling assisted by companion molecules. As such, B-cells were considered simple in their functioning compared to the other major type of immune cell, the T-lymphocytes, which comprise conventional T-lymphocyte subsets with seminal roles in homeostasis and pathology, and non-conventional T-lymphocyte subsets for which increasing knowledge is accumulating. Since the discovery that the B-cell family included two distinct categories - the non-conventional, or extrafollicular, B1 cells, that have mainly been characterised in the mouse; and the conventional, or lymph node type, B2 cells - plus the detailed description of the main B-cell regulator, FcγRIIb, and the function of CD40(+) antigen presenting cells as committed/memory B-cells, progress in B-cell physiology has been slower than in other areas of immunology. Cellular and molecular tools have enabled the revival of innate immunity by allowing almost all aspects of cellular immunology to be re-visited. As such, B-cells were found to express "Pathogen Recognition Receptors" such as TLRs, and use them in concert with B-cell signalling during innate and adaptive immunity. An era of B-cell phenotypic and functional analysis thus began that encompassed the study of B-cell microanatomy principally in the lymph nodes, spleen and mucosae. The novel discovery of the differential localisation of B-cells with distinct phenotypes and functions revealed the compartmentalisation of B-cells. This review thus aims to describe novel findings regarding the B-cell compartments found in the mouse as a model organism, and in human physiology and pathology. It must be emphasised that some differences are noticeable between the mouse and human systems, thus increasing the complexity of B-cell compartmentalisation. Special attention will be given to the (lymph node and spleen) marginal zones, which represent major crossroads for B-cell types and functions and a challenge for understanding better the role of B-cell specificities in innate and adaptive immunology.
Collapse
Affiliation(s)
- Olivier Garraud
- EA3064–GIMAP, Université de Lyon, Saint-Etienne, France
- EFS Auvergne-Loire, Saint-Etienne, France
- Vice-Rectorate for Graduate Studies and Research-Visiting Professor Program, King Saud University, Riyadh, Saudi Arabia
- Etablissement Français du Sang Auvergne-Loire, 42023, Saint-Etienne cedex 02, France
| | - Gwenoline Borhis
- INSERM U1016, Institut Cochin, Paris, France
- CNRS UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Gamal Badr
- Zoology Department, Faculty of Science, Assiut University, 71516, Assiut, Egypt
- Princes Johara Alibrahim Center for Cancer Research, Prostate Cancer Research Chair, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Séverine Degrelle
- INSERM U1016, Institut Cochin, Paris, France
- CNRS UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Bruno Pozzetto
- EA3064–GIMAP, Université de Lyon, Saint-Etienne, France
- Laboratoire de Microbiologie et Hygiène, CHU de Saint-Etienne, Saint-Etienne, France
| | - Fabrice Cognasse
- EA3064–GIMAP, Université de Lyon, Saint-Etienne, France
- EFS Auvergne-Loire, Saint-Etienne, France
| | - Yolande Richard
- INSERM U1016, Institut Cochin, Paris, France
- CNRS UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|