1
|
Mohammadhosseini M, Enright T, Duvall A, Chitsazan A, Lin HY, Ors A, Davis BA, Nikolova O, Bresciani E, Diemer J, Craft K, Menezes AC, Merguerian M, Chong S, Calvo KR, Deuitch NT, Glushakow-Smith S, Gritsman K, Godley LA, Horwitz MS, Keel S, Castilla LH, Demir E, Mohammed H, Liu P, Agarwal A. Targeting the CD74 signaling axis suppresses inflammation and rescues defective hematopoiesis in RUNX1-familial platelet disorder. Sci Transl Med 2025; 17:eadn9832. [PMID: 39772771 PMCID: PMC11912227 DOI: 10.1126/scitranslmed.adn9832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 08/11/2024] [Accepted: 11/03/2024] [Indexed: 01/30/2025]
Abstract
Familial platelet disorder (FPD) is associated with germline RUNX1 mutations, establishing a preleukemic state and increasing the risk of developing leukemia. Currently, there are no intervention strategies to prevent leukemia progression. Single-cell RNA sequencing (n = 10) combined with functional analysis of samples from patients with RUNX1-FPD (n > 75) revealed that FPD hematopoietic stem and progenitor cells (HSPCs) displayed increased myeloid differentiation and suppressed megakaryopoiesis because of increased activation of prosurvival and inflammatory pathways. Bone marrow from patients with RUNX1-FPD contained an elevated cytokine milieu, exerting chronic inflammatory stress on HSPCs. RUNX1-FPD HSPCs were myeloid biased, had increased self-renewal, and were resistant to inflammation-mediated exhaustion. The bone marrow from patients with RUNX1-FPD showed high transcript and protein expression of CD74 at the preleukemic stage compared with that of healthy controls, which remained high upon patient transformation into leukemia. Further, CD74-mediated signaling was exaggerated in RUNX1-FPD HSPCs compared with healthy controls, leading to the activation of mTOR and JAK/STAT pathways with increased cytokine production. Genetic and pharmacological targeting of CD74 with ISO-1 and its downstream targets JAK1/2 and mTOR reversed RUNX1-FPD differentiation defects in vitro and in vivo and reduced inflammation. Our results highlight that inflammation is an early event in RUNX1-FPD pathogenesis, and CD74 signaling is one of the drivers of this inflammation. The repurposing of JAK1/2i (ruxolitinib) and mTORi (sirolimus) and promoting the advancement of CD74 inhibitors in clinical settings as an early intervention strategy would be beneficial to improve the phenotype of patients with RUNX1-FPD and prevent myeloid progression.
Collapse
Affiliation(s)
- Mona Mohammadhosseini
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Division of Oncological Sciences, Oregon Health & Science University, Portland, OR 97239, USA
| | - Trevor Enright
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| | - Adam Duvall
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Alex Chitsazan
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| | - Hsin-Yun Lin
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Division of Oncological Sciences, Oregon Health & Science University, Portland, OR 97239, USA
| | - Aysegul Ors
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| | - Brett A Davis
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Olga Nikolova
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Division of Oncological Sciences, Oregon Health & Science University, Portland, OR 97239, USA
| | - Erica Bresciani
- Oncogenesis and Development Section, Division of Intramural Research, National Human Genome Research Institute, Bethesda, MD 20894, USA
| | - Jamie Diemer
- Oncogenesis and Development Section, Division of Intramural Research, National Human Genome Research Institute, Bethesda, MD 20894, USA
| | - Kathleen Craft
- Oncogenesis and Development Section, Division of Intramural Research, National Human Genome Research Institute, Bethesda, MD 20894, USA
| | - Ana Catarina Menezes
- Oncogenesis and Development Section, Division of Intramural Research, National Human Genome Research Institute, Bethesda, MD 20894, USA
| | - Matthew Merguerian
- Oncogenesis and Development Section, Division of Intramural Research, National Human Genome Research Institute, Bethesda, MD 20894, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Shawn Chong
- Oncogenesis and Development Section, Division of Intramural Research, National Human Genome Research Institute, Bethesda, MD 20894, USA
| | - Katherine R Calvo
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Natalie T Deuitch
- Oncogenesis and Development Section, Division of Intramural Research, National Human Genome Research Institute, Bethesda, MD 20894, USA
| | | | - Kira Gritsman
- Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Lucy A Godley
- Division of Hematology/Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Marshall S Horwitz
- Department of Laboratory Medicine & Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Sioban Keel
- Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Lucio H Castilla
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Emek Demir
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Division of Oncological Sciences, Oregon Health & Science University, Portland, OR 97239, USA
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| | - Hisham Mohammed
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97201, USA
| | - Paul Liu
- Oncogenesis and Development Section, Division of Intramural Research, National Human Genome Research Institute, Bethesda, MD 20894, USA
| | - Anupriya Agarwal
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Division of Oncological Sciences, Oregon Health & Science University, Portland, OR 97239, USA
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97201, USA
- Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
2
|
Ernst MPT, Versluis J, Valk PJM, Bierings M, Tamminga RYJ, Hooimeijer LH, Döhner K, Gresele P, Tawana K, Langemeijer SMC, Van der Reijden BA, Podgornik H, Sever M, Tvedt THA, Vulliamy T, Fitzgibbon J, Dokal I, Baliakas P, Bastida JM, Pohlkamp C, Haferlach T, Larcher L, Soulier J, Schutgens REG, Freson K, Duployez N, Löwenberg B, Ericson K, Cammenga J, Ripperger T, Raaijmakers MHGP. Disease characteristics and outcomes of acute myeloid leukemia in germline RUNX1 deficiency (Familial Platelet Disorder with associated Myeloid Malignancy). Hemasphere 2025; 9:e70057. [PMID: 39822584 PMCID: PMC11735945 DOI: 10.1002/hem3.70057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/14/2024] [Accepted: 09/02/2024] [Indexed: 01/19/2025] Open
Abstract
Familial Platelet Disorder with associated Myeloid Malignancy (FPDMM, FPD/AML, RUNX1-FPD), caused by monoallelic deleterious germline RUNX1 variants, is characterized by bleeding diathesis and predisposition for hematologic malignancies, particularly myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). Clinical data on FPDMM-associated AML (FPDMM-AML) are limited, complicating evidence-based clinical decision-making. Here, we present retrospective genetic and clinical data of the largest cohort of FPDMM patients reported to date. We describe 159 European patients (from 94 families) of whom 134 were evaluable for the development of malignant disease. Sixty developed a hematologic malignancy (44.8%), most frequently AML (36/134, 26.9%) or MDS (18/134, 13.4%). Somatic alterations of RUNX1 by gene mutation (48%) and chromosome 21 aberrations (14.3%) were the most common somatic genetic aberrations in FPDMM-AML, followed by FLT3-ITD mutations (24.1%). Somatic RUNX1 and FLT3-ITD mutations were not detected in FPDMM-associated MDS, suggesting important contributions to leukemic transformation. Remission-induction chemotherapy resulted in complete remission in 80% of FPDMM-AML patients with a 5-year overall survival (OS) of 50.4%. Survival outcome was non-inferior compared to a large cohort of newly diagnosed adult RUNX1-mutated AML (5-year OS 36.6%, p = 0.5), with relatively infrequent concurrent adverse risk somatic aberrations (ASXL1 mutation, monosomal karyotype, monosomy 5/del 5q) in FPDMM-AML. Collectively, data support the notion that step-wise leukemic evolution in FPDMM is associated with distinct genetic events and indicate that a substantial subset of FPDMM-AML patients achieves prolonged survival with conventional AML treatment, including allogeneic stem cell transplant. These findings are anticipated to inform personalized clinical decision-making in this rare disorder.
Collapse
Affiliation(s)
- Martijn P T Ernst
- Department of Hematology Erasmus University Medical Center and Erasmus MC Cancer Institute Rotterdam The Netherlands
| | - Jurjen Versluis
- Department of Hematology Erasmus University Medical Center and Erasmus MC Cancer Institute Rotterdam The Netherlands
| | - Peter J M Valk
- Department of Hematology Erasmus University Medical Center and Erasmus MC Cancer Institute Rotterdam The Netherlands
| | - Marc Bierings
- Princess Máxima Center for Pediatric Oncology Utrecht The Netherlands
| | - Rienk Y J Tamminga
- Beatrix Children's Hospital University Medical Center Groningen The Netherlands
| | - Louise H Hooimeijer
- Beatrix Children's Hospital University Medical Center Groningen The Netherlands
| | | | - Paolo Gresele
- Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine University of Perugia Perugia Italy
| | - Kiran Tawana
- Department of Haematology Addenbrooke's Hospital Cambridge UK
| | | | | | - Helena Podgornik
- Department of Hematology University Medical Centre Ljubljana Ljubljana Slovenia
- Faculty of Pharmacy University of Ljubljana Ljubljana Slovenia
| | - Matjaz Sever
- Department of Hematology University Medical Centre Ljubljana Ljubljana Slovenia
- Faculty of Medicine University of Ljubljana Ljubljana Slovenia
| | - Tor H A Tvedt
- Department of Haematology Oslo University Hospital Oslo Norway
| | - Tom Vulliamy
- Blizard Institute, Faculty of Medicine and Dentistry Queen Mary University of London London UK
| | - Jude Fitzgibbon
- Haemato-Oncology, Barts Cancer Institute Queen Mary University of London London UK
| | - Inderjeet Dokal
- Haemato-Oncology, Barts Cancer Institute Queen Mary University of London London UK
| | - Panagiotis Baliakas
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory Uppsala University Uppsala Sweden
| | - José M Bastida
- Department of Hematology Complejo Asistencial Universitario de Salamanca (CAUSA), Instituto de Investigación Biomedica de Salamanca (IBSAL), Universidad de Salamanca (USAL) Salamanca Spain
| | | | | | - Lise Larcher
- Université Paris Cité, Inserm and Hôpital Saint-Louis, APHP Paris France
| | - Jean Soulier
- Université Paris Cité, Inserm and Hôpital Saint-Louis, APHP Paris France
| | - Roger E G Schutgens
- Center for Benign Haematology, Thrombosis and Haemostasis, Van Creveldkliniek, University Medical Center Utrecht and University Utrecht The Netherlands
| | - Kathleen Freson
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology University of Leuven Leuven Belgium
| | - Nicolas Duployez
- Laboratory of Hematology Biology and Pathology Center, Centre Hospitalier Regional Universitaire de Lille Lille France
| | - Bob Löwenberg
- Department of Hematology Erasmus University Medical Center and Erasmus MC Cancer Institute Rotterdam The Netherlands
| | | | - Jörg Cammenga
- Department of Hematology, Skåne University Hospital and Molecular Medicine and Gene Therapy Lund University Lund Sweden
| | - Tim Ripperger
- Department of Human Genetics Hannover Medical School Hannover Germany
| | - Marc H G P Raaijmakers
- Department of Hematology Erasmus University Medical Center and Erasmus MC Cancer Institute Rotterdam The Netherlands
| |
Collapse
|
3
|
Kwon N, Lu YC, Thompson EN, Mancuso RI, Wang L, Zhang PX, Krause DS. CDK9 phosphorylates RUNX1 to promote megakaryocytic fate in megakaryocytic-erythroid progenitors. Blood 2024; 144:1800-1812. [PMID: 39102635 PMCID: PMC11530366 DOI: 10.1182/blood.2024023963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/10/2024] [Accepted: 07/26/2024] [Indexed: 08/07/2024] Open
Abstract
ABSTRACT The specification of megakaryocytic (Mk) or erythroid (E) lineages from primary human megakaryocytic-erythroid progenitors (MEPs) is crucial for hematopoietic homeostasis, yet the underlying mechanisms regulating fate specification remain elusive. In this study, we identify RUNX1 as a key modulator of gene expression during MEP fate specification. Overexpression of RUNX1 in primary human MEPs promotes Mk specification, whereas pan-RUNX inhibition favors E specification. Although total RUNX1 levels do not differ between Mk progenitors (MkPs) and E progenitors (ErPs), there are higher levels of serine-phosphorylated RUNX1 in MkPs than ErPs, and mutant RUNX1 with phosphorylated-serine/threonine mimetic mutations (RUNX1-4D) significantly enhances the functional efficacy of RUNX1. To model the effects of RUNX1 variants, we use human erythroleukemia (HEL) cell lines expressing wild-type (WT), phosphomimetic (RUNX1-4D), and nonphosphorylatable (RUNX1-4A) mutants showing that the 3 forms of RUNX1 differentially regulate expression of 2625 genes. Both WT and RUNX1-4D variants increase expression in 40%, and decrease expression in another 40%, with lesser effects of RUNX1-4A. We find a significant overlap between the upregulated genes in WT and RUNX1-4D-expressing HEL cells and those upregulated in primary human MkPs vs MEPs. Although inhibition of known RUNX1 serine/threonine kinases does not affect phosphoserine RUNX1 levels in primary MEPs, specific inhibition of cyclin dependent kinase 9 (CDK9) in MEPs leads to both decreased RUNX1 phosphorylation and increased E commitment. Collectively, our findings show that serine/threonine phosphorylation of RUNX1 promotes Mk fate specification and introduce a novel kinase for RUNX1 linking the fundamental transcriptional machinery with activation of a cell type-specific transcription factor.
Collapse
Affiliation(s)
- Nayoung Kwon
- Department of Cell Biology, Yale University, New Haven, CT
- Yale Stem Cell Center, Yale University, New Haven, CT
| | - Yi-Chien Lu
- Yale Stem Cell Center, Yale University, New Haven, CT
- Department of Laboratory Medicine, Yale University, New Haven, CT
| | - Evrett N. Thompson
- Department of Cell Biology, Yale University, New Haven, CT
- Yale Stem Cell Center, Yale University, New Haven, CT
| | - Rubia Isler Mancuso
- Yale Stem Cell Center, Yale University, New Haven, CT
- Department of Laboratory Medicine, Yale University, New Haven, CT
| | - Lin Wang
- Yale Stem Cell Center, Yale University, New Haven, CT
- Department of Laboratory Medicine, Yale University, New Haven, CT
| | - Ping-Xia Zhang
- Yale Stem Cell Center, Yale University, New Haven, CT
- Department of Laboratory Medicine, Yale University, New Haven, CT
| | - Diane S. Krause
- Department of Cell Biology, Yale University, New Haven, CT
- Yale Stem Cell Center, Yale University, New Haven, CT
- Department of Laboratory Medicine, Yale University, New Haven, CT
- Department of Pathology, Yale School of Medicine, New Haven, CT
| |
Collapse
|
4
|
Tanaka Y, Nakanishi Y, Furuhata E, Nakada KI, Maruyama R, Suzuki H, Suzuki T. FLI1 is associated with regulation of DNA methylation and megakaryocytic differentiation in FPDMM caused by a RUNX1 transactivation domain mutation. Sci Rep 2024; 14:14080. [PMID: 38890442 PMCID: PMC11189521 DOI: 10.1038/s41598-024-64829-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024] Open
Abstract
Familial platelet disorder with associated myeloid malignancies (FPDMM) is an autosomal dominant disease caused by heterozygous germline mutations in RUNX1. It is characterized by thrombocytopenia, platelet dysfunction, and a predisposition to hematological malignancies. Although FPDMM is a precursor for diseases involving abnormal DNA methylation, the DNA methylation status in FPDMM remains unknown, largely due to a lack of animal models and challenges in obtaining patient-derived samples. Here, using genome editing techniques, we established two lines of human induced pluripotent stem cells (iPSCs) with different FPDMM-mimicking heterozygous RUNX1 mutations. These iPSCs showed defective differentiation of hematopoietic progenitor cells (HPCs) and megakaryocytes (Mks), consistent with FPDMM. The FPDMM-mimicking HPCs showed DNA methylation patterns distinct from those of wild-type HPCs, with hypermethylated regions showing the enrichment of ETS transcription factor (TF) motifs. We found that the expression of FLI1, an ETS family member, was significantly downregulated in FPDMM-mimicking HPCs with a RUNX1 transactivation domain (TAD) mutation. We demonstrated that FLI1 promoted binding-site-directed DNA demethylation, and that overexpression of FLI1 restored their megakaryocytic differentiation efficiency and hypermethylation status. These findings suggest that FLI1 plays a crucial role in regulating DNA methylation and correcting defective megakaryocytic differentiation in FPDMM-mimicking HPCs with a RUNX1 TAD mutation.
Collapse
Affiliation(s)
- Yuki Tanaka
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences (IMS), RIKEN Yokohama Campus, 1-7-22 Suehiro-Cho, Tsurumi-Ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Yuri Nakanishi
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences (IMS), RIKEN Yokohama Campus, 1-7-22 Suehiro-Cho, Tsurumi-Ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Erina Furuhata
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences (IMS), RIKEN Yokohama Campus, 1-7-22 Suehiro-Cho, Tsurumi-Ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Ken-Ichi Nakada
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences (IMS), RIKEN Yokohama Campus, 1-7-22 Suehiro-Cho, Tsurumi-Ku, Yokohama City, Kanagawa, 230-0045, Japan
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-Cho, Tsurumi-Ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Rino Maruyama
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences (IMS), RIKEN Yokohama Campus, 1-7-22 Suehiro-Cho, Tsurumi-Ku, Yokohama City, Kanagawa, 230-0045, Japan
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-Cho, Tsurumi-Ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Harukazu Suzuki
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences (IMS), RIKEN Yokohama Campus, 1-7-22 Suehiro-Cho, Tsurumi-Ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Takahiro Suzuki
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences (IMS), RIKEN Yokohama Campus, 1-7-22 Suehiro-Cho, Tsurumi-Ku, Yokohama City, Kanagawa, 230-0045, Japan.
- Department of Obstetrics & Gynecology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
5
|
Banaszak LG, Cabral PL, Smith-Simmer K, Hassan A, Brunner M, Fallon M, Shoger K, Lovrien L, Golner D, Zurbriggen L, Mattison R, Gahvari Z, Hall A, Nadiminti K, Reinig E, Churpek JE. Implementation of and Systems-Level Barriers to Guideline-Driven Germline Genetic Evaluation in the Care of Patients With Myelodysplastic Syndrome and Acute Myeloid Leukemia. JCO Precis Oncol 2024; 8:e2300518. [PMID: 38848520 PMCID: PMC11234342 DOI: 10.1200/po.23.00518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/19/2024] [Accepted: 04/02/2024] [Indexed: 06/09/2024] Open
Abstract
PURPOSE Knowledge of an inherited predisposition to myelodysplastic syndrome (MDS) and AML has important clinical implications for treatment decisions, surveillance, and care of at-risk relatives. National Comprehensive Cancer Network (NCCN) guidelines recently incorporated recommendations for germline genetic evaluation of patients with MDS/AML on the basis of personal and family history features, but the practicality of implementing these recommendations has not been studied. METHODS A hereditary hematology quality improvement (QI) committee was formed to implement these guidelines in a prospective cohort of patients diagnosed with MDS/AML. Referral for germline genetic testing was recommended for patients meeting NCCN guideline criteria. Referral patterns and genetic evaluation outcomes were compared with a historical cohort of patients with MDS/AML. Barriers to evaluation were identified. RESULTS Of the 90 patients with MDS/AML evaluated by the QI committee, 59 (66%) met criteria for germline evaluation. Implementation of the QI committee led to more referrals for germline evaluation in accordance with NCCN guidelines (31% v 14%, P = .03). However, the majority of those meeting criteria were never referred due to high medical acuity or being deceased or in hospice at the time of QI committee recommendations. Despite this, two (17%) of the 12 patients undergoing genetic testing were diagnosed with a hereditary myeloid malignancy syndrome. CONCLUSION Current NCCN guidelines resulted in two thirds of patients with MDS/AML meeting criteria for germline evaluation. A hereditary hematology-focused QI committee aided initial implementation and modestly improved NCCN guideline adherence. However, the high morbidity and mortality and prolonged inpatient stays associated with MDS/AML challenged traditional outpatient genetic counseling models. Further improvements in guideline adherence require innovating new models of genetic counseling and testing for this patient population.
Collapse
Affiliation(s)
- Lauren G. Banaszak
- Department of Medicine; University of Wisconsin-Madison; Madison, Wisconsin, USA
| | - Paloma L. Cabral
- Department of Medicine; University of Wisconsin-Madison; Madison, Wisconsin, USA
| | - Kelcy Smith-Simmer
- Oncology Genetics; University of Wisconsin Carbone Cancer Center; UWHealth; Madison, Wisconsin, USA
| | - Ayesha Hassan
- Department of Medicine; University of Wisconsin-Madison; Madison, Wisconsin, USA
| | - Matthew Brunner
- Department of Medicine; University of Wisconsin-Madison; Madison, Wisconsin, USA
| | - Michael Fallon
- Department of Medicine; University of Wisconsin-Madison; Madison, Wisconsin, USA
| | - Kyle Shoger
- Department of Medicine; University of Wisconsin-Madison; Madison, Wisconsin, USA
| | - Lauren Lovrien
- Department of Medicine; University of Wisconsin-Madison; Madison, Wisconsin, USA
| | - Danielle Golner
- Department of Medicine; University of Wisconsin-Madison; Madison, Wisconsin, USA
| | - Luke Zurbriggen
- Department of Medicine; University of Wisconsin-Madison; Madison, Wisconsin, USA
| | - Ryan Mattison
- Department of Medicine; University of Wisconsin-Madison; Madison, Wisconsin, USA
| | - Zhubin Gahvari
- Department of Medicine; University of Wisconsin-Madison; Madison, Wisconsin, USA
| | - Aric Hall
- Department of Medicine; University of Wisconsin-Madison; Madison, Wisconsin, USA
| | - Kalyan Nadiminti
- Department of Medicine; University of Wisconsin-Madison; Madison, Wisconsin, USA
| | - Erica Reinig
- Department of Pathology and Laboratory Medicine; University of Wisconsin-Madison; Madison, Wisconsin, USA
| | - Jane E. Churpek
- Department of Medicine; University of Wisconsin-Madison; Madison, Wisconsin, USA
| |
Collapse
|
6
|
Jayne ND, Liang Z, Lim DH, Chen PB, Diaz C, Arimoto KI, Xia L, Liu M, Ren B, Fu XD, Zhang DE. RUNX1 C-terminal mutations impair blood cell differentiation by perturbing specific enhancer-promoter networks. Blood Adv 2024; 8:2410-2423. [PMID: 38513139 PMCID: PMC11112616 DOI: 10.1182/bloodadvances.2023011484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 01/02/2024] [Accepted: 02/15/2024] [Indexed: 03/23/2024] Open
Abstract
ABSTRACT The transcription factor RUNX1 is a master regulator of hematopoiesis and is frequently mutated in myeloid malignancies. Mutations in its runt homology domain (RHD) frequently disrupt DNA binding and result in loss of RUNX1 function. However, it is not clearly understood how other RUNX1 mutations contribute to disease development. Here, we characterized RUNX1 mutations outside of the RHD. Our analysis of the patient data sets revealed that mutations within the C-terminus frequently occur in hematopoietic disorders. Remarkably, most of these mutations were nonsense or frameshift mutations and were predicted to be exempt from nonsense-mediated messenger RNA decay. Therefore, this class of mutation is projected to produce DNA-binding proteins that contribute to the pathogenesis in a distinct manner. To model this, we introduced the RUNX1R320∗ mutation into the endogenous gene locus and demonstrated the production of RUNX1R320∗ protein. Expression of RUNX1R320∗ resulted in the disruption of RUNX1 regulated processes such as megakaryocytic differentiation, through a transcriptional signature different from RUNX1 depletion. To understand the underlying mechanisms, we used Global RNA Interactions with DNA by deep sequencing (GRID-seq) to examine enhancer-promoter connections. We identified widespread alterations in the enhancer-promoter networks within RUNX1 mutant cells. Additionally, we uncovered enrichment of RUNX1R320∗ and FOXK2 binding at the MYC super enhancer locus, significantly upregulating MYC transcription and signaling pathways. Together, our study demonstrated that most RUNX1 mutations outside the DNA-binding domain are not subject to nonsense-mediated decay, producing protein products that act in concert with additional cofactors to dysregulate hematopoiesis through mechanisms distinct from those induced by RUNX1 depletion.
Collapse
Affiliation(s)
- Nathan D. Jayne
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA
- School of Biological Sciences, University of California San Diego, La Jolla, CA
| | - Zhengyu Liang
- School of Medicine, University of California San Diego, La Jolla, CA
| | - Do-Hwan Lim
- School of Medicine, University of California San Diego, La Jolla, CA
| | - Poshen B. Chen
- School of Medicine, University of California San Diego, La Jolla, CA
| | - Cristina Diaz
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA
- School of Biological Sciences, University of California San Diego, La Jolla, CA
| | - Kei-Ichiro Arimoto
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA
| | - Lingbo Xia
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA
- School of Biological Sciences, University of California San Diego, La Jolla, CA
| | - Mengdan Liu
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA
- School of Biological Sciences, University of California San Diego, La Jolla, CA
| | - Bing Ren
- School of Medicine, University of California San Diego, La Jolla, CA
| | - Xiang-Dong Fu
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Dong-Er Zhang
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA
- School of Biological Sciences, University of California San Diego, La Jolla, CA
- School of Medicine, University of California San Diego, La Jolla, CA
| |
Collapse
|
7
|
Jerez J, Santiago M. Unraveling germline predisposition in hematological neoplasms: Navigating complexity in the genomic era. Blood Rev 2024; 64:101143. [PMID: 37989620 DOI: 10.1016/j.blre.2023.101143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/14/2023] [Accepted: 11/14/2023] [Indexed: 11/23/2023]
Abstract
Genomic advancements have yielded pivotal insights into hematological neoplasms, particularly concerning germline predisposition mutations. Following the WHO 2016 revisions, dedicated segments were proposed to address these aspects. Current WHO 2022, ICC 2022, and ELN 2022 classifications recognize their significance, introducing more mutations and prompting integration into clinical practice. Approximately 5-10% of hematological neoplasm patients show germline predisposition gene mutations, rising with risk factors such as personal cancer history and familial antecedents, even in older adults. Nevertheless, technical challenges persist. Optimal DNA samples are skin fibroblast-extracted, although not universally applicable. Alternatives such as hair follicle use are explored. Moreover, the scrutiny of germline genomics mandates judicious test selection to ensure precise and accurate interpretation. Given the significant influence of genetic counseling on patient care and post-assessment procedures, there arises a demand for dedicated centers offering specialized services.
Collapse
Affiliation(s)
- Joaquín Jerez
- Hematology Department, Fundación Arturo López Pérez, Chile; Resident of Hematology, Universidad de los Andes, Chile.
| | - Marta Santiago
- Hematology Department, Hospital La Fe, 46026, Valencia, Spain; Hematology Research Group, Instituto de Investigación Sanitaria La Fe, 46026, Valencia, Spain.
| |
Collapse
|
8
|
Trottier AM, Feurstein S, Godley LA. Germline predisposition to myeloid neoplasms: Characteristics and management of high versus variable penetrance disorders. Best Pract Res Clin Haematol 2024; 37:101537. [PMID: 38490765 DOI: 10.1016/j.beha.2024.101537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 01/07/2024] [Accepted: 01/24/2024] [Indexed: 03/17/2024]
Abstract
Myeloid neoplasms with germline predisposition have been recognized increasingly over the past decade with numerous newly described disorders. Penetrance, age of onset, phenotypic heterogeneity, and somatic driver events differ widely among these conditions and sometimes even within family members with the same variant, making risk assessment and counseling of these individuals inherently difficult. In this review, we will shed light on high malignant penetrance (e.g., CEBPA, GATA2, SAMD9/SAMD9L, and TP53) versus variable malignant penetrance syndromes (e.g., ANKRD26, DDX41, ETV6, RUNX1, and various bone marrow failure syndromes) and their clinical features, such as variant type and location, course of disease, and prognostic markers. We further discuss the recommended management of these syndromes based on penetrance with an emphasis on somatic aberrations consistent with disease progression/transformation and suggested timing of allogeneic hematopoietic stem cell transplant. This review will thereby provide important data that can help to individualize and improve the management for these patients.
Collapse
Affiliation(s)
- Amy M Trottier
- Division of Hematology, Department of Medicine, QEII Health Sciences Centre, Dalhousie University, Halifax, NS, Canada
| | - Simone Feurstein
- Department of Internal Medicine, Section of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Lucy A Godley
- Division of Hematology/Oncology, Department of Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
9
|
Williams LS, Williams KM, Gillis N, Bolton K, Damm F, Deuitch NT, Farhadfar N, Gergis U, Keel SB, Michelis FV, Panch SR, Porter CC, Sucheston-Campbell L, Tamari R, Stefanski HE, Godley LA, Lai C. Donor-Derived Malignancy and Transplantation Morbidity: Risks of Patient and Donor Genetics in Allogeneic Hematopoietic Stem Cell Transplantation. Transplant Cell Ther 2024; 30:255-267. [PMID: 37913908 PMCID: PMC10947964 DOI: 10.1016/j.jtct.2023.10.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/18/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) remains a key treatment option for hematologic malignancies (HMs), although it carries significant risks. Up to 30% of patients relapse after allo-HSCT, of which up to 2% to 5% are donor-derived malignancies (DDMs). DDMs can arise from a germline genetic predisposition allele or clonal hematopoiesis (CH) in the donor. Increasingly, genetic testing reveals that patient and donor genetic factors contribute to the development of DDM and other allo-HSCT complications. Deleterious germline variants in CEBPA, DDX41, GATA2, and RUNX1 predispose to inferior allo-HSCT outcomes. DDM has been linked to donor-acquired somatic CH variants in DNMT3A, ASXL1, JAK2, and IDH2, often with additional new variants. We do not yet have evidence to standardize donor genetic sequencing prior to allo-HSCT. The presence of hereditary HM disorders should be considered in patients with myeloid malignancies and their related donors, and screening of unrelated donors should include family and personal history of cytopenia and HMs. Excellent multidisciplinary care is critical to ensure efficient timelines for screening and necessary discussions among medical oncologists, genetic counselors, recipients, and potential donors. After allo-HSCT, HM relapse monitoring with genetic testing effectively results in genetic sequencing of the donor, as the transplanted hematopoietic system is donor-derived, which presents ethical challenges for disclosure to patients and donors. We encourage consideration of the recent National Marrow Donor Program policy that allows donors to opt-in for notification about detection of their genetic variants after allo-HSCT, with appropriate genetic counseling when feasible. We look forward to prospective investigation of the impact of germline and acquired somatic genetic variants on hematopoietic stem cell mobilization/engraftment, graft-versus-host disease, and DDM to facilitate improved outcomes through knowledge of genetic risk.
Collapse
Affiliation(s)
- Lacey S Williams
- Lombardi Clinical Cancer Center, Georgetown University, Washington, District of Columbia.
| | - Kirsten M Williams
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University, Atlanta, Georgia
| | - Nancy Gillis
- Department of Cancer Epidemiology and Department of Malignant Hematology, H Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Kelly Bolton
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, Missouri
| | - Frederik Damm
- Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Natalie T Deuitch
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Nosha Farhadfar
- Division of Hematology/Oncology, University of Florida College of Medicine, Gainesville, Florida
| | - Usama Gergis
- Department of Medical Oncology, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - Siobán B Keel
- Fred Hutchinson Cancer Center, Seattle, Washington; Department of Medicine, University of Washington, Seattle, Washington
| | | | - Sandhya R Panch
- Fred Hutchinson Cancer Center, Seattle, Washington; Department of Medicine, University of Washington, Seattle, Washington
| | - Christopher C Porter
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University, Atlanta, Georgia
| | | | - Roni Tamari
- Memorial Sloan Kettering, New York, New York
| | - Heather E Stefanski
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program/Be The Match, Minneapolis, Minnesota
| | - Lucy A Godley
- Division of Hematology/Oncology and the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| | - Catherine Lai
- Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
10
|
Obiorah IE, Upadhyaya KD, Calvo KR. Germline Predisposition to Myeloid Neoplasms: Diagnostic Concepts and Classifications. Clin Lab Med 2023; 43:615-638. [PMID: 37865507 DOI: 10.1016/j.cll.2023.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2023]
Abstract
Molecular and sequencing advances have led to substantial breakthroughs in the discovery of new genes and inherited mutations associated with increased risk of developing myeloid malignancies. Many of the same germline mutated genes are also drivers of malignancy in sporadic cancer. Recognition of myeloid malignancy associated with germline mutations is essential for proper therapy, disease surveillance, informing related donor selection for hematopoietic stem cell transplantation, and genetic counseling of the patient and affected family members. Some germline mutations are associated with syndromic features that precede the development of malignancy; however, penetrance may be highly variable leading to masking of the syndromic phenotype and/or inherited etiology.
Collapse
Affiliation(s)
- Ifeyinwa E Obiorah
- Department of Pathology, Division of Hematopathology, University of Virginia Health, Charlottesville, VA, USA
| | - Kalpana D Upadhyaya
- Hematology Section, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Katherine R Calvo
- Hematology Section, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA; Myeloid Malignancies Program, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
11
|
Patel N, Calvo KR. How I diagnose myeloid neoplasms with germline predisposition. Am J Clin Pathol 2023; 160:352-364. [PMID: 37458302 PMCID: PMC11004794 DOI: 10.1093/ajcp/aqad075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/05/2023] [Indexed: 10/04/2023] Open
Abstract
OBJECTIVES Pathologists play a crucial role in the initial diagnosis of germline predisposition to myeloid neoplasia and subsequent surveillance for disease progression. The diagnostic workup can be challenging, particularly if clinical history, laboratory testing, or genetic studies are incomplete or unavailable. METHODS Through case-based examples, we illustrate common diagnostic challenges and pitfalls encountered during bone marrow examination of patients being evaluated for myeloid malignancy with potential germline predisposition to myeloid neoplasia. RESULTS Lack of familial disease, the absence of syndromic manifestations, and late-onset hematologic malignancy do not exclude an underlying germline predisposition syndrome. Targeted myeloid sequencing panels can help identify potential germline alterations but may not detect large deletions or insertions, noncoding, or novel variants. Confirmation of the germline nature of an alteration detected in the peripheral blood or bone marrow ideally requires genetic testing using nonhematopoietic germline DNA to definitively distinguish between germline and somatic alterations. The ideal tissue source for germline testing is cultured skin fibroblasts. Certain germline predisposition syndromes can contain characteristic baseline bone marrow dysplastic-appearing features associated with cytopenias without constituting myelodysplastic syndrome. CONCLUSION Recognizing germline predisposition to myeloid neoplasia is critical for proper disease management. This recognition is particularly important for patients who will undergo hematopoietic stem cell transplantation to screen potential related donors. Integration of the clinical history, bone marrow findings, cytogenetic studies, and specialized laboratory and molecular genetic testing is often essential for accurate diagnosis and subsequent disease monitoring.
Collapse
Affiliation(s)
- Nisha Patel
- Hematology Section, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, US
| | - Katherine R Calvo
- Hematology Section, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, US
- Myeloid Malignancies Program, National Institutes of Health, Bethesda, MD, US
| |
Collapse
|
12
|
Sendker S, Awada A, Domagalla S, Sendker M, Orhan E, Hoffmeister LM, Antoniou E, Niktoreh N, Reinhardt D, von Neuhoff N, Schneider M. RUNX1 mutation has no prognostic significance in paediatric AML: a retrospective study of the AML-BFM study group. Leukemia 2023; 37:1435-1443. [PMID: 37188777 PMCID: PMC10317839 DOI: 10.1038/s41375-023-01919-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/17/2023]
Abstract
In acute myeloid leukaemia (AML) RUNX1 mutation is characterised by certain clinicopathological features with poor prognosis and adverse risk by the European LeukemiaNet recommendation. Though initially considered as provisional category, the recent World Health Organisation (WHO) classification of 2022 removed RUNX1-mutated AML from the unique entity. However, the significance of RUNX1 mutation in paediatric AML remains unclear. We retrospectively analysed a German cohort of 488 paediatric patients with de novo AML, enroled in the AMLR12 or AMLR17 registry of the AML-BFM Study Group (Essen, Germany). A total of 23 paediatric AML patients (4.7%) harboured RUNX1 mutations, 18 of which (78%) had RUNX1 mutation at initial diagnosis. RUNX1 mutations were associated with older age, male gender, number of coexisting alterations and presence of FLT3-ITD but mutually exclusive of KRAS, KIT and NPM1 mutation. RUNX1 mutations did not prognostically impact overall or event-free survival. Response rates did not differ between patients with and without RUNX1 mutations. This comprehensive study, comprising the largest analysis of RUNX1 mutation in a paediatric cohort to date, reveals distinct but not unique clinicopathologic features, with no prognostic significance of RUNX1-mutated paediatric AML. These results broaden the perspective on the relevance of RUNX1 alterations in leukaemogenesis in AML.
Collapse
Affiliation(s)
- Stephanie Sendker
- Department of Paediatric Hematology and Oncology, University Children's Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Amani Awada
- Department of Paediatric Hematology and Oncology, University Children's Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Sophia Domagalla
- Department of Paediatric Hematology and Oncology, University Children's Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Michael Sendker
- University of Applied Sciences for Economics and Management (FOM), 20357, Hamburg, Germany
| | - Eser Orhan
- Centre for Research Acceleration in Paediatrics GmbH, 30175, Hannover, Germany
| | - Lina Marie Hoffmeister
- Department of Paediatric Hematology and Oncology, University Children's Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Evangelia Antoniou
- Department of Paediatric Hematology and Oncology, University Children's Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Naghmeh Niktoreh
- Department of Paediatric Hematology and Oncology, University Children's Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Dirk Reinhardt
- Department of Paediatric Hematology and Oncology, University Children's Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Nils von Neuhoff
- Department of Paediatric Hematology and Oncology, University Children's Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Markus Schneider
- Department of Paediatric Hematology and Oncology, University Children's Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany.
| |
Collapse
|
13
|
Gener-Ricos G, Gerstein YS, Hammond D, DiNardo CD. Germline Predisposition to Myelodysplastic Syndromes. Cancer J 2023; 29:143-151. [PMID: 37195770 DOI: 10.1097/ppo.0000000000000660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
ABSTRACT While germline predisposition to myelodysplastic syndromes is well-established, knowledge has advanced rapidly resulting in more cases of inherited hematologic malignancies being identified. Understanding the biological features and main clinical manifestations of hereditary hematologic malignancies is essential to recognizing and referring patients with myelodysplastic syndrome, who may underlie inherited predisposition, for appropriate genetic evaluation. Importance lies in individualized genetic counseling along with informed treatment decisions, especially with regard to hematopoietic stem cell transplant-related donor selection. Future studies will improve comprehension of these disorders, enabling better management of affected patients and their families.
Collapse
Affiliation(s)
| | - Yoheved S Gerstein
- Clinical Cancer Genetics Program, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | |
Collapse
|
14
|
Babcock S, Calvo KR, Hasserjian RP. Pediatric myelodysplastic syndrome. Semin Diagn Pathol 2023; 40:152-171. [PMID: 37173164 DOI: 10.1053/j.semdp.2023.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023]
Affiliation(s)
| | - Katherine R Calvo
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
15
|
Coiteux V, Fenwarth L, Duployez N, Ainaoui M, Borel C, Polomeni A, Yakoub-Agha I, Chalandon Y. [Management of genetic predisposition to hematologic malignancies in patients undergoing allogeneic hematopoietic cell transplantation (HCT): Guidelines from the SFGM-TC]. Bull Cancer 2023; 110:S13-S29. [PMID: 36307324 DOI: 10.1016/j.bulcan.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 11/06/2022]
Abstract
The advent of new technologies has made it possible to identify genetic predispositions to myelodysplastic syndromes (MDS) and acute leukemias (AL) more frequently. The most frequent and best characterized at present are mutations in CEBPA, RUNX1, GATA2, ETV6 and DDX41 and, either in the presence of one of these mutations with a high allelic frequency, or in the case of a personal or family history suggestive of blood abnormalities such as non-immune thrombocytopenia, it is recommended to look for the possibility of a hereditary hematological malignancy (HHM). Indeed, early recognition of these HHMs allows better adaptation of the management of patients and their relatives, as allogeneic hematopoietic stem cell transplantation (HSCT) is very often proposed for these pathologies. According to current data, with the exception of the GATA2 mutation, the constitutional or somatic nature of the mutations does not seem to influence the prognosis of hematological diseases. Therefore, the indication for an allograft will be determined according to the usual criteria. However, when searching for a family donor, it is important to ensure that there is no hereditary disease in the donor. In order to guarantee the possibility of performing the HSC allograft within a short period of time, it may be necessary to initiate a parallel procedure to find an unrelated donor. Given the limited information on the modalities of HSC transplantation in this setting, it is important to assess the benefit/risk of the disease and the procedure to decide on the type of conditioning (myeloablative or reduced intensity). In view of the limited experience with the risk of secondary cancers in the medium and long-term, it may be appropriate to recommend reduced intensity conditioning, as in the case of better characterized syndromic hematological diseases such as Fanconi anemia or telomere diseases. In summary, it seems important to evoke HHM more frequently, particularly in the presence of a family history, certain mutations or persistent blood abnormalities, in order to discuss the specific modalities of HSC allografting, particularly with regard to the search for a donor and the evaluation of certain modalities of the procedure, such as conditioning. It should be noted that the discovery of HHM, especially if the indication of an allogeneic HSC transplant is retained, will raise ethical and psychological considerations not only for the patient, but also for his family. A multidisciplinary approach involving molecular biologists, geneticists, hematologists and psychologists is essential.
Collapse
Affiliation(s)
- Valérie Coiteux
- Hôpital Huriez, CHU de Lille, service de maladies du sang, 1, place de Verdun, 59037 Lille cedex, France.
| | - Laurène Fenwarth
- Université de Lille, CHU de Lille, CNRS, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, Inserm, 59000 Lille, France
| | - Nicolas Duployez
- Université de Lille, CHU de Lille, CNRS, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, Inserm, 59000 Lille, France
| | - Malika Ainaoui
- Hôpital Huriez, hôpital Fontan, CHU de Lille, service de maladies du sang, service de psychiatrie de liaison, 1, place de Verdun, 59037 Lille cedex, France
| | - Cécile Borel
- CHU de Toulouse, institut universitaire du cancer de Toulouse Oncopole, service d'hématologie, 1, avenue Irène-Joliot-Curie, 31059 Toulouse, France
| | - Alice Polomeni
- AP-HP, hôpital Saint-Antoine, service d'hématologie clinique et thérapie cellulaire, 184, rue du faubourg Saint-Antoine, 75012 Paris, France
| | | | - Yves Chalandon
- Université de Genève, hôpitaux universitaires de Genève, faculté de médecine, service d'hématologie, 4, rue Gabrielle-Perret-Gentil, 1211 Genève, Suisse.
| |
Collapse
|
16
|
Liu C, Ballerini P, Nguyen G, Mincheva Z, Copin B, Bouslama B, Leverger G, Petit A, Favier R, Lapillonne H, Boutroux H. Germline RUNX1 variants in paediatric patients in a French specialised centre. EJHAEM 2023; 4:145-152. [PMID: 36819173 PMCID: PMC9928638 DOI: 10.1002/jha2.594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/24/2022] [Accepted: 09/25/2022] [Indexed: 11/09/2022]
Abstract
Familial platelet disorder with associated myeloid malignancy (FPD-MM; OMIM 601399) is related to germline RUNX1 mutation. The pathogenicity of RUNX1 variants was initially linked to FPD-MM phenotype, but the discovery of new variants through the expansion of genetic explorations in leukaemia is questioning this assertion. In this study, we add 10 families with germline RUNX1 variant explored at Armand Trousseau Hospital for leukaemia diagnosis or thrombocytopenia, to the 259 described so far. Detailed description of their personal and family history of haematological pathologies allows identifying three phenotypes related to germline RUNX1 variants: thrombocytopenia and/or malignant haematological disease with family history of haematological diseases, thrombocytopenia with no family history of haematological diseases and acute lymphoblastic leukaemia (ALL) with no family history of haematological diseases. In the latter phenotype, ALL characteristics involving RUNX1 suggest the implication of germline variants in the onset of the malignancy.
Collapse
Affiliation(s)
- Cécile Liu
- Sorbonne University, AP‐HP, Paediatric Haematology and Oncology DepartmentArmand‐Trousseau HospitalParisFrance
| | - Paola Ballerini
- Sorbonne University, AP‐HP, Laboratory of HaematologyArmand‐Trousseau HospitalParisFrance
- Sorbonne University, AP‐HP, French Reference Centre for Inherited Platelet DisordersArmand‐Trousseau HospitalParisFrance
| | - Guillaume Nguyen
- Sorbonne University, AP‐HP, Laboratory of HaematologyArmand‐Trousseau HospitalParisFrance
- Sorbonne University, AP‐HP, French Reference Centre for Inherited Platelet DisordersArmand‐Trousseau HospitalParisFrance
| | - Zoia Mincheva
- Sorbonne University, AP‐HP, Laboratory of HaematologyArmand‐Trousseau HospitalParisFrance
- Sorbonne University, AP‐HP, French Reference Centre for Inherited Platelet DisordersArmand‐Trousseau HospitalParisFrance
| | - Bruno Copin
- Sorbonne University, AP‐HP, Service de Génétique et Embryologie MédicalesArmand‐Trousseau HospitalParisFrance
| | - Boutheina Bouslama
- Sorbonne University, AP‐HP, Laboratory of HaematologyArmand‐Trousseau HospitalParisFrance
- Sorbonne University, AP‐HP, French Reference Centre for Inherited Platelet DisordersArmand‐Trousseau HospitalParisFrance
| | - Guy Leverger
- Sorbonne University, AP‐HP, Paediatric Haematology and Oncology DepartmentArmand‐Trousseau HospitalParisFrance
- Sorbonne University, AP‐HP, French Reference Centre for Inherited Platelet DisordersArmand‐Trousseau HospitalParisFrance
| | - Arnaud Petit
- Sorbonne University, AP‐HP, Paediatric Haematology and Oncology DepartmentArmand‐Trousseau HospitalParisFrance
- Sorbonne University, AP‐HP, French Reference Centre for Inherited Platelet DisordersArmand‐Trousseau HospitalParisFrance
| | - Rémi Favier
- Sorbonne University, AP‐HP, Laboratory of HaematologyArmand‐Trousseau HospitalParisFrance
- Sorbonne University, AP‐HP, French Reference Centre for Inherited Platelet DisordersArmand‐Trousseau HospitalParisFrance
| | - Hélène Lapillonne
- Sorbonne University, AP‐HP, Laboratory of HaematologyArmand‐Trousseau HospitalParisFrance
- Sorbonne University, AP‐HP, French Reference Centre for Inherited Platelet DisordersArmand‐Trousseau HospitalParisFrance
| | - Hélène Boutroux
- Sorbonne University, AP‐HP, Paediatric Haematology and Oncology DepartmentArmand‐Trousseau HospitalParisFrance
- Sorbonne University, AP‐HP, French Reference Centre for Inherited Platelet DisordersArmand‐Trousseau HospitalParisFrance
| |
Collapse
|
17
|
Ernst MPT, Pronk E, van Dijk C, van Strien PMH, van Tienhoven TVD, Wevers MJW, Sanders MA, Bindels EMJ, Speck NA, Raaijmakers MHGP. Hematopoietic Cell Autonomous Disruption of Hematopoiesis in a Germline Loss-of-function Mouse Model of RUNX1-FPD. Hemasphere 2023; 7:e824. [PMID: 36741355 PMCID: PMC9891454 DOI: 10.1097/hs9.0000000000000824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/29/2022] [Indexed: 02/01/2023] Open
Abstract
RUNX1 familial platelet disorder (RUNX1-FPD) is a hematopoietic disorder caused by germline loss-of-function mutations in the RUNX1 gene and characterized by thrombocytopathy, thrombocytopenia, and an increased risk of developing hematologic malignancies, mostly of myeloid origin. Disease pathophysiology has remained incompletely understood, in part because of a shortage of in vivo models recapitulating the germline RUNX1 loss of function found in humans, precluding the study of potential contributions of non-hematopoietic cells to disease pathogenesis. Here, we studied mice harboring a germline hypomorphic mutation of one Runx1 allele with a loss-of-function mutation in the other Runx1 allele (Runx1 L148A/- mice), which display many hematologic characteristics found in human RUNX1-FPD patients. Runx1 L148A/- mice displayed robust and pronounced thrombocytopenia and myeloid-biased hematopoiesis, associated with an HSC intrinsic reconstitution defect in lymphopoiesis and expansion of myeloid progenitor cell pools. We demonstrate that specific deletion of Runx1 from bone marrow stromal cells in Prrx1-cre;Runx1 fl/fl mice did not recapitulate these abnormalities, indicating that the hematopoietic abnormalities are intrinsic to the hematopoietic lineage, and arguing against a driving role of the bone marrow microenvironment. In conclusion, we report a RUNX1-FPD mouse model faithfully recapitulating key characteristics of human disease. Findings do not support a driving role of ancillary, non-hematopoietic cells in the disruption of hematopoiesis under homeostatic conditions.
Collapse
Affiliation(s)
- Martijn P. T. Ernst
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Eline Pronk
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Claire van Dijk
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | | | | | - Michiel J. W. Wevers
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Mathijs A. Sanders
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Eric M. J. Bindels
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Nancy A. Speck
- Abramson Family Cancer Research Institute and Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
18
|
Lee BC, Zhou Y, Bresciani E, Ozkaya N, Dulau-Florea A, Carrington B, Shin TH, Baena V, Syed ZA, Hong SG, Zhen T, Calvo KR, Liu P, Dunbar CE. A RUNX1-FPDMM rhesus macaque model reproduces the human phenotype and predicts challenges to curative gene therapies. Blood 2023; 141:231-237. [PMID: 36322931 PMCID: PMC9936307 DOI: 10.1182/blood.2022018193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Germ line loss-of-function heterozygous mutations in the RUNX1 gene cause familial platelet disorder with associated myeloid malignancies (FPDMM) characterized by thrombocytopenia and a life-long risk of hematological malignancies. Although gene therapies are being considered as promising therapeutic options, current preclinical models do not recapitulate the human phenotype and are unable to elucidate the relative fitness of mutation-corrected and RUNX1-heterozygous mutant hematopoietic stem and progenitor cells (HSPCs) in vivo long term. We generated a rhesus macaque with an FPDMM competitive repopulation model using CRISPR/Cas9 nonhomologous end joining editing in the RUNX1 gene and the AAVS1 safe-harbor control locus. We transplanted mixed populations of edited autologous HSPCs and tracked mutated allele frequencies in blood cells. In both animals, RUNX1-edited cells expanded over time compared with AAVS1-edited cells. Platelet counts remained below the normal range in the long term. Bone marrows developed megakaryocytic dysplasia similar to human FPDMM, and CD34+ HSPCs showed impaired in vitro megakaryocytic differentiation, with a striking defect in polyploidization. In conclusion, the lack of a competitive advantage for wildtype or control-edited HSPCs over RUNX1 heterozygous-mutated HSPCs long term in our preclinical model suggests that gene correction approaches for FPDMM will be challenging, particularly to reverse myelodysplastic syndrome/ acute myeloid leukemia predisposition and thrombopoietic defects.
Collapse
Affiliation(s)
- Byung-Chul Lee
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Yifan Zhou
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, United Kingdom
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Erica Bresciani
- Oncogenesis and Development Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Neval Ozkaya
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Alina Dulau-Florea
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Blake Carrington
- Zebrafish Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Tae-Hoon Shin
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Jeju National University, Jeju, Republic of Korea
| | - Valentina Baena
- Electron Microscopy Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Zulfeqhar A. Syed
- Electron Microscopy Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - So Gun Hong
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Tao Zhen
- Oncogenesis and Development Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Katherine R. Calvo
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Paul Liu
- Oncogenesis and Development Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Cynthia E. Dunbar
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
19
|
Fox LC, Blombery P. Matching phenotypes through mismatching genomics. Leuk Lymphoma 2023; 64:1-2. [PMID: 36373706 DOI: 10.1080/10428194.2022.2142058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Lucy C Fox
- Clinical Haematology Department, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria, Australia
| | - Piers Blombery
- Clinical Haematology Department, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria, Australia
| |
Collapse
|
20
|
Fabozzi F, Mastronuzzi A. Genetic Predisposition to Hematologic Malignancies in Childhood and Adolescence. Mediterr J Hematol Infect Dis 2023; 15:e2023032. [PMID: 37180200 PMCID: PMC10171214 DOI: 10.4084/mjhid.2023.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/19/2023] [Indexed: 05/16/2023] Open
Abstract
Advances in molecular biology and genetic testing have greatly improved our understanding of the genetic basis of hematologic malignancies and have enabled the identification of new cancer predisposition syndromes. Recognizing a germline mutation in a patient affected by a hematologic malignancy allows for a tailored treatment approach to minimize toxicities. It informs the donor selection, the timing, and the conditioning strategy for hematopoietic stem cell transplantation, as well as the comorbidities evaluation and surveillance strategies. This review provides an overview of germline mutations that predispose to hematologic malignancies, focusing on those most common during childhood and adolescence, based on the new International Consensus Classification of Myeloid and Lymphoid Neoplasms.
Collapse
Affiliation(s)
- Francesco Fabozzi
- Department of Pediatric Hematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
| | - Angela Mastronuzzi
- Department of Pediatric Hematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
| |
Collapse
|
21
|
The International Consensus Classification (ICC) of hematologic neoplasms with germline predisposition, pediatric myelodysplastic syndrome, and juvenile myelomonocytic leukemia. Virchows Arch 2023; 482:113-130. [PMID: 36445482 DOI: 10.1007/s00428-022-03447-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/23/2022] [Accepted: 10/27/2022] [Indexed: 11/30/2022]
Abstract
Updating the classification of hematologic neoplasia with germline predisposition, pediatric myelodysplastic syndrome (MDS), and juvenile myelomonocytic leukemia (JMML) is critical for diagnosis, therapy, research, and clinical trials. Advances in next-generation sequencing technology have led to the identification of an expanding group of genes that predispose to the development of hematolymphoid neoplasia when mutated in germline configuration and inherited. This review encompasses recent advances in the classification of myeloid and lymphoblastic neoplasia with germline predisposition summarizing important genetic and phenotypic information, relevant laboratory testing, and pathologic bone marrow features. Genes are organized into three major categories including (1) those that are not associated with constitutional disorder and include CEBPA, DDX41, and TP53; (2) those associated with thrombocytopenia or platelet dysfunction including RUNX1, ANKRD26, and ETV6; and (3) those associated with constitutional disorders affecting multiple organ systems including GATA2, SAMD9, and SAMD9L, inherited genetic mutations associated with classic bone marrow failure syndromes and JMML, and Down syndrome. A provisional category of germline predisposition genes is created to recognize genes with growing evidence that may be formally included in future revised classifications as substantial supporting data emerges. We also detail advances in the classification of pediatric myelodysplastic syndrome (MDS), expanding the definition of refractory cytopenia of childhood (RCC) to include early manifestation of MDS in patients with germline predisposition. Finally, updates in the classification of juvenile myelomonocytic leukemia are presented which genetically define JMML as a myeloproliferative/myelodysplastic disease harboring canonical RAS pathway mutations. Diseases with features overlapping with JMML that do not carry RAS pathway mutations are classified as JMML-like. The review is based on the International Consensus Classification (ICC) of Myeloid and Lymphoid Neoplasms as reported by Arber et al. (Blood 140(11):1200-1228, 2022).
Collapse
|
22
|
Feurstein S, Trottier AM, Estrada-Merly N, Pozsgai M, McNeely K, Drazer MW, Ruhle B, Sadera K, Koppayi AL, Scott BL, Oran B, Nishihori T, Agrawal V, Saad A, Lindsley RC, Nakamura R, Kim S, Hu Z, Sobecks R, Spellman S, Saber W, Godley LA. Germ line predisposition variants occur in myelodysplastic syndrome patients of all ages. Blood 2022; 140:2533-2548. [PMID: 35969835 PMCID: PMC9918848 DOI: 10.1182/blood.2022015790] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 11/20/2022] Open
Abstract
The frequency of pathogenic/likely pathogenic (P/LP) germ line variants in patients with myelodysplastic syndrome (MDS) diagnosed at age 40 years or less is 15% to 20%. However, there are no comprehensive studies assessing the frequency of such variants across the age spectrum. We performed augmented whole-exome sequencing of peripheral blood samples from 404 patients with MDS and their related donors before allogeneic hematopoietic stem cell transplantation. Single-nucleotide and copy number variants in 233 genes were analyzed and interpreted. Germ line status was established by the presence of a variant in the patient and related donor or for those seen previously only as germ line alleles. We identified P/LP germ line variants in 28 of 404 patients with MDS (7%), present within all age deciles. Patients with P/LP variants were more likely to develop higher-grade MDS than those without (43% vs 25%; P = .04). There was no statistically significant difference in outcome parameters between patients with and without a germ line variant, but the analysis was underpowered. P/LP variants in bone marrow failure syndrome genes were found in 5 patients aged less than 40 years, whereas variants in DDX41 (n = 4), telomere biology disorder genes (n = 2), and general tumor predisposition genes (n = 17) were found in patients aged more than 40 years. If presumed germ line variants were included, the yield of P/LP variants would increase to 11%, and by adding suspicious variants of unknown significance, it would rise further to 12%. The high frequency of P/LP germ line variants in our study supports comprehensive germ line genetic testing for all patients with MDS regardless of their age at diagnosis.
Collapse
Affiliation(s)
- Simone Feurstein
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL
- Section of Hematology, Oncology and Rheumatology, Department of Internal Medicine, Department of Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Amy M. Trottier
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL
- Division of Hematology, Department of Medicine, QEII Health Sciences Centre, Dalhousie University, Halifax, NS, Canada
| | - Noel Estrada-Merly
- Center for International Blood and Marrow Transplant Research, Medical College of Wisconsin, Milwaukee, WI
| | - Matthew Pozsgai
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL
| | - Kelsey McNeely
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL
| | - Michael W. Drazer
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL
| | - Brian Ruhle
- Section of General Surgery, Department of Surgery, The University of Chicago, Chicago, IL
| | - Katharine Sadera
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL
| | - Ashwin L. Koppayi
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL
| | | | - Betul Oran
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Taiga Nishihori
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL
| | - Vaibhav Agrawal
- Department of Hematology/HCT, City of Hope Comprehensive Cancer Center and Beckman Research Institute of City of Hope, Duarte, CA
| | - Ayman Saad
- Division of Hematology, The Ohio State University Wexner Medical Center, Columbus, OH
| | | | - Ryotaro Nakamura
- Department of Hematology/HCT, City of Hope Comprehensive Cancer Center and Beckman Research Institute of City of Hope, Duarte, CA
| | - Soyoung Kim
- Division of Biostatistics, Medical College of Wisconsin, Wauwatosa, WI
| | - Zhenhuan Hu
- Division of Biostatistics, Medical College of Wisconsin, Wauwatosa, WI
| | - Ronald Sobecks
- Blood and Marrow Transplantation, Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Stephen Spellman
- CIBMTR Center for International Blood and Marrow Transplant Research, National Marrow Donor Program/Be The Match, Minneapolis, MN
| | - Wael Saber
- Center for International Blood and Marrow Transplant Research, Medical College of Wisconsin, Milwaukee, WI
| | - Lucy A. Godley
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL
| |
Collapse
|
23
|
Kontandreopoulou CN, Kalopisis K, Viniou NA, Diamantopoulos P. The genetics of myelodysplastic syndromes and the opportunities for tailored treatments. Front Oncol 2022; 12:989483. [PMID: 36338673 PMCID: PMC9630842 DOI: 10.3389/fonc.2022.989483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Genomic instability, microenvironmental aberrations, and somatic mutations contribute to the phenotype of myelodysplastic syndrome and the risk for transformation to AML. Genes involved in RNA splicing, DNA methylation, histone modification, the cohesin complex, transcription, DNA damage response pathway, signal transduction and other pathways constitute recurrent mutational targets in MDS. RNA-splicing and DNA methylation mutations seem to occur early and are reported as driver mutations in over 50% of MDS patients. The improved understanding of the molecular landscape of MDS has led to better disease and risk classification, leading to novel therapeutic opportunities. Based on these findings, novel agents are currently under preclinical and clinical development and expected to improve the clinical outcome of patients with MDS in the upcoming years. This review provides a comprehensive update of the normal gene function as well as the impact of mutations in the pathogenesis, deregulation, diagnosis, and prognosis of MDS, focuses on the most recent advances of the genetic basis of myelodysplastic syndromes and their clinical relevance, and the latest targeted therapeutic approaches including investigational and approved agents for MDS.
Collapse
|
24
|
Arber DA, Orazi A, Hasserjian RP, Borowitz MJ, Calvo KR, Kvasnicka HM, Wang SA, Bagg A, Barbui T, Branford S, Bueso-Ramos CE, Cortes JE, Dal Cin P, DiNardo CD, Dombret H, Duncavage EJ, Ebert BL, Estey EH, Facchetti F, Foucar K, Gangat N, Gianelli U, Godley LA, Gökbuget N, Gotlib J, Hellström-Lindberg E, Hobbs GS, Hoffman R, Jabbour EJ, Kiladjian JJ, Larson RA, Le Beau MM, Loh MLC, Löwenberg B, Macintyre E, Malcovati L, Mullighan CG, Niemeyer C, Odenike OM, Ogawa S, Orfao A, Papaemmanuil E, Passamonti F, Porkka K, Pui CH, Radich JP, Reiter A, Rozman M, Rudelius M, Savona MR, Schiffer CA, Schmitt-Graeff A, Shimamura A, Sierra J, Stock WA, Stone RM, Tallman MS, Thiele J, Tien HF, Tzankov A, Vannucchi AM, Vyas P, Wei AH, Weinberg OK, Wierzbowska A, Cazzola M, Döhner H, Tefferi A. International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: integrating morphologic, clinical, and genomic data. Blood 2022; 140:1200-1228. [PMID: 35767897 PMCID: PMC9479031 DOI: 10.1182/blood.2022015850] [Citation(s) in RCA: 1432] [Impact Index Per Article: 477.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/16/2022] [Indexed: 02/02/2023] Open
Abstract
The classification of myeloid neoplasms and acute leukemias was last updated in 2016 within a collaboration between the World Health Organization (WHO), the Society for Hematopathology, and the European Association for Haematopathology. This collaboration was primarily based on input from a clinical advisory committees (CACs) composed of pathologists, hematologists, oncologists, geneticists, and bioinformaticians from around the world. The recent advances in our understanding of the biology of hematologic malignancies, the experience with the use of the 2016 WHO classification in clinical practice, and the results of clinical trials have indicated the need for further revising and updating the classification. As a continuation of this CAC-based process, the authors, a group with expertise in the clinical, pathologic, and genetic aspects of these disorders, developed the International Consensus Classification (ICC) of myeloid neoplasms and acute leukemias. Using a multiparameter approach, the main objective of the consensus process was the definition of real disease entities, including the introduction of new entities and refined criteria for existing diagnostic categories, based on accumulated data. The ICC is aimed at facilitating diagnosis and prognostication of these neoplasms, improving treatment of affected patients, and allowing the design of innovative clinical trials.
Collapse
Affiliation(s)
| | - Attilio Orazi
- Texas Tech University Health Sciences Center El Paso, El Paso, TX
| | | | | | | | | | - Sa A Wang
- University of Texas MD Anderson Cancer Center, Houston, TX
| | - Adam Bagg
- University of Pennsylvania, Philadelphia, PA
| | - Tiziano Barbui
- Clinical Research Foundation, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | | | | | | | | | | | - Hervé Dombret
- Université Paris Cité, Hôpital Saint-Louis, Assistance Publique - Hôpitaux de Paris, Paris, France
| | | | | | | | | | | | | | | | | | | | - Jason Gotlib
- Stanford University School of Medicine, Stanford, CA
| | | | | | | | | | - Jean-Jacques Kiladjian
- Université Paris Cité, Hôpital Saint-Louis, Assistance Publique - Hôpitaux de Paris, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Kimmo Porkka
- Helsinki University Central Hospital Comprehensive Cancer Center, Helsinki, Finland
| | | | | | | | | | | | | | | | | | - Akiko Shimamura
- Dana-Farber Cancer Institute, Boston, MA
- Boston Children's Cancer and Blood Disorders Center, Boston, MA
| | - Jorge Sierra
- Hospital Santa Creu i Sant Pau, Barcelona, Spain
| | | | | | | | | | - Hwei-Fang Tien
- National Taiwan University Hospital, Taipei City, Taiwan
| | | | | | - Paresh Vyas
- University of Oxford, Oxford, United Kingdom
| | - Andrew H Wei
- Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Australia
| | | | | | | | | | | |
Collapse
|
25
|
Kellaway SG, Coleman DJL, Cockerill PN, Raghavan M, Bonifer C. Molecular Basis of Hematological Disease Caused by Inherited or Acquired RUNX1 Mutations. Exp Hematol 2022; 111:1-12. [PMID: 35341804 DOI: 10.1016/j.exphem.2022.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 11/04/2022]
Abstract
The transcription factor RUNX1 is essential for correct hematopoietic development; in its absence in the germ line, blood stem cells are not formed. RUNX1 orchestrates dramatic changes in the chromatin landscape at the onset of stem cell formation, which set the stage for both stem self-renewal and further differentiation. However, once blood stem cells are formed, the mutation of the RUNX1 gene is not lethal but can lead to various hematopoietic defects and a predisposition to cancer. Here we summarize the current literature on inherited and acquired RUNX1 mutations, with a particular emphasis on mutations that alter the structure of the RUNX1 protein itself, and place these changes in the context of what is known about RUNX1 function. We also summarize which mutant RUNX1 proteins are actually expressed in cells and discuss the molecular mechanism underlying how such variants reprogram the epigenome setting stem cells on the path to malignancy.
Collapse
Affiliation(s)
- Sophie G Kellaway
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham, UK.
| | - Daniel J L Coleman
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham, UK
| | - Peter N Cockerill
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham, UK
| | - Manoj Raghavan
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham, UK; Centre of Clinical Haematology, Queen Elizabeth Hospital, Birmingham, UK
| | - Constanze Bonifer
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham, UK.
| |
Collapse
|
26
|
Validation and clinical application of transactivation assays for RUNX1 variant classification. Blood Adv 2022; 6:3195-3200. [PMID: 35026845 PMCID: PMC9198940 DOI: 10.1182/bloodadvances.2021006161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/27/2021] [Indexed: 11/20/2022] Open
Abstract
Transactivation assays are appropriate for functional characterization of the majority of RUNX1 missense variants observed in RUNX1-FPD. Implementation of transactivation assays for RUNX1 variants with unknown function accelerates their translation into clinical care.
Familial platelet disorder with associated myeloid malignancies (RUNX1-familial platelet disorder [RUNX1-FPD]) is caused by heterozygous pathogenic germline variants of RUNX1. In the present study, we evaluate the applicability of transactivation assays to investigate RUNX1 variants in different regions of the protein. We studied 11 variants to independently validate transactivation assays supporting variant classification following the ClinGen Myeloid Malignancies Variant Curation Expert Panel guidelines. Variant classification is key for the translation of genetic findings. We showed that new assays need to be developed to assess C-terminal RUNX1 variants. Two variants of uncertain significance (VUS) were reclassified to likely pathogenic. Additionally, our analyses supported the (likely) pathogenic classification of 2 other variants. We demonstrated functionality of 4 VUS, but reclassification to (likely) benign was challenging and suggested the need for reevaluating current classification guidelines. Finally, clinical utility of our assays was illustrated in the context of 7 families. Our data confirmed RUNX1-FPD suspicion in 3 families with RUNX1-FPD-specific family history, whereas for 3 variants identified in RUNX1-FPD-nonspecific families, no functional defect was detected. Applying functional assays to support RUNX1 variant classification can be essential for adequate care of index patients and their relatives at risk. It facilitates translation of genetic data into personalized medicine.
Collapse
|
27
|
Roloff GW, Drazer MW, Godley LA. Inherited Susceptibility to Hematopoietic Malignancies in the Era of Precision Oncology. JCO Precis Oncol 2022; 5:107-122. [PMID: 34994594 DOI: 10.1200/po.20.00387] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
As germline predisposition to hematopoietic malignancies has gained increased recognition and attention in the field of oncology, it is important for clinicians to use a systematic framework for the identification, management, and surveillance of patients with hereditary hematopoietic malignancies (HHMs). In this article, we discuss strategies for identifying individuals who warrant diagnostic evaluation and describe considerations pertaining to molecular testing. Although a paucity of prospective data is available to guide clinical monitoring of individuals harboring pathogenic variants, we provide recommendations for clinical surveillance based on consensus opinion and highlight current advances regarding the risk of progression to overt malignancy in HHM variant carriers. We also discuss the prognosis of HHMs and considerations surrounding the utility of allogeneic stem-cell transplantation in these individuals. We close with an overview of contemporary issues at the intersection of HHMs and precision oncology.
Collapse
Affiliation(s)
- Gregory W Roloff
- Department of Medicine, Loyola University Medical Center, Maywood, IL
| | - Michael W Drazer
- Section of Hematology/Oncology, Department of Medicine and the Department of Human Genetics, the University of Chicago, Chicago, IL
| | - Lucy A Godley
- Section of Hematology/Oncology, Department of Medicine and the Department of Human Genetics, the University of Chicago, Chicago, IL
| |
Collapse
|
28
|
Boeckelmann D, Glonnegger H, Sandrock-Lang K, Zieger B. Pathogenic Aspects of Inherited Platelet Disorders. Hamostaseologie 2021; 41:460-468. [PMID: 34942659 DOI: 10.1055/a-1665-6249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Inherited platelet disorders (IPDs) constitute a large heterogeneous group of rare bleeding disorders. These are classified into: (1) quantitative defects, (2) qualitative disorders, or (3) altered platelet production rate disorders or increased platelet turnover. Classically, IPD diagnostic is based on clinical phenotype characterization, comprehensive laboratory analyses (platelet function analysis), and, in former times, candidate gene sequencing. Today, molecular genetic analysis is performed using next-generation sequencing, mostly by targeting enrichment of a gene panel or by whole-exome sequencing. Still, the biochemical and molecular genetic characterization of patients with congenital thrombocytopathias/thrombocytopenia is essential, since postoperative or posttraumatic bleeding often occurs due to undiagnosed platelet defects. Depending upon the kind of surgery or trauma, this bleeding may be life-threatening, e.g., after tonsillectomy or in brain surgery. Undiagnosed platelet defects may lead to additional surgery, hysterectomy, pulmonary bleeding, and even resuscitation. In addition, these increased bleeding symptoms can lead to wound healing problems. Only specialized laboratories can perform the special platelet function analyses (aggregometry, flow cytometry, or immunofluorescent microscopy of the platelets); therefore, many IPDs are still undetected.
Collapse
Affiliation(s)
- Doris Boeckelmann
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| | - Hannah Glonnegger
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| | - Kirstin Sandrock-Lang
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| | - Barbara Zieger
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| |
Collapse
|
29
|
Marín-Quílez A, García-Tuñón I, Fernández-Infante C, Hernández-Cano L, Palma-Barqueros V, Vuelta E, Sánchez-Martín M, González-Porras JR, Guerrero C, Benito R, Rivera J, Hernández-Rivas JM, Bastida JM. Characterization of the Platelet Phenotype Caused by a Germline RUNX1 Variant in a CRISPR/Cas9-Generated Murine Model. Thromb Haemost 2021; 121:1193-1205. [PMID: 33626581 DOI: 10.1055/s-0041-1723987] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
RUNX1-related disorder (RUNX1-RD) is caused by germline variants affecting the RUNX1 gene. This rare, heterogeneous disorder has no specific clinical or laboratory phenotype, making genetic diagnosis necessary. Although international recommendations have been established to classify the pathogenicity of variants, identifying the causative alteration remains a challenge in RUNX1-RD. Murine models may be useful not only for definitively settling the controversy about the pathogenicity of certain RUNX1 variants, but also for elucidating the mechanisms of molecular pathogenesis. Therefore, we developed a knock-in murine model, using the CRISPR/Cas9 system, carrying the RUNX1 p.Leu43Ser variant (mimicking human p.Leu56Ser) to study its pathogenic potential and mechanisms of platelet dysfunction. A total number of 75 mice were generated; 25 per genotype (RUNX1WT/WT, RUNX1WT/L43S, and RUNX1L43S/L43S). Platelet phenotype was assessed by flow cytometry and confocal microscopy. On average, RUNX1L43S/L43S and RUNX1WT/L43S mice had a significantly longer tail-bleeding time than RUNX1WT/WT mice, indicating the variant's involvement in hemostasis. However, only homozygous mice displayed mild thrombocytopenia. RUNX1L43S/L43S and RUNX1WT/L43S displayed impaired agonist-induced spreading and α-granule release, with no differences in δ-granule secretion. Levels of integrin αIIbβ3 activation, fibrinogen binding, and aggregation were significantly lower in platelets from RUNX1L43S/L43S and RUNX1WT/L43S using phorbol 12-myristate 13-acetate (PMA), adenosine diphosphate (ADP), and high thrombin doses. Lower levels of PKC phosphorylation in RUNX1L43S/L43S and RUNX1WT/L43S suggested that the PKC-signaling pathway was impaired. Overall, we demonstrated the deleterious effect of the RUNX1 p.Leu56Ser variant in mice via the impairment of integrin αIIbβ3 activation, aggregation, α-granule secretion, and platelet spreading, mimicking the phenotype associated with RUNX1 variants in the clinical setting.
Collapse
Affiliation(s)
- Ana Marín-Quílez
- Cancer Research Center - CSIC, Instituto de Investigación Biomédica de Salamanca, University of Salamanca, Salamanca, Spain
| | - Ignacio García-Tuñón
- Cancer Research Center - CSIC, Instituto de Investigación Biomédica de Salamanca, University of Salamanca, Salamanca, Spain
| | - Cristina Fernández-Infante
- Cancer Research Center - CSIC, Instituto de Investigación Biomédica de Salamanca, University of Salamanca, Salamanca, Spain
| | - Luis Hernández-Cano
- Cancer Research Center - CSIC, Instituto de Investigación Biomédica de Salamanca, University of Salamanca, Salamanca, Spain
| | - Verónica Palma-Barqueros
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, University of Murcia, Murcia, Spain
| | - Elena Vuelta
- Cancer Research Center - CSIC, Instituto de Investigación Biomédica de Salamanca, University of Salamanca, Salamanca, Spain
- Transgenic Facility, Nucleus, University of Salamanca, Salamanca, Spain
| | - Manuel Sánchez-Martín
- Cancer Research Center - CSIC, Instituto de Investigación Biomédica de Salamanca, University of Salamanca, Salamanca, Spain
- Transgenic Facility, Nucleus, University of Salamanca, Salamanca, Spain
- Department of Medicine, University of Salamanca, Salamanca, Spain
| | - José Ramón González-Porras
- Department of Medicine, University of Salamanca, Salamanca, Spain
- Department of Hematology, University Hospital of Salamanca - IBSAL, Salamanca, Spain
| | - Carmen Guerrero
- Cancer Research Center - CSIC, Instituto de Investigación Biomédica de Salamanca, University of Salamanca, Salamanca, Spain
- Department of Medicine, University of Salamanca, Salamanca, Spain
| | - Rocío Benito
- Cancer Research Center - CSIC, Instituto de Investigación Biomédica de Salamanca, University of Salamanca, Salamanca, Spain
| | - José Rivera
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, University of Murcia, Murcia, Spain
- On behalf of the "Grupo Español de Alteraciones Plaquetarias Congénitas (GEAPC)", Hemorrhagic Diathesis Working Group, SETH
| | - Jesús María Hernández-Rivas
- Cancer Research Center - CSIC, Instituto de Investigación Biomédica de Salamanca, University of Salamanca, Salamanca, Spain
- Department of Medicine, University of Salamanca, Salamanca, Spain
- Department of Hematology, University Hospital of Salamanca - IBSAL, Salamanca, Spain
| | - José María Bastida
- Department of Medicine, University of Salamanca, Salamanca, Spain
- Department of Hematology, University Hospital of Salamanca - IBSAL, Salamanca, Spain
- On behalf of the "Grupo Español de Alteraciones Plaquetarias Congénitas (GEAPC)", Hemorrhagic Diathesis Working Group, SETH
| |
Collapse
|
30
|
Groarke EM, Young NS, Calvo KR. Distinguishing constitutional from acquired bone marrow failure in the hematology clinic. Best Pract Res Clin Haematol 2021; 34:101275. [PMID: 34404527 DOI: 10.1016/j.beha.2021.101275] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/19/2021] [Accepted: 05/22/2021] [Indexed: 12/23/2022]
Abstract
Distinguishing constitutional from immune bone marrow failure (BMF) has important clinical implications. However, the diagnosis is not always straightforward, and immune aplastic anemia, the commonest BMF, is a diagnosis of exclusion. In this review, we discuss a general approach to the evaluation of BMF, focusing on clinical presentations particular to immune and various constitutional disorders as well as the interpretation of bone marrow histology, flow cytometry, and karyotyping. Additionally, we examine the role of specialized testing in both immune and inherited BMF, and discuss genetic testing, both its role in patient evaluation and interpretation of results.
Collapse
Affiliation(s)
- Emma M Groarke
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Clinical Center, Building 10, 3-E, room 3-5240, 10 Center Drive, Bethesda, MD, 20892, United States.
| | - Neal S Young
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Clinical Center, Building 10, 3-E, room 3-5240, 10 Center Drive, Bethesda, MD, 20892, United States.
| | - Katherine R Calvo
- Hematology Section, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Clinical Center, Building 10, Department of Laboratory Medicine, 10 Center Drive, Bethesda, MD, 20892, United States.
| |
Collapse
|
31
|
Williams L, Doucette K, Karp JE, Lai C. Genetics of donor cell leukemia in acute myelogenous leukemia and myelodysplastic syndrome. Bone Marrow Transplant 2021; 56:1535-1549. [PMID: 33686252 DOI: 10.1038/s41409-021-01214-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/21/2020] [Accepted: 01/07/2021] [Indexed: 01/31/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) is an important therapeutic modality for patients with acute myelogenous leukemia (AML) with poor risk features. Nonetheless, roughly 30% of such patients have leukemia recurrence and up to 2% of these are donor-derived leukemias, in which malignancy develops in the donor's transplanted cells, despite extremely low rates of leukemia in the donors themselves. Notably, over 20% of these malignancies carry chromosome 7 abnormalities nearly all of which are monosomies. Recent advances in whole exome and genome sequencing have allowed for detection of candidate genes that likely contribute to the development of AML in donor cells (donor leukemia, DCL). These genes include CEBPA, GATA2, JAK2, RUNX1, DDX41, EZH2, IDH1/2, DNMT3A, ASXL1, XPD, XRCC3, and CHEK1. The potential roles of variants in these genes are evaluated based on familial clustering of MDS/AML and corresponding animal studies demonstrating their leukemogenic nature. This review describes the spectrum of genetic aberrations detected in DCL cases in the literature with regard to the character of the individual cases, existing family cohorts that carry individual genes, and functional studies that support etiologic roles in AML development. DCL presents a unique opportunity to examine genetic variants in the donors and recipients with regards to progression to malignancy.
Collapse
Affiliation(s)
- Lacey Williams
- Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, DC, USA
| | - Kimberley Doucette
- Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, DC, USA
| | - Judith E Karp
- The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Catherine Lai
- Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, DC, USA.
| |
Collapse
|
32
|
Li Y, Yang W, Devidas M, Winter SS, Kesserwan C, Yang W, Dunsmore KP, Smith C, Qian M, Zhao X, Zhang R, Gastier-Foster JM, Raetz EA, Carroll WL, Li C, Liu PP, Rabin KR, Sanda T, Mullighan CG, Nichols KE, Evans WE, Pui CH, Hunger SP, Teachey DT, Relling MV, Loh ML, Yang JJ. Germline RUNX1 variation and predisposition to childhood acute lymphoblastic leukemia. J Clin Invest 2021; 131:147898. [PMID: 34166225 PMCID: PMC8409579 DOI: 10.1172/jci147898] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/22/2021] [Indexed: 12/31/2022] Open
Abstract
Genetic alterations in the RUNX1 gene are associated with benign and malignant blood disorders, particularly of megakaryocyte and myeloid lineages. The role of RUNX1 in acute lymphoblastic leukemia (ALL) is less clear, particularly how germline genetic variation influences the predisposition to this type of leukemia. Sequencing 4,836 children with B-ALL and 1,354 cases of T-ALL, we identified 31 and 18 germline RUNX1 variants, respectively. RUNX1 variants in B-ALL consistently showed minimal damaging effects. By contrast, 6 T-ALL-related variants result in drastic loss of RUNX1 activity as a transcription activator in vitro. Ectopic expression of dominant-negative RUNX1 variants in human CD34+ cells repressed differentiation into erythroid, megakaryocytes, and T cells, while promoting myeloid cell development. Chromatin immunoprecipitation sequencing of T-ALL models showed distinctive patterns of RUNX1 binding by variant proteins. Further whole genome sequencing identified JAK3 mutation as the most frequent somatic genomic abnormality in T-ALL with germline RUNX1 variants. Co-introduction of RUNX1 variant and JAK3 mutation in hematopoietic stem and progenitor cells in mice gave rise to T-ALL with early T-cell precursor phenotype. Taken together, these results indicated that RUNX1 is an important predisposition gene for T-ALL and pointed to novel biology of RUNX1-mediated leukemogenesis in the lymphoid lineages.
Collapse
Affiliation(s)
- Yizhen Li
- Department of Pharmaceutical Sciences and
| | | | - Meenakshi Devidas
- Department of Global Pediatric Medicine, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Stuart S. Winter
- Children’s Minnesota Research Institute, Children’s Minnesota, Minneapolis, Minnesota, USA
| | - Chimene Kesserwan
- Center for Cancer Research, Genetics Branch, National Cancer Institute, Bethesda, Maryland, USA
| | | | - Kimberly P. Dunsmore
- Children’s Hematology and Oncology, Carilion Clinic and Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
| | | | - Maoxiang Qian
- Institute of Pediatrics and Department of Hematology and Oncology, Children’s Hospital of Fudan University, Institutes of Biomedical Sciences, Shanghai, China
| | - Xujie Zhao
- Department of Pharmaceutical Sciences and
| | | | | | - Elizabeth A. Raetz
- Division of Pediatric Hematology and Oncology, Perlmutter Cancer Center, New York University Langone Health, New York, New York, USA
| | - William L. Carroll
- Division of Pediatric Hematology and Oncology, Perlmutter Cancer Center, New York University Langone Health, New York, New York, USA
| | - Chunliang Li
- Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Paul P. Liu
- Oncogenesis and Development Section, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Karen R. Rabin
- Texas Children’s Cancer and Hematology Centers, Baylor College of Medicine, Houston, Texas, USA
| | - Takaomi Sanda
- Cancer Science Institute of Singapore, and
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | - William E. Evans
- Department of Pharmaceutical Sciences and
- Hematological Malignancies Program, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Ching-Hon Pui
- Department of Oncology, and
- Hematological Malignancies Program, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Stephen P. Hunger
- Department of Pediatrics and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David T. Teachey
- Department of Pediatrics and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mary V. Relling
- Department of Pharmaceutical Sciences and
- Hematological Malignancies Program, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Mignon L. Loh
- Department of Pediatrics, Benioff Children’s Hospital and the Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
| | - Jun J. Yang
- Department of Pharmaceutical Sciences and
- Department of Oncology, and
- Hematological Malignancies Program, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
33
|
Burns SS, Kapur R. Clonal Hematopoiesis of Indeterminate Potential as a Novel Risk Factor for Donor-Derived Leukemia. Stem Cell Reports 2021; 15:279-291. [PMID: 32783925 PMCID: PMC7419737 DOI: 10.1016/j.stemcr.2020.07.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 12/22/2022] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) is a critical treatment modality for many hematological and non-hematological diseases that is being extended to treat older individuals. However, recent studies show that clonal hematopoiesis of indeterminate potential (CHIP), a common, asymptomatic condition characterized by the expansion of age-acquired somatic mutations in blood cell lineages, may be a risk factor for the development of donor-derived leukemia (DDL), unexplained cytopenias, and chronic graft-versus-host disease. CHIP may contribute to the pathogenesis of these significant transplant complications via various cell-autonomous and non-cell-autonomous mechanisms, and the clinical presentation of DDL may be broader than anticipated. A more comprehensive understanding of the contributions of CHIP to DDL may have important implications for the screening of donors and will improve the safety of HSCT. The objective of this review is to discuss studies linking DDL and CHIP and to explore potential mechanisms by which CHIP may contribute to DDL.
Collapse
Affiliation(s)
- Sarah S Burns
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Reuben Kapur
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Molecular Biology and Biochemistry, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
34
|
Restoring RUNX1 deficiency in RUNX1 familial platelet disorder by inhibiting its degradation. Blood Adv 2021; 5:687-699. [PMID: 33560381 DOI: 10.1182/bloodadvances.2020002709] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 12/16/2020] [Indexed: 12/15/2022] Open
Abstract
RUNX1 familial platelet disorder (RUNX1-FPD) is an autosomal dominant disorder caused by a monoallelic mutation of RUNX1, initially resulting in approximately half-normal RUNX1 activity. Clinical features include thrombocytopenia, platelet functional defects, and a predisposition to leukemia. RUNX1 is rapidly degraded through the ubiquitin-proteasome pathway. Moreover, it may autoregulate its expression. A predicted kinetic property of autoregulatory circuits is that transient perturbations of steady-state levels result in continued maintenance of expression at adjusted levels, even after inhibitors of degradation or inducers of transcription are withdrawn, suggesting that transient inhibition of RUNX1 degradation may have prolonged effects. We hypothesized that pharmacological inhibition of RUNX1 protein degradation could normalize RUNX1 protein levels, restore the number of platelets and their function, and potentially delay or prevent malignant transformation. In this study, we evaluated cell lines, induced pluripotent stem cells derived from patients with RUNX1-FPD, RUNX1-FPD primary bone marrow cells, and acute myeloid leukemia blood cells from patients with RUNX1 mutations. The results showed that, in some circumstances, transient expression of exogenous RUNX1 or inhibition of steps leading to RUNX1 ubiquitylation and proteasomal degradation restored RUNX1 levels, thereby advancing megakaryocytic differentiation in vitro. Thus, drugs retarding RUNX1 proteolytic degradation may represent a therapeutic avenue for treating bleeding complications and preventing leukemia in RUNX1-FPD.
Collapse
|
35
|
RUNX1-mutated families show phenotype heterogeneity and a somatic mutation profile unique to germline predisposed AML. Blood Adv 2021; 4:1131-1144. [PMID: 32208489 DOI: 10.1182/bloodadvances.2019000901] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/03/2020] [Indexed: 01/07/2023] Open
Abstract
First reported in 1999, germline runt-related transcription factor 1 (RUNX1) mutations are a well-established cause of familial platelet disorder with predisposition to myeloid malignancy (FPD-MM). We present the clinical phenotypes and genetic mutations detected in 10 novel RUNX1-mutated FPD-MM families. Genomic analyses on these families detected 2 partial gene deletions, 3 novel mutations, and 5 recurrent mutations as the germline RUNX1 alterations leading to FPD-MM. Combining genomic data from the families reported herein with aggregated published data sets resulted in 130 germline RUNX1 families, which allowed us to investigate whether specific germline mutation characteristics (type, location) could explain the large phenotypic heterogeneity between patients with familial platelet disorder and different HMs. Comparing the somatic mutational signatures between the available familial (n = 35) and published sporadic (n = 137) RUNX1-mutated AML patients showed enrichment for somatic mutations affecting the second RUNX1 allele and GATA2. Conversely, we observed a decreased number of somatic mutations affecting NRAS, SRSF2, and DNMT3A and the collective genes associated with CHIP and epigenetic regulation. This is the largest aggregation and analysis of germline RUNX1 mutations performed to date, providing a unique opportunity to examine the factors underlying phenotypic differences and disease progression from FPD to MM.
Collapse
|
36
|
Park M. Myelodysplastic syndrome with genetic predisposition. Blood Res 2021; 56:S34-S38. [PMID: 33935033 PMCID: PMC8093994 DOI: 10.5045/br.2021.2020327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/03/2021] [Indexed: 12/22/2022] Open
Abstract
Myelodysplastic syndrome (MDS) refers to a heterogeneous group of clonal blood disorders characterized by ineffective hematopoiesis, cytopenia, dysplasia, and an increased risk of acute myeloid leukemia (AML). A growing number of inherited genetic loci that contribute to MDS/AML development are rapidly being identified. As genetic sequencing has become increasingly integrated into clinical practice, clearly defined syndromes have emerged, known as the MDS/AML predisposition syndrome. With more patients and families being identified with predisposing conditions, knowledge of the approach of evaluating and managing MDS with genetic predisposition is increasingly essential. This article reviews MDS with genetic predisposition and the practical aspects of management in patients with predisposition syndrome.
Collapse
Affiliation(s)
- Meerim Park
- Department of Pediatrics, Center for Pediatric Cancer, National Cancer Center, Goyang, Korea
| |
Collapse
|
37
|
Identifying potential germline variants from sequencing hematopoietic malignancies. Blood 2021; 136:2498-2506. [PMID: 33236764 DOI: 10.1182/blood.2020006910] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/23/2020] [Indexed: 12/12/2022] Open
Abstract
Next-generation sequencing (NGS) of bone marrow and peripheral blood increasingly guides clinical care in hematological malignancies. NGS data may help to identify single nucleotide variants, insertions/deletions, copy number variations, and translocations at a single time point, and repeated NGS testing allows tracking of dynamic changes in variants during the course of a patient's disease. Tumor cells used for NGS may contain germline, somatic, and clonal hematopoietic DNA alterations, and distinguishing the etiology of a variant may be challenging. We describe an approach using patient history, individual variant characteristics, and sequential NGS assays to identify potential germline variants. Our current criteria for identifying an individual likely to have a deleterious germline variant include a strong family history or multiple cancers in a single patient, diagnosis of a hematopoietic malignancy at a younger age than seen in the general population, variant allele frequency > 0.3 of a deleterious allele in a known germline predisposition gene, and variant persistence identified on clinical NGS panels, despite a change in disease state. Sequential molecular testing of hematopoietic specimens may provide insight into disease pathology, impact patient and family members' care, and potentially identify new cancer-predisposing risk alleles. Ideally, individuals should give consent at the time of NGS testing to receive information about potential germline variants and to allow future contact as research advances.
Collapse
|
38
|
Bi L, Ma T, Li X, Wei L, Liu Z, Feng B, Dong B, Chen X. New progress in the study of germline susceptibility genes of myeloid neoplasms. Oncol Lett 2021; 21:317. [PMID: 33692849 PMCID: PMC7933751 DOI: 10.3892/ol.2021.12578] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 01/21/2021] [Indexed: 12/25/2022] Open
Abstract
In 2016, the World Health Organization incorporated ‘myeloid neoplasms with germline predisposition’ into its classification of tumors of hematopoietic and lymphoid tissues, revealing the important role of germline mutations in certain myeloid neoplasms, particularly myelodysplastic syndrome and acute myeloid leukemia. The awareness of germline susceptibility has increased, and some patients with myeloid neoplasms present with a preexisting disorder or organ dysfunction. In such cases, mutations in genes including CCAAT enhancer binding protein α (CEBPA), DEAD (Asp-Glu-Ala-Asp) box polypeptide 41 (DDX41), RUNX family transcription factor 1 (RUNX1), GATA binding protein 2 (GATA2), Janus kinase 2 (JAK2) and ETS variant transcription factor 6 (ETV6) have been recognized. Moreover, with the application of advanced technologies and reports of more cases, additional germline mutations associated with myeloid neoplasms have been identified and provide insights into the formation, prognosis and therapy of myeloid neoplasms. The present review discusses the well-known CEBPA, DDX41, RUNX1, GATA2, JAK2 and ETV6 germline mutations, and other mutations including those of lymphocyte adapter protein/SH2B adapter protein 3 and duplications of autophagy related 2B, GSK3B interacting protein αnd RB binding protein 6, ubiquitin ligase, that remain to be confirmed or explored. Recommendations for the management of diseases associated with germline mutations are also provided.
Collapse
Affiliation(s)
- Lei Bi
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Tianyuan Ma
- Department of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xu Li
- College of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Lai Wei
- College of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Zinuo Liu
- College of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Bingyue Feng
- College of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Baoxia Dong
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xiequn Chen
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China.,Hematology and Oncology Center, Affiliated Hospital of Northwest University and Xian No. 3 Hospital, Xi'an, Shaanxi 710082, P.R. China
| |
Collapse
|
39
|
Almazni I, Chudakou P, Dawson-Meadows A, Downes K, Freson K, Mason J, Page P, Reay K, Myers B, Morgan NV. A novel RUNX1 exon 3 - 7 deletion causing a familial platelet disorder. Platelets 2021; 33:320-323. [PMID: 33616470 DOI: 10.1080/09537104.2021.1887470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Familial Platelet Disorder with associated Myeloid Malignancy (FPDMM) is a rare inherited disorder confirmed with the presence of a pathogenic germline RUNX1 variant and is thought to be heavily underdiagnosed. RUNX1 has also been found to be mutated in up to 10% of adult AML cases and other cell malignancies. We performed targeted next-generation sequencing and subsequent MLPA analysis in a kindred with multiple affected individuals with low platelet counts and a bleeding history. We detected a novel heterozygous exon 3-7 large deletion in the RUNX1 gene in all affected family members which is predicted to remove all of the Runt-homology DNA-binding domain and a portion of the Activation domain. Our results show that the combination of targeted NGS and MLPA analysis is an effective way to detect copy number variants (CNVs) which would be missed by conventional sequencing methods. This precise diagnosis offers the possibility of accurate counseling and clinical management in such patients who could go onto develop other cell malignancies.
Collapse
Affiliation(s)
- Ibrahim Almazni
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Pavel Chudakou
- Department of Haematology, Lincoln County Hospital, Lincoln, UK
| | | | - Kate Downes
- East Genomic Laboratory Hub, Cambridge University Hospitals, Cambridge, UK
| | - Kathleen Freson
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Joanne Mason
- West Midlands Regional Genetics Laboratory, Birmingham Women's Hospital, Birmingham, UK
| | - Paula Page
- West Midlands Regional Genetics Laboratory, Birmingham Women's Hospital, Birmingham, UK
| | - Kim Reay
- West Midlands Regional Genetics Laboratory, Birmingham Women's Hospital, Birmingham, UK
| | - Bethan Myers
- Department of Haematology, Lincoln County Hospital, Lincoln, UK.,Department of Haematology, University Hospitals of Leicester, Leicester, UK
| | - Neil V Morgan
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
40
|
High frequency of germline RUNX1 mutations in patients with RUNX1-mutated AML. Blood 2021; 135:1882-1886. [PMID: 32315381 DOI: 10.1182/blood.2019003357] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/30/2020] [Indexed: 12/26/2022] Open
Abstract
RUNX1 is mutated in ∼10% of adult acute myeloid leukemia (AML). Although most RUNX1 mutations in this disease are believed to be acquired, they can also be germline. Indeed, germline RUNX1 mutations result in the well-described autosomal-dominant familial platelet disorder with predisposition to hematologic malignancies (RUNX1-FPD, FPD/AML, FPDMM); ∼44% of affected individuals progress to AML or myelodysplastic syndromes. Using the Leucegene RUNX1 AML patient group, we sought to investigate the proportion of germline vs acquired RUNX1 mutations in this cohort. Our results showed that 30% of RUNX1 mutations in our AML cohort are germline. Molecular profiling revealed higher frequencies of NRAS mutations and other mutations known to activate various signaling pathways in these patients with RUNX1 germline-mutated AML. Moreover, 2 patients (mother and son) had co-occurrence of RUNX1 and CEBPA germline mutations, with variable AML disease onset at 59 and 27 years, respectively. Together, these data suggest a higher than anticipated frequency of germline RUNX1 mutations in the Leucegene cohort and further highlight the importance of testing for RUNX1 mutations in instances in which allogeneic stem cell transplantation using a related donor is envisioned.
Collapse
|
41
|
Bagla S, Regling KA, Wakeling EN, Gadgeel M, Buck S, Zaidi AU, Flore LA, Chicka M, Schiffer CA, Chitlur MB, Ravindranath Y. Distinctive phenotypes in two children with novel germline RUNX1 mutations - one with myeloid malignancy and increased fetal hemoglobin. Pediatr Hematol Oncol 2021; 38:65-79. [PMID: 32990483 DOI: 10.1080/08880018.2020.1814463] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
RUNX1 associated familial platelet disorder (FPD) is a rare autosomal dominant hematologic disorder characterized by thrombocytopenia and/or altered platelet function. There is an increased propensity to develop myeloid malignancy (MM) - acute myeloid leukemia, myeloproliferative neoplasms or myelodysplastic syndrome often in association with secondary somatic variants in other genes. To date, 23 FPD-MM pediatric cases have been reported worldwide. Here, we present two new kindreds with novel RUNX1 pathogenic variants in which children are probands. The first family is a daughter/mother diad, sharing a heterozygous frameshift variant in RUNX1 gene (c.501delT p.Ser167Argfs*9). The daughter, age 13 years, presented with features resembling juvenile myelomonocytic leukemia - severe anemia, thrombocytopenia, high white cell count with blast cells, monocytosis, increased nucleated red cells and had somatic mutations with high allele burden in CUX1, PHF6, and SH2B3 genes. She also had increased fetal hemoglobin and increased LIN28B expression. The mother, who had a long history of hypoplastic anemia, had different somatic mutations- a non-coding mutation in CUX1 but none in PHF6 or SH2B3. Her fetal hemoglobin and LIN28B expression were normal. In the second kindred, the proband, now 4 years old with thrombocytopenia alone, was investigated at 3 months of age for persistent neonatal thrombocytopenia with large platelets. Molecular testing identified a heterozygous intragenic deletion in RUNX1 encompassing exon 5. His father is known to have increased bruising for several years but is unavailable for testing. These two cases illustrate the significance of secondary mutations in the development and progression of RUNX1-FPD to MM.
Collapse
Affiliation(s)
- Shruti Bagla
- Department of Pediatrics-Hematology/Oncology, Wayne State University-School of Medicine, Detroit, Michigan, USA
| | - Katherine A Regling
- Division of Hematology/Oncology, Children's Hospital of Michigan, Detroit, Michigan, USA
| | - Erin N Wakeling
- DMC University Laboratories, Detroit Medical Center, Detroit, Michigan, USA
| | - Manisha Gadgeel
- Department of Pediatrics-Hematology/Oncology, Wayne State University-School of Medicine, Detroit, Michigan, USA
| | - Steven Buck
- Division of Hematology/Oncology, Children's Hospital of Michigan, Detroit, Michigan, USA
| | - Ahmar U Zaidi
- Division of Hematology/Oncology, Children's Hospital of Michigan, Detroit, Michigan, USA
| | - Leigh A Flore
- Department of Pediatrics-Hematology/Oncology, Wayne State University-School of Medicine, Detroit, Michigan, USA.,Division of Genetic, Genomic and Metabolic Disorders, Children's Hospital of Michigan, Detroit, Michigan, USA
| | | | - Charles A Schiffer
- Department of Pediatrics-Hematology/Oncology, Wayne State University-School of Medicine, Detroit, Michigan, USA.,Department of Oncology, Karmanos Cancer Institute, Detroit, Michigan
| | - Meera B Chitlur
- Department of Pediatrics-Hematology/Oncology, Wayne State University-School of Medicine, Detroit, Michigan, USA.,Division of Hematology/Oncology, Children's Hospital of Michigan, Detroit, Michigan, USA
| | - Yaddanapudi Ravindranath
- Department of Pediatrics-Hematology/Oncology, Wayne State University-School of Medicine, Detroit, Michigan, USA.,Division of Hematology/Oncology, Children's Hospital of Michigan, Detroit, Michigan, USA
| |
Collapse
|
42
|
Oved JH, Lambert MP, Kowalska MA, Poncz M, Karczewski KJ. Population based frequency of naturally occurring loss-of-function variants in genes associated with platelet disorders. J Thromb Haemost 2021; 19:248-254. [PMID: 33006441 DOI: 10.1111/jth.15113] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 09/01/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022]
Abstract
Essentials The frequency of predicted loss-of-function (pLoF) variants in platelet-associated genes is unknown in the general population. Datasets like Genome Aggregation Database allow us to analyze pLoF variants with increased resolution. Expected prevalence of significant pLoF variants in platelet-associated genes in 0.329% in the general population. Platelet-associated genes that cause phenotypes due to haploinsufficiency are significantly depleted for deleterious variation. ABSTRACT: Background Inherited platelet disorders are being recognized more frequently as advanced sequencing technologies become more commonplace in clinical scenarios. The prevalence of each inherited platelet disorder and the disorders in aggregate are not known. This deficit in the field makes it difficult for clinicians to discuss results of sequencing assays and provide appropriate anticipatory guidance. Objectives In this study, we aim to calculate the prevalence of predicted loss-of-function variants in platelet-associated genes in the general population. Methods Here, we leverage the aggregation of exomes from the general population in the form of Genome Aggregation Database to assess 58 platelet-associated genes with phenotypic correlates. We use the loss-of-function transcript effect estimator (LOFTEE) to identify predicted loss-of-function mutations in these platelet-associated genes. These variants are curated and we then quantify the frequency of predicted loss-of-function variants in each gene. Results Our data show that 0.329% of the general population have a clinically meaningful predicted loss-of-function variant in a platelet-associated gene. Thus, these individuals are at risk for bleeding disorders that can range from mild to severe. Conclusions These data provide a novel lens through which clinicians can analyze sequencing results in their patients as well as an additional method to curate newly discovered platelet-associated genes in the future.
Collapse
Affiliation(s)
- Joseph H Oved
- Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Comprehensive Bone Marrow Failure Center, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Michele P Lambert
- Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - M Anna Kowalska
- Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Mortimer Poncz
- Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Konrad J Karczewski
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| |
Collapse
|
43
|
Abstract
In recent years CMML has received increased attention as the most commonly observed MDS/MPN overlap syndrome. Renewed interest has occurred in part due to widespread adoption of next-generation sequencing panels that help render the diagnosis in the absence of morphologic dysplasia. Although most CMML patients exhibit somatic mutations in epigenetic modifiers, spliceosome components, transcription factors and signal transduction genes, it is increasingly clear that a small subset harbors an inherited predisposition to CMML and other myeloid neoplasms. More intriguing is the fact that the mutational spectrum observed in CMML is found in other types of myeloid leukemias, begging the question of how similar genetic backgrounds can lead to such divergent clinical phenotypes. In this review we present a contemporary snapshot of the genetic complexity inherent to CMML, explore the relationship between genotype-phenotype and present a stepwise model of CMML pathogenesis and progression.
Collapse
Affiliation(s)
- Ami B Patel
- Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, UT, USA.,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Michael W Deininger
- Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, UT, USA.,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
44
|
Trottier AM, Godley LA. Inherited predisposition to haematopoietic malignancies: overcoming barriers and exploring opportunities. Br J Haematol 2020; 194:663-676. [PMID: 33615436 DOI: 10.1111/bjh.17247] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 11/02/2020] [Indexed: 12/14/2022]
Abstract
Inherited predisposition to haematopoietic malignancies, due to deleterious germline variants in a variety of genes, is an important clinical entity with implications for the health and management of patients and their family members. Unfortunately, there remain several common misconceptions in this field that can result in patients going unrecognised and/or having incomplete or improper testing including: the impression that inherited haematological malignancy syndromes are rare, that myeloid and lymphoid malignancy predisposition syndromes are mutually exclusive, and that solid tumour predisposition syndromes are unique and distinct from haematopoietic malignancy predisposition syndromes. In the present review, we challenge these ideas with our insights into germline genetic testing for these conditions with the hope that increased awareness and knowledge will overcome barriers and lead to improved diagnosis and management.
Collapse
Affiliation(s)
- Amy M Trottier
- Division of Hematology, Department of Medicine, QEII Health Sciences Centre/Dalhousie University, Halifax, NS, Canada
| | - Lucy A Godley
- Section of Hematology/Oncology, Departments of Medicine and Human Genetics, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
45
|
Kraft IL, Godley LA. Identifying potential germline variants from sequencing hematopoietic malignancies. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2020; 2020:219-227. [PMID: 33275754 PMCID: PMC7727528 DOI: 10.1182/hematology.2020006910] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Next-generation sequencing (NGS) of bone marrow and peripheral blood increasingly guides clinical care in hematological malignancies. NGS data may help to identify single nucleotide variants, insertions/deletions, copy number variations, and translocations at a single time point, and repeated NGS testing allows tracking of dynamic changes in variants during the course of a patient's disease. Tumor cells used for NGS may contain germline, somatic, and clonal hematopoietic DNA alterations, and distinguishing the etiology of a variant may be challenging. We describe an approach using patient history, individual variant characteristics, and sequential NGS assays to identify potential germline variants. Our current criteria for identifying an individual likely to have a deleterious germline variant include a strong family history or multiple cancers in a single patient, diagnosis of a hematopoietic malignancy at a younger age than seen in the general population, variant allele frequency > 0.3 of a deleterious allele in a known germline predisposition gene, and variant persistence identified on clinical NGS panels, despite a change in disease state. Sequential molecular testing of hematopoietic specimens may provide insight into disease pathology, impact patient and family members' care, and potentially identify new cancer-predisposing risk alleles. Ideally, individuals should give consent at the time of NGS testing to receive information about potential germline variants and to allow future contact as research advances.
Collapse
Affiliation(s)
- Ira L. Kraft
- Section of Hematology/Oncology, Department of Medicine and The University of Chicago Comprehensive Cancer Center and
| | - Lucy A. Godley
- Section of Hematology/Oncology, Department of Medicine and The University of Chicago Comprehensive Cancer Center and
- Department of Human Genetics, The University of Chicago, Chicago, IL
| |
Collapse
|
46
|
Pruteanu DP, Olteanu DE, Cosnarovici R, Mihut E, Nagy V. Genetic predisposition in pediatric oncology. Med Pharm Rep 2020; 93:323-334. [PMID: 33225257 PMCID: PMC7664724 DOI: 10.15386/mpr-1576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/10/2020] [Accepted: 07/25/2020] [Indexed: 11/23/2022] Open
Abstract
Identifying patients with a genetic predisposition for developing malignant tumors has a significant impact on both the patient and family. Recognition of genetic predisposition, before diagnosing a malignant pathology, may lead to early diagnosis of a neoplasia. Recognition of a genetic predisposition syndrome after the diagnosis of neoplasia can result in a change of treatment plan, a specific follow-up of adverse treatment effects and, of course, a long-term follow-up focusing on the early detection of a second neoplasia. Responsible for genetic syndromes that predispose individuals to malignant pathology are germline mutations. These mutations are present in all cells of conception, they can be inherited or can occur de novo. Several mechanisms of inheritance are described: Mendelian autosomal dominant, Mendelian autosomal recessive, X-linked patterns, constitutional chromosomal abnormality and non-Mendelian inheritance. In the following review we will present the most important genetic syndromes in pediatric oncology.
Collapse
Affiliation(s)
- Doina Paula Pruteanu
- Department of Pediatric Oncology, "Prof. Dr. Ion Chiricuta" Oncology Institute, Cluj-Napoca, Romania.,Department of Radiation Oncology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Diana Elena Olteanu
- Department of Pediatric Oncology, "Prof. Dr. Ion Chiricuta" Oncology Institute, Cluj-Napoca, Romania
| | - Rodica Cosnarovici
- Department of Pediatric Oncology, "Prof. Dr. Ion Chiricuta" Oncology Institute, Cluj-Napoca, Romania
| | - Emilia Mihut
- Department of Pediatric Oncology, "Prof. Dr. Ion Chiricuta" Oncology Institute, Cluj-Napoca, Romania
| | - Viorica Nagy
- Department of Pediatric Oncology, "Prof. Dr. Ion Chiricuta" Oncology Institute, Cluj-Napoca, Romania.,Department of Radiation Oncology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
47
|
Glembotsky AC, Marin Oyarzún CP, De Luca G, Marzac C, Auger N, Goette NP, Marta RF, Raslova H, Heller PG. First description of revertant mosaicism in familial platelet disorder with predisposition to acute myelogenous leukemia: correlation with the clinical phenotype. Haematologica 2020; 105:e535. [PMID: 33054100 PMCID: PMC7556663 DOI: 10.3324/haematol.2020.253070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Ana C Glembotsky
- Instituto Lanari, Universidad de Buenos Aires, Hematologia Investigacion, Buenos Aires, Argentina
| | - Cecilia P Marin Oyarzún
- Instituto Lanari, Universidad de Buenos Aires, Hematologia Investigacion, Buenos Aires, Argentina
| | - Geraldine De Luca
- Instituto Lanari, Universidad de Buenos Aires, Hematologia Investigacion, Buenos Aires, Argentina
| | - Christophe Marzac
- INSERM UMR 1170, Gustave Roussy, Universite' Paris-Saclay, Villejuif, France
| | - Nathalie Auger
- Department of Tumor Genetics, Gustave Roussy Cancer Campus, Universite Paris-Saclay, Villejuif, France
| | - Nora P Goette
- Instituto Lanari, Universidad de Buenos Aires, Hematologia Investigacion, Buenos Aires, Argentina
| | - Rosana F Marta
- Instituto Lanari, Universidad de Buenos Aires, Hematologia Investigacion, Buenos Aires, Argentina
| | - Hana Raslova
- INSERM UMR 1170, Gustave Roussy, Villejuif, France
| | - Paula G Heller
- Instituto Lanari, Universidad de Buenos Aires, Hematologia Investigacion, Buenos Aires, Argentina
| |
Collapse
|
48
|
ClinGen Myeloid Malignancy Variant Curation Expert Panel recommendations for germline RUNX1 variants. Blood Adv 2020; 3:2962-2979. [PMID: 31648317 DOI: 10.1182/bloodadvances.2019000644] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 08/24/2019] [Indexed: 12/18/2022] Open
Abstract
Standardized variant curation is essential for clinical care recommendations for patients with inherited disorders. Clinical Genome Resource (ClinGen) variant curation expert panels are developing disease-associated gene specifications using the 2015 American College of Medical Genetics and Genomics (ACMG) and Association for Molecular Pathology (AMP) guidelines to reduce curation discrepancies. The ClinGen Myeloid Malignancy Variant Curation Expert Panel (MM-VCEP) was created collaboratively between the American Society of Hematology and ClinGen to perform gene- and disease-specific modifications for inherited myeloid malignancies. The MM-VCEP began optimizing ACMG/AMP rules for RUNX1 because many germline variants have been described in patients with familial platelet disorder with a predisposition to acute myeloid leukemia, characterized by thrombocytopenia, platelet functional/ultrastructural defects, and a predisposition to hematologic malignancies. The 28 ACMG/AMP codes were tailored for RUNX1 variants by modifying gene/disease specifications, incorporating strength adjustments of existing rules, or both. Key specifications included calculation of minor allele frequency thresholds, formulating a semi-quantitative approach to counting multiple independent variant occurrences, identifying functional domains and mutational hotspots, establishing functional assay thresholds, and characterizing phenotype-specific guidelines. Preliminary rules were tested by using a pilot set of 52 variants; among these, 50 were previously classified as benign/likely benign, pathogenic/likely pathogenic, variant of unknown significance (VUS), or conflicting interpretations (CONF) in ClinVar. The application of RUNX1-specific criteria resulted in a reduction in CONF and VUS variants by 33%, emphasizing the benefit of gene-specific criteria and sharing internal laboratory data.
Collapse
|
49
|
Brown AL, Hahn CN, Scott HS. Secondary leukemia in patients with germline transcription factor mutations (RUNX1, GATA2, CEBPA). Blood 2020; 136:24-35. [PMID: 32430494 PMCID: PMC7332898 DOI: 10.1182/blood.2019000937] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/25/2020] [Indexed: 02/07/2023] Open
Abstract
Recognition that germline mutations can predispose individuals to blood cancers, often presenting as secondary leukemias, has largely been driven in the last 20 years by studies of families with inherited mutations in the myeloid transcription factors (TFs) RUNX1, GATA2, and CEBPA. As a result, in 2016, classification of myeloid neoplasms with germline predisposition for each of these and other genes was added to the World Health Organization guidelines. The incidence of germline mutation carriers in the general population or in various clinically presenting patient groups remains poorly defined for reasons including that somatic mutations in these genes are common in blood cancers, and our ability to distinguish germline (inherited or de novo) and somatic mutations is often limited by the laboratory analyses. Knowledge of the regulation of these TFs and their mutant alleles, their interaction with other genes and proteins and the environment, and how these alter the clinical presentation of patients and their leukemias is also incomplete. Outstanding questions that remain for patients with these germline mutations or their treating clinicians include: What is the natural course of the disease? What other symptoms may I develop and when? Can you predict them? Can I prevent them? and What is the best treatment? The resolution of many of the remaining clinical and biological questions and effective evidence-based treatment of patients with these inherited mutations will depend on worldwide partnerships among patients, clinicians, diagnosticians, and researchers to aggregate sufficient longitudinal clinical and laboratory data and integrate these data with model systems.
Collapse
MESH Headings
- Age of Onset
- Blood Cell Count
- CCAAT-Enhancer-Binding Proteins/genetics
- Core Binding Factor Alpha 2 Subunit/genetics
- Disease Management
- Early Detection of Cancer
- Forecasting
- GATA2 Transcription Factor/genetics
- Genes, Neoplasm
- Genetic Counseling
- Genetic Predisposition to Disease
- Germ-Line Mutation
- Humans
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/epidemiology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/therapy
- Myelodysplastic Syndromes/genetics
- Neoplasms, Second Primary/genetics
- Penetrance
- Prognosis
Collapse
Affiliation(s)
- Anna L Brown
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia; and
| | - Christopher N Hahn
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia; and
| | - Hamish S Scott
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia; and
- ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, SA, Australia
| |
Collapse
|
50
|
Carraway HE, LaFramboise T. Myeloid neoplasms with germline predisposition: Practical considerations and complications in the search for new susceptibility loci. Best Pract Res Clin Haematol 2020; 33:101191. [PMID: 33038980 DOI: 10.1016/j.beha.2020.101191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/27/2020] [Indexed: 12/20/2022]
Abstract
Genomic research in hematological malignancies has focused far more prominently on somatic mutations than on germline variants. Although increasing numbers of germline variants are being identified, a substantial proportion of familial myeloid malignancies have no causal allele pinpointed. Here we review the biological, technological, and clinical challenges that stand in the way of the goal of establishing, implementing, and interpreting a comprehensive panel of germline variants for testing. Achieving this goal would inform care for large numbers of myeloid malignancy patients. Furthermore, knowledge of germline susceptibility variants and their corresponding genes will shed light on disease processes, potentially suggesting therapeutic strategies tailored to specific variants.
Collapse
Affiliation(s)
- Hetty E Carraway
- Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
| | - Thomas LaFramboise
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, 10900, Euclid Avenue, Cleveland, OH, 44106, USA.
| |
Collapse
|