1
|
Nurden AT, Nurden P. Glanzmann Thrombasthenia 10 Years Later: Progress Made and Future Directions. Semin Thromb Hemost 2025; 51:196-208. [PMID: 38499192 DOI: 10.1055/s-0044-1782519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Glanzmann thrombasthenia (GT) is the most common inherited platelet disorder (IPD) with mucocutaneous bleeding and a failure of platelets to aggregate when stimulated. The molecular cause is insufficient or defective αIIbβ3, an integrin encoded by the ITGA2B and ITGB3 genes. On activation αIIbβ3 undergoes conformational changes and binds fibrinogen (Fg) and other proteins to join platelets in the aggregate. The application of next-generation sequencing (NGS) to patients with IPDs has accelerated genotyping for GT; progress accompanied by improved mutation curation. The evaluation by NGS of variants in other hemostasis and vascular genes is a major step toward understanding why bleeding varies so much between patients. The recently discovered role for glycoprotein VI in thrombus formation, through its binding to fibrin and surface-bound Fg, may offer a mechanosensitive back-up for αIIbβ3, especially at sites of inflammation. The setting up of national networks for IPDs and GT is improving patient care. Hematopoietic stem cell therapy provides a long-term cure for severe cases; however, prophylaxis by monoclonal antibodies designed to accelerate fibrin formation at injured sites in the vasculature is a promising development. Gene therapy using lentil-virus vectors remains a future option with CRISPR/Cas9 technologies offering a promising alternative route.
Collapse
Affiliation(s)
- Alan T Nurden
- Institut Hospitalo-Universitaire LIRYC, Hôpital Xavier Arnozan, Pessac, France
| | - Paquita Nurden
- Institut Hospitalo-Universitaire LIRYC, Hôpital Xavier Arnozan, Pessac, France
| |
Collapse
|
2
|
Lee J, Lee M, Kim J, Cho EG, Kim C. Producing highly effective extracellular vesicles using IBAR and talin F3 domain fusion. Anim Cells Syst (Seoul) 2024; 28:283-293. [PMID: 38770055 PMCID: PMC11104707 DOI: 10.1080/19768354.2024.2353159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/30/2024] [Indexed: 05/22/2024] Open
Abstract
Extracellular vesicles (EVs), transporting diverse cellular components, play a crucial role in intercellular communication in numerous physiological and pathological processes. EVs have also been recognized as a drug delivery platform for therapeutic purposes and cell-free regenerative medicine. While various approaches have focused on increasing EV production for efficient use therapeutic use of EVs, enhancing the quality of EVs, such as ensuring efficient uptake by their target cells, has not been widely explored. In this study, we linked a negative membrane curvature-forming inverse BAR (IBAR) domain with an integrin β tail-binding talin F3 domain to create the IBAR-F3 fusion protein. We observed that IBAR-F3 can trigger filopodia-like membrane protrusions and attract integrins to those protrusion-rich regions, when expressed in Chinese hamster ovary cells expressing integrin αIIbβ3. Surprisingly, the expression of IBAR-F3 also induced a robust production of EVs, which were then efficiently taken up by nearby cells in an integrin-dependent manner. Moreover, IBAR triggered integrin activation, presumably by inducing negative membrane curvature that likely disrupts the interaction between the integrin α and β transmembrane domain. Therefore, we suggest that IBAR-F3 should be utilized to promote both EV production and efficient uptake mediated by integrins. Furthermore, the negative curvature-inducing integrin activation suggests that integrins on EVs can be activated by the nanoscale change in the curvature of the EV without the need for conventional machinery to activate integrin inside the EVs.
Collapse
Affiliation(s)
- Joonha Lee
- Department of Life Sciences, Korea University, Seoul, Republic of Korea
| | - MinHyeong Lee
- Department of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Jiyoon Kim
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Eun-Gyung Cho
- Consumer Health 2 Center, CHA Advanced Research Institute, Bundang CHA Medical Center, Seongnam, Republic of Korea
| | - Chungho Kim
- Department of Life Sciences, Korea University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Wang B, Tang N, Hou H, Chen J, Wang X, Li J. Heterozygous ITGA2B Phe1024 Deletion Associated with Abnormal αIIbβ3 Function in a Patient with Congenital Thrombocytopenia. Semin Thromb Hemost 2024. [PMID: 38604226 DOI: 10.1055/s-0044-1785655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Affiliation(s)
- Bin Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ning Tang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongyan Hou
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junkun Chen
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiong Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaoyuan Li
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Situ AJ, Ulmer TS. Comparison of Integrin αIIbβ3 Transmembrane Association in Vesicles and Bicelles. Biochemistry 2023; 62:1858-1863. [PMID: 37279176 PMCID: PMC11984748 DOI: 10.1021/acs.biochem.3c00177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Membrane proteins are commonly reconstituted in membrane mimics exhibiting discontinuous lipid bilayers. In contrast, the continuous membranes of cells are conceptually best represented by large unilamellar vesicles (LUVs). Here, we compared the thermodynamic stability of the integrin αIIbβ3 transmembrane (TM) complex between vesicles and bicelles to assess the consequence of this simplification. In LUVs, we further evaluated the strength of the αIIb(G972S)-β3(V700T) interaction that corresponds to the hydrogen bond interaction postulated for β2 integrins. An upper limit of 0.9 kcal/mol was estimated for superior TM complex stabilization in LUVs relative to bicelles. Compared to the αIIbβ3 TM complex stability in LUVs of 5.6 ± 0.2 kcal/mol, this limit is modest, indicating that bicelles performed well relative to LUVs. The implementation of β3(V700T) alleviated αIIb(G972S) destabilization by 0.4 ± 0.2 kcal/mol in confirmation of relatively weak hydrogen bonding. Interestingly, the hydrogen bond adjusts the TM complex stability to a level that is not achievable by merely varying the residue corresponding to αIIb(Gly972).
Collapse
Affiliation(s)
- Alan J. Situ
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Tobias S. Ulmer
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033 USA
| |
Collapse
|
5
|
Menter DG, Afshar-Kharghan V, Shen JP, Martch SL, Maitra A, Kopetz S, Honn KV, Sood AK. Of vascular defense, hemostasis, cancer, and platelet biology: an evolutionary perspective. Cancer Metastasis Rev 2022; 41:147-172. [PMID: 35022962 PMCID: PMC8754476 DOI: 10.1007/s10555-022-10019-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/04/2022] [Indexed: 01/08/2023]
Abstract
We have established considerable expertise in studying the role of platelets in cancer biology. From this expertise, we were keen to recognize the numerous venous-, arterial-, microvascular-, and macrovascular thrombotic events and immunologic disorders are caused by severe, acute-respiratory-syndrome coronavirus 2 (SARS-CoV-2) infections. With this offering, we explore the evolutionary connections that place platelets at the center of hemostasis, immunity, and adaptive phylogeny. Coevolutionary changes have also occurred in vertebrate viruses and their vertebrate hosts that reflect their respective evolutionary interactions. As mammals adapted from aquatic to terrestrial life and the heavy blood loss associated with placentalization-based live birth, platelets evolved phylogenetically from thrombocytes toward higher megakaryocyte-blebbing-based production rates and the lack of nuclei. With no nuclei and robust RNA synthesis, this adaptation may have influenced viral replication to become less efficient after virus particles are engulfed. Human platelets express numerous receptors that bind viral particles, which developed from archetypal origins to initiate aggregation and exocytic-release of thrombo-, immuno-, angiogenic-, growth-, and repair-stimulatory granule contents. Whether by direct, evolutionary, selective pressure, or not, these responses may help to contain virus spread, attract immune cells for eradication, and stimulate angiogenesis, growth, and wound repair after viral damage. Because mammalian and marsupial platelets became smaller and more plate-like their biophysical properties improved in function, which facilitated distribution near vessel walls in fluid-shear fields. This adaptation increased the probability that platelets could then interact with and engulf shedding virus particles. Platelets also generate circulating microvesicles that increase membrane surface-area encounters and mark viral targets. In order to match virus-production rates, billions of platelets are generated and turned over per day to continually provide active defenses and adaptation to suppress the spectrum of evolving threats like SARS-CoV-2.
Collapse
Affiliation(s)
- David G Menter
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Vahid Afshar-Kharghan
- Division of Internal Medicine, Benign Hematology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - John Paul Shen
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stephanie L Martch
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anirban Maitra
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Scott Kopetz
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kenneth V Honn
- Department of Pathology, Bioactive Lipids Research Program, Wayne State University, 5101 Cass Ave. 430 Chemistry, Detroit, MI, 48202, USA
- Department of Pathology, Wayne State University School of Medicine, 431 Chemistry Bldg, Detroit, MI, 48202, USA
- Cancer Biology Division, Wayne State University School of Medicine, 431 Chemistry Bldg, Detroit, MI, 48202, USA
| | - Anil K Sood
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
6
|
Hwang J, Jang B, Kim A, Lee Y, Lee J, Kim C, Kim J, Moon KM, Kim K, Wagle R, Song YH, Oh ES. Syndecan Transmembrane Domain Specifically Regulates Downstream Signaling Events of the Transmembrane Receptor Cytoplasmic Domain. Int J Mol Sci 2021; 22:ijms22157918. [PMID: 34360683 PMCID: PMC8347082 DOI: 10.3390/ijms22157918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 11/16/2022] Open
Abstract
Despite the known importance of the transmembrane domain (TMD) of syndecan receptors in cell adhesion and signaling, the molecular basis for syndecan TMD function remains unknown. Using in vivo invertebrate models, we found that mammalian syndecan-2 rescued both the guidance defects in C. elegans hermaphrodite-specific neurons and the impaired development of the midline axons of Drosophila caused by the loss of endogenous syndecan. These compensatory effects, however, were reduced significantly when syndecan-2 dimerization-defective TMD mutants were introduced. To further investigate the role of the TMD, we generated a chimera, 2eTPC, comprising the TMD of syndecan-2 linked to the cytoplasmic domain of platelet-derived growth factor receptor (PDGFR). This chimera exhibited SDS-resistant dimer formation that was lost in the corresponding dimerization-defective syndecan-2 TMD mutant, 2eT(GL)PC. Moreover, 2eTPC specifically enhanced Tyr 579 and Tyr 857 phosphorylation in the PDGFR cytoplasmic domain, while the TMD mutant failed to support such phosphorylation. Finally, 2eTPC, but not 2eT(GL)PC, induced phosphorylation of Src and PI3 kinase (known downstream effectors of Tyr 579 phosphorylation) and promoted Src-mediated migration of NIH3T3 cells. Taken together, these data suggest that the TMD of a syndecan-2 specifically regulates receptor cytoplasmic domain function and subsequent downstream signaling events controlling cell behavior.
Collapse
Affiliation(s)
- Jisun Hwang
- Department of Life Sciences, Ewha Womans University, Seoul 03760, Korea; (J.H.); (B.J.); (A.K.); (Y.L.)
| | - Bohee Jang
- Department of Life Sciences, Ewha Womans University, Seoul 03760, Korea; (J.H.); (B.J.); (A.K.); (Y.L.)
| | - Ayoung Kim
- Department of Life Sciences, Ewha Womans University, Seoul 03760, Korea; (J.H.); (B.J.); (A.K.); (Y.L.)
| | - Yejin Lee
- Department of Life Sciences, Ewha Womans University, Seoul 03760, Korea; (J.H.); (B.J.); (A.K.); (Y.L.)
| | - Joonha Lee
- Department of Life Sciences, Korea University, Seoul 02841, Korea; (J.L.); (C.K.)
| | - Chungho Kim
- Department of Life Sciences, Korea University, Seoul 02841, Korea; (J.L.); (C.K.)
| | - Jinmahn Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (J.K.); (K.M.M.); (K.K.)
| | - Kyeong Min Moon
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (J.K.); (K.M.M.); (K.K.)
| | - Kyuhyung Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (J.K.); (K.M.M.); (K.K.)
| | - Ram Wagle
- Department of Biomedical Gerontology, Ilsong Institute of Life Science, Hallym University, Anyang-si 14066, Korea; (R.W.); (Y.-H.S.)
| | - Young-Han Song
- Department of Biomedical Gerontology, Ilsong Institute of Life Science, Hallym University, Anyang-si 14066, Korea; (R.W.); (Y.-H.S.)
| | - Eok-Soo Oh
- Department of Life Sciences, Ewha Womans University, Seoul 03760, Korea; (J.H.); (B.J.); (A.K.); (Y.L.)
- Correspondence: ; Tel./Fax: +82-2-3277-3761
| |
Collapse
|
7
|
Situ AJ, Kim J, An W, Kim C, Ulmer TS. Insight Into Pathological Integrin αIIbβ3 Activation From Safeguarding The Inactive State. J Mol Biol 2021; 433:166832. [PMID: 33539882 PMCID: PMC11025565 DOI: 10.1016/j.jmb.2021.166832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/01/2021] [Accepted: 01/12/2021] [Indexed: 11/20/2022]
Abstract
The inhibition of physiological activation pathways of the platelet adhesion receptor integrin αIIbβ3 may fail to prevent fatal thrombosis, suggesting that the receptor is at risk of activation by yet an unidentified pathway. Here, we report the discovery and characterization of a structural motif that safeguards the receptor by selectively destabilizing its inactive state. At the extracellular membrane border, an overpacked αIIb(W968)-β3(I693) contact prevents αIIb(Gly972) from optimally assembling the αIIbβ3 transmembrane complex, which maintains the inactive state. This destabilization of approximately 1.0 kcal/mol could be mitigated by hydrodynamic forces but not physiological agonists, thereby identifying hydrodynamic forces as pathological activation stimulus. As reproductive life spans are not generally limited by cardiovascular disease, it appears that the evolution of the safeguard was driven by fatal, hydrodynamic force-mediated integrin αIIbβ3 activation in the healthy cardiovascular system. The triggering of the safeguard solely by pathological stimuli achieves an effective increase of the free energy barrier between inactive and active receptor states without incurring an increased risk of bleeding. Thus, integrin αIIbβ3 has evolved an effective way to protect receptor functional states that indicates the availability of a mechanical activation pathway when hydrodynamic forces exceed physiological margins.
Collapse
Affiliation(s)
- Alan J Situ
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jiyoon Kim
- Department of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Woojin An
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Chungho Kim
- Department of Life Sciences, Korea University, Seoul, Republic of Korea.
| | - Tobias S Ulmer
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
8
|
Morais S, Oliveira J, Lau C, Pereira M, Gonçalves M, Monteiro C, Gonçalves AR, Matos R, Sampaio M, Cruz E, Freitas I, Santos R, Lima M. αIIbβ3 variants in ten families with autosomal dominant macrothrombocytopenia: Expanding the mutational and clinical spectrum. PLoS One 2020; 15:e0235136. [PMID: 33276370 PMCID: PMC7717987 DOI: 10.1371/journal.pone.0235136] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/09/2020] [Indexed: 12/31/2022] Open
Abstract
Background Rare pathogenic variants in either the ITGA2B or ITGB3 genes have been linked to autosomal dominant macrothrombocytopenia associated with abnormal platelet production and function, deserving the designation of Glanzmann Thrombasthenia-Like Syndrome (GTLS) or ITGA2B/ITGB3-related thrombocytopenia. Objectives To describe a series of patients with familial macrothrombocytopenia and decreased expression of αIIbβ3 integrin due to defects in the ITGA2B or ITGB3 genes. Methods We reviewed the clinical and laboratory records of 10 Portuguese families with GTLS (33 patients and 11 unaffected relatives), including the functional and genetic defects. Results Patients had absent to moderate bleeding, macrothrombocytopenia, low αIIbβ3 expression, impaired platelet aggregation/ATP release to physiological agonists and low expression of activation-induced binding sites on αIIbβ3 (PAC-1) and receptor-induced binding sites on its ligand (bound fibrinogen), upon stimulation with TRAP-6 and ADP. Evidence for constitutive αIIbβ3 activation, occurred in 2 out of 9 patients from 8 families studied, but also in 2 out of 12 healthy controls. We identified 7 missense variants: 3 in ITGA2B (5 families), and 4 in ITGB3 (5 families). Three variants (αIIb: p.Arg1026Trp and p.Arg1026Gln and β3: p.Asp749His) were previously reported. The remaining (αIIb: p.Gly1007Val and β3: p.Thr746Pro, p.His748Pro and p.Arg760Cys) are new, expanding the αIIbβ3 defects associated with GTLS. The integration of the clinical and laboratory data allowed the identification of two GTLS subgroups, with distinct disease severity. Conclusions Previously reported ITGA2B and ITGB3 variants related to thrombocytopenia were clustered in a confined region of the membrane-proximal cytoplasmic domains, the inner membrane clasp. For the first time, variants are reported at the outer membrane clasp, at the transmembrane domain of αIIb, and at the membrane distal cytoplasmic domains of β3. This is the largest single-center series of inherited macrothrombocytopenia associated with αIIbβ3 variants published to date.
Collapse
Affiliation(s)
- Sara Morais
- Setor de Trombose e Hemostase, Serviço de Hematologia Clínica, Hospital de Santo António (HSA), Centro Hospitalar Universitário do Porto (CHUP), Porto, Portugal
- Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas, Universidade do Porto (UMIB/ICBAS/UP), Porto, Portugal
- * E-mail:
| | - Jorge Oliveira
- Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas, Universidade do Porto (UMIB/ICBAS/UP), Porto, Portugal
- Unidade de Genética Molecular, Centro de Genética Médica Doutor Jacinto Magalhães (CGMJM), Centro Hospitalar Universitário do Porto (CHUP), Porto, Portugal
| | - Catarina Lau
- Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas, Universidade do Porto (UMIB/ICBAS/UP), Porto, Portugal
- Laboratório de Citometria, Unidade de Diagnóstico Hematológico, Serviço de Hematologia Clínica, Hospital de Santo António (HSA), Centro Hospitalar Universitário do Porto (CHUP), Porto, Portugal
| | - Mónica Pereira
- Setor de Trombose e Hemostase, Serviço de Hematologia Clínica, Hospital de Santo António (HSA), Centro Hospitalar Universitário do Porto (CHUP), Porto, Portugal
- Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas, Universidade do Porto (UMIB/ICBAS/UP), Porto, Portugal
| | - Marta Gonçalves
- Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas, Universidade do Porto (UMIB/ICBAS/UP), Porto, Portugal
- Laboratório de Citometria, Unidade de Diagnóstico Hematológico, Serviço de Hematologia Clínica, Hospital de Santo António (HSA), Centro Hospitalar Universitário do Porto (CHUP), Porto, Portugal
| | - Catarina Monteiro
- Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas, Universidade do Porto (UMIB/ICBAS/UP), Porto, Portugal
- Unidade de Genética Molecular, Centro de Genética Médica Doutor Jacinto Magalhães (CGMJM), Centro Hospitalar Universitário do Porto (CHUP), Porto, Portugal
| | - Ana Rita Gonçalves
- Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas, Universidade do Porto (UMIB/ICBAS/UP), Porto, Portugal
- Unidade de Genética Molecular, Centro de Genética Médica Doutor Jacinto Magalhães (CGMJM), Centro Hospitalar Universitário do Porto (CHUP), Porto, Portugal
| | - Rui Matos
- Setor de Trombose e Hemostase, Serviço de Hematologia Clínica, Hospital de Santo António (HSA), Centro Hospitalar Universitário do Porto (CHUP), Porto, Portugal
| | - Marco Sampaio
- Setor de Trombose e Hemostase, Serviço de Hematologia Clínica, Hospital de Santo António (HSA), Centro Hospitalar Universitário do Porto (CHUP), Porto, Portugal
- Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas, Universidade do Porto (UMIB/ICBAS/UP), Porto, Portugal
| | - Eugénia Cruz
- Setor de Trombose e Hemostase, Serviço de Hematologia Clínica, Hospital de Santo António (HSA), Centro Hospitalar Universitário do Porto (CHUP), Porto, Portugal
| | - Inês Freitas
- Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas, Universidade do Porto (UMIB/ICBAS/UP), Porto, Portugal
- Serviço de Hematologia Laboratorial, Hospital de Santo António (HSA), Centro Hospitalar Universitário do Porto (CHUP), Porto, Portugal
| | - Rosário Santos
- Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas, Universidade do Porto (UMIB/ICBAS/UP), Porto, Portugal
- Unidade de Genética Molecular, Centro de Genética Médica Doutor Jacinto Magalhães (CGMJM), Centro Hospitalar Universitário do Porto (CHUP), Porto, Portugal
| | - Margarida Lima
- Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas, Universidade do Porto (UMIB/ICBAS/UP), Porto, Portugal
- Laboratório de Citometria, Unidade de Diagnóstico Hematológico, Serviço de Hematologia Clínica, Hospital de Santo António (HSA), Centro Hospitalar Universitário do Porto (CHUP), Porto, Portugal
| |
Collapse
|
9
|
Lagarrigue F, Paul DS, Gingras AR, Valadez AJ, Sun H, Lin J, Cuevas MN, Ablack JN, Lopez-Ramirez MA, Bergmeier W, Ginsberg MH. Talin-1 is the principal platelet Rap1 effector of integrin activation. Blood 2020; 136:1180-1190. [PMID: 32518959 PMCID: PMC7472713 DOI: 10.1182/blood.2020005348] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/29/2020] [Indexed: 12/14/2022] Open
Abstract
Ras-related protein 1 (Rap1) is a major convergence point of the platelet-signaling pathways that result in talin-1 binding to the integrin β cytoplasmic domain and consequent integrin activation, platelet aggregation, and effective hemostasis. The nature of the connection between Rap1 and talin-1 in integrin activation is an important remaining gap in our understanding of this process. Previous work identified a low-affinity Rap1-binding site in the talin-1 F0 domain that makes a small contribution to integrin activation in platelets. We recently identified an additional Rap1-binding site in the talin-1 F1 domain that makes a greater contribution than F0 in model systems. Here we generated mice bearing point mutations, which block Rap1 binding without affecting talin-1 expression, in either the talin-1 F1 domain (R118E) alone, which were viable, or in both the F0 and F1 domains (R35E,R118E), which were embryonic lethal. Loss of the Rap1-talin-1 F1 interaction in platelets markedly decreases talin-1-mediated activation of platelet β1- and β3-integrins. Integrin activation and platelet aggregation in mice whose platelets express only talin-1(R35E, R118E) are even more impaired, resembling the defect seen in platelets lacking both Rap1a and Rap1b. Although Rap1 is important in thrombopoiesis, platelet secretion, and surface exposure of phosphatidylserine, loss of the Rap1-talin-1 interaction in talin-1(R35E, R118E) platelets had little effect on these processes. These findings show that talin-1 is the principal direct effector of Rap1 GTPases that regulates platelet integrin activation in hemostasis.
Collapse
Affiliation(s)
- Frederic Lagarrigue
- Department of Medicine, University of California, San Diego, La Jolla, CA
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Université de Toulouse, Toulouse, France
| | - David S Paul
- UNC Blood Research Center and
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC; and
| | | | - Andrew J Valadez
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Hao Sun
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Jenny Lin
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Monica N Cuevas
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Jailal N Ablack
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Miguel Alejandro Lopez-Ramirez
- Department of Medicine, University of California, San Diego, La Jolla, CA
- Department of Pharmacology, University of California, San Diego, La Jolla, CA
| | - Wolfgang Bergmeier
- UNC Blood Research Center and
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC; and
| | - Mark H Ginsberg
- Department of Medicine, University of California, San Diego, La Jolla, CA
| |
Collapse
|
10
|
Gingras AR, Ginsberg MH. Signal Transduction: Physical Deformation of the Membrane Activates Integrins. Curr Biol 2020; 30:R397-R400. [PMID: 32369751 DOI: 10.1016/j.cub.2020.02.068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
New work describes a novel mechanism of mechanotransduction, whereby force-induced membrane deformation activates integrins by disrupting the association of the transmembrane domains of α and β integrins.
Collapse
Affiliation(s)
- Alexandre R Gingras
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0726, USA.
| | - Mark H Ginsberg
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0726, USA.
| |
Collapse
|
11
|
Kim J, Lee J, Jang J, Ye F, Hong SJ, Petrich BG, Ulmer TS, Kim C. Topological Adaptation of Transmembrane Domains to the Force-Modulated Lipid Bilayer Is a Basis of Sensing Mechanical Force. Curr Biol 2020; 30:1614-1625.e5. [PMID: 32169208 DOI: 10.1016/j.cub.2020.02.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/23/2020] [Accepted: 02/12/2020] [Indexed: 12/27/2022]
Abstract
Cells can sense and respond to various mechanical stimuli from their surrounding environment. One of the explanations for mechanosensitivity, a lipid-bilayer model, suggests that a stretch of the membrane induced by mechanical force alters the physical state of the lipid bilayer, driving mechanosensors to assume conformations better matched to the altered membrane. However, mechanosensors of this class are restricted to ion channels. Here, we reveal that integrin αIIbβ3, a prototypic adhesion receptor, can be activated by various mechanical stimuli including stretch, shear stress, and osmotic pressure. The force-induced integrin activation was not dependent on its known intracellular activation signaling events and was even observed in reconstituted cell-free liposomes. Instead, these mechanical stimuli were found to alter the lipid embedding of the integrin β3 transmembrane domain (TMD) and subsequently weaken the αIIb-β3 TMD interaction, which results in activation of the receptor. Moreover, artificial modulation of the membrane curvature near integrin αIIbβ3 can induce its activation in cells as well as in lipid nanodiscs, suggesting that physical deformation of the lipid bilayer, either by mechanical force or curvature, can induce integrin activation. Thus, our results establish the adhesion receptor as a bona fide mechanosensor that directly senses and responds to the force-modulated lipid environment. Furthermore, this study expands the lipid-bilayer model by suggesting that the force-induced topological change of TMDs and subsequent alteration in the TMD interactome is a molecular basis of sensing mechanical force transmitted via the lipid bilayer.
Collapse
Affiliation(s)
- Jiyoon Kim
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Joonha Lee
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Jiyoung Jang
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Feng Ye
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Soon Jun Hong
- Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital, Seoul 02841, Republic of Korea
| | - Brian G Petrich
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Tobias S Ulmer
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033, USA
| | - Chungho Kim
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
12
|
Sun H, Fan Z, Gingras AR, Lopez-Ramirez MA, Ginsberg MH, Ley K. Frontline Science: A flexible kink in the transmembrane domain impairs β2 integrin extension and cell arrest from rolling. J Leukoc Biol 2020; 107:175-183. [PMID: 31475386 PMCID: PMC6987018 DOI: 10.1002/jlb.1hi0219-073rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 02/26/2019] [Accepted: 08/06/2019] [Indexed: 11/10/2022] Open
Abstract
β2 integrins are the main adhesion molecules in neutrophils and other leukocytes and are rapidly activated by inside-out signaling, which results in conformational changes that are transmitted through the transmembrane domain (TMD). Here, we investigated the biologic effect of introducing a proline mutation in the β2 integrin TMD to create a flexible kink that uncouples the topology of the inner half of the TMD from the outer half and impairs integrin activation. The β2 integrin alpha chains, αL, αM, αX, and αD, all contain an inserted (I) domain with homology to von Willebrand factor A domain. β2 activation was monitored in a homogenous binding assay of 2 reporter monoclonal antibodies: KIM127 reporting extension (E+ ) and mAb24 reporting the high-affinity (H+ ) conformation of the β2 I-like domain. The proline mutation partially diminished chemokine-induced extension, but not the high-affinity conformation. The proline mutation in the TMD of β2 completely inhibited arrest of rolling HL-60 cells in response to the chemokine IL-8. TMD mutant HL-60 cells rolling on P-selectin and ICAM-1 were unable to reduce their rolling velocity in response to IL-8. Quantitative dynamic footprinting live-cell imaging showed that blocking TMD topology transmission impaired the chemokine-induced activation of β2, limiting the appearance of extended high-affinity (E+ H+ ) β2. This also resulted in a defect in early spreading (3 min after arrest), which could be overcome by forced integrin activation using Mn2+ . We conclude that the TMD proline mutation severely impairs β2 integrin extension, cell arrest, and early spreading.
Collapse
Affiliation(s)
- Hao Sun
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Zhichao Fan
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, California, USA
- Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Alexandre R. Gingras
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | | | - Mark H. Ginsberg
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, California, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
13
|
Khan RB, Goult BT. Adhesions Assemble!-Autoinhibition as a Major Regulatory Mechanism of Integrin-Mediated Adhesion. Front Mol Biosci 2019; 6:144. [PMID: 31921890 PMCID: PMC6927945 DOI: 10.3389/fmolb.2019.00144] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/26/2019] [Indexed: 01/14/2023] Open
Abstract
The advent of cell-cell and cell-extracellular adhesion enabled cells to interact in a coherent manner, forming larger structures and giving rise to the development of tissues, organs and complex multicellular life forms. The development of such organisms required tight regulation of dynamic adhesive structures by signaling pathways that coordinate cell attachment. Integrin-mediated adhesion to the extracellular matrix provides cells with support, survival signals and context-dependent cues that enable cells to run different cellular programs. One mysterious aspect of the process is how hundreds of proteins assemble seemingly spontaneously onto the activated integrin. An emerging concept is that adhesion assembly is regulated by autoinhibition of key proteins, a highly dynamic event that is modulated by a variety of signaling events. By enabling precise control of the activation state of proteins, autoinhibition enables localization of inactive proteins and the formation of pre-complexes. In response to the correct signals, these proteins become active and interact with other proteins, ultimately leading to development of cell-matrix junctions. Autoinhibition of key components of such adhesion complexes—including core components integrin, talin, vinculin, and FAK and important peripheral regulators such as RIAM, Src, and DLC1—leads to a view that the majority of proteins involved in complex assembly might be regulated by intramolecular interactions. Autoinhibition is relieved via multiple different signals including post-translation modification and proteolysis. More recently, mechanical forces have been shown to stabilize and increase the lifetimes of active conformations, identifying autoinhibition as a means of encoding mechanosensitivity. The complexity and scope for nuanced adhesion dynamics facilitated via autoinhibition provides numerous points of regulation. In this review, we discuss what is known about this mode of regulation and how it leads to rapid and tightly controlled assembly and disassembly of cell-matrix adhesion.
Collapse
Affiliation(s)
- Rejina B Khan
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Benjamin T Goult
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| |
Collapse
|
14
|
Regulation of cell adhesion: a collaborative effort of integrins, their ligands, cytoplasmic actors, and phosphorylation. Q Rev Biophys 2019; 52:e10. [PMID: 31709962 DOI: 10.1017/s0033583519000088] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Integrins are large heterodimeric type 1 membrane proteins expressed in all nucleated mammalian cells. Eighteen α-chains and eight β-chains can combine to form 24 different integrins. They are cell adhesion proteins, which bind to a large variety of cellular and extracellular ligands. Integrins are required for cell migration, hemostasis, translocation of cells out from the blood stream and further movement into tissues, but also for the immune response and tissue morphogenesis. Importantly, integrins are not usually active as such, but need activation to become adhesive. Integrins are activated by outside-in activation through integrin ligand binding, or by inside-out activation through intracellular signaling. An important question is how integrin activity is regulated, and this topic has recently drawn much attention. Changes in integrin affinity for ligand binding are due to allosteric structural alterations, but equally important are avidity changes due to integrin clustering in the plane of the plasma membrane. Recent studies have partially solved how integrin cell surface structures change during activation. The integrin cytoplasmic domains are relatively short, but by interacting with a variety of cytoplasmic proteins in a regulated manner, the integrins acquire a number of properties important not only for cell adhesion and movement, but also for cellular signaling. Recent work has shown that specific integrin phosphorylations play pivotal roles in the regulation of integrin activity. Our purpose in this review is to integrate the present knowledge to enable an understanding of how cell adhesion is dynamically regulated.
Collapse
|
15
|
Sun H, Lagarrigue F, Gingras AR, Fan Z, Ley K, Ginsberg MH. Transmission of integrin β7 transmembrane domain topology enables gut lymphoid tissue development. J Cell Biol 2018. [PMID: 29535192 PMCID: PMC5881498 DOI: 10.1083/jcb.201707055] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Sun et al. establish the importance of transmission of changes in β-integrin transmembrane domain (TMD) topology in physiological integrin affinity modulation and biological function. Introduction of a flexible kink in the β7 integrin TMD blocks talin-mediated agonist-induced α4β7 integrin activation and function in gut lymphoid tissue development. Integrin activation regulates adhesion, extracellular matrix assembly, and cell migration, thereby playing an indispensable role in development and in many pathological processes. A proline mutation in the central integrin β3 transmembrane domain (TMD) creates a flexible kink that uncouples the topology of the inner half of the TMD from the outer half. In this study, using leukocyte integrin α4β7, which enables development of gut-associated lymphoid tissue (GALT), we examined the biological effect of such a proline mutation and report that it impairs agonist-induced talin-mediated activation of integrin α4β7, thereby inhibiting rolling lymphocyte arrest, a key step in transmigration. Furthermore, the α4β7(L721P) mutation blocks lymphocyte homing to and development of the GALT. These studies show that impairing the ability of an integrin β TMD to transmit talin-induced TMD topology inhibits agonist-induced physiological integrin activation and biological function in development.
Collapse
Affiliation(s)
- Hao Sun
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | | | | | - Zhichao Fan
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA
| | - Mark H Ginsberg
- Department of Medicine, University of California, San Diego, La Jolla, CA
| |
Collapse
|
16
|
Favier M, Bordet JC, Favier R, Gkalea V, Pillois X, Rameau P, Debili N, Alessi MC, Nurden P, Raslova H, Nurden A. Mutations of the integrin αIIb/β3 intracytoplasmic salt bridge cause macrothrombocytopenia and enlarged platelet α-granules. Am J Hematol 2018; 93:195-204. [PMID: 29090484 DOI: 10.1002/ajh.24958] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/25/2017] [Accepted: 10/27/2017] [Indexed: 01/27/2023]
Abstract
Rare gain-of-function mutations within the ITGA2B or ITGB3 genes have been recognized to cause macrothrombocytopenia (MTP). Here we report three new families with autosomal dominant (AD) MTP, two harboring the same mutation of ITGA2B, αIIbR995W, and a third family with an ITGB3 mutation, β3D723H. In silico analysis shows how the two mutated amino acids directly modify the salt bridge linking the intra-cytoplasmic part of αIIb to β3 of the integrin αIIbβ3. For all affected patients, the bleeding syndrome and MTP was mild to moderate. Platelet aggregation tended to be reduced but not absent. Electron microscopy associated with a morphometric analysis revealed large round platelets; a feature being the presence of abnormal large α-granules with some giant forms showing signs of fusion. Analysis of the maturation and development of megakaryocytes reveal no defect in their early maturation but abnormal proplatelet formation was observed with increased size of the tips. Interestingly, this study revealed that in addition to the classical phenotype of patients with αIIbβ3 intracytoplasmic mutations there is an abnormal maturation of α-granules. It is now necessary to determine if this feature is a characteristic of all mutations disturbing the αIIb R995/β3 D723 salt bridge.
Collapse
Affiliation(s)
- Marie Favier
- Laboratoire NORT, INSERM UMR 1062, Université Aix Marseille; Marseille
- INSERM UMR 1170, Gustave Roussy Cancer Campus, Université Paris-Saclay; Villejuif France
| | - Jean-Claude Bordet
- Laboratoire d'Hémostase, Hôpital Edouard Herriot, Lyon et Laboratoire de Recherche sur l'Hémophilie, Faculté de Médecine Lyon-Est, Université Claude Bernard Lyon 1; Lyon France
| | - Remi Favier
- INSERM UMR 1170, Gustave Roussy Cancer Campus, Université Paris-Saclay; Villejuif France
- Assistance Publique -Hôpitaux de Paris, Hôpital A Trousseau; Paris France
| | - Vasiliki Gkalea
- Assistance Publique -Hôpitaux de Paris, Hôpital A Trousseau; Paris France
| | | | - Philippe Rameau
- PFIC, UMS AMMICA (UMS 3655 CNRS/, US23 INSERM), Gustave Roussy Cancer Campus; Villejuif France
| | - Najet Debili
- INSERM UMR 1170, Gustave Roussy Cancer Campus, Université Paris-Saclay; Villejuif France
| | | | - Paquita Nurden
- Institut Hospitalo-Universitaire de Rythmologie et de Modélisation Cardiaque, Plateforme Technologique d'Innovation Biomédicale, Hôpital Xavier Arnozan; Pessac France
| | - Hana Raslova
- INSERM UMR 1170, Gustave Roussy Cancer Campus, Université Paris-Saclay; Villejuif France
| | - Alan Nurden
- Institut Hospitalo-Universitaire de Rythmologie et de Modélisation Cardiaque, Plateforme Technologique d'Innovation Biomédicale, Hôpital Xavier Arnozan; Pessac France
| |
Collapse
|
17
|
Situ AJ, Kang SM, Frey BB, An W, Kim C, Ulmer TS. Membrane Anchoring of α-Helical Proteins: Role of Tryptophan. J Phys Chem B 2018; 122:1185-1194. [PMID: 29323921 PMCID: PMC11025564 DOI: 10.1021/acs.jpcb.7b11227] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The function of membrane proteins relies on a defined orientation of protein relative to lipid. In apparent correlation to protein anchoring, tryptophan residues are enriched in the lipid headgroup region. To characterize the thermodynamic and structural basis of this relationship in α-helical membrane proteins, we examined the role of three conserved tryptophans in the folding of the heterodimeric integrin αIIbβ3 transmembrane (TM) complex in phospholipid bicelles and mammalian membranes. In the homogenous lipid environment of bicelles, tryptophan was replaceable by residues of distinct polarities. The appropriate polarity was guided by the electrostatic potential of the tryptophan surrounding, suggesting that tryptophan can complement diverse environments by adjusting the orientation of its anisotropic side chain to achieve site-specific anchoring. As a sole membrane anchor, tryptophan made a contribution of 0.4 kcal/mol to TM complex stability in bicelles. In membranes, it proved more difficult to replace tryptophan even by tyrosine, indicating a superior capacity to interact with heterogeneous lipids of biological membranes. Interestingly, at intracellular TM helix ends, where integrin activation is initiated, sequence motifs that interact with lipids via opposing polarity patterns were found to restrict TM helix orientations beyond tryptophan anchoring. In contrast to bicelles, phenylalanine became the least accepted substitute in membranes, demonstrating an increased role of the hydrophobic effect. Altogether, our study implicates a wide amphiphilic range of tryptophan, membrane complexity, and the hydrophobic effect to be important factors in tryptophan membrane anchoring.
Collapse
Affiliation(s)
- Alan J Situ
- Department of Biochemistry & Molecular Medicine and Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California , 1501 San Pablo Street, Los Angeles, California 90033, United States
| | - So-Min Kang
- Department of Life Sciences, Korea University , 145 Anam-Ro, Seongbuk-Gu, Seoul 136-701, South Korea
| | - Benjamin B Frey
- Department of Biochemistry & Molecular Medicine and Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California , 1501 San Pablo Street, Los Angeles, California 90033, United States
| | - Woojin An
- Department of Biochemistry & Molecular Medicine and Norris Comprehensive Cancer Center, University of Southern California , Los Angeles, California 90033, United States
| | - Chungho Kim
- Department of Life Sciences, Korea University , 145 Anam-Ro, Seongbuk-Gu, Seoul 136-701, South Korea
| | - Tobias S Ulmer
- Department of Biochemistry & Molecular Medicine and Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California , 1501 San Pablo Street, Los Angeles, California 90033, United States
| |
Collapse
|
18
|
Hanein D, Volkmann N. Conformational Equilibrium of Human Platelet Integrin Investigated by Three-Dimensional Electron Cryo-Microscopy. Subcell Biochem 2018; 87:353-363. [PMID: 29464566 DOI: 10.1007/978-981-10-7757-9_12] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Integrins are bidirectional transmembrane receptors that play central roles in hemostasis and arterial thrombosis. They have been subject to structural studies for many years, in particular using X-ray crystallography, nuclear magnetic resonance spectroscopy, and two-dimensional negative stain electron microscopy. Despite considerable progress, a full consensus on the molecular mechanism of integrin activation is still lacking. Three-dimensional reconstructions of full-length human platelet integrin αIIbβ3 in lipid-bilayer nanodiscs obtained by electron cryo-microscopy and single-particle reconstruction have shed new light on the activation process. These studies show that integrin αIIbβ3 exists in a continuous conformational equilibrium ranging from a compact nodular conformation similar to that obtained in crystal structures to a fully extended state with the leg domains separated. This equilibrium is shifted towards the extended conformation when extracellular ligands, cytosolic activators and lipid-bilayer nanodiscs are added. Addition of cytosolic activators and extracellular ligands in the absense of nanodiscs produces significantly less dramatic shifts, emphasizing the importance of the membrane bilayer in the activation process.
Collapse
Affiliation(s)
- Dorit Hanein
- Bioinformatics and Structural Biology Program, Sanford-Burnham-Prebys Medical Discovery Institute, San Diego, CA, USA
| | - Niels Volkmann
- Bioinformatics and Structural Biology Program, Sanford-Burnham-Prebys Medical Discovery Institute, San Diego, CA, USA.
| |
Collapse
|
19
|
Menter DG, Kopetz S, Hawk E, Sood AK, Loree JM, Gresele P, Honn KV. Platelet "first responders" in wound response, cancer, and metastasis. Cancer Metastasis Rev 2017; 36:199-213. [PMID: 28730545 PMCID: PMC5709140 DOI: 10.1007/s10555-017-9682-0] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Platelets serve as "first responders" during normal wounding and homeostasis. Arising from bone marrow stem cell lineage megakaryocytes, anucleate platelets can influence inflammation and immune regulation. Biophysically, platelets are optimized due to size and discoid morphology to distribute near vessel walls, monitor vascular integrity, and initiate quick responses to vascular lesions. Adhesion receptors linked to a highly reactive filopodia-generating cytoskeleton maximizes their vascular surface contact allowing rapid response capabilities. Functionally, platelets normally initiate rapid clotting, vasoconstriction, inflammation, and wound biology that leads to sterilization, tissue repair, and resolution. Platelets also are among the first to sense, phagocytize, decorate, or react to pathogens in the circulation. These platelet first responder properties are commandeered during chronic inflammation, cancer progression, and metastasis. Leaky or inflammatory reaction blood vessel genesis during carcinogenesis provides opportunities for platelet invasion into tumors. Cancer is thought of as a non-healing or chronic wound that can be actively aided by platelet mitogenic properties to stimulate tumor growth. This growth ultimately outstrips circulatory support leads to angiogenesis and intravasation of tumor cells into the blood stream. Circulating tumor cells reengage additional platelets, which facilitates tumor cell adhesion, arrest and extravasation, and metastasis. This process, along with the hypercoagulable states associated with malignancy, is amplified by IL6 production in tumors that stimulate liver thrombopoietin production and elevates circulating platelet numbers by thrombopoiesis in the bone marrow. These complex interactions and the "first responder" role of platelets during diverse physiologic stresses provide a useful therapeutic target that deserves further exploration.
Collapse
Affiliation(s)
- David G Menter
- Department of Gastrointestinal Medical Oncology, M. D. Anderson Cancer Center, Room#: FC10.3004, 1515 Holcombe Boulevard--Unit 0426, Houston, TX, 77030, USA.
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, M. D. Anderson Cancer Center, Room#: FC10.3004, 1515 Holcombe Boulevard--Unit 0426, Houston, TX, 77030, USA
| | - Ernest Hawk
- Office of the Vice President Cancer Prevention & Population Science, M. D. Anderson Cancer Center, Unit 1370, 1515 Holcombe Boulevard, Houston, TX, 77054, USA
| | - Anil K Sood
- Gynocologic Oncology & Reproductive Medicine, M. D. Anderson Cancer Center, Unit 1362, 1515 Holcombe Boulevard, Houston, TX, 77054, USA
- Department of Cancer Biology, M. D. Anderson Cancer Center, Unit 1362, 1515 Holcombe Boulevard, Houston, TX, 77054, USA
- Center for RNA Interference and Non-Coding RNA The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Jonathan M Loree
- Department of Gastrointestinal Medical Oncology, M. D. Anderson Cancer Center, Room#: FC10.3004, 1515 Holcombe Boulevard--Unit 0426, Houston, TX, 77030, USA
| | - Paolo Gresele
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia, Via E. Dal Pozzo, 06126, Perugia, Italy
| | - Kenneth V Honn
- Bioactive Lipids Research Program, Department of Pathology, Wayne State University, 431 Chemistry Bldg, 5101 Cass Avenue, Detroit, MI, 48202, USA
- Department of Pathology, Wayne State University, 431 Chemistry Bldg, 5101 Cass Avenue, Detroit, MI, 48202, USA
- Cancer Biology Division, Wayne State University School of Medicine, 431 Chemistry Bldg, 5101 Cass Avenue, Detroit, MI, 48202, USA
| |
Collapse
|
20
|
Xu XP, Kim E, Swift M, Smith JW, Volkmann N, Hanein D. Three-Dimensional Structures of Full-Length, Membrane-Embedded Human α(IIb)β(3) Integrin Complexes. Biophys J 2016; 110:798-809. [PMID: 26910421 DOI: 10.1016/j.bpj.2016.01.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 12/08/2015] [Accepted: 01/13/2016] [Indexed: 10/22/2022] Open
Abstract
Integrins are bidirectional, allosteric transmembrane receptors that play a central role in hemostasis and arterial thrombosis. Using cryo-electron microscopy, multireference single-particle reconstruction methods, and statistics-based computational fitting approaches, we determined three-dimensional structures of human integrin αIIbβ3 embedded in a lipid bilayer (nanodiscs) while bound to domains of the cytosolic regulator talin and to extracellular ligands. We also determined the conformations of integrin in solution by itself to localize the membrane and the talin-binding site. To our knowledge, our data provide unprecedented three-dimensional information about the conformational states of intact, full-length integrin within membrane bilayers under near-physiological conditions and in the presence of cytosolic activators and extracellular ligands. We show that αIIbβ3 integrins exist in a conformational equilibrium clustered around four main states. These conformations range from a compact bent nodule to two partially extended intermediate conformers and finally to a fully upright state. In the presence of nanodiscs and the two ligands, the equilibrium is significantly shifted toward the upright conformation. In this conformation, the receptor extends ∼20 nm upward from the membrane. There are no observable contacts between the two subunits other than those in the headpiece near the ligand-binding pocket, and the α- and β-subunits are well separated with their cytoplasmic tails ∼8 nm apart. Our results indicate that extension of the ectodomain is possible without separating the legs or extending the hybrid domain, and that the ligand-binding pocket is not occluded by the membrane in any conformations of the equilibrium. Further, they suggest that integrin activation may be influenced by equilibrium shifts.
Collapse
Affiliation(s)
- Xiao-Ping Xu
- Bioinformatics and Structural Biology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Eldar Kim
- Bioinformatics and Structural Biology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Mark Swift
- Bioinformatics and Structural Biology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Jeffrey W Smith
- Infectious Disease Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Niels Volkmann
- Bioinformatics and Structural Biology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California.
| | - Dorit Hanein
- Bioinformatics and Structural Biology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California.
| |
Collapse
|
21
|
Lu Z, Mathew S, Chen J, Hadziselimovic A, Palamuttam R, Hudson BG, Fässler R, Pozzi A, Sanders CR, Zent R. Implications of the differing roles of the β1 and β3 transmembrane and cytoplasmic domains for integrin function. eLife 2016; 5. [PMID: 27929375 PMCID: PMC5207772 DOI: 10.7554/elife.18633] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 12/07/2016] [Indexed: 12/26/2022] Open
Abstract
Integrins are transmembrane receptors composed of α and β subunits. Although most integrins contain β1, canonical activation mechanisms are based on studies of the platelet integrin, αIIbβ3. Its inactive conformation is characterized by the association of the αIIb transmembrane and cytosolic domain (TM/CT) with a tilted β3 TM/CT that leads to activation when disrupted. We show significant structural differences between β1 and β3 TM/CT in bicelles. Moreover, the 'snorkeling' lysine at the TM/CT interface of β subunits, previously proposed to regulate αIIbβ3 activation by ion pairing with nearby lipids, plays opposite roles in β1 and β3 integrin function and in neither case is responsible for TM tilt. A range of affinities from almost no interaction to the relatively high avidity that characterizes αIIbβ3 is seen between various α subunits and β1 TM/CTs. The αIIbβ3-based canonical model for the roles of the TM/CT in integrin activation and function clearly does not extend to all mammalian integrins.
Collapse
Affiliation(s)
- Zhenwei Lu
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, United States
| | - Sijo Mathew
- Division of Nephrology, Department of Medicine, Vanderbilt Medical Center, Nashville, United States
| | - Jiang Chen
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, United States
| | - Arina Hadziselimovic
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, United States
| | - Riya Palamuttam
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, United States
| | - Billy G Hudson
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, United States.,Division of Nephrology, Department of Medicine, Vanderbilt Medical Center, Nashville, United States.,Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, United States.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, United States
| | - Reinhard Fässler
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Ambra Pozzi
- Division of Nephrology, Department of Medicine, Vanderbilt Medical Center, Nashville, United States.,Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, United States.,Veterans Affairs Hospital, Nashville, United States.,Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, United States
| | - Charles R Sanders
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, United States
| | - Roy Zent
- Division of Nephrology, Department of Medicine, Vanderbilt Medical Center, Nashville, United States.,Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, United States.,Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, United States.,Veterans Affairs Hospital, Nashville, United States
| |
Collapse
|
22
|
Ye X, McLean MA, Sligar SG. Phosphatidylinositol 4,5-Bisphosphate Modulates the Affinity of Talin-1 for Phospholipid Bilayers and Activates Its Autoinhibited Form. Biochemistry 2016; 55:5038-48. [PMID: 27548281 DOI: 10.1021/acs.biochem.6b00497] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Integrins are vital transmembrane receptors that mediate cell-cell and cell-extracellular matrix interactions and signaling. Talin is a 270 kDa protein and is considered a key regulator of integrin activity. The interaction between talin and integrin is commonly regarded as the final step of inside-out activation. In the cytosol, talin adopts an autoinhibited conformation, in which the C-terminal rod domain binds the N-terminal head domain, preventing the interactions of the head domain with the membrane surface and the integrin cytoplasmic domain. It has long been suggested that the presence of phosphatidylinositol 4,5-bisphosphate (PIP2) at focal adhesions plays a role in activating talin. However, a detailed picture and mechanism of PIP2 activation of autoinhibited talin remains elusive. Here, we use a fluorescence resonance energy transfer-based binding assay to measure the affinity of talin and lipid bilayers harboring anionic lipids. Results show that the R9 and R12R13 segments of the talin rod domain inhibit the binding of the talin head domain (THD) to anionic lipid bilayers. In contrast, we show that the binding of the THD to bilayers containing PIP2 is insensitive to the presence of the inhibitor domains, thereby directly implicating PIP2 as an effective activator of talin. Furthermore, we have mapped the activation to the interaction of PIP2 with the F2F3 domain of the talin head, showing that PIP2 plays a critical role in the regulation of the autoinhibited form of talin and stimulates recruitment of talin to the membrane, which is essential for integrin inside-out signaling.
Collapse
Affiliation(s)
- Xin Ye
- Department of Biochemistry, School of Molecular and Cellular Biology, University of Illinois , Urbana, Illinois 61801, United States
| | - Mark A McLean
- Department of Biochemistry, School of Molecular and Cellular Biology, University of Illinois , Urbana, Illinois 61801, United States
| | - Stephen G Sligar
- Department of Biochemistry, School of Molecular and Cellular Biology, University of Illinois , Urbana, Illinois 61801, United States
| |
Collapse
|
23
|
Schmidt T, Ye F, Situ AJ, An W, Ginsberg MH, Ulmer TS. A Conserved Ectodomain-Transmembrane Domain Linker Motif Tunes the Allosteric Regulation of Cell Surface Receptors. J Biol Chem 2016; 291:17536-46. [PMID: 27365391 PMCID: PMC5016151 DOI: 10.1074/jbc.m116.733683] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/09/2016] [Indexed: 11/06/2022] Open
Abstract
In many families of cell surface receptors, a single transmembrane (TM) α-helix separates ecto- and cytosolic domains. A defined coupling of ecto- and TM domains must be essential to allosteric receptor regulation but remains little understood. Here, we characterize the linker structure, dynamics, and resulting ecto-TM domain coupling of integrin αIIb in model constructs and relate it to other integrin α subunits by mutagenesis. Cellular integrin activation assays subsequently validate the findings in intact receptors. Our results indicate a flexible yet carefully tuned ecto-TM coupling that modulates the signaling threshold of integrin receptors. Interestingly, a proline at the N-terminal TM helix border, termed NBP, is critical to linker flexibility in integrins. NBP is further predicted in 21% of human single-pass TM proteins and validated in cytokine receptors by the TM domain structure of the cytokine receptor common subunit β and its P441A-substituted variant. Thus, NBP is a conserved uncoupling motif of the ecto-TM domain transition and the degree of ecto-TM domain coupling represents an important parameter in the allosteric regulation of diverse cell surface receptors.
Collapse
Affiliation(s)
- Thomas Schmidt
- From the Department of Biochemistry & Molecular Biology and Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| | - Feng Ye
- the Department of Medicine, University of California San Diego, La Jolla, California 92093, and
| | - Alan J Situ
- From the Department of Biochemistry & Molecular Biology and Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| | - Woojin An
- the Department of Biochemistry & Molecular Biology and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California 90033
| | - Mark H Ginsberg
- the Department of Medicine, University of California San Diego, La Jolla, California 92093, and
| | - Tobias S Ulmer
- From the Department of Biochemistry & Molecular Biology and Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90033,
| |
Collapse
|
24
|
Yang C, Ohk J, Lee JY, Kim EJ, Kim J, Han S, Park D, Jung H, Kim C. Calmodulin Mediates Ca2+-Dependent Inhibition of Tie2 Signaling and Acts as a Developmental Brake During Embryonic Angiogenesis. Arterioscler Thromb Vasc Biol 2016; 36:1406-16. [PMID: 27199448 DOI: 10.1161/atvbaha.116.307619] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 05/05/2016] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Angiogenesis, the process of building complex vascular structures, begins with sprout formation on preexisting blood vessels, followed by extension of the vessels through proliferation and migration of endothelial cells. Based on the potential therapeutic benefits of preventing angiogenesis in pathological conditions, many studies have focused on the mechanisms of its initiation as well as control. However, how the extension of vessels is terminated remains obscure. Thus, we investigated the negative regulation mechanism. APPROACH AND RESULTS We report that increased intracellular calcium can induce dephosphorylation of the endothelial receptor tyrosine kinase Tie2. The calcium-mediated dephosphorylation was found to be dependent on Tie2-calmodulin interaction. The Tyr1113 residue in the C-terminal end loop of the Tie2 kinase domain was mapped and found to be required for this interaction. Moreover, mutation of this residue into Phe impaired both the Tie2-calmodulin interaction and calcium-mediated Tie2 dephosphorylation. Furthermore, expressing a mutant Tie2 incapable of binding to calmodulin or inhibiting calmodulin function in vivo causes unchecked growth of the vasculature in Xenopus. Specifically, knockdown of Tie2 in Xenopus embryo retarded the sprouting and extension of intersomitic veins. Although human Tie2 expression in the Tie2-deficient animals almost completely rescued the retardation, the Tie2(Y1113F) mutant caused overgrowth of intersomitic veins with strikingly complex and excessive branching patterns. CONCLUSIONS We propose that the calcium/calmodulin-dependent negative regulation of Tie2 can be used as an inhibitory signal for vessel growth and branching to build proper vessel architecture during embryonic development.
Collapse
Affiliation(s)
- Chansik Yang
- From the Department of Life Sciences, Korea University, Seoul, Republic of Korea (C.Y., J.Y.L., E.J.K., J.K., C.K.); School of Biological Sciences, Seoul National University, Seoul, Republic of Korea (C.Y., D.P.); Department of Anatomy, Brain Research Institute, and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea (J.O., H.J.); and Center for Vascular Research, Institute for Basic Science, Daejeon, Korea (S.H.)
| | - Jiyeon Ohk
- From the Department of Life Sciences, Korea University, Seoul, Republic of Korea (C.Y., J.Y.L., E.J.K., J.K., C.K.); School of Biological Sciences, Seoul National University, Seoul, Republic of Korea (C.Y., D.P.); Department of Anatomy, Brain Research Institute, and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea (J.O., H.J.); and Center for Vascular Research, Institute for Basic Science, Daejeon, Korea (S.H.)
| | - Ji Yeun Lee
- From the Department of Life Sciences, Korea University, Seoul, Republic of Korea (C.Y., J.Y.L., E.J.K., J.K., C.K.); School of Biological Sciences, Seoul National University, Seoul, Republic of Korea (C.Y., D.P.); Department of Anatomy, Brain Research Institute, and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea (J.O., H.J.); and Center for Vascular Research, Institute for Basic Science, Daejeon, Korea (S.H.)
| | - Eun Jin Kim
- From the Department of Life Sciences, Korea University, Seoul, Republic of Korea (C.Y., J.Y.L., E.J.K., J.K., C.K.); School of Biological Sciences, Seoul National University, Seoul, Republic of Korea (C.Y., D.P.); Department of Anatomy, Brain Research Institute, and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea (J.O., H.J.); and Center for Vascular Research, Institute for Basic Science, Daejeon, Korea (S.H.)
| | - Jiyoon Kim
- From the Department of Life Sciences, Korea University, Seoul, Republic of Korea (C.Y., J.Y.L., E.J.K., J.K., C.K.); School of Biological Sciences, Seoul National University, Seoul, Republic of Korea (C.Y., D.P.); Department of Anatomy, Brain Research Institute, and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea (J.O., H.J.); and Center for Vascular Research, Institute for Basic Science, Daejeon, Korea (S.H.)
| | - Sangyeul Han
- From the Department of Life Sciences, Korea University, Seoul, Republic of Korea (C.Y., J.Y.L., E.J.K., J.K., C.K.); School of Biological Sciences, Seoul National University, Seoul, Republic of Korea (C.Y., D.P.); Department of Anatomy, Brain Research Institute, and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea (J.O., H.J.); and Center for Vascular Research, Institute for Basic Science, Daejeon, Korea (S.H.)
| | - Dongeun Park
- From the Department of Life Sciences, Korea University, Seoul, Republic of Korea (C.Y., J.Y.L., E.J.K., J.K., C.K.); School of Biological Sciences, Seoul National University, Seoul, Republic of Korea (C.Y., D.P.); Department of Anatomy, Brain Research Institute, and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea (J.O., H.J.); and Center for Vascular Research, Institute for Basic Science, Daejeon, Korea (S.H.)
| | - Hosung Jung
- From the Department of Life Sciences, Korea University, Seoul, Republic of Korea (C.Y., J.Y.L., E.J.K., J.K., C.K.); School of Biological Sciences, Seoul National University, Seoul, Republic of Korea (C.Y., D.P.); Department of Anatomy, Brain Research Institute, and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea (J.O., H.J.); and Center for Vascular Research, Institute for Basic Science, Daejeon, Korea (S.H.).
| | - Chungho Kim
- From the Department of Life Sciences, Korea University, Seoul, Republic of Korea (C.Y., J.Y.L., E.J.K., J.K., C.K.); School of Biological Sciences, Seoul National University, Seoul, Republic of Korea (C.Y., D.P.); Department of Anatomy, Brain Research Institute, and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea (J.O., H.J.); and Center for Vascular Research, Institute for Basic Science, Daejeon, Korea (S.H.).
| |
Collapse
|
25
|
Ye X, McLean MA, Sligar SG. Conformational equilibrium of talin is regulated by anionic lipids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1833-40. [PMID: 27163494 DOI: 10.1016/j.bbamem.2016.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 05/04/2016] [Accepted: 05/05/2016] [Indexed: 10/21/2022]
Abstract
A critical step in the activation of integrin receptors is the binding of talin to the cytoplasmic domain of the β subunits. This interaction leads to separation of the integrin α and β transmembrane domains and significant conformational changes in the extracellular domains, resulting in a dramatic increase in integrin's affinity for ligands. It has long been shown that the membrane bilayer also plays a critical role in the talin-integrin interaction. Anionic lipids are required for proper interaction, yet the specificity for specific anionic headgroups is not clear. In this report, we document talin-membrane interactions with bilayers of controlled composition using Nanodiscs and a FRET based binding and structural assay. We confirm that recruitment of the talin head domain to the membrane surface is governed by charge in the absence of other adapter proteins. In addition, measurement of the donor-acceptor distance is consistent with the hypothesis that anionic lipids promote a conformational change in the talin head domain allowing interaction of the F3 domain with the phospholipid bilayer. The magnitude of the F3 domain movement is altered by the identity of the phospholipid headgroup with phosphatidylinositides promoting the largest change. Our results suggest that phoshpatidylinositol-4,5-bisphosphate plays key a role in converting talin head domain to a conformation optimized for interactions with the bilayer and subsequently integrin cytoplasmic tails.
Collapse
Affiliation(s)
- Xin Ye
- Department of Biochemistry, School of Molecular and Cellular Biology, University of Illinois, Urbana, IL, 61801, United States
| | - Mark A McLean
- Department of Biochemistry, School of Molecular and Cellular Biology, University of Illinois, Urbana, IL, 61801, United States
| | - Stephen G Sligar
- Department of Biochemistry, School of Molecular and Cellular Biology, University of Illinois, Urbana, IL, 61801, United States
| |
Collapse
|
26
|
Fong KP, Zhu H, Span LM, Moore DT, Yoon K, Tamura R, Yin H, DeGrado WF, Bennett JS. Directly Activating the Integrin αIIbβ3 Initiates Outside-In Signaling by Causing αIIbβ3 Clustering. J Biol Chem 2016; 291:11706-16. [PMID: 27056329 DOI: 10.1074/jbc.m116.716613] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Indexed: 11/06/2022] Open
Abstract
αIIbβ3 activation in platelets is followed by activation of the tyrosine kinase c-Src associated with the carboxyl terminus of the β3 cytosolic tail. Exogenous peptides designed to interact with the αIIb transmembrane (TM) domain activate single αIIbβ3 molecules in platelets by binding to the αIIb TM domain and causing separation of the αIIbβ3 TM domain heterodimer. Here we asked whether directly activating single αIIbβ3 molecules in platelets using the designed peptide anti-αIIb TM also initiates αIIbβ3-mediated outside-in signaling by causing activation of β3-associated c-Src. Anti-αIIb TM caused activation of β3-associated c-Src and the kinase Syk, but not the kinase FAK, under conditions that precluded extracellular ligand binding to αIIbβ3. c-Src and Syk are activated by trans-autophosphorylation, suggesting that activation of individual αIIbβ3 molecules can initiate αIIbβ3 clustering in the absence of ligand binding. Consistent with this possibility, incubating platelets with anti-αIIb TM resulted in the redistribution of αIIbβ3 from a homogenous ring located at the periphery of discoid platelets into nodular densities consistent with clustered αIIbβ3. Thus, these studies indicate that not only is resting αIIbβ3 poised to undergo a conformational change that exposes its ligand-binding site, but it is poised to rapidly assemble into intracellular signal-generating complexes as well.
Collapse
Affiliation(s)
- Karen P Fong
- From the Hematology-Oncology Division, Department of Medicine, and
| | - Hua Zhu
- From the Hematology-Oncology Division, Department of Medicine, and
| | - Lisa M Span
- From the Hematology-Oncology Division, Department of Medicine, and
| | - David T Moore
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Kyungchul Yoon
- From the Hematology-Oncology Division, Department of Medicine, and
| | - Ryo Tamura
- the Department of Chemistry and Biochemistry and the BioFrontiers Institute, University of Colorado, Boulder, Colorado 80030, and
| | - Hang Yin
- the Department of Chemistry and Biochemistry and the BioFrontiers Institute, University of Colorado, Boulder, Colorado 80030, and
| | - William F DeGrado
- the Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158-9001
| | - Joel S Bennett
- From the Hematology-Oncology Division, Department of Medicine, and
| |
Collapse
|
27
|
Kim J, Yang C, Kim EJ, Jang J, Kim SJ, Kang SM, Kim MG, Jung H, Park D, Kim C. Vimentin filaments regulate integrin-ligand interactions by binding to the cytoplasmic tail of integrin β3. J Cell Sci 2016; 129:2030-42. [PMID: 27044755 DOI: 10.1242/jcs.180315] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 03/31/2016] [Indexed: 01/09/2023] Open
Abstract
Vimentin, an intermediate filament protein induced during epithelial-to-mesenchymal transition, is known to regulate cell migration and invasion. However, it is still unclear how vimentin controls such behaviors. In this study, we aimed to find a new integrin regulator by investigating the H-Ras-mediated integrin suppression mechanism. Through a proteomic screen using the integrin β3 cytoplasmic tail protein, we found that vimentin might work as an effector of H-Ras signaling. H-Ras converted filamentous vimentin into aggregates near the nucleus, where no integrin binding can occur. In addition, an increase in the amount of vimentin filaments accessible to the integrin β3 tail enhanced talin-induced integrin binding to its ligands by inducing integrin clustering. In contrast, the vimentin head domain, which was found to bind directly to the integrin β3 tail and compete with endogenous vimentin filaments for integrin binding, induced nuclear accumulation of vimentin filaments and reduced the amount of integrin-ligand binding. Finally, we found that expression of the vimentin head domain can reduce cell migration and metastasis. From these data, we suggest that filamentous vimentin underneath the plasma membrane is involved in increasing integrin adhesiveness, and thus regulation of the vimentin-integrin interaction might control cell adhesion.
Collapse
Affiliation(s)
- Jiyoon Kim
- Department of Life Sciences, Korea University, Seoul 136-701, Republic of Korea
| | - Chansik Yang
- Department of Life Sciences, Korea University, Seoul 136-701, Republic of Korea School of Biological Sciences, Seoul National University, Seoul 151-747, Republic of Korea
| | - Eun Jin Kim
- Department of Life Sciences, Korea University, Seoul 136-701, Republic of Korea
| | - Jungim Jang
- Department of Anatomy, Brain Research Institute, and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Se-Jong Kim
- Department of Life Sciences, Korea University, Seoul 136-701, Republic of Korea
| | - So Min Kang
- Department of Life Sciences, Korea University, Seoul 136-701, Republic of Korea
| | - Moon Gyo Kim
- Department of Biological Sciences, Inha University, Incheon 402-720, Republic of Korea
| | - Hosung Jung
- Department of Anatomy, Brain Research Institute, and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Dongeun Park
- School of Biological Sciences, Seoul National University, Seoul 151-747, Republic of Korea
| | - Chungho Kim
- Department of Life Sciences, Korea University, Seoul 136-701, Republic of Korea
| |
Collapse
|
28
|
Orłowski A, Kukkurainen S, Pöyry A, Rissanen S, Vattulainen I, Hytönen VP, Róg T. PIP2 and Talin Join Forces to Activate Integrin. J Phys Chem B 2015; 119:12381-9. [PMID: 26309152 DOI: 10.1021/acs.jpcb.5b06457] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Integrins are major players in cell adhesion and migration, and malfunctions in controlling their activity are associated with various diseases. Nevertheless, the details of integrin activation are not completely understood, and the role of lipids in the process is largely unknown. Herein, we show using atomistic molecular dynamics simulations that the interplay of phosphatidylinositol 4,5-bisphosphate (PIP2) and talin may directly alter the conformation of integrin αIIbβ3. Our results provide a new perspective on the role of PIP2 in integrin activation and indicate that the charged PIP2 lipid headgroup can perturb a clasp at the cytoplasmic face of the integrin heterodimer.
Collapse
Affiliation(s)
- Adam Orłowski
- Department of Physics, Tampere University of Technology , P.O. Box 692, FI-33101 Tampere, Finland
| | - Sampo Kukkurainen
- BioMediTech, University of Tampere , FI-33520 Tampere, Finland
- Fimlab Laboratories Ltd. , FI-33520 Tampere, Finland
| | - Annika Pöyry
- Department of Physics, Tampere University of Technology , P.O. Box 692, FI-33101 Tampere, Finland
| | - Sami Rissanen
- Department of Physics, Tampere University of Technology , P.O. Box 692, FI-33101 Tampere, Finland
| | - Ilpo Vattulainen
- Department of Physics, Tampere University of Technology , P.O. Box 692, FI-33101 Tampere, Finland
- Department of Physics and Chemistry, MEMPHYS-Center for Biomembrane Physics, University of Southern Denmark , Campusvej 55, DK-5230 Odense M, Denmark
| | - Vesa P Hytönen
- BioMediTech, University of Tampere , FI-33520 Tampere, Finland
- Fimlab Laboratories Ltd. , FI-33520 Tampere, Finland
| | - Tomasz Róg
- Department of Physics, Tampere University of Technology , P.O. Box 692, FI-33101 Tampere, Finland
| |
Collapse
|
29
|
Dai A, Ye F, Taylor DW, Hu G, Ginsberg MH, Taylor KA. The Structure of a Full-length Membrane-embedded Integrin Bound to a Physiological Ligand. J Biol Chem 2015; 290:27168-27175. [PMID: 26391523 DOI: 10.1074/jbc.m115.682377] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Indexed: 11/06/2022] Open
Abstract
Increased ligand binding to integrin ("activation") underpins many biological processes, such as leukocyte trafficking, cell migration, host-pathogen interaction, and hemostasis. Integrins exist in several conformations, ranging from compact and bent to extended and open. However, the exact conformation of membrane-embedded, full-length integrin bound to its physiological macromolecular ligand is still unclear. Integrin αIIbβ3, the most abundant integrin in platelets, has been a prototype for integrin activation studies. Using negative stain electron microscopy and nanodisc-embedding to provide a membrane-like environment, we visualized the conformation of full-length αIIbβ3 in both a Mn(2+)-activated, ligand-free state and a Mn(2+)-activated, fibrin-bound state. Activated but ligand-free integrins exist mainly in the compact conformation, whereas fibrin-bound αIIbβ3 predominantly exists in a fully extended, headpiece open conformation. Our results show that membrane-embedded, full-length integrin adopts an extended and open conformation when bound to its physiological macromolecular ligand.
Collapse
Affiliation(s)
- Aguang Dai
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306-4380 and
| | - Feng Ye
- Department of Hematology and Oncology, University of California at San Diego, La Jolla, California 92093-0726
| | - Dianne W Taylor
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306-4380 and
| | - Guiqing Hu
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306-4380 and
| | - Mark H Ginsberg
- Department of Hematology and Oncology, University of California at San Diego, La Jolla, California 92093-0726
| | - Kenneth A Taylor
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306-4380 and.
| |
Collapse
|
30
|
Abstract
Integrin-mediated cell adhesion is important for development, immune responses, hemostasis and wound healing. Integrins also function as signal transducing receptors that can control intracellular pathways that regulate cell survival, proliferation, and cell fate. Conversely, cells can modulate the affinity of integrins for their ligands a process operationally defined as integrin activation. Analysis of activation of integrins has now provided a detailed molecular understanding of this unique form of “inside-out” signal transduction and revealed new paradigms of how transmembrane domains (TMD) can transmit long range allosteric changes in transmembrane proteins. Here, we will review how talin and mediates integrin activation and how the integrin TMD can transmit these inside out signals. [BMB Reports 2014; 47(12): 655-659]
Collapse
Affiliation(s)
- Mark H Ginsberg
- Department of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
31
|
Perrin J, Le Coadic M, Vernay A, Dias M, Gopaldass N, Ouertatani-Sakouhi H, Cosson P. TM9 family proteins control surface targeting of glycine-rich transmembrane domains. J Cell Sci 2015; 128:2269-77. [PMID: 25999474 PMCID: PMC4510845 DOI: 10.1242/jcs.164848] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 04/30/2015] [Indexed: 11/20/2022] Open
Abstract
TM9 family proteins (also named Phg1 proteins) have been previously shown to control cell adhesion by determining the cell surface localization of adhesion proteins such as the Dictyostelium SibA protein. Here, we show that the glycine-rich transmembrane domain (TMD) of SibA is sufficient to confer Phg1A-dependent surface targeting to a reporter protein. Accordingly, in Dictyostelium phg1A-knockout (KO) cells, proteins with glycine-rich TMDs were less efficiently transported out of the endoplasmic reticulum (ER) and to the cell surface. Phg1A, as well as its human ortholog TM9SF4 specifically associated with glycine-rich TMDs. In human cells, genetic inactivation of TM9SF4 resulted in an increased retention of glycine-rich TMDs in the endoplasmic reticulum, whereas TM9SF4 overexpression enhanced their surface localization. The bulk of the TM9SF4 protein was localized in the Golgi complex and a proximity-ligation assay suggested that it might interact with glycine-rich TMDs. Taken together, these results suggest that one of the main roles of TM9 proteins is to serve as intramembrane cargo receptors controlling exocytosis and surface localization of a subset of membrane proteins. Summary: TM9 proteins facilitate transport to the cell surface of proteins with gylcine-rich transmembrane domains. They might represent a new class of cargo receptors controlling transport in the secretory pathway.
Collapse
Affiliation(s)
- Jackie Perrin
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, Geneva 4 CH-1211, Switzerland
| | - Marion Le Coadic
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, Geneva 4 CH-1211, Switzerland
| | - Alexandre Vernay
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, Geneva 4 CH-1211, Switzerland
| | - Marco Dias
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, Geneva 4 CH-1211, Switzerland
| | - Navin Gopaldass
- Department of Biochemistry, Sciences II, University of Geneva, 30 quai Ernest-Ansermet, Geneva 4 CH-1211, Switzerland
| | - Hajer Ouertatani-Sakouhi
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, Geneva 4 CH-1211, Switzerland
| | - Pierre Cosson
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, Geneva 4 CH-1211, Switzerland
| |
Collapse
|
32
|
Liu J, Wang Z, Thinn AMM, Ma YQ, Zhu J. The dual structural roles of the membrane distal region of the α-integrin cytoplasmic tail during integrin inside-out activation. J Cell Sci 2015; 128:1718-31. [PMID: 25749862 DOI: 10.1242/jcs.160663] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 03/02/2015] [Indexed: 12/22/2022] Open
Abstract
Studies on the mechanism of integrin inside-out activation have been focused on the role of β-integrin cytoplasmic tails, which are relatively conserved and bear binding sites for the intracellular activators including talin and kindlin. Cytoplasmic tails for α-integrins share a conserved GFFKR motif at the membrane-proximal region and this forms a specific interface with the β-integrin membrane-proximal region to keep the integrin inactive. The α-integrin membrane-distal regions, after the GFFKR motif, are diverse both in length and sequence and their roles in integrin activation have not been well-defined. In this study, we report that the α-integrin cytoplasmic membrane-distal region contributes to maintaining integrin in the resting state and to integrin inside-out activation. Complete deletion of the α-integrin membrane-distal region diminished talin- and kindlin-mediated integrin ligand binding and conformational change. A proper length and suitable amino acids in α-integrin membrane-distal region was found to be important for integrin inside-out activation. Our data establish an essential role for the α-integrin cytoplasmic membrane-distal region in integrin activation and provide new insights into how talin and kindlin induce the high-affinity integrin conformation that is required for fully functional integrins.
Collapse
Affiliation(s)
- Jiafu Liu
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI 53226, USA
| | - Zhengli Wang
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI 53226, USA College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Aye Myat Myat Thinn
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI 53226, USA Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Yan-Qing Ma
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI 53226, USA Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jieqing Zhu
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI 53226, USA Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
33
|
Schmidt T, Suk JE, Ye F, Situ AJ, Mazumder P, Ginsberg MH, Ulmer TS. Annular anionic lipids stabilize the integrin αIIbβ3 transmembrane complex. J Biol Chem 2015; 290:8283-93. [PMID: 25632962 DOI: 10.1074/jbc.m114.623504] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cationic membrane-proximal amino acids determine the topology of membrane proteins by interacting with anionic lipids that are restricted to the intracellular membrane leaflet. This mechanism implies that anionic lipids interfere with electrostatic interactions of membrane proteins. The integrin αIIbβ3 transmembrane (TM) complex is stabilized by a membrane-proximal αIIb(Arg(995))-β3(Asp(723)) interaction; here, we examine the influence of anionic lipids on this complex. Anionic lipids compete for αIIb(Arg(995)) contacts with β3(Asp(723)) but paradoxically do not diminish the contribution of αIIb(Arg(995))-β3(Asp(723)) to TM complex stability. Overall, anionic lipids in annular positions stabilize the αIIbβ3 TM complex by up to 0.50 ± 0.02 kcal/mol relative to zwitterionic lipids in a headgroup structure-dependent manner. Comparatively, integrin receptor activation requires TM complex destabilization of 1.5 ± 0.2 kcal/mol, revealing a sizeable influence of lipid composition on TM complex stability. We implicate changes in lipid headgroup accessibility to small molecules (physical membrane characteristics) and specific but dynamic protein-lipid contacts in this TM helix-helix stabilization. Thus, anionic lipids in ubiquitous annular positions can benefit the stability of membrane proteins while leaving membrane-proximal electrostatic interactions intact.
Collapse
Affiliation(s)
- Thomas Schmidt
- From the Department of Biochemistry & Molecular Biology and Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90033 and
| | - Jae-Eun Suk
- From the Department of Biochemistry & Molecular Biology and Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90033 and
| | - Feng Ye
- the Department of Medicine, University of California San Diego, La Jolla, California 92093
| | - Alan J Situ
- From the Department of Biochemistry & Molecular Biology and Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90033 and
| | - Parichita Mazumder
- From the Department of Biochemistry & Molecular Biology and Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90033 and
| | - Mark H Ginsberg
- the Department of Medicine, University of California San Diego, La Jolla, California 92093
| | - Tobias S Ulmer
- From the Department of Biochemistry & Molecular Biology and Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90033 and
| |
Collapse
|
34
|
Situ AJ, Schmidt T, Mazumder P, Ulmer TS. Characterization of Membrane Protein Interactions by Isothermal Titration Calorimetry. J Mol Biol 2014; 426:3670-80. [DOI: 10.1016/j.jmb.2014.08.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/18/2014] [Accepted: 08/25/2014] [Indexed: 12/11/2022]
|
35
|
Provasi D, Negri A, Coller BS, Filizola M. Talin-driven inside-out activation mechanism of platelet αIIbβ3 integrin probed by multimicrosecond, all-atom molecular dynamics simulations. Proteins 2014; 82:3231-3240. [PMID: 24677266 DOI: 10.1002/prot.24540] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 02/06/2014] [Accepted: 02/10/2014] [Indexed: 01/20/2023]
Abstract
Platelet aggregation is the consequence of the binding of extracellular bivalent ligands such as fibrinogen and von Willebrand factor to the high affinity, active state of integrin αIIbβ3. This state is achieved through a so-called "inside-out" mechanism characterized by the membrane-assisted formation of a complex between the F2 and F3 subdomains of intracellular protein talin and the integrin β3 tail. Here, we present the results of multi-microsecond, all-atom molecular dynamics simulations carried on the complete transmembrane (TM) and C-terminal (CT) domains of αIIbβ3 integrin in an explicit lipid-water environment, and in the presence or absence of the talin-1 F2 and F3 subdomains. These large-scale simulations provide unprecedented molecular-level insights into the talin-driven inside-out activation of αIIbβ3 integrin. Specifically, they suggest a preferred conformation of the complete αIIbβ3 TM/CT domains in a lipid-water environment, and testable hypotheses of key intermolecular interactions between αIIbβ3 integrin and the F2/F3 domains of talin-1. Notably, not only do these simulations give support to a stable left-handed reverse turn conformation of the αIIb juxtamembrane motif rather than a helical turn, but they raise the question as to whether TM helix separation is required for talin-driven integrin activation.
Collapse
Affiliation(s)
- Davide Provasi
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1677, New York, New York 10029
| | - Ana Negri
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1677, New York, New York 10029
| | - Barry S Coller
- Allen and Frances Adler Laboratory of Blood and Vascular Biology, The Rockefeller University, 1230 York Avenue, Box 309, New York, New York 10065
| | - Marta Filizola
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1677, New York, New York 10029
| |
Collapse
|
36
|
Müller MA, Brunie L, Bächer AS, Kessler H, Gottschalk KE, Reuning U. Cytoplasmic salt bridge formation in integrin αvß3 stabilizes its inactive state affecting integrin-mediated cell biological effects. Cell Signal 2014; 26:2493-503. [PMID: 25041847 DOI: 10.1016/j.cellsig.2014.07.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 07/09/2014] [Indexed: 02/01/2023]
Abstract
Heterodimeric integrin receptors are mediators of cell adhesion, motility, invasion, proliferation, and survival. By this, they are crucially involved in (tumor) cell biological behavior. Integrins trigger signals bidirectionally across cell membranes: by outside-in, following binding of protein ligands of the extracellular matrix, and by inside-out, where proteins are recruited to ß-integrin cytoplasmic tails resulting in conformational changes leading to increased integrin binding affinity and integrin activation. Computational modeling and experimental/mutational approaches imply that associations of integrin transmembrane domains stabilize the low-affinity integrin state. Moreover, a cytoplasmic interchain salt bridge is discussed to contribute to a tight clasp of the α/ß-membrane-proximal regions; however, its existence and physiological relevance for integrin activation are still a controversial issue. In order to further elucidate the functional role of salt bridge formation, we designed mutants of the tumor biologically relevant integrin αvß3 by mutually exchanging the salt bridge forming amino acid residues on each chain (αvR995D and ß3D723R). Following transfection of human ovarian cancer cells with different combinations of wild type and mutated integrin chains, we showed that loss of salt bridge formation strengthened αvß3-mediated adhesion to vitronectin, provoked recruitment of cytoskeletal proteins, such as talin, and induced integrin signaling, ultimately resulting in enhanced cell migration, proliferation, and activation of integrin-related signaling molecules. These data support the notion of a functional relevance of integrin cytoplasmic salt bridge disruption during integrin activation.
Collapse
Affiliation(s)
- Martina A Müller
- Clinical Research Unit, Dept. for Obstetrics & Gynecology, Technische Universitaet München, Munich, Germany
| | - Leonora Brunie
- Clinical Research Unit, Dept. for Obstetrics & Gynecology, Technische Universitaet München, Munich, Germany
| | - Anne-Sophie Bächer
- Clinical Research Unit, Dept. for Obstetrics & Gynecology, Technische Universitaet München, Munich, Germany
| | - Horst Kessler
- Institute for Advanced Study and Centre of Integrated Protein Science, Department Chemie, Technische Universitaet München, Garching, Germany; Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Ute Reuning
- Clinical Research Unit, Dept. for Obstetrics & Gynecology, Technische Universitaet München, Munich, Germany.
| |
Collapse
|
37
|
Li A, Guo Q, Kim C, Hu W, Ye F. Integrin αII b tail distal of GFFKR participates in inside-out αII b β3 activation. J Thromb Haemost 2014; 12:1145-55. [PMID: 24837519 PMCID: PMC4107134 DOI: 10.1111/jth.12610] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Indexed: 02/05/2023]
Abstract
BACKGROUND Increases in ligand binding to integrins (activation) play critical roles in platelet and leukocyte function. Integrin activation requires talin and kindlin binding to integrin β cytoplasmic tails. Research has focused on the conserved GFFKR motif in integrin αII b tails, integrin β cytoplasmic tails and the binding partners of β tails. However, the roles of αII b tail distal of GFFKR motif are unexplored. OBJECTIVE To investigate the role of αII b tail distal of GFFKR in talin-mediated inside-out integrin signaling. METHODS We used model cell systems to examine the role of αII b tail distal of GFFKR in bidirectional αII b β3 signaling and αII b β3 -talin interactions. RESULTS Deletion of amino acid residues after the GFFKR motif in αII b tail moderately decreased β3 (D723R)-induced activation, abolished talin-induced αII b β3 activation in model cells, and inhibited agonist-induced αII b β3 activation in megakaryocytic cells. Furthermore, residues in αII b tail distal of GFFKR did not affect outside-in αII b β3 signaling or αII b β3 -talin interaction. Addition of non-homologous or non-specific amino acids to the GFFKR motif restored αII b β3 activation in model cells and in megakaryocytic cells. Molecular modeling indicates that β3 -bound talin sterically clashes with the αII b tail in the αII b β3 complexes, potentially disfavoring the α-β interactions that keep αII b β3 inactive. CONCLUSION The αII b tail sequences distal of GFFKR participate in talin-mediated inside-out αII b β3 activation through its steric clashes with β3 -bound talin.
Collapse
Affiliation(s)
- Ang Li
- Department of Hepatobiliary Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Qiang Guo
- Department of Hepatobiliary Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Chungho Kim
- Department of Life Sciences, Korea University, Seoul, South Korea
| | - Weiming Hu
- Department of Hepatobiliary Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Feng Ye
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093
| |
Collapse
|
38
|
Ye F, Kim SJ, Kim C. Intermolecular transmembrane domain interactions activate integrin αIIbβ3. J Biol Chem 2014; 289:18507-13. [PMID: 24838247 DOI: 10.1074/jbc.m113.541888] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Integrins are the major cell adhesion molecules responsible for cell attachment to the extracellular matrix. The strength of integrin-mediated adhesion is controlled by the affinity of individual integrins (integrin activation) as well as by the number of integrins involved in such adhesion. The positive correlation between integrin activation and integrin clustering had been suggested previously, but several trials to induce integrin clustering by dimerization of the transmembrane domain or tail region of integrin α subunits failed to demonstrate any change in integrin activation. Here, using platelet integrin αIIbβ3 as a model system, we showed that there is intermolecular lateral interaction between integrins through the transmembrane domains, and this interaction can enhance the affinity state of integrins. In addition, when integrin clustering was induced through heteromeric lateral interactions using bimolecular fluorescence complementation, we could observe a significant increase in the number of active integrin molecules. Because the possibility of intermolecular interaction would be increased by a higher local concentration of integrins, we propose that integrin clustering can shift the equilibrium in favor of integrin activation.
Collapse
Affiliation(s)
- Feng Ye
- From the Department of Medicine, University of California San Diego, La Jolla, California 92093 and
| | - Se-Jong Kim
- the School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Chungho Kim
- the School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| |
Collapse
|
39
|
Menter DG, Tucker SC, Kopetz S, Sood AK, Crissman JD, Honn KV. Platelets and cancer: a casual or causal relationship: revisited. Cancer Metastasis Rev 2014; 33:231-69. [PMID: 24696047 PMCID: PMC4186918 DOI: 10.1007/s10555-014-9498-0] [Citation(s) in RCA: 232] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Human platelets arise as subcellular fragments of megakaryocytes in bone marrow. The physiologic demand, presence of disease such as cancer, or drug effects can regulate the production circulating platelets. Platelet biology is essential to hemostasis, vascular integrity, angiogenesis, inflammation, innate immunity, wound healing, and cancer biology. The most critical biological platelet response is serving as "First Responders" during the wounding process. The exposure of extracellular matrix proteins and intracellular components occurs after wounding. Numerous platelet receptors recognize matrix proteins that trigger platelet activation, adhesion, aggregation, and stabilization. Once activated, platelets change shape and degranulate to release growth factors and bioactive lipids into the blood stream. This cyclic process recruits and aggregates platelets along with thrombogenesis. This process facilitates wound closure or can recognize circulating pathologic bodies. Cancer cell entry into the blood stream triggers platelet-mediated recognition and is amplified by cell surface receptors, cellular products, extracellular factors, and immune cells. In some cases, these interactions suppress immune recognition and elimination of cancer cells or promote arrest at the endothelium, or entrapment in the microvasculature, and survival. This supports survival and spread of cancer cells and the establishment of secondary lesions to serve as important targets for prevention and therapy.
Collapse
Affiliation(s)
- David G Menter
- Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | | | | | | | | | | |
Collapse
|
40
|
Ye F, Snider AK, Ginsberg MH. Talin and kindlin: the one-two punch in integrin activation. Front Med 2014; 8:6-16. [DOI: 10.1007/s11684-014-0317-3] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 11/29/2013] [Indexed: 11/25/2022]
|
41
|
Das M, Ithychanda S, Qin J, Plow EF. Mechanisms of talin-dependent integrin signaling and crosstalk. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:579-88. [PMID: 23891718 DOI: 10.1016/j.bbamem.2013.07.017] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 07/03/2013] [Accepted: 07/15/2013] [Indexed: 01/01/2023]
Abstract
Cells undergo dynamic remodeling of the cytoskeleton during adhesion and migration on various extracellular matrix (ECM) substrates in response to physiological and pathological cues. The major mediators of such cellular responses are the heterodimeric adhesion receptors, the integrins. Extracellular or intracellular signals emanating from different signaling cascades cause inside-out signaling of integrins via talin, a cystokeletal protein that links integrins to the actin cytoskeleton. Various integrin subfamilies communicate with each other and growth factor receptors under diverse cellular contexts to facilitate or inhibit various integrin-mediated functions. Since talin is an essential mediator of integrin activation, much of the integrin crosstalk would therefore be influenced by talin. However, despite the existence of an extensive body of knowledge on the role of talin in integrin activation and as a stabilizer of ECM-actin linkage, information on its role in regulating inter-integrin communication is limited. This review will focus on the structure of talin, its regulation of integrin activation and discuss its potential role in integrin crosstalk. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.
Collapse
Affiliation(s)
- Mitali Das
- Department of Molecular Cardiology, Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Lerner Research Institute, Cleveland Clinic
| | - Sujay Ithychanda
- Department of Molecular Cardiology, Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Lerner Research Institute, Cleveland Clinic
| | - Jun Qin
- Department of Molecular Cardiology, Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Lerner Research Institute, Cleveland Clinic
| | - Edward F Plow
- Department of Molecular Cardiology, Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Lerner Research Institute, Cleveland Clinic
| |
Collapse
|
42
|
Miller PG, Al-Shahrour F, Hartwell KA, Chu LP, Järås M, Puram RV, Puissant A, Callahan KP, Ashton J, McConkey ME, Poveromo LP, Cowley GS, Kharas MG, Labelle M, Shterental S, Fujisaki J, Silberstein L, Alexe G, Al-Hajj MA, Shelton CA, Armstrong SA, Root DE, Scadden DT, Hynes RO, Mukherjee S, Stegmaier K, Jordan CT, Ebert BL. In Vivo RNAi screening identifies a leukemia-specific dependence on integrin beta 3 signaling. Cancer Cell 2013; 24:45-58. [PMID: 23770013 PMCID: PMC3746037 DOI: 10.1016/j.ccr.2013.05.004] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 02/19/2013] [Accepted: 05/02/2013] [Indexed: 01/05/2023]
Abstract
We used an in vivo small hairpin RNA (shRNA) screening approach to identify genes that are essential for MLL-AF9 acute myeloid leukemia (AML). We found that Integrin Beta 3 (Itgb3) is essential for murine leukemia cells in vivo and for human leukemia cells in xenotransplantation studies. In leukemia cells, Itgb3 knockdown impaired homing, downregulated LSC transcriptional programs, and induced differentiation via the intracellular kinase Syk. In contrast, loss of Itgb3 in normal hematopoietic stem and progenitor cells did not affect engraftment, reconstitution, or differentiation. Finally, using an Itgb3 knockout mouse model, we confirmed that Itgb3 is dispensable for normal hematopoiesis but is required for leukemogenesis. Our results establish the significance of the Itgb3 signaling pathway as a potential therapeutic target in AML.
Collapse
Affiliation(s)
- Peter G Miller
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Kim C, Kim MC. Differences in α-β transmembrane domain interactions among integrins enable diverging integrin signaling. Biochem Biophys Res Commun 2013; 436:406-12. [PMID: 23747731 DOI: 10.1016/j.bbrc.2013.05.115] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 05/28/2013] [Indexed: 01/17/2023]
Abstract
Integrins are transmembrane adhesion molecules composed of α and β subunits. In humans, 24 integrins are expressed in a tissue-specific manner. Each integrin plays a specific role within a tissue type to control cell adhesion. We previously found that the degree of transmembrane domain (TMD) interaction between the integrin αIIb and β3 subunits is reversely correlated with the affinity of integrin αIIbβ3 to its ligand. Here, we examined the TMD interactions of various integrins, including α4β1, αLβ2, α5β1, αVβ1, αIIbβ3, and αVβ3. Our findings revealed that the degree of the TMD interactions in integrins α4β1 and αLβ2 expressed in immune cells was low and in integrins αIIbβ3 and αVβ3 expressed in platelets was high, while integrins α5β1 and αVβ1 that are expressed in most adherent cells displayed intermediate TMD interactions. We identified sequence variation within the N-terminal TMD region as a factor responsible for the observed differential degree of TMD interaction among integrins. When the N-terminal interaction that was missing in integrin α5β1 was restored with mutagenesis, the increase in TMD interaction inhibited the outside-in but not inside-out signaling of integrin α5β1 and also accelerated the speed of cell migration. We suggest, therefore, that the degree of TMD interaction is designed to accommodate the specific, desired function of each integrin.
Collapse
Affiliation(s)
- Chungho Kim
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea.
| | | |
Collapse
|
44
|
Abstract
Integrins are heterodimeric cell adhesion molecules that are important in many biological functions, such as cell migration, proliferation, differentiation, and survival. They can transmit bi-directional signals across the plasma membrane. Inside-out activating signal from some cell surface receptors bound with soluble agonists triggers integrins conformational change leading to high affinity for extracellular ligands. Then binding of ligands to integrins results in outside-in signaling, leading to formation of focal adhesion complex at the integrin cytoplasmic tail and activation of downstream signal pathways. This bi-directional signaling is essential for rapid response of cell to surrounding environmental changes. During this process, the conformational change of integrin extracellular and transmembrane/cytoplasmic domains is particularly important. In this review, we will summarize recent progress in both inside-out and outside-in signaling with specific focus on the mechanism how integrins transmit bi-directional signals through transmembrane/cytoplasmic domains.
Collapse
Affiliation(s)
- Ping Hu
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | | |
Collapse
|
45
|
Dürr UN, Gildenberg M, Ramamoorthy A. The magic of bicelles lights up membrane protein structure. Chem Rev 2012; 112:6054-74. [PMID: 22920148 PMCID: PMC3497859 DOI: 10.1021/cr300061w] [Citation(s) in RCA: 274] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Indexed: 12/12/2022]
Affiliation(s)
| | - Melissa Gildenberg
- Biophysics
and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055,
United States
| | - Ayyalusamy Ramamoorthy
- Biophysics
and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055,
United States
| |
Collapse
|
46
|
Kim C, Ye F, Hu X, Ginsberg MH. Talin activates integrins by altering the topology of the β transmembrane domain. ACTA ACUST UNITED AC 2012; 197:605-11. [PMID: 22641344 PMCID: PMC3365499 DOI: 10.1083/jcb.201112141] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Talin binding to the integrin β tail alters the β transmembrane domain’s topology, resulting in integrin activation. Talin binding to integrin β tails increases ligand binding affinity (activation). Changes in β transmembrane domain (TMD) topology that disrupt α–β TMD interactions are proposed to mediate integrin activation. In this paper, we used membrane-embedded integrin β3 TMDs bearing environmentally sensitive fluorophores at inner or outer membrane water interfaces to monitor talin-induced β3 TMD motion in model membranes. Talin binding to the β3 cytoplasmic domain increased amino acid side chain embedding at the inner and outer borders of the β3 TMD, indicating altered topology of the β3 TMD. Talin’s capacity to effect this change depended on its ability to bind to both the integrin β tail and the membrane. Introduction of a flexible hinge at the midpoint of the β3 TMD decoupled the talin-induced change in intracellular TMD topology from the extracellular side and blocked talin-induced activation of integrin αIIbβ3. Thus, we show that talin binding to the integrin β TMD alters the topology of the TMD, resulting in integrin activation.
Collapse
Affiliation(s)
- Chungho Kim
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
47
|
Suk JE, Situ AJ, Ulmer TS. Construction of covalent membrane protein complexes and high-throughput selection of membrane mimics. J Am Chem Soc 2012; 134:9030-3. [PMID: 22626249 PMCID: PMC3415561 DOI: 10.1021/ja304247f] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The association of transmembrane (TM) helices underlies membrane protein structure and folding. Structural studies of TM complexes are limited by complex stability and the often time-consuming selection of suitable membrane mimics. Here, methodology for the efficient, preparative scale construction of covalent TM complexes and the concomitant high-throughput selection of membrane mimics is introduced. For the employed integrin αIIbβ3 model system, the methodology identified phospholipid bicelles, including their specific composition, as the best membrane mimic. The method facilitates structure determination by NMR spectroscopy as exemplified by the measurement of previously inaccessible residual dipolar couplings and (15)N relaxation parameters.
Collapse
Affiliation(s)
- Jae-Eun Suk
- Department of Biochemistry & Molecular Biology and Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, 1501 San Pablo Street, Los Angeles, California 90033, United States
| | - Alan J. Situ
- Department of Biochemistry & Molecular Biology and Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, 1501 San Pablo Street, Los Angeles, California 90033, United States
| | - Tobias S. Ulmer
- Department of Biochemistry & Molecular Biology and Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, 1501 San Pablo Street, Los Angeles, California 90033, United States
| |
Collapse
|
48
|
Kurtz L, Kao L, Newman D, Kurtz I, Zhu Q. Integrin αIIbβ3 inside-out activation: an in situ conformational analysis reveals a new mechanism. J Biol Chem 2012; 287:23255-65. [PMID: 22613710 DOI: 10.1074/jbc.m112.360966] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Integrins are a family of heterodimeric adhesion receptors that transmit signals bi-directionally across the plasma membranes. The transmembrane domain (TM) of integrin plays a critical role in mediating transition of the receptor from the default inactive to the active state on the cell surfaces. In this study, we successfully applied the substituted cysteine scanning accessibility method to determine the intracellular border of the integrin α(IIb)β(3) TM in the inactive and active states in living cells. We examined the aqueous accessibility of 75 substituted cysteines comprising the C terminus of both α(IIb) and β(3) TMs, the intracellular membrane-proximal regions, and the whole cytoplasmic tails, to the labeling of a membrane-permeable, cysteine-specific chemical biotin maleimide (BM). The active state of integrin α(IIb)β(3) heterodimer was generated by co-expression of activating partners with the cysteine-substituted constructs. Our data revealed that, in the inactive state, the intracellular lipid/aqueous border of α(IIb) TM was at Lys(994) and β(3) TM was at Phe(727) respectively; in the active state, the border of α(IIb) TM shifted to Pro(998), whereas the border of β(3) TM remained unchanged, suggesting that complex conformational changes occurred in the TMs upon α(IIb)β(3) inside-out activation. On the basis of the results, we propose a new inside-out activation mechanism for integrin α(IIb)β(3) and by inference, all of the integrins in their native cellular environment.
Collapse
Affiliation(s)
- Lisa Kurtz
- Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California 90095-1689, USA
| | | | | | | | | |
Collapse
|
49
|
Perera HD, Ma YQ, Yang J, Hirbawi J, Plow EF, Qin J. Membrane binding of the N-terminal ubiquitin-like domain of kindlin-2 is crucial for its regulation of integrin activation. Structure 2012; 19:1664-71. [PMID: 22078565 DOI: 10.1016/j.str.2011.08.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 08/03/2011] [Accepted: 08/19/2011] [Indexed: 11/25/2022]
Abstract
Kindlin-2 belongs to an emerging class of regulators for heterodimeric (α/β) integrin adhesion receptors. By binding to integrin β cytoplasmic tail via its C-terminal FERM-like domain, kindlin-2 promotes integrin activation. Intriguingly, this activation process depends on the N terminus of kindlin-2 (K2-N) that precedes the FERM domain. The molecular function of K2-N is unclear. We present the solution structure of K2-N, which displays a ubiquitin fold similar to that observed in kindlin-1. Using chemical shift mapping and mutagenesis, we found that K2-N contains a conserved positively charged surface that binds to membrane enriched with negatively charged phosphatidylinositol-(4,5)-bisphosphate. We show that while wild-type kindlin-2 is capable of promoting integrin activation, such ability is significantly reduced for its membrane-binding defective mutant. These data suggest a membrane-binding function of the ubiquitin-like domain of kindlin-2, which is likely common for all kindlins to promote their localization to the plasma membrane and control integrin activation.
Collapse
Affiliation(s)
- H Dhanuja Perera
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | | | | | | | | |
Collapse
|
50
|
Goggs R, Poole AW. Platelet signaling-a primer. J Vet Emerg Crit Care (San Antonio) 2012; 22:5-29. [PMID: 22316389 DOI: 10.1111/j.1476-4431.2011.00704.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 11/25/2011] [Indexed: 12/28/2022]
Abstract
OBJECTIVE To review the receptors and signal transduction pathways involved in platelet plug formation and to highlight links between platelets, leukocytes, endothelium, and the coagulation system. DATA SOURCES Original studies, review articles, and book chapters in the human and veterinary medical fields. DATA SYNTHESIS Platelets express numerous surface receptors. Critical among these are glycoprotein VI, the glycoprotein Ib-IX-V complex, integrin α(IIb) β(3) , and the G-protein-coupled receptors for thrombin, ADP, and thromboxane. Activation of these receptors leads to various important functional events, in particular activation of the principal adhesion receptor α(IIb) β(3) . Integrin activation allows binding of ligands such as fibrinogen, mediating platelet-platelet interaction in the process of aggregation. Signals activated by these receptors also couple to 3 other important functional events, secretion of granule contents, change in cell shape through cytoskeletal rearrangement, and procoagulant membrane expression. These processes generate a stable thrombus to limit blood loss and promote restoration of endothelial integrity. CONCLUSIONS Improvements in our understanding of how platelets operate through their signaling networks are critical for diagnosis of unusual primary hemostatic disorders and for rational antithrombotic drug design.
Collapse
Affiliation(s)
- Robert Goggs
- School of Physiology and Pharmacology, Faculty of Medical and Veterinary Sciences, University of Bristol, UK.
| | | |
Collapse
|