1
|
Wang H, Koob T, Fromm JR, Gopal A, Carter D, Lieber A. CD46 and CD59 inhibitors enhance complement-dependent cytotoxicity of anti-CD38 monoclonal antibodies daratumumab and isatuximab in multiple myeloma and other B-cell malignancy cells. Cancer Biol Ther 2024; 25:2314322. [PMID: 38361357 PMCID: PMC10877974 DOI: 10.1080/15384047.2024.2314322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/31/2024] [Indexed: 02/17/2024] Open
Abstract
Multiple myeloma (MM) is an incurable malignancy of the B-cell lineage. Remarkable progress has been made in the treatment of MM with anti-CD38 monoclonal antibodies such as daratumumab and isatuximab, which can kill MM cells by inducing complement-dependent cytotoxicity (CDC). We showed that the CDC efficacy of daratumumab and isatuximab is limited by membrane complement inhibitors, including CD46 and CD59, which are upregulated in MM cells. We recently developed a small recombinant protein, Ad35K++, which is capable of transiently removing CD46 from the cell surface. We also produced a peptide inhibitor of CD59 (rILYd4). In this study, we tested Ad35K++ and rILYd4 in combination with daratumumab and isatuximab in MM cells as well as in cells from two other B-cell malignancies. We showed that Ad35K++ and rILYd4 increased CDC triggered by daratumumab and isatuximab. The combination of both inhibitors had an additive effect in vitro in primary MM cells as well as in vivo in a mouse xenograft model of MM. Daratumumab and isatuximab treatment of MM lines (without Ad35K++ or rILYd4) resulted in the upregulation of CD46/CD59 and/or survival of CD46high/CD59high MM cells that escaped the second round of daratumumab and isatuximab treatment. The escape in the second treatment cycle was prevented by the pretreatment of cells with Ad35K++. Overall, our data demonstrate that Ad35K++ and rILYd4 are efficient co-therapeutics of daratumumab and isatuximab, specifically in multi-cycle treatment regimens, and could be used to improve treatment of multiple myeloma.
Collapse
Affiliation(s)
- Hongjie Wang
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Theo Koob
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Jonathan R. Fromm
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Ajay Gopal
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Darrick Carter
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - André Lieber
- Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- R&D, Compliment Corp, Seattle, WA, USA
| |
Collapse
|
2
|
Pedersen ML, Pedersen DV, Winkler MBL, Olesen HG, Søgaard OS, Østergaard L, Laursen NS, Rahimic AHF, Tolstrup M. Nanobody-mediated complement activation to kill HIV-infected cells. EMBO Mol Med 2023; 15:e16422. [PMID: 36799046 PMCID: PMC10086584 DOI: 10.15252/emmm.202216422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/18/2023] Open
Abstract
The complement system which is part of the innate immune response against invading pathogens represents a powerful mechanism for killing of infected cells. Utilizing direct complement recruitment for complement-mediated elimination of HIV-1-infected cells is underexplored. We developed a novel therapeutic modality to direct complement activity to the surface of HIV-1-infected cells. This bispecific complement engager (BiCE) is comprised of a nanobody recruiting the complement-initiating protein C1q, and single-chain variable fragments of broadly neutralizing antibodies (bNAbs) targeting the HIV-1 envelope (Env) protein. Here, we show that two anti-HIV BiCEs targeting the V3 loop and the CD4 binding site, respectively, increase C3 deposition and mediate complement-dependent cytotoxicity (CDC) of HIV-1 Env-expressing Raji cells. Furthermore, anti-HIV BiCEs trigger complement activation on primary CD4 T cells infected with laboratory-adapted HIV-1 strain and facilitates elimination of HIV-1-infected cells over time. In summary, we present a novel approach to direct complement deposition to the surface of HIV-1-infected cells leading to complement-mediated killing of these cells.
Collapse
Affiliation(s)
| | | | | | - Heidi Gytz Olesen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Ole Schmeltz Søgaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Lars Østergaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | | | | | - Martin Tolstrup
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
3
|
Ge X, Du Y, Chen J, Zhu N, Yao J, Zhang X, Wang N, Sun Y, Gao F, Hu W, Hou Y. Herbal NF-κB Inhibitors Sensitize Rituximab-Resistant B Lymphoma Cells to Complement-Mediated Cytolysis. Front Oncol 2021; 11:751904. [PMID: 34956875 PMCID: PMC8692258 DOI: 10.3389/fonc.2021.751904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/22/2021] [Indexed: 11/15/2022] Open
Abstract
Background Drug resistance remains a serious challenge to rituximab therapy in B-NHL (B cell non-Hodgkin’s lymphoma). CDC (complement-dependent cytotoxicity) has been proposed as a major antitumor mechanism of rituximab, and direct abrogation of CD59 function partially restores rituximab sensitivity with high efficacy. However, universal blockade of CD59 may have deleterious effects on normal cells. Sp1 regulates constitutive CD59 expression, whereas NF-κB and CREB regulate inducible CD59 expression. Methods Immunohistochemistry (IHC) assay was used to detect the expression levels of CD59 and other related molecules. Quantitative Real-time PCR (RT-PCR) analysis was used to explore the levels of transcripts in the original and resistant cells. We chose LY8 cells to test the effects of NF-κB and CBP/p300 inhibition on CD59 expression using flow cytometry (FACS). Immunoblotting analysis was employed to detect the effects of curcumin and POH. The in vitro and in vivo experiments were used to evaluate the toxicity and combined inhibitory effect on tumor cells of curcumin and POH. Results We demonstrated that herbal (curcumin and perillyl alcohol) blockade of NF-κB specifically suppresses the expression of inducible CD59 but not CD20, thus sensitizing resistant cells to rituximab-mediated CDC. Moreover, activation of NF-κB and CREB is highly correlated with CD59 expression in B-NHL tissues. Conclusions Our findings suggest the potential of CD59 expression as a predictor of therapeutic efficacy of NF-κB inhibitors in clinical application as well as the rationality of a NF-κB inhibitor-rituximab regimen in B-NHL therapy.
Collapse
Affiliation(s)
- Xiaowen Ge
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yiqun Du
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianfeng Chen
- State Key Laboratory of Oncology, National Sun Yat-sen University, Guangzhou, China
| | - Na Zhu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiamei Yao
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xin Zhang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Na Wang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yujing Sun
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Feng Gao
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Weiguo Hu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- *Correspondence: Yingyong Hou, ; Weiguo Hu,
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
- *Correspondence: Yingyong Hou, ; Weiguo Hu,
| |
Collapse
|
4
|
Liszewski MK, Atkinson JP. Membrane cofactor protein (MCP; CD46): deficiency states and pathogen connections. Curr Opin Immunol 2021; 72:126-134. [PMID: 34004375 PMCID: PMC8123722 DOI: 10.1016/j.coi.2021.04.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 02/07/2023]
Abstract
Membrane cofactor protein (MCP; CD46), a ubiquitously expressed complement regulatory protein, serves as a cofactor for serine protease factor I to cleave and inactivate C3b and C4b deposited on host cells. However, CD46 also plays roles in human reproduction, autophagy, modulating T cell activation and effector functions and is a member of the newly identified intracellular complement system (complosome). CD46 also is a receptor for 11 pathogens ('pathogen magnet'). While CD46 deficiencies contribute to inflammatory disorders, its overexpression in cancers and role as a receptor for some adenoviruses has led to its targeting by oncolytic agents and adenoviral-based therapeutic vectors, including coronavirus disease of 2019 (COVID-19) vaccines. This review focuses on recent advances in identifying disease-causing CD46 variants and its pathogen connections.
Collapse
Affiliation(s)
- M Kathryn Liszewski
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA.
| | - John P Atkinson
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA.
| |
Collapse
|
5
|
Nan H, Zhang P, Jiang W, Xiao J, Wang P. A recombinant adenovirus fiber knob protein sensitizes gastric cancer cells to trastuzumab. Panminerva Med 2019; 63:554-555. [PMID: 31362478 DOI: 10.23736/s0031-0808.19.03721-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hui Nan
- Department of Pediatrics, Second Hospital of Shandong University, Jinan, China.,Department of Pediatrics, Liaocheng People's Hospital, Liaocheng, China
| | - Pu Zhang
- Department of Oncology, Liaocheng People's Hospital, Liaocheng, China
| | - Wen Jiang
- Central Lab, Second Hospital of Shandong University, Jinan, China
| | - Junchao Xiao
- Department of Pediatrics, Second Hospital of Shandong University, Jinan, China
| | - Peirong Wang
- Department of Pediatrics, Second Hospital of Shandong University, Jinan, China -
| |
Collapse
|
6
|
Chen J, Ding P, Li L, Gu H, Zhang X, Zhang L, Wang N, Gan L, Wang Q, Zhang W, Hu W. CD59 Regulation by SOX2 Is Required for Epithelial Cancer Stem Cells to Evade Complement Surveillance. Stem Cell Reports 2016; 8:140-151. [PMID: 28017655 PMCID: PMC5233323 DOI: 10.1016/j.stemcr.2016.11.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 11/21/2016] [Accepted: 11/22/2016] [Indexed: 12/16/2022] Open
Abstract
Cancer stem cells (CSCs) are highly associated with therapy resistance and metastasis. Interplay between CSCs and various immune components is required for tumor survival. However, the response of CSCs to complement surveillance remains unknown. Herein, using stem-like sphere-forming cells prepared from a mammary tumor and a lung adenocarcinoma cell line, we found that CD59 was upregulated to protect CSCs from complement-dependent cytotoxicity. CD59 silencing significantly enhanced complement destruction and completely suppressed tumorigenesis in CSC-xenografted nude mice. Furthermore, we identified that SOX2 upregulates CD59 in epithelial CSCs. In addition, we revealed that SOX2 regulates the transcription of mCd59b, leading to selective mCD59b abundance in murine testis spermatogonial stem cells. Therefore, we demonstrated that CD59 regulation by SOX2 is required for stem cell evasion of complement surveillance. This finding highlights the importance of complement surveillance in eliminating CSCs and may suggest CD59 as a potential target for cancer therapy.
Collapse
Affiliation(s)
- Jianfeng Chen
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Collaborative Innovation Center of Cancer Medicine, Shanghai Medical College, Fudan University, 270 Dong'an Road, Shanghai 200032, China
| | - Peipei Ding
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Collaborative Innovation Center of Cancer Medicine, Shanghai Medical College, Fudan University, 270 Dong'an Road, Shanghai 200032, China
| | - Ling Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Collaborative Innovation Center of Cancer Medicine, Shanghai Medical College, Fudan University, 270 Dong'an Road, Shanghai 200032, China
| | - Hongyu Gu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Collaborative Innovation Center of Cancer Medicine, Shanghai Medical College, Fudan University, 270 Dong'an Road, Shanghai 200032, China
| | - Xin Zhang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Collaborative Innovation Center of Cancer Medicine, Shanghai Medical College, Fudan University, 270 Dong'an Road, Shanghai 200032, China
| | - Long Zhang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Collaborative Innovation Center of Cancer Medicine, Shanghai Medical College, Fudan University, 270 Dong'an Road, Shanghai 200032, China
| | - Na Wang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Collaborative Innovation Center of Cancer Medicine, Shanghai Medical College, Fudan University, 270 Dong'an Road, Shanghai 200032, China
| | - Lu Gan
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Collaborative Innovation Center of Cancer Medicine, Shanghai Medical College, Fudan University, 270 Dong'an Road, Shanghai 200032, China
| | - Qi Wang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Collaborative Innovation Center of Cancer Medicine, Shanghai Medical College, Fudan University, 270 Dong'an Road, Shanghai 200032, China
| | - Wei Zhang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Collaborative Innovation Center of Cancer Medicine, Shanghai Medical College, Fudan University, 270 Dong'an Road, Shanghai 200032, China
| | - Weiguo Hu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Collaborative Innovation Center of Cancer Medicine, Shanghai Medical College, Fudan University, 270 Dong'an Road, Shanghai 200032, China; Department of Immunology, Shanghai Medical College, Fudan University, 130 Dong'an Road, Shanghai 200032, China.
| |
Collapse
|
7
|
Kourtzelis I, Rafail S. The dual role of complement in cancer and its implication in anti-tumor therapy. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:265. [PMID: 27563652 DOI: 10.21037/atm.2016.06.26] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Chronic inflammation has been linked to the initiation of carcinogenesis, as well as the advancement of established tumors. The polarization of the tumor inflammatory microenvironment can contribute to either the control, or the progression of the disease. The emerging participation of members of the complement cascade in several hallmarks of cancer, renders it a potential target for anti-tumor treatment. Moreover, the presence of complement regulatory proteins (CRPs) in most types of tumor cells is known to impede anti-tumor therapies. This review focuses on our current knowledge of complement's potential involvement in shaping the inflammatory tumor microenvironment and its role on the regulation of angiogenesis and hypoxia. Furthermore, we discuss approaches using complement-based therapies as an adjuvant in tumor immunotherapy.
Collapse
Affiliation(s)
- Ioannis Kourtzelis
- Department of Clinical Pathobiochemistry, Technische Universität Dresden, 01307 Dresden, Germany
| | - Stavros Rafail
- Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, PA 19104-6160, USA
| |
Collapse
|
8
|
Preclinical safety, pharmacokinetics, pharmacodynamics, and biodistribution studies with Ad35K++ protein: a novel rituximab cotherapeutic. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 5:16013. [PMID: 27069950 PMCID: PMC4813608 DOI: 10.1038/mtm.2016.13] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/10/2015] [Accepted: 12/11/2015] [Indexed: 12/31/2022]
Abstract
Rituximab is a mouse/human chimeric monoclonal antibody targeted toward CD20. It is efficient as first-line therapy of CD20-positive B-cell malignancies. However, a large fraction of treated patients relapse with rituximab-resistant disease. So far, only modest progress has been made in treatment options for rituximab refractory patients. One of the mechanisms for rituximab resistance involves the upregulation of CD46, which is a key cell surface protein that blocks the activation of complement. We have recently developed a technology that depletes CD46 from the cell surface and thereby sensitizes tumor cells to complement-dependent cytotoxicity. This technology is based on a small recombinant protein, Ad35K++ that binds with high affinity to CD46. In preliminary studies using a 6 × histidinyl tagged protein, we had demonstrated that intravenous Ad35K++ injection in combination with rituximab was safe and increased rituximab-mediated killing of CD20-positive target cells in mice and nonhuman primates (NHPs). The presence of the tag, while allowing for easy purification by Ni-NTA chromatography, has the potential to increase the immunogenicity of the recombinant protein. For clinical application, we therefore developed an Ad35K++ protein without His-tag. In the present study, we performed preclinical studies in two animal species (mice and NHPs) with this protein demonstrating its safety and efficacy. These studies estimated the Ad35K++ dose range and treatment regimen to be used in patients. Furthermore, we showed that intravenous Ad35K++ injection triggers the shedding of the CD46 extracellular domain in xenograft mouse tumor models and in macaques. Shed serum CD46 can be measured in the serum and can potentially be used as a pharmacodynamic marker for monitoring Ad35K++ activity in patient undergoing treatment with this agent. These studies create the basis for an investigational new drug application for the use of Ad35K++ in combination with rituximab in the treatment of patients with B-cell malignancies.
Collapse
|
9
|
Intracellular Signaling and Desmoglein 2 Shedding Triggered by Human Adenoviruses Ad3, Ad14, and Ad14P1. J Virol 2015; 89:10841-59. [PMID: 26292319 DOI: 10.1128/jvi.01425-15] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 08/10/2015] [Indexed: 01/10/2023] Open
Abstract
UNLABELLED We recently discovered that desmoglein 2 (DSG2) is a receptor for human adenovirus species B serotypes Ad3, Ad7, Ad11, and Ad14. Ad3 is considered to be a widely distributed human pathogen. Ad3 binding to DSG2 triggers the transient opening of epithelial junctions. Here, we further delineate the mechanism that leads to DSG2-mediated epithelial junction opening in cells exposed to Ad3 and recombinant Ad3 fiber proteins. We identified an Ad3 fiber knob-dependent pathway that involves the phosphorylation of mitogen-activated protein (MAP) kinases triggering the activation of the matrix-metalloproteinase ADAM17. ADAM17, in turn, cleaves the extracellular domain of DSG2 that links epithelial cells together. The shed DSG2 domain can be detected in cell culture supernatant and also in serum of mice with established human xenograft tumors. We then extended our studies to Ad14 and Ad14P1. Ad14 is an important research and clinical object because of the recent appearance of a new, more pathogenic strain (Ad14P1). In a human epithelial cancer xenograft model, Ad14P1 showed more efficient viral spread and oncolysis than Ad14. Here, we tested the hypothesis that a mutation in the Ad14P1 fiber knob could account for the differences between the two strains. While our X-ray crystallography studies suggested an altered three-dimensional (3D) structure of the Ad14P1 fiber knob in the F-G loop region, this did not significantly change the fiber knob affinity to DSG2 or the intracellular signaling and DSG2 shedding in epithelial cancer cells. IMPORTANCE A number of widely distributed adenoviruses use the epithelial junction protein DSG2 as a receptor for infection and lateral spread. Interaction with DSG2 allows the virus not only to enter cells but also to open epithelial junctions which form a physical barrier to virus spread. Our study elucidates the mechanism beyond virus-triggered junction opening with a focus on adenovirus serotype 3. Ad3 binds to DSG2 with its fiber knob domain and triggers intracellular signaling that culminates in the cleavage of the extracellular domain of DSG2, thereby disrupting DSG2 homodimers between epithelial cells. We confirmed this pathway with a second DSG2-interacting serotype, Ad14, and its recently emerged strain Ad14P1. These new insights in basic adenovirus biology can be employed to develop novel drugs to treat adenovirus infection as well as be used as tools for gene delivery into epithelial tissues or epithelial tumors.
Collapse
|
10
|
Hay J, Carter D, Lieber A, Astier AL. Recombinant Ad35 adenoviral proteins as potent modulators of human T cell activation. Immunology 2014; 144:453-460. [PMID: 25251258 PMCID: PMC4557682 DOI: 10.1111/imm.12391] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 09/03/2014] [Accepted: 09/16/2014] [Indexed: 11/30/2022] Open
Abstract
The protein CD46 protects cells from complement attack by regulating cleavage of C3b and C3d. CD46 also regulates the adaptive immune response by controlling T cell activation and differentiation. Co-engagement of the T cell receptor and CD46 notably drives T cell differentiation by switching production of IFNγ to secretion of anti-inflammatory IL-10. This regulatory pathway is altered in several chronic inflammatory diseases highlighting its key role for immune homeostasis. The manipulation of the CD46 pathway may therefore provide a powerful means to regulate immune responses. Herein, we investigated the effect of recombinant proteins derived from the fiber knob of the adenovirus serotype 35 (Ad35) that uses CD46 as its entry receptor, on human T cell activation. We compared the effects of Ad35K++, engineered to exhibit enhanced affinity to CD46, and of Ad35K-, mutated in the binding site for CD46. Ad35K++ profoundly affects T cell activation by decreasing the levels of CD46 at the surface of primary T cells, and impairing T cell co-activation, shown by decreased CD25 expression, reduced proliferation and lower secretion of IL-10 and IFNγ. In contrast, Ad35K- acts a potent coactivator of T cells, enhancing T cell proliferation and cytokine production. These data show that recombinant Ad35 proteins are potent modulators of human T cell activation, and support their further development as potential drugs targeting T cell responses. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Joanne Hay
- MRC Centre for Inflammation Research, University of Edinburgh, Queen’s Medical Research InstituteEdinburgh, UK
| | - Darrick Carter
- PAI Life Sciences Inc.Seattle, WA, USA
- Compliment Corp.Seattle, WA, USA
| | - André Lieber
- Department of Medical Genetics, University of WashingtonSeattle, WA, USA
| | - Anne L Astier
- MRC Centre for Inflammation Research, University of Edinburgh, Queen’s Medical Research InstituteEdinburgh, UK
| |
Collapse
|
11
|
Song G, Cho WC, Gu L, He B, Pan Y, Wang S. Increased CD59 protein expression is associated with the outcome of patients with diffuse large B-cell lymphoma treated with R-CHOP. Med Oncol 2014; 31:56. [PMID: 24924474 DOI: 10.1007/s12032-014-0056-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 05/29/2014] [Indexed: 11/26/2022]
Abstract
The objective was to investigate the expression and prognostic value of CD59 expression in patients with diffuse large B-cell lymphoma (DLBCL) who underwent rituximab-cyclophosphamide, adriamycin, vincristine, and prednisone (R-CHOP). The immunohistochemical expressions of CD59 in 186 well-characterized DLBCL patients were evaluated using tissue microarrays and then were related to known tumor- and patient-related variables and to survival. The results show that CD59 expressions were not statistically different between the germinal center B-cell-like-type and the activated B-cell-like-type. We also analyzed the relationships of CD59 expression with overall survival (OS) and progression-free survival (PFS) in DLBCL patients who were uniformly treated with R-CHOP. The high expression of CD59 was correlated with poor OS and PFS compared with the low-expression CD59. Our findings indicate that the CD59 level at onset is an independent predictor of the prognosis of DLBCL patients treated with R-CHOP.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Antibodies, Monoclonal, Murine-Derived/administration & dosage
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- CD59 Antigens/blood
- Cyclophosphamide/administration & dosage
- Disease-Free Survival
- Doxorubicin/administration & dosage
- Female
- Humans
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/mortality
- Lymphoma, Large B-Cell, Diffuse/pathology
- Male
- Middle Aged
- Prednisone/administration & dosage
- Prognosis
- Rituximab
- Treatment Outcome
- Young Adult
Collapse
Affiliation(s)
- Guoqi Song
- Medical School of Southeast University, Nanjing, 210009, Jiangsu Province, China
| | | | | | | | | | | |
Collapse
|
12
|
Kim EK, Seo HS, Chae MJ, Jeon IS, Song BY, Park YJ, Ahn HM, Yun CO, Kang CY. Enhanced antitumor immunotherapeutic effect of B-cell-based vaccine transduced with modified adenoviral vector containing type 35 fiber structures. Gene Ther 2013; 21:106-14. [PMID: 24225639 DOI: 10.1038/gt.2013.65] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 06/14/2013] [Accepted: 09/23/2013] [Indexed: 01/09/2023]
Abstract
For successful clinical tumor immunotherapy outcomes, strong immune responses against tumor antigens must be generated. Cell-based vaccines compromise one strategy with which to induce appropriate strong immune responses. Previously, we established a natural killer T-cell (NKT) ligand-loaded, adenoviral vector-transduced B-cell-based anticancer cellular vaccine. To enhance tumor antigen delivery to B cells, we established a modified adenoviral vector (Ad-k35) that encoded a truncated form of the breast cancer antigen Her2/neu (Ad-k35HM) in which fiber structure was substituted with adenovirus serotype 35. We observed increased tumor antigen expression with Ad-k35HM in both human and murine B cells. In addition, an Ad-k35HM-transduced B-cell vaccine elicited strong antigen-specific cellular and humoral immune responses that were further enhanced with the additional loading of soluble NKT ligand KBC009. An Ad-k35HM-transduced, KBC009-loaded B-cell vaccine efficiently suppressed the in vivo growth of established tumors in a mouse model. Moreover, the vaccine elicited human leukocyte antigen (HLA)-A2 epitope-specific cytotoxic T-cell responses in B6.Cg (CB)-Tg (HLA-A/H2-D) 2Enge/Jat mice. These findings indicated that the Ad-k35 could be appropriate for the preclinical and clinical development of B-cell-based anticancer immunotherapies.
Collapse
Affiliation(s)
- E-K Kim
- Laboratory of Immunology, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - H-S Seo
- WCU Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| | - M-J Chae
- Laboratory of Immunology, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - I-S Jeon
- WCU Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| | - B-Y Song
- WCU Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| | - Y-J Park
- Laboratory of Immunology, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - H M Ahn
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Korea
| | - C-O Yun
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Korea
| | - C-Y Kang
- 1] Laboratory of Immunology, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea [2] WCU Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| |
Collapse
|
13
|
Carter D, Lieber A. Protein engineering to target complement evasion in cancer. FEBS Lett 2013; 588:334-40. [PMID: 24239543 DOI: 10.1016/j.febslet.2013.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 11/07/2013] [Accepted: 11/08/2013] [Indexed: 01/31/2023]
Abstract
The complement system is composed of soluble factors in plasma that enhance or "complement" immune-mediated killing through innate and adaptive mechanisms. Activation of complement causes recruitment of immune cells; opsonization of coated cells; and direct killing of affected cells through a membrane attack complex (MAC). Tumor cells up-regulate complement inhibitory factors - one of several strategies to evade the immune system. In many cases as the tumor progresses, dramatic increases in complement inhibitory factors are found on these cells. This review focuses on the classic complement pathway and the role of major complement inhibitory factors in cancer immune evasion as well as on how current protein engineering efforts are being employed to increase complement fixing or to reverse complement resistance leading to better therapeutic outcomes in oncology. Strategies discussed include engineering of antibodies to enhance complement fixation, antibodies that neutralize complement inhibitory proteins as well as engineered constructs that specifically target inhibition of the complement system.
Collapse
Affiliation(s)
- Darrick Carter
- PAI Life Sciences Inc., Seattle, WA, United States; Compliment Corp., Seattle, WA, United States.
| | - André Lieber
- Department of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
14
|
Beyer I, Cao H, Persson J, Wang H, Liu Y, Yumul R, Li Z, Woodle D, Manger R, Gough M, Rocha D, Bogue J, Baldessari A, Berenson R, Carter D, Lieber A. Transient removal of CD46 is safe and increases B-cell depletion by rituximab in CD46 transgenic mice and macaques. Mol Ther 2012; 21:291-9. [PMID: 23089733 DOI: 10.1038/mt.2012.212] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We have developed a technology that depletes the complement regulatory protein (CRP) CD46 from the cell surface, and thereby sensitizes tumor cells to complement-dependent cytotoxicity triggered by therapeutic monoclonal antibodies (mAbs). This technology is based on a small recombinant protein, Ad35K++, which induces the internalization and subsequent degradation of CD46. In preliminary studies, we had demonstrated the utility of the combination of Ad35K++ and several commercially available mAbs such as rituximab, alemtuzumab, and trastuzumab in enhancing cell killing in vitro as well as in vivo in murine xenograft and syngeneic tumor models. We have completed scaled manufacturing of Ad35K++ protein in Escherichia coli for studies in nonhuman primates (NHPs). In macaques, we first defined a dose of the CD20-targeting mAb rituximab that did not deplete CD20-positive peripheral blood cells. Using this dose of rituximab, we then demonstrated that pretreatment with Ad35K++ reconstituted near complete elimination of B cells. Further studies demonstrated that the treatment was well tolerated and safe. These findings in a relevant large animal model provide the rationale for moving this therapy forward into clinical trials in patients with CD20-positive B-cell malignancies.
Collapse
Affiliation(s)
- Ines Beyer
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Arnberg N. Adenovirus receptors: implications for targeting of viral vectors. Trends Pharmacol Sci 2012; 33:442-8. [PMID: 22621975 DOI: 10.1016/j.tips.2012.04.005] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 04/11/2012] [Accepted: 04/18/2012] [Indexed: 12/19/2022]
Abstract
Cancer, cardiovascular disease, and infectious diseases are all global health threats. To combat these diseases with gene therapies, adenovirus-based vectors have been developed. Although certain clinical trials appear successful, there is an obvious need to improve the efficacy of most adenovirus-based vectors. For the most commonly used vector (based on type 5; Ad5), a main problem is its accumulation in the liver, which can be attributed to interactions with specific host factors. The diverse tropism for types other than Ad5 implies that vectors based on alternative types could have advantages. The numerous interactions of different adenoviruses with host molecules - such as the recently identified desmoglein-2 receptor - may cause novel and unexpected obstacles, but also may provide possibilities for vectors based on alternative types. This review provides an update of new and previously known molecules that mediate cellular attachment of human adenoviruses and discusses how these may influence the targeting of adenovirus-based vectors.
Collapse
Affiliation(s)
- Niklas Arnberg
- Division of Virology, Department of Clinical Microbiology, Umeå University, Umeå, Sweden.
| |
Collapse
|
16
|
Adams WC, Berenson RJ, Karlsson Hedestam GB, Lieber A, Koup RA, Loré K. Attenuation of CD4+ T-cell function by human adenovirus type 35 is mediated by the knob protein. J Gen Virol 2012; 93:1339-1344. [PMID: 22357750 DOI: 10.1099/vir.0.039222-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The complement-regulatory protein CD46 is the primary receptor for human adenovirus type 35 (HAdV-35) and can regulate human immune-cell activation. CD4(+) T-cells are critical for initiating and maintaining adaptive immunity elicited by infection or vaccination. It was reported previously that HAdV-35 can bind these cells and suppress their activation. The data reported here demonstrate that recombinant trimeric HAdV-35 knob proteins alone can induce CD46 receptor downregulation and inhibit interleukin-2 production and proliferation of human CD4(+) T-cells in vitro similarly to mAbs specific to the CD46 region bound by HAdV-35 knobs. A mutant knob protein with increased affinity for CD46 compared with the wild-type knob caused equivalent effects. In contrast, a CD46-binding-deficient mutant knob protein did not inhibit T-cell activation. Thus, the capacity of HAdV-35 to attenuate human CD4(+) T-cell activation depends predominantly on knob interactions with CD46 and can occur independently of infection.
Collapse
Affiliation(s)
- William C Adams
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | - André Lieber
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Richard A Koup
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | - Karin Loré
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
17
|
Beyer I, van Rensburg R, Strauss R, Li Z, Wang H, Persson J, Yumul R, Feng Q, Song H, Bartek J, Fender P, Lieber A. Epithelial junction opener JO-1 improves monoclonal antibody therapy of cancer. Cancer Res 2011; 71:7080-90. [PMID: 21990319 DOI: 10.1158/0008-5472.can-11-2009] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The efficacy of monoclonal antibodies (mAb) used to treat solid tumors is limited by intercellular junctions which tightly link epithelial tumor cells to each another. In this study, we define a small, recombinant adenovirus serotype 3-derived protein, termed junction opener 1 (JO-1), which binds to the epithelial junction protein desmoglein 2 (DSG2). In mouse xenograft models employing Her2/neu- and EGFR-positive human cancer cell lines, JO-1 mediated cleavage of DSG2 dimers and activated intracellular signaling pathways which reduced E-cadherin expression in tight junctions. Notably, JO-1-triggered changes allowed for increased intratumoral penetration of the anti-Her2/neu mAb trastuzumab (Herceptin) and improved access to its target receptor, Her2/neu, which is partly trapped in tight junctions. This effect translated directly into increased therapeutic efficacy of trastuzumab in mouse xenograft models using breast, gastric, and ovarian cancer cells that were Her2/neu-positive. Furthermore, combining JO-1 with the EGFR-targeting mAb cetuximab (Erbitux) greatly improved therapeutic outcomes in a metastatic model of EGFR-positive lung cancer. A combination of JO-1 with an approach that triggered transient degradation of tumor stroma proteins elicited eradication of tumors. Taken together, our findings offer preclinical proof of concept to employ JO-1 in combination with mAb therapy.
Collapse
Affiliation(s)
- Ines Beyer
- Division of Medical Genetics, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Hu W, Ge X, You T, Xu T, Zhang J, Wu G, Peng Z, Chorev M, Aktas BH, Halperin JA, Brown JR, Qin X. Human CD59 inhibitor sensitizes rituximab-resistant lymphoma cells to complement-mediated cytolysis. Cancer Res 2011; 71:2298-307. [PMID: 21252115 PMCID: PMC3622284 DOI: 10.1158/0008-5472.can-10-3016] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rituximab efficacy in cancer therapy depends in part on induction of complement-dependent cytotoxicity (CDC). Human CD59 (hCD59) is a key complement regulatory protein that restricts the formation of the membrane attack complex, thereby inhibiting induction of CDC. hCD59 is highly expressed in B-cell non-Hodgkin's lymphoma (NHL), and upregulation of hCD59 is an important determinant of the sensitivity of NHL cells to rituximab treatment. Here, we report that the potent hCD59 inhibitor rILYd4 enhances CDC in vitro and in vivo, thereby sensitizing rituximab-resistant lymphoma cells and primary chronic lymphocytic leukemia cells (CLL) to rituximab treatment. By defining pharmcokinetic/pharmacodynamic profiles of rILYd4 in mice, we showed that by itself rILYd4 does not adversely mediate in vivo hemolysis of hCD59-expressing erythrocytes. Increasing expression levels of the complement regulators CD59 and CD55 in rituximab-resistant cells occur due to selection of preexisting clones rather than de novo induction of these proteins. Moreover, lymphoma cells overexpressing CD59 were directly responsible for the resistance to rituximab-mediated CDC therapy. Our results rationalize the use of rILYd4 as a therapeutic adjuvant for rituximab treatment of rituximab-resistant lymphoma and CLL. Furthermore, they suggest that preemptive elimination of CD59-overexpressing subpopulations along with rituximab treatment may be a useful approach to ablate or conquer rituximab resistance.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal, Murine-Derived/pharmacology
- Antineoplastic Agents/pharmacology
- Bacteriocins/genetics
- Bacteriocins/pharmacology
- CD59 Antigens/genetics
- CD59 Antigens/immunology
- CD59 Antigens/metabolism
- Cell Line, Tumor
- Complement System Proteins/immunology
- Complement System Proteins/metabolism
- Cytotoxicity, Immunologic/drug effects
- Cytotoxicity, Immunologic/immunology
- Cytotoxins/genetics
- Cytotoxins/pharmacology
- Dose-Response Relationship, Drug
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/immunology
- Flow Cytometry
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Lymphoma, B-Cell/drug therapy
- Lymphoma, B-Cell/immunology
- Lymphoma, B-Cell/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Mice, Nude
- Recombinant Proteins/pharmacology
- Rituximab
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Weiguo Hu
- Department of Medicine, Brigham and Women's Hospital, and Laboratory for Translational Research, Harvard Medical School, Cambridge, Massachusetts 02139, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Monoclonal antibodies for non-Hodgkin's lymphoma: state of the art and perspectives. Clin Dev Immunol 2011; 2010:428253. [PMID: 21437222 PMCID: PMC3061293 DOI: 10.1155/2010/428253] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 11/05/2010] [Accepted: 12/22/2010] [Indexed: 11/17/2022]
Abstract
Monoclonal antibodies have been the most successful therapeutics ever brought to cancer treatment by immune technologies. The use of monoclonal antibodies in B-cell Non-Hodgkin's lymphomas (NHL) represents the greatest example of these advances, as the introduction of the anti-CD20 antibody rituximab has had a dramatic impact on how we treat this group of diseases today. Despite this success, several questions about how to optimize the use of monoclonal antibodies in NHL remain open. The best administration schedules, as well as the optimal duration of rituximab treatment, have yet to be determined. A deeper knowledge of the mechanisms underlying resistance to rituximab is also necessary in order to improve the activity of this and of similar therapeutics. Finally, new antibodies and biological agents are entering the scene and their advantages over rituximab will have to be assessed. We will discuss these issues and present an overview of the most significant clinical studies with monoclonal antibodies for NHL treatment carried out to date.
Collapse
|
20
|
Wang H, Li ZY, Liu Y, Persson J, Beyer I, Möller T, Koyuncu D, Drescher MR, Strauss R, Zhang XB, Wahl JK, Urban N, Drescher C, Hemminki A, Fender P, Lieber A. Desmoglein 2 is a receptor for adenovirus serotypes 3, 7, 11 and 14. Nat Med 2010; 17:96-104. [PMID: 21151137 PMCID: PMC3074512 DOI: 10.1038/nm.2270] [Citation(s) in RCA: 325] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 11/08/2010] [Indexed: 11/15/2022]
Abstract
We have identified desmoglein 2 (DSG2) as the primary high-affinity receptor used by adenovirus (Ad) serotypes Ad3, Ad7, Ad11, and Ad14. These serotypes represent important human pathogens causing respiratory tract infections. In epithelial cells, adenovirus binding to DSG2 triggers events reminiscent of epithelial-to-mesenchymal transition, leading to transient opening of intercellular junctions. This improves access to receptors, e.g. CD46 and Her2/neu, that are trapped in intercellular junctions. In addition to complete virions, dodecahedral particles (PtDd), formed by viral penton and fiber in excess during viral replication, can trigger DSG2-mediated opening of intercellular junctions as shown by studies with recombinant Ad3 PtDd. Our findings shed light on adenovirus biology and pathogenesis and have implications for cancer therapy.
Collapse
Affiliation(s)
- Hongjie Wang
- University of Washington, Division of Medical Genetics, Seattle, Washington, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Gustafsson DJ, Andersson EK, Hu YL, Marttila M, Lindman K, Strand M, Wang L, Mei YF. Adenovirus 11p downregulates CD46 early in infection. Virology 2010; 405:474-82. [PMID: 20638094 DOI: 10.1016/j.virol.2010.06.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 05/13/2010] [Accepted: 06/11/2010] [Indexed: 01/25/2023]
Abstract
Adenovirus 11 prototype (Ad11p), belonging to species B, uses CD46 as an attachment receptor. CD46, a complement regulatory molecule, is expressed on all human nucleated cells. We show here that Ad11p virions downregulate CD46 on the surface of K562 cells as early as 5min p.i. Specific binding to CD46 by the Ad11p fiber knob was required to mediate downregulation. The complement regulatory factors CD55 and CD59 were also reduced to a significant extent as a consequence of Ad11p binding to K562 cells. In contrast, binding of Ad7p did not result in downregulation of CD46 early in infection. Thus, the presumed interaction between Ad7p and CD46 did not have the same consequences as the Ad11p-CD46 interaction, the latter virus (Ad11p) being a promising gene therapy vector candidate. These findings may lead to a better understanding of the pathogenesis of species B adenovirus infections.
Collapse
Affiliation(s)
- Dan J Gustafsson
- Department of Clinical Microbiology, Virology, Umeå University, SE-901 85 Umeå, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Paupoo AAV, Zhu ZB, Wang M, Rein DT, Starzinski-Powitz A, Curiel DT. A conditionally replicative adenovirus, CRAd-S-pK7, can target endometriosis with a cell-killing effect. Hum Reprod 2010; 25:2068-83. [PMID: 20573677 DOI: 10.1093/humrep/deq137] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Novel therapeutic approaches for endometriosis based on molecular strategies may prove to be useful. Conditionally replicative adenoviruses (CRAds) are designed to exploit key differences between target and normal cells. The wild-type adenovirus (Adwt) promoter can be replaced by tissue-specific promoters, allowing viral replication only in target cells. Viral infectivity can be enhanced by altering Ad tropism via fiber modification. We investigated whether CRAds can be used to target endometriosis and determined the most efficient transcriptional- and transductional-targeting strategy. METHODS An in vitro study was carried out using human endometriotic cell lines, 11Z (epithelial) and 22B (stromal), normal human ovarian surface epithelial cell line (NOSE006) and primary human endometriosis cells. A total of 9 promoters and 12 Ad tropism modifications were screened by means of a luciferase reporter assay. From this screening data, three CRAds (CRAd-S-pK7, CRAd-S-RGD, CRAd-S-F5/3sigma1, all incorporating the survivin promoter but with different fiber modifications) were selected to perform experiments using Adwt and a replication-deficient virus as controls. CRAds were constructed using a plasmid recombination system. Viral-binding capacity, rates of entry and DNA replication were evaluated by quantitative real-time PCR of viral genome copy. Cell-killing effects were determined by crystal violet staining and a cell viability assay for different concentrations of viral particles per cell. RESULTS Comparison of promoters demonstrated that the survivin promoter exhibited the highest induction in both endometriotic cell lines. Among the fiber-modified viruses, the polylysine modification (pK7) showed the best infection enhancement. CRAd-S-pK7 was validated as the optimal CRAd to target endometriosis in terms of binding ability, entry kinetics, DNA replication and cell-killing effect. CRAd-S-pK7 also exhibited a high level of DNA replication in primary endometriosis cells. CONCLUSIONS CRAd-S-pK7 has the best infection and cell-killing effect in the context of endometriosis. It could prove to be a useful novel method to target refractory cases of endometriosis.
Collapse
Affiliation(s)
- A A V Paupoo
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, The University of Alabama at Birmingham, Birmingham, AL, USA.
| | | | | | | | | | | |
Collapse
|